JP2003073583A - Method for producing coating liquid for forming electrically conductive transparent coating film and substrate and display device provided with electrically conductive transparent coating film - Google Patents

Method for producing coating liquid for forming electrically conductive transparent coating film and substrate and display device provided with electrically conductive transparent coating film

Info

Publication number
JP2003073583A
JP2003073583A JP2001264471A JP2001264471A JP2003073583A JP 2003073583 A JP2003073583 A JP 2003073583A JP 2001264471 A JP2001264471 A JP 2001264471A JP 2001264471 A JP2001264471 A JP 2001264471A JP 2003073583 A JP2003073583 A JP 2003073583A
Authority
JP
Japan
Prior art keywords
fine particles
transparent conductive
coating
conductive film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001264471A
Other languages
Japanese (ja)
Inventor
Yuuji Tawarasako
迫 祐 二 俵
Toshiharu Hirai
井 俊 晴 平
Michio Komatsu
松 通 郎 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2001264471A priority Critical patent/JP2003073583A/en
Publication of JP2003073583A publication Critical patent/JP2003073583A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for the production of a coating liquid for forming a electrically conductive transparent coating film enabling the formation of a transparent conductive film having a surface resistance of as low as about 10<2> to 10<8> Ω/cm<2> , exhibiting excellent antistaticity, antireflection property and electromagnetic shielding property, having high transparency and reliability of the coating film, giving flat surface free from the defect of appearance such as streak mark and spot and having excellent production reliability. SOLUTION: The coating liquid for forming a transparent conductive film contains electrically conductive fine particles consisting of (A) indium oxide fine particles and (B) tin oxide fine particles and a polar solvent. The coating liquid is produced by uniformly mixing and dispersing the indium oxide fine particles (A) and the tin oxide fine particles (B) in the polar solvent at a mixing weight ratio (A/B) of the indium oxide particles (A) to the tin oxide particles (B) in the electrically conductive fine particles of 98/2 to 60/40. The uniform mixing and dispersion of the conductive fine particles in the polar solvent is carried out in a manner to obtain the dispersion having a viscosity of 1.0-5 cp at a conductive particle concentration of 20 wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は、導電性微粒子が極性溶媒
に分散した透明導電性被膜形成用塗布液の製造方方法、
および該塗布液を用いて形成された透明導電性被膜を有
する透明導電性被膜付基材、該基材を備えた表示装置に
関する。
TECHNICAL FIELD The present invention relates to a method for producing a coating liquid for forming a transparent conductive film, in which conductive fine particles are dispersed in a polar solvent,
The present invention also relates to a transparent conductive film-coated substrate having a transparent conductive film formed using the coating liquid, and a display device including the substrate.

【0002】[0002]

【発明の技術的背景】従来より、陰極線管、蛍光表示
管、液晶表示板などの表示パネルのような透明基材の表
面の帯電防止および反射防止を目的として、これらの表
面に帯電防止機能および反射防止機能を有する透明被膜
を形成することが行われていた。また、陰極線管などか
ら電磁波が放出されること知られており、従来の帯電防
止、反射防止に加えてこれらの電磁波および電磁波の放
出に伴って形成される電磁場を遮蔽することが望まれて
いる。
2. Description of the Related Art Conventionally, for the purpose of antistatic and antireflection of the surface of a transparent substrate such as a display panel such as a cathode ray tube, a fluorescent display tube, a liquid crystal display panel, etc. It has been performed to form a transparent film having an antireflection function. Further, it is known that electromagnetic waves are emitted from a cathode ray tube and the like, and in addition to the conventional antistatic and antireflection properties, it is desired to shield these electromagnetic waves and the electromagnetic field formed by the emission of the electromagnetic waves. .

【0003】これらの電磁波などを遮蔽する方法の一つ
として、陰極線管などの表示パネルの表面に電磁波遮断
用の導電性被膜を形成する方法がある。帯電防止用導電
性被膜であれば表面抵抗が少なくとも108Ω/□程度
の表面抵抗を有していれば十分であるのに対し、電磁遮
蔽用の導電性被膜では102〜104Ω/□のような低い
表面抵抗を有することが必要であった。
As one of the methods of shielding these electromagnetic waves and the like, there is a method of forming a conductive coating for shielding electromagnetic waves on the surface of a display panel such as a cathode ray tube. It is sufficient for the antistatic conductive film to have a surface resistance of at least about 10 8 Ω / □, whereas for the conductive film for electromagnetic shielding, 10 2 to 10 4 Ω / It was necessary to have a low surface resistance such as □.

【0004】このように表面抵抗の低い導電性被膜を、
従来のSbドープ酸化錫またはSnドープ酸化インジウム
のような導電性酸化物を含む塗布液を用いて形成しよう
とすると、従来の帯電防止性被膜の場合よりも膜厚を厚
くする必要があった。しかしながら、導電性被膜の膜厚
は、10〜200nm程度にしないと反射防止効果は発
現しないため、従来のSbドープ酸化錫またはSnドープ
酸化インジウムのような導電性酸化物では、表面抵抗が
低く、電磁波遮断性に優れるとともに、反射防止にも優
れた導電性被膜を得ることが困難であるという問題があ
った。
A conductive film having a low surface resistance is
If a conventional coating solution containing a conductive oxide such as Sb-doped tin oxide or Sn-doped indium oxide is used, it is necessary to make the film thicker than in the case of the conventional antistatic coating. However, since the antireflection effect is not exhibited unless the thickness of the conductive coating is set to about 10 to 200 nm, conventional conductive oxides such as Sb-doped tin oxide or Sn-doped indium oxide have a low surface resistance, There is a problem in that it is difficult to obtain a conductive coating film that is excellent in electromagnetic wave shielding properties and also in antireflection.

【0005】また、低表面抵抗の導電性被膜を形成する
方法の一つとして、Agなどの金属微粒子を含む導電性
被膜形成用塗布液を用いて基材の表面に金属微粒子含有
被膜を形成する方法がある。この方法では、金属微粒子
含有被膜形成用塗布液として、コロイド状の金属微粒子
が極性溶媒に分散したものが用いられている。このよう
な塗布液では、コロイド状金属微粒子の分散性を向上さ
せるために、金属微粒子表面がポリビニルアルコール、
ポリビニルピロリドンまたはゼラチンなどの有機系安定
剤で表面処理されている。しかしながら、このような金
属微粒子含有被膜形成用塗布液を用いて形成された導電
性被膜は、被膜中で金属微粒子同士が安定剤を介して接
触するため、粒界抵抗が大きく、被膜の表面抵抗が低く
ならないことがあった。このため、製膜後、400℃程
度の高温で焼成して安定剤を分解除去する必要がある
が、安定剤の分解除去をするため高温で焼成すると、金
属微粒子同士の融着や凝集が起こり、導電性被膜の透明
性やヘーズが低下するという問題があった。また、陰極
線管などの場合は、高温に晒すと劣化してしまうという
問題もあった。
Further, as one of the methods for forming a conductive film having a low surface resistance, a coating film containing metal fine particles is formed on the surface of a substrate by using a coating liquid for forming a conductive film containing metal fine particles such as Ag. There is a way. In this method, as a coating liquid for forming a coating film containing metal fine particles, a colloidal metal fine particle dispersed in a polar solvent is used. In such a coating liquid, in order to improve the dispersibility of the colloidal metal fine particles, the surface of the metal fine particles is polyvinyl alcohol,
It is surface-treated with an organic stabilizer such as polyvinylpyrrolidone or gelatin. However, a conductive coating formed using such a coating solution for forming a coating containing metal fine particles has a large grain boundary resistance because the metal fine particles come into contact with each other through a stabilizer in the coating, and the surface resistance of the coating is large. Sometimes did not go down. For this reason, after film formation, it is necessary to bake at a high temperature of about 400 ° C. to decompose and remove the stabilizer, but if it is baked at a high temperature to decompose and remove the stabilizer, fusion and agglomeration of metal fine particles occur. However, there is a problem that the transparency and haze of the conductive coating are reduced. Further, in the case of a cathode ray tube or the like, there is a problem that it deteriorates when exposed to high temperature.

【0006】また、金属微粒子は前記導電性酸化物と異
なり本来光を透過しないために金属微粒子を用いて形成
された導電性被膜は導電性被膜中の金属微粒子の密度や
膜厚等に依存して透明性が低下する問題もあった。さら
に従来のAg等の金属微粒子を含む透明導電性被膜で
は、耐塩水性や耐酸化性が低く、金属が酸化されたり、
イオン化による粒子成長したり、また場合によっては腐
食が発生することがあり、塗膜の導電性や光透過率が低
下し、表示装置が信頼性を欠くという問題があった。
Further, unlike the above-mentioned conductive oxide, the metal fine particles originally do not transmit light. Therefore, the conductive coating formed by using the metal fine particles depends on the density, the film thickness, etc. of the metal fine particles in the conductive coating. There was also a problem that transparency was lowered. Further, in the conventional transparent conductive coating film containing fine metal particles such as Ag, the salt water resistance and the oxidation resistance are low, the metal is oxidized,
There is a problem that particle growth due to ionization or corrosion may occur in some cases, the conductivity and light transmittance of the coating film decrease, and the display device lacks reliability.

【0007】また、前記した従来の透明導電性被膜を形
成するために用いられる塗布液、なかでも電磁波遮蔽用
の低表面抵抗透明導電性被膜を形成するために金属微粒
子などの導電性の高い微粒子を配合した塗布液は、安定
性が不充分であり、得られる透明導電性被膜の被膜表面
は必ずしも表面が平滑でなく、筋条あるいはスポット状
の外観上の欠陥ができることがあり製品の歩留まりを低
下させる問題があった。さらに従来の塗布液を用いた場
合は基板の清浄度の影響を受けて外観上の欠陥が派生し
やすく製造信頼性に欠ける問題があった。
Further, a coating solution used for forming the above-mentioned conventional transparent conductive film, particularly fine particles having high conductivity such as metal fine particles for forming a low surface resistance transparent conductive film for shielding electromagnetic waves. The coating solution containing is insufficient in stability, the surface of the obtained transparent conductive film is not always smooth, and streaks or spots may appear on the outer surface of the product, resulting in poor product yield. There was a problem of lowering. Further, when the conventional coating liquid is used, there is a problem that the defects of appearance are apt to occur due to the influence of the cleanliness of the substrate and the manufacturing reliability is poor.

【0008】さらにまた、透明導電性被膜には、カーボ
ン微粒子等の着色剤を配合し透過率を制御してコントラ
ストを向上させることが行われることもあるが、導電性
微粒子が着色剤と反対の粒子表面電位を有している場合
は導電性微粒子と着色剤粒子が互いに付着して凝集し、
塗布液の安定性が低く、実質的に塗布液として用いるこ
とが困難であるという欠点があった。たとえば、導電性
微粒子が前記した酸化インジウム系微粒子の場合はカー
ボン微粒子を配合することができず、このためコントラ
ストに優れた透明導電性被膜付基材を備えた表示装置を
得ることができなかった。
Further, a colorant such as carbon fine particles may be added to the transparent conductive film to control the transmittance to improve the contrast, but the conductive fine particles are opposite to the colorant. In the case of having a particle surface potential, conductive fine particles and colorant particles adhere to each other and aggregate,
The stability of the coating liquid is low, and it is practically difficult to use as a coating liquid. For example, when the conductive fine particles are the above-mentioned indium oxide-based fine particles, carbon fine particles cannot be blended, and therefore a display device including a transparent conductive film-coated substrate having excellent contrast could not be obtained. .

【0009】[0009]

【発明の目的】本発明は、上記のような従来技術の問題
点を解決し、102〜108Ω/□程度の低い表面抵抗を
有し、帯電防止性、反射防止性および電磁遮蔽性に優れ
るとともに、被膜の透明性や信頼性にも優れ、さらに表
面が平滑で、筋条あるいはスポット状の外観上の欠陥が
なく、製造信頼性に優れた透明導電性被膜を形成可能な
透明導電性被膜形成用塗布液の製造方法、透明導電性被
膜付基材、および該基材を備えた表示装置を提供するこ
とを目的としている。
SUMMARY OF THE INVENTION The present invention solves the problems of the prior art as described above, has a low surface resistance of about 10 2 to 10 8 Ω / □, and has antistatic property, antireflection property and electromagnetic shielding property. In addition to being excellent in transparency and reliability, the transparent surface has a smooth surface, there are no streaks or spot-like appearance defects, and transparent conductive film that can be formed with excellent manufacturing reliability. An object of the present invention is to provide a method for producing a coating liquid for forming a conductive film, a substrate with a transparent conductive film, and a display device including the substrate.

【0010】[0010]

【発明の概要】本発明に係る透明導電性被膜形成用塗布
液の製造方法は、導電性微粒子として酸化インジウム系
微粒子(A)と酸化錫系微粒子(B)、および極性溶媒
を含む透明導電性被膜形成用塗布液の製造方法におい
て、酸化インジウム微粒子(A)と導電性微粒子中の酸
化錫系微粒子(B)との混合割合(A/B)が98/2〜60/40
(重量比)の範囲で極性溶媒に均一に混合し分散させる
ことを特徴としている。
SUMMARY OF THE INVENTION The method for producing a coating liquid for forming a transparent conductive film according to the present invention is a transparent conductive material containing indium oxide fine particles (A) and tin oxide fine particles (B) as conductive fine particles, and a polar solvent. In the method for producing a coating liquid for forming a coating film, the mixing ratio (A / B) of indium oxide fine particles (A) and tin oxide fine particles (B) in the conductive fine particles is 98/2 to 60/40.
It is characterized by being uniformly mixed and dispersed in a polar solvent in the range of (weight ratio).

【0011】本発明では、前記導電性微粒子を極性溶媒
に分散させたときの分散液の粘度が、導電性微粒子の濃
度が20重量%のときに1.0〜5cpの範囲となるよ
うに均一に混合し、分散させることが好ましい。前記酸
化インジウム系微粒子(A)の平均粒子径が2〜200
nmであり、酸化スズ系微粒子(B)の平均粒子径が2
〜200nmの範囲にあることが好ましい。
In the present invention, the viscosity of the dispersion when the conductive fine particles are dispersed in a polar solvent is uniform so that the viscosity is within the range of 1.0 to 5 cp when the concentration of the conductive fine particles is 20% by weight. It is preferable to mix and disperse. The indium oxide-based fine particles (A) have an average particle diameter of 2 to 200.
nm, and the average particle diameter of the tin oxide-based fine particles (B) is 2
It is preferably in the range of ˜200 nm.

【0012】前記酸化インジウム系微粒子(A)が酸化
インジウム、SnまたはFがドーピングされた酸化イン
ジウムであり、酸化錫系微粒子(B)が酸化錫、Sb、
FまたはPがドーピングされた酸化錫であることが好ま
しい。本発明に係る製造方法では、導電性微粒子を分散
させたのち、さらに着色剤として微粒子状のカーボンブ
ラックおよび/またはチタンブラックを分散させてもよ
い。
The indium oxide-based fine particles (A) are indium oxide, indium oxide doped with Sn or F, and the tin oxide-based fine particles (B) are tin oxide, Sb,
It is preferred that F or P is doped tin oxide. In the production method according to the present invention, after the conductive fine particles are dispersed, fine particle carbon black and / or titanium black may be further dispersed as a colorant.

【0013】本発明に係る透明導電性被膜形成用塗布液
は前記方法で製造されたものであることを特徴としてい
る。本発明に係る透明導電性被膜付基材は、基材と、基
材上の前記導電性微粒子を含む透明導電性被膜と、該透
明導電性被膜上に設けられ、該透明導電性被膜よりも屈
折率が低い透明被膜とからなり、透明導電性被膜が前記
方法で製造された透明導電性被膜形成用塗布液を基材表
面に塗布して形成されたものである。
The coating liquid for forming a transparent conductive film according to the present invention is characterized by being manufactured by the above method. The substrate with a transparent conductive film according to the present invention, a substrate, a transparent conductive film containing the conductive fine particles on the substrate, provided on the transparent conductive film, than the transparent conductive film A transparent conductive film having a low refractive index, which is formed by applying the transparent conductive film-forming coating liquid produced by the above method onto the surface of a substrate.

【0014】本発明に係る表示装置は、前記透明導電性
被膜付基材で構成された前面板を備え、透明導電性被膜
が該前面板の外表面に形成されていることを特徴として
いる。
The display device according to the present invention is characterized by including a front plate composed of the base material with the transparent conductive film, and the transparent conductive film being formed on the outer surface of the front plate.

【0015】[0015]

【発明の具体的説明】以下、本発明について具体的に説
明する。透明導電性被膜形成用塗布液の製造方法 まず、本発明に係る透明導電性被膜形成用塗布液の製造
方法について説明する。本発明に係る透明導電性被膜形
成用塗布液の製造方法は酸化インジウム系微粒子(A)
と酸化錫系微粒子(B)とを極性溶媒に均一に混合し分
散させることを特徴としている。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be specifically described below. Method for Manufacturing Coating Liquid for Forming Transparent Conductive Film First, a method for manufacturing a coating liquid for forming a transparent conductive film according to the present invention will be described. The method for producing a coating liquid for forming a transparent conductive film according to the present invention is the indium oxide-based fine particles (A).
And tin oxide fine particles (B) are uniformly mixed and dispersed in a polar solvent.

【0016】導電性微粒子 本発明で用いられる導電性微粒子は、酸化インジウム系
微粒子(A)と酸化スズ系微粒子(B)であり、本発明
に係る塗布液中では、両者が均一に混合、分散されてい
る。酸化インジウム系微粒子(A)としては、従来公知
の酸化インジウム、SnまたはFがドーピングされた酸
化インジウムが用いられる。このような酸化インジウム
系微粒子(A)は酸化物系導電性微粒子の中でも導電性
が高く、得られる透明導電性被膜は帯電防止性能、電磁
波遮蔽性能に優れるとともに、金属微粒子を用いた透明
導電性被膜と異なり透明性に優れている。
Conductive Fine Particles The conductive fine particles used in the present invention are indium oxide fine particles (A) and tin oxide fine particles (B), and both are uniformly mixed and dispersed in the coating solution according to the present invention. Has been done. As the indium oxide-based fine particles (A), conventionally known indium oxide or Sn or F-doped indium oxide is used. Such indium oxide-based fine particles (A) have high conductivity among the oxide-based conductive fine particles, and the resulting transparent conductive coating has excellent antistatic performance and electromagnetic wave shielding performance, and also has a transparent conductive property using metal fine particles. It has excellent transparency unlike the coating.

【0017】酸化スズ系微粒子(B)としては、酸化ス
ズ、Sb、FまたはPがドーピングされた酸化スズが用
いられる。酸化インジウム系微粒子(A)は、平均粒子
径が2〜200nm、好ましくは5〜150nmの範囲
にあることが好ましい。酸化インジウム系微粒子(A)
の平均粒子径が2nm未満の場合は、粒子層の表面抵抗
が急激に大きくなるため、本発明の目的を達成しうる程
度の低抵抗値を有する被膜を得ることができないことが
ある。
As the tin oxide type fine particles (B), tin oxide, tin oxide doped with Sb, F or P is used. The indium oxide-based fine particles (A) have an average particle diameter of 2 to 200 nm, preferably 5 to 150 nm. Indium oxide fine particles (A)
When the average particle size is less than 2 nm, the surface resistance of the particle layer is rapidly increased, and it may not be possible to obtain a coating having a low resistance value to the extent that the object of the present invention can be achieved.

【0018】酸化インジウム系微粒子(A)の平均粒子
径が200nmを超えると、粒子が大きいために粒子同
士の接点が減少し充分な導電性が得られないことがあ
り。また膜強度や基材との密着性が低下したり、得られ
る透明導電性被膜のヘーズが高くなることがある。つぎ
に、前記酸化スズ系微粒子(B)は、平均粒子径が2〜
200nm、好ましくは5〜150nmの範囲にあるこ
とが望ましい。
When the average particle diameter of the indium oxide fine particles (A) exceeds 200 nm, the particles are large and the number of contact points between the particles is reduced, so that sufficient conductivity may not be obtained. In addition, the film strength and the adhesion to the substrate may decrease, and the haze of the obtained transparent conductive film may increase. Next, the tin oxide-based fine particles (B) have an average particle diameter of 2 to
It is desirable to be in the range of 200 nm, preferably 5-150 nm.

【0019】酸化スズ系微粒子(B)の平均粒子径が2
nm未満の場合は、粒子が小さすぎて凝集する傾向が強
くなり、混合量にもよるが、塗布液の安定性を向上させ
る効果が得られないことがあり、逆に安定性を阻害する
ことがある。酸化スズ系微粒子(B)の平均粒子径が2
00nmを超えると、粒子径が大きすぎて、やはり塗布
液の安定性を向上させる効果が得られないことがあり、
このため外観上の欠陥が発生することがある。
The average particle size of the tin oxide fine particles (B) is 2
If it is less than nm, the particles are too small and the tendency to aggregate becomes strong, and depending on the mixing amount, the effect of improving the stability of the coating solution may not be obtained, and on the contrary, the stability may be hindered. There is. The average particle size of the tin oxide fine particles (B) is 2
If it exceeds 00 nm, the particle size may be too large and the effect of improving the stability of the coating solution may not be obtained.
Therefore, a defect in appearance may occur.

【0020】なお、酸化インジウム系微粒子(A)と酸
化スズ系微粒子(B)の平均粒子径は、同じであって
も、異なっていてもよい。塗布液中の酸化インジウム微
粒子(A)と酸化錫系微粒子(B)との混合割合(A/B)
は(重量比)、98/2〜60/40、好ましくは90/10〜70/30
の範囲にあることが望ましい。
The average particle diameters of the indium oxide type fine particles (A) and the tin oxide type fine particles (B) may be the same or different. Mixing ratio (A / B) of indium oxide fine particles (A) and tin oxide fine particles (B) in the coating liquid
Is (weight ratio), 98/2 to 60/40, preferably 90/10 to 70/30
It is desirable to be in the range of.

【0021】酸化インジウム系微粒子(A)の含有量が
60重量%未満の場合は、得られる導電膜の表面抵抗が
104Ω/□以上となり充分な電磁波遮蔽効果が得られ
ないことがある。酸化インジウム系微粒子(A)の含有
量が98重量%を超えると、酸化スズ系微粒子(B)の
割合が少ないために前記したような安定性を向上させる
効果や、製造信頼性が向上する効果が得られないことが
ある。
When the content of the indium oxide type fine particles (A) is less than 60% by weight, the surface resistance of the obtained conductive film may be 10 4 Ω / □ or more and a sufficient electromagnetic wave shielding effect may not be obtained. When the content of the indium oxide-based fine particles (A) exceeds 98% by weight, the ratio of the tin oxide-based fine particles (B) is small, and thus the effect of improving the stability and the effect of improving the manufacturing reliability are achieved. May not be obtained.

【0022】極性溶媒 本発明で用いられる極性溶媒としては、水;メタノー
ル、エタノール、プロパノール、ブタノール、ジアセト
ンアルコール、フルフリルアルコール、テトラヒドロフ
ルフリルアルコール、エチレングリコール、ヘキシレン
グリコール、イソプロピルグリコールなどのアルコール
類;酢酸メチルエステル、酢酸エチルエステルなどのエ
ステル類;ジエチルエーテル、エチレングリコールモノ
メチルエーテル、エチレングリコールモノエチルエーテ
ル、エチレングリコールモノブチルエーテル、ジエチレ
ングリコールモノメチルエーテル、ジエチレングリコー
ルモノエチルエーテルなどのエーテル類;アセトン、メ
チルエチルケトン、アセチルアセトン、アセト酢酸エス
テルなどのケトン類などが挙げられる。これらは単独で
使用してもよく、また2種以上混合して使用してもよ
い。
Polar Solvent The polar solvent used in the present invention includes water; alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol and isopropyl glycol. Esters such as acetic acid methyl ester and acetic acid ethyl ester; ethers such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether; acetone, methyl ethyl ketone, Examples include ketones such as acetylacetone and acetoacetic acid ester. These may be used alone or in combination of two or more.

【0023】塗布液の製造 本発明では、上記導電性微粒子を、極性溶媒に均一混合
装置などを用いて均一に混合・分散させる。極性溶媒に
分散させる際、極性溶媒分散液中の導電性粒子の固形分
濃度は、15〜25重量%の範囲にあることが望まし
い。分散液中の固形分濃度がこの範囲を外れると均一化
が充分できないことがあり、その結果、得られた透明導
電性被膜形成用塗布液の安定性が低く、この塗布液を用
いて得られる透明導電性被膜は緻密性に欠け膜の強度が
低く、前記したような外観上の欠陥(筋、ムラ、光点)
が発生することがある。
Production of Coating Liquid In the present invention, the above conductive fine particles are uniformly mixed and dispersed in a polar solvent using a uniform mixing device. When dispersed in a polar solvent, the solid concentration of the conductive particles in the polar solvent dispersion is preferably in the range of 15 to 25% by weight. If the solid content concentration in the dispersion is out of this range, homogenization may not be sufficient, and as a result, the stability of the obtained transparent conductive film-forming coating liquid is low, and it is possible to obtain using this coating liquid. The transparent conductive film lacks compactness and the strength of the film is low, and the above-mentioned defects in appearance (streaks, unevenness, light spots)
May occur.

【0024】導電性微粒子の分散方法としては、導電性
微粒子(A)および(B)の乾燥粉を混合したのち、極
性溶媒に分散させてもよく、またあらかじめ、酸化イン
ジウム系微粒子(A)の極性溶媒分散液と酸化スズ系微
粒子(B)の極性溶媒分散液を調製しておき、混合後の
固形分濃度が15〜25重量%の範囲になるように
(A)および混合してもよい。特に後者の酸化インジウ
ム系微粒子(A)の極性溶媒分散液と酸化スズ系微粒子
(B)の極性溶媒分散液を混合する方法が、より均一に
混合できるので、好ましい。
The conductive fine particles may be dispersed by mixing dry powders of the conductive fine particles (A) and (B) and then dispersing them in a polar solvent. A polar solvent dispersion liquid and a polar solvent dispersion liquid of tin oxide fine particles (B) may be prepared in advance and mixed (A) and mixed so that the solid content concentration after mixing is in the range of 15 to 25% by weight. . In particular, the latter method of mixing the polar solvent dispersion liquid of the indium oxide fine particles (A) and the polar solvent dispersion liquid of the tin oxide fine particles (B) is preferable because it allows more uniform mixing.

【0025】酸化インジウム系微粒子(A)および酸化
スズ系微粒子(B)の各分散液それぞれの固形分濃度
は、分散液の固形分濃度が15〜25重量%の範囲にな
れば特に制限されるものではないが、概ね10〜30重
量%のものを使用することが、濃度調整の点で好適であ
る。酸化インジウム系微粒子(A)と酸化スズ系微粒子
(B)との混合および分散が不充分で不均一な場合は、
酸化インジウム系微粒子(A)と酸化スズ系微粒子
(B)とが異なる表面電位を有しているために互いに粒
子が付着して凝集し、塗布液の安定性が低下し、ゲル化
したりすることがあり、このような塗布液を用いて得ら
れる透明導電性被膜は緻密性に欠け膜の強度が低く、前
記したような外観上の欠陥が発生することがある。
The solid content concentration of each dispersion liquid of indium oxide fine particles (A) and tin oxide fine particles (B) is particularly limited as long as the solid content concentration of the dispersion liquid is in the range of 15 to 25% by weight. Although not a thing, it is suitable to use about 10 to 30% by weight in terms of concentration adjustment. When the mixing and dispersion of the indium oxide-based fine particles (A) and the tin oxide-based fine particles (B) are insufficient and uneven,
Since the indium oxide-based fine particles (A) and the tin oxide-based fine particles (B) have different surface potentials, the particles adhere to each other and agglomerate, the stability of the coating liquid decreases, and gelation occurs. However, the transparent conductive coating film obtained by using such a coating liquid lacks the denseness and the strength of the film is low, and the above-mentioned appearance defects may occur.

【0026】酸化インジウム系微粒子(A)と酸化スズ
系微粒子(B)を充分に均一に混合した場合は、分散液
の固形分濃度が15〜25重量%としたときの粘度が低
く(固形分濃度が20重量%で、粘度が1〜5cp)、
前記したように酸化インジウム系微粒子(A)および酸
化スズ系微粒子(B)が互いに異なる表面電位を有して
いるにも拘わらず凝集せず、却って安定性が向上する傾
向にある。したがって、このような塗布液を用いて得ら
れる透明導電性被膜は緻密であり、膜の表面は平坦で外
観上の欠陥(筋、ムラ、光点)が無く製造信頼性に優れ
ている。
When the indium oxide-based fine particles (A) and the tin oxide-based fine particles (B) are sufficiently uniformly mixed, the viscosity is low when the solid content concentration of the dispersion liquid is 15 to 25% by weight (solid content: The concentration is 20% by weight and the viscosity is 1 to 5 cp),
As described above, although the indium oxide-based fine particles (A) and the tin oxide-based fine particles (B) have different surface potentials, they do not aggregate and tend to improve the stability. Therefore, the transparent conductive film obtained by using such a coating solution is dense, the surface of the film is flat, and there are no defects (streaks, unevenness, light spots) in appearance, and the manufacturing reliability is excellent.

【0027】双方の導電性微粒子を均一に混合・分散す
る方法としては、特に制限はないが、サンドミル、コロ
イドミル、ボールミル、超音波ホモジナイザー、ベント
シェーカー、ナノマイザー等の混合装置が好適に採用さ
れる。このような均一混合装置を用いて均一に混合し分
散すれば、分散液中の固形分濃度が20重量%のときの
粘度が1.0〜5cpの範囲にあり、さらには1.0〜3
cpの範囲にある導電性微粒子分散液を調製できる。こ
の分散液は、従来の金属微粒子分散液、金属酸化物微粒
分子散液に比べて、固形分濃度が高いにもかかわらず、
粘度が著しく低くなる。単にこの理由は定かではない
が、酸化インジウム系微粒子(A)および酸化スズ系微
粒子(B)を単に混合したときには、互いに反する表面
電荷を中和するため、粒子が鎖状になったりゲル化した
りして粘度が上昇するが、均一に混合・分散させること
で鎖状とはならず、たとえば酸化インジウム系微粒子
(A)の周りに酸化錫系微粒子(B)が凝集した新たな
粒子群を形成し、見かけ上、少ない数の大きな粒子が分
散していることになり、その結果分散液の粘度が低くな
るものと考えられる。
The method for uniformly mixing and dispersing both conductive fine particles is not particularly limited, but a mixing device such as a sand mill, a colloid mill, a ball mill, an ultrasonic homogenizer, a vent shaker or a nanomizer is preferably adopted. . When uniformly mixed and dispersed using such a uniform mixing device, the viscosity at the solid content concentration of the dispersion liquid is 20 wt% is in the range of 1.0 to 5 cp, and further 1.0 to 3 cp.
A conductive fine particle dispersion liquid having a cp range can be prepared. Compared with conventional metal fine particle dispersion liquid and metal oxide fine particle molecular dispersion liquid, this dispersion liquid has a high solid content concentration,
The viscosity is extremely low. The reason for this is not clear, but when the indium oxide-based fine particles (A) and the tin oxide-based fine particles (B) are simply mixed, the surface charges opposite to each other are neutralized, and the particles become chained or gelled. The viscosity increases, but it does not become a chain by uniformly mixing and dispersing, and for example, a new particle group in which tin oxide fine particles (B) are aggregated around indium oxide fine particles (A) is formed. However, it is considered that a small number of large particles are apparently dispersed, and as a result, the viscosity of the dispersion becomes low.

【0028】こうして調製された導電性微粒子分散液は
そのまま塗布液として使用することも可能であるが、必
要に応じて極性溶媒で希釈したり、または濃縮したりし
て固形分濃度を調整してもよい。特に、導電性被膜形成
用塗布液として使用する場合、導電性微粒子(A)と
(B)の合計で、0.1〜7重量%、好ましくは0.5〜
5重量%の範囲で含まれていることが望ましい。
The conductive fine particle dispersion liquid thus prepared can be used as it is as a coating liquid, but if necessary, it may be diluted with a polar solvent or concentrated to adjust the solid content concentration. Good. In particular, when used as a coating liquid for forming a conductive film, the total amount of the conductive fine particles (A) and (B) is 0.1 to 7% by weight, preferably 0.5 to
It is preferably contained in the range of 5% by weight.

【0029】透明導電性被膜形成用塗布液中の導電性微
粒子が0.1重量%未満の場合は、得られる被膜の膜厚
が薄くなることがあり、このため充分な導電性が得られ
ないことがある。また導電性微粒子が7重量%を超える
と、塗布液中で導電性微粒子が2次粒子(凝集粒子ある
いは鎖状に連結した非単分散状態の粒子)を形成するこ
とがあり、この2次粒子が多くなると膜の稠密性が低下
し、膜強度が低下することがあり、また充分な導電性が
得られないことがある。さらに、被膜が厚くなり、光透
過率が低下して透明性が悪化したり、被膜表面の平坦性
が低下し筋やムラ等が発生し外観が悪くなることがあ
る。
When the content of the conductive fine particles in the coating solution for forming the transparent conductive coating film is less than 0.1% by weight, the film thickness of the coating film obtained may be small, and therefore sufficient conductivity cannot be obtained. Sometimes. When the conductive fine particles exceed 7% by weight, the conductive fine particles may form secondary particles (aggregated particles or particles in a non-monodisperse state linked in a chain) in the coating liquid. If the amount is large, the denseness of the film may decrease, the film strength may decrease, and sufficient conductivity may not be obtained. Further, the coating may become thick and the light transmittance may be lowered to deteriorate the transparency, or the flatness of the coating surface may be lowered to cause streaks, unevenness and the like to deteriorate the appearance.

【0030】こうして得られた塗布液には、必要に応じ
て、さらにその他の添加物(金属微粒子、カーボンブラ
ック、マトリックスなど)および溶媒(濃度調整用)を
添加・混合してもよい。その他の添加物および溶媒を混
合する際には、前記した混合装置を使用してもよい。ま
た、本発明では、金属微粒子としては、Au、Ag、P
d、Pt、Rh、Ru、Cu、Fe、Ni、Co、Sn、Ti、I
n、Al、Ta、Sbなどの金属から選ばれる少なくとも1
種または2種以上の金属からなるものが例示される。好
ましい2種以上の金属の組合せとしては、Au-Cu、Ag
-Pt、Ag-Pd、Au-Pd、Au-Rh、Pt-Pd、Pt-R
h、Fe-Ni、Ni-Pd、Fe-Co、Cu-Co、Ru-Ag、A
u-Cu-Ag、Ag-Cu-Pt、Ag-Cu-Pd、Ag-Au-Pd、
Au-Rh-Pd、Ag-Pt-Pd、Ag-Pt-Rh、Fe-Ni-P
d、Fe-Co-Pd、Cu-Co-Pd などが挙げられる。
If necessary, other additives (metal fine particles, carbon black, matrix, etc.) and a solvent (for concentration adjustment) may be added to and mixed with the coating liquid thus obtained. When mixing the other additives and the solvent, the above-mentioned mixing device may be used. Further, in the present invention, as the metal fine particles, Au, Ag, P
d, Pt, Rh, Ru, Cu, Fe, Ni, Co, Sn, Ti, I
At least 1 selected from metals such as n, Al, Ta and Sb
Examples include ones or two or more metals. Preferred combinations of two or more metals are Au-Cu and Ag.
-Pt, Ag-Pd, Au-Pd, Au-Rh, Pt-Pd, Pt-R
h, Fe-Ni, Ni-Pd, Fe-Co, Cu-Co, Ru-Ag, A
u-Cu-Ag, Ag-Cu-Pt, Ag-Cu-Pd, Ag-Au-Pd,
Au-Rh-Pd, Ag-Pt-Pd, Ag-Pt-Rh, Fe-Ni-P
d, Fe-Co-Pd, Cu-Co-Pd and the like can be mentioned.

【0031】金属微粒子の添加量は前記導電性微粒子
(AとBとの合計)に対して、0.05〜10重量%、好まし
くは0.05〜5重量%の範囲で含まれていることが望まし
い。このような金属微粒子が含まれていると、導電性被
膜の導電性が向上し電磁波遮蔽能が向上することに加え
て、金属微粒子の使用による光透過率の制御が可能であ
り、このためコントラストを向上することができ、また
金属微粒子のみを用いる場合に比較して耐塩水性、耐酸
化性等に優れている。
The amount of the fine metal particles added is preferably 0.05 to 10% by weight, and more preferably 0.05 to 5% by weight, based on the conductive fine particles (total of A and B). When such metal fine particles are contained, the conductivity of the conductive coating is improved and the electromagnetic wave shielding ability is improved, and in addition, the light transmittance can be controlled by using the metal fine particles, and therefore, the contrast is improved. And is superior in salt water resistance and oxidation resistance as compared with the case of using only metal fine particles.

【0032】また、本発明に係る方法で得られた塗布液
は安定性に優れているので必ずしも必要はないが、前記
したように導電性微粒子に金属微粒子を添加する場合
に、金属微粒子の分散性を向上させるため、透明導電性
被膜形成用塗布液中に有機系安定剤を添加してもよい。
このような有機系安定剤として具体的には、ゼラチン、
ポリビニルアルコール、ポリビニルピロリドン、シュウ
酸、マロン酸、コハク酸、グルタール酸、アジピン酸、
セバシン酸、マレイン酸、フマル酸、フタル酸、クエン
酸などの多価カルボン酸およびその塩、複素環化合物あ
るいはこれらの混合物などが挙げられる。
The coating solution obtained by the method according to the present invention has excellent stability and is not always necessary. However, as described above, when the metal fine particles are added to the conductive fine particles, the metal fine particles are dispersed. In order to improve the property, an organic stabilizer may be added to the coating liquid for forming the transparent conductive film.
Specifically as such an organic stabilizer, gelatin,
Polyvinyl alcohol, polyvinylpyrrolidone, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid,
Examples thereof include polyvalent carboxylic acids such as sebacic acid, maleic acid, fumaric acid, phthalic acid, citric acid, salts thereof, heterocyclic compounds and mixtures thereof.

【0033】このような有機系安定剤は、金属微粒子1
重量部に対し、0.005〜0.5重量部、好ましくは
0.01〜0.2重量部の量で添加することが望ましい。
有機系安定剤の量が0.005重量部未満の場合は充分
な金属微粒子の分散性が得られず、0.5重量部を超え
て高い場合は導電性が阻害されることがある。着色剤と
しては、微粒子状のカーボンブラックおよび/またはチ
タンブラックなどが挙げられ、さらに染料、顔料を添加
してもよい。このような着色剤が添加されているとコン
トラストに優れた表示装置用の塗布液を得ることができ
る。
Such an organic stabilizer is used for the metal fine particles 1
It is desirable to add 0.005 to 0.5 parts by weight, preferably 0.01 to 0.2 parts by weight, based on parts by weight.
When the amount of the organic stabilizer is less than 0.005 part by weight, sufficient dispersibility of the metal fine particles cannot be obtained, and when it is more than 0.5 part by weight, the conductivity may be hindered. Examples of the colorant include fine particle carbon black and / or titanium black, and dyes and pigments may be added. When such a coloring agent is added, a coating liquid for a display device having excellent contrast can be obtained.

【0034】特に、本発明では、微粒子状カーボンブラ
ックおよび/またはチタンブラックを、これと反対の表
面電位を有する酸化インジウム系の導電性微粒子(A)
分散液に添加することになるが、酸化スズ系の導電性微
粒子(B)が所定量、かつ均一に混合されているため、
添加されたカーボンブラック、チタンブラックなどの微
粒子が凝集することがなく、また塗布液の安定性が損な
われることがないので、緻密で基材との密着性もよく、
表面が平坦で外観上の欠陥のない透明導電性被膜を形成
することができる。
In particular, in the present invention, finely divided carbon black and / or titanium black is used as an indium oxide-based conductive fine particle (A) having a surface potential opposite thereto.
Although it will be added to the dispersion liquid, since the tin oxide-based conductive fine particles (B) are mixed in a predetermined amount and uniformly,
Since the added fine particles of carbon black, titanium black, etc. do not aggregate and the stability of the coating solution is not impaired, it is dense and has good adhesion to the substrate,
It is possible to form a transparent conductive coating having a flat surface and no defect in appearance.

【0035】添加される微粒子カーボンブラックおよび
/またはチタンブラックの平均粒子径は、2〜200n
m、好ましくは5〜150nmの範囲にあることが好ま
しい。このような着色剤は、前記酸化インジウム系微粒
子(A)と酸化錫系微粒子(B)の合計100重量部当
たり、0.15重量部以下の量で添加することが望まし
い。前記着色剤の配合量が0.15重量部以下であれ
ば、透明導電性被膜の導電性を大きく下げることなく光
透過率を調整することができ、コントラストを向上する
ことができる。
The average particle size of the particulate carbon black and / or titanium black added is from 2 to 200 n.
m, preferably 5 to 150 nm. It is desirable to add such a colorant in an amount of 0.15 parts by weight or less based on 100 parts by weight of the total of the indium oxide based particles (A) and the tin oxide based particles (B). When the blending amount of the colorant is 0.15 parts by weight or less, the light transmittance can be adjusted without significantly lowering the conductivity of the transparent conductive coating, and the contrast can be improved.

【0036】以上のような着色剤、染料、顔料などの添
加剤を添加する場合、透明導電性被膜形成用塗布液中の
全固形分濃度(導電性微粒子を含む)としては、液の流
動性、塗布液中のおける導電性微粒子などの粒状成分の
分散性などの点から、15重量%以下、好ましくは0.
15〜5重量%であることが望ましい。また、マトリッ
クス形成成分としては、シリカからなるものが好まし
く、具体的には、アルコキシシランなどの有機ケイ素化
合物の加水分解重縮合物またはアルカリ金属ケイ酸塩水
溶液を脱アルカリして得られるケイ酸重縮合物、あるい
は塗料用樹脂などが挙げられる。このマトリックス形成
成分は、固形分として導電性微粒子1重量部当たり、
0.01〜0.5重量部、好ましくは0.03〜0.3重量
部の量で添加することが望ましい。このようなマトリッ
クス形成成分は、被膜形成後の導電性微粒子のバインダ
ーとして機能する。
When the above-mentioned additives such as colorants, dyes and pigments are added, the total solid content concentration (including conductive fine particles) in the coating liquid for forming a transparent conductive film is the fluidity of the liquid. From the viewpoint of dispersibility of granular components such as conductive fine particles in the coating liquid, the content is 15% by weight or less, preferably 0.1% by weight or less.
It is preferably 15 to 5% by weight. Further, as the matrix-forming component, those made of silica are preferable, and specifically, a hydrolyzed polycondensate of an organosilicon compound such as an alkoxysilane or a silicic acid polymer obtained by dealkalizing an alkali metal silicate aqueous solution is used. Examples thereof include a condensate or a resin for paint. This matrix-forming component is a solid content per 1 part by weight of conductive fine particles,
It is desirable to add in an amount of 0.01 to 0.5 parts by weight, preferably 0.03 to 0.3 parts by weight. Such a matrix-forming component functions as a binder for the conductive fine particles after the film formation.

【0037】以上のようにして得られた透明導電性被膜
形成用塗布液を用いれば、導電性微粒子が均一に分散し
ており、ポットライフが長く、得られる透明導電性被膜
表面は平滑であり、筋条あるいはムラ等の外観上の欠陥
が発生することがなく、透明導電性被膜付基材の製造信
頼性に優れている。また、概ね102〜104Ω/□の表
面抵抗を有する透明導電性被膜を形成することができる
ので、帯電を防止したり、電磁波および電磁波の放出に
伴って生じる電磁場を効果的に遮蔽することができる。
By using the coating liquid for forming the transparent conductive coating film obtained as described above, the conductive fine particles are uniformly dispersed, the pot life is long, and the surface of the transparent conductive coating film obtained is smooth. In addition, there is no appearance defect such as streak or unevenness, and the manufacturing reliability of the transparent conductive film-coated substrate is excellent. Further, since a transparent conductive film having a surface resistance of approximately 10 2 to 10 4 Ω / □ can be formed, charging is prevented, and electromagnetic waves and an electromagnetic field generated due to emission of electromagnetic waves are effectively shielded. be able to.

【0038】また、導電性微粒子として酸化インジウム
系の導電性微粒子(A)と酸化錫系の導電性微粒子
(B)等酸化物系微粒子を含んでいるので得られる透明
導電性被膜付基材は製造信頼性に優れ、耐塩水性、耐酸
化性、透明性に優れている。また、従来、酸化インジウ
ム塗布液に配合しにくかった、カーボンブラックやチタ
ンブラックなどの微粒子を塗布液に配合することも可能
である。
Since the conductive fine particles include oxide fine particles such as indium oxide conductive fine particles (A) and tin oxide conductive fine particles (B), the obtained transparent conductive film-coated substrate is Excellent manufacturing reliability, salt water resistance, oxidation resistance, and transparency. Further, it is also possible to add fine particles of carbon black, titanium black, etc. to the coating solution, which has been difficult to mix in the conventional indium oxide coating solution.

【0039】透明導電性被膜付基材 次に、本発明に係る透明導電性被膜付基材について具体
的に説明する。本発明に係る透明導電性被膜付基材で
は、ガラス、プラスチック、セラミックなどからなるフ
ィルム、シートあるいはその他の成形体などの基材上
に、前記した方法で得られた透明導電性被膜形成用塗布
液から形成された透明導電性被膜と、該透明導電性被膜
上に透明被膜が形成されている。
Substrate with Transparent Conductive Film Next, the substrate with a transparent conductive film according to the present invention will be specifically described. In the transparent conductive film-coated substrate according to the present invention, a transparent conductive film-forming coating obtained by the above-mentioned method is applied onto a substrate such as a film, sheet or other molded body made of glass, plastic, ceramic or the like. A transparent conductive coating formed from a liquid and a transparent coating formed on the transparent conductive coating.

【0040】導電性微粒子としては、前記と同様のもの
が挙げられる。 [透明導電性被膜]透明導電性被膜の膜厚は、5〜20
0nm、好ましくは10〜150nmの範囲にあること
が好ましく、この範囲の膜厚であれば帯電防止性、電磁
遮蔽性に優れた透明導電性被膜付基材を得ることができ
る。
As the conductive fine particles, the same as those mentioned above can be mentioned. [Transparent conductive coating] The thickness of the transparent conductive coating is 5 to 20.
The thickness is preferably in the range of 0 nm, preferably in the range of 10 to 150 nm, and the film thickness in this range makes it possible to obtain a substrate with a transparent conductive film having excellent antistatic properties and electromagnetic shielding properties.

【0041】このような透明導電性被膜には、必要に応
じて、金属微粒子、着色剤、マトリックス成分、有機系
安定剤等を含んでいてもよく、具体的には、前記と同様
のものが挙げられる。 [透明被膜]本発明に係る透明導電性被膜付基材では、
前記透明導電性被膜の上に、前記透明導電性被膜よりも
屈折率の低い透明被膜が形成されている。
If necessary, such a transparent conductive film may contain fine metal particles, a colorant, a matrix component, an organic stabilizer, and the like. Can be mentioned. [Transparent coating] In the substrate with a transparent conductive coating according to the present invention,
A transparent coating having a refractive index lower than that of the transparent conductive coating is formed on the transparent conductive coating.

【0042】このときの透明被膜の膜厚は、50〜30
0nm、好ましくは80〜200nmの範囲にあること
が好ましい。透明被膜の膜厚が50nm未満の場合は、
膜の強度や反射防止性能が劣ることがある。透明被膜の
膜厚が300nmを超えると、膜にクラックが発生した
り膜の強度が低下することがあり、また膜が厚すぎて反
射防止性能が不充分となることがある。
The thickness of the transparent coating film at this time is 50 to 30.
It is preferably in the range of 0 nm, preferably 80 to 200 nm. When the thickness of the transparent film is less than 50 nm,
The strength and antireflection performance of the film may be poor. If the film thickness of the transparent film exceeds 300 nm, cracks may occur in the film or the strength of the film may be reduced, and the film may be too thick and the antireflection performance may be insufficient.

【0043】このような透明被膜は、たとえば、シリ
カ、チタニア、ジルコニアなどの無機酸化物、およびこ
れらの複合酸化物などから形成される。本発明では、透
明被膜として、特に加水分解性有機ケイ素化合物の加水
分解重縮合物、またはアルカリ金属ケイ酸塩水溶液を脱
アルカリして得られるケイ酸重縮合物からなるシリカ系
被膜が好ましい。このような透明被膜が形成された透明
導電性被膜付基材は、反射防止性能に優れている。
Such a transparent film is formed of, for example, an inorganic oxide such as silica, titania or zirconia, or a composite oxide thereof. In the present invention, the transparent coating is preferably a silica-based coating made of a hydrolyzed polycondensate of a hydrolyzable organosilicon compound or a silicic acid polycondensate obtained by dealkalizing an aqueous alkali metal silicate solution. The transparent conductive film-coated substrate having such a transparent film formed thereon has excellent antireflection performance.

【0044】前記透明被膜には、さらに平均粒子径が5
〜300nm、好ましくは10〜200nmの範囲にあ
り屈折率が1.28〜1.42の範囲、好ましくは1.2
8〜1.40の範囲にある低屈折率粒子を含むことが望
ましい。使用される低屈折率粒子の平均粒子径は、形成
される透明被膜の厚さに応じて適宜選択される。
The transparent coating has an average particle size of 5
To 300 nm, preferably 10 to 200 nm, and a refractive index of 1.28 to 1.42, preferably 1.2.
It is desirable to include low refractive index particles in the range of 8 to 1.40. The average particle size of the low refractive index particles used is appropriately selected according to the thickness of the transparent coating formed.

【0045】低屈折率粒子の屈折率が1.42以下であ
れば、得られる透明導電性被膜付基材は、ボトム反射率
および視感反射率が低く、優れた反射防止性能を発揮す
ることができる。透明被膜中の低屈折率粒子の含有量は
酸化物に換算して、10〜90重量%、好ましくは20
〜80重量%の範囲にあることが望ましい。
When the low refractive index particles have a refractive index of 1.42 or less, the obtained transparent conductive film-coated substrate has low bottom reflectance and luminous reflectance and exhibits excellent antireflection performance. You can The content of low refractive index particles in the transparent coating is 10 to 90% by weight, preferably 20 in terms of oxide.
It is desirable to be in the range of -80% by weight.

【0046】本発明に用いる低屈折率粒子としては、平
均粒子径および屈折率が上記範囲にあれば特に制限はな
く従来公知の粒子を用いることができる。例えば本願出
願人の出願による特開平7−133105号公報に開示
した複合酸化物ゾル、WO00/37359号公報に開
示した被覆層を有する多孔質の複合酸化物粒子は好適に
用いることができる。
The low refractive index particles used in the present invention are not particularly limited as long as the average particle diameter and the refractive index are within the above ranges, and conventionally known particles can be used. For example, the composite oxide sol disclosed in Japanese Patent Application Laid-Open No. 7-133105 and the porous composite oxide particles having a coating layer disclosed in WO00 / 37359 can be preferably used.

【0047】さらに、上記透明被膜中には、必要に応じ
て、フッ化マグネシウムなどの低屈折率材料で構成され
た微粒子、染料、顔料などの添加剤が含まれていてもよ
い。 [透明導電性被膜付基材の製造方法]次に、上記した透明
導電性被膜付基材の製造方法について説明する。上記透
明導電性被膜付基材は、前記した導電性微粒子を含む透
明導電性被膜形成用塗布液を基材上に塗布・乾燥して透
明導電性被膜を形成し、ついで該微粒子層上に透明被膜
形成用塗布液を塗布して前記透明導電性被膜上に該微粒
子層よりも屈折率の低い透明被膜を形成することによっ
て製造することができる。 [透明導電性被膜の形成]まず、上記透明導電性被膜形
成用塗布液を基材上に塗布し・乾燥して、透明導電性被
膜を基材上に形成する。
Further, if necessary, the transparent film may contain additives such as fine particles, dyes and pigments made of a low refractive index material such as magnesium fluoride. [Manufacturing Method of Substrate with Transparent Conductive Coating] Next, a manufacturing method of the above-mentioned base material with a transparent conductive coating will be described. The above-mentioned substrate with a transparent conductive film is formed by coating and drying the above-mentioned coating liquid for forming a transparent conductive film containing conductive fine particles on the substrate to form a transparent conductive film, and then transparent on the fine particle layer. It can be manufactured by applying a coating liquid for forming a film to form a transparent film having a refractive index lower than that of the fine particle layer on the transparent conductive film. [Formation of transparent conductive coating] First, the transparent conductive coating forming coating solution is applied onto a substrate and dried to form a transparent conductive coating on the substrate.

【0048】透明導電性被膜を形成する方法としては、
たとえば、透明導電性被膜形成用塗布液をディッピング
法、スピナー法、スプレー法、ロールコーター法、フレ
キソ印刷法などの方法で、基材上に塗布したのち、常温
〜約90℃の範囲の温度で乾燥する。透明導電性被膜形
成用塗布液中に上記のようなマトリックス形成成分が含
まれている場合には、マトリックス形成成分の硬化処理
を行ってもよい。
As a method for forming a transparent conductive film,
For example, the coating liquid for forming a transparent conductive film is applied on a substrate by a dipping method, a spinner method, a spray method, a roll coater method, a flexographic printing method, or the like, and then at a temperature in the range of room temperature to about 90 ° C. dry. When the coating liquid for forming the transparent conductive film contains the above-mentioned matrix-forming component, the matrix-forming component may be cured.

【0049】例えば、透明導電性被膜形成用塗布液を塗
布して形成した被膜を、乾燥時、または乾燥後に、15
0℃以上で加熱するか、未硬化の被膜に可視光線よりも
波長の短い紫外線、電子線、X線、γ線などの電磁波を
照射するか、あるいはアンモニアなどの活性ガス雰囲気
中に晒してもよい。このようにすると、被膜形成成分の
硬化が促進され、得られる被膜の硬度が高くなる。
For example, the film formed by applying the coating liquid for forming the transparent conductive film may be dried at the time of drying or after drying 15
Even if it is heated at 0 ° C or higher, or the uncured coating is irradiated with electromagnetic waves such as ultraviolet rays, electron rays, X-rays, and γ rays having a shorter wavelength than visible light, or exposed to an atmosphere of active gas such as ammonia. Good. By doing so, the hardening of the film-forming component is promoted, and the hardness of the film obtained is increased.

【0050】上記のような方法によって形成された透明
導電性被膜の膜厚は5〜200nm、さらには10〜1
50nmの範囲が望ましく、この範囲の膜厚であれば帯
電防止性および電磁遮蔽性に優れた透明導電性被膜付基
材を得ることができる。 [透明被膜の形成]本発明では、上記のようにして形成
された透明導電性被膜の上に、該微粒子層よりも屈折率
の低い透明被膜を形成する。
The film thickness of the transparent conductive film formed by the above method is 5 to 200 nm, more preferably 10 to 1
The range of 50 nm is desirable, and if the film thickness is within this range, it is possible to obtain a transparent conductive film-coated substrate having excellent antistatic properties and electromagnetic shielding properties. [Formation of transparent coating] In the present invention, a transparent coating having a refractive index lower than that of the fine particle layer is formed on the transparent conductive coating formed as described above.

【0051】透明被膜の膜厚は、50〜300nm、好
ましくは80〜200nmの範囲であることが好まし
く、このような範囲の膜厚であると優れた反射防止性を
発揮する。透明被膜の形成方法としては、特に制限はな
く、この透明被膜の材質に応じて、真空蒸発法、スパッ
タリング法、イオンプレーティング法などの乾式薄膜形
成方法、あるいは上述したようなディッピング法、スピ
ナー法、スプレー法、ロールコーター法、フレキソ印刷
法などの湿式薄膜形成方法を採用することができる。
The film thickness of the transparent coating is preferably in the range of 50 to 300 nm, preferably 80 to 200 nm, and in such a range, excellent antireflection property is exhibited. The method for forming the transparent coating is not particularly limited, and depending on the material of the transparent coating, a dry thin film forming method such as a vacuum evaporation method, a sputtering method, an ion plating method, or a dipping method or a spinner method as described above. A wet thin film forming method such as a spray method, a roll coater method, or a flexographic printing method can be used.

【0052】上記透明被膜を湿式薄膜形成方法で形成す
る場合、従来公知の透明被膜形成用塗布液を用いること
ができる。このような透明被膜形成用塗布液としては、
具体的に、シリカ、チタニア、ジルコニアなどの無機酸
化物、またはこれらの複合酸化物を透明被膜形成成分と
して含む塗布液が用いられる。本発明では、透明被膜形
成用塗布液として加水分解性有機ケイ素化合物の加水分
解重縮合物、またはアルカリ金属ケイ酸塩水溶液を脱ア
ルカリして得られるケイ酸液を含むシリカ系透明被膜形
成用塗布液が好ましく、特に下記一般式[1]で表され
るアルコキシシランの加水分解重縮合物を含有している
ことが好ましい。このような塗布液から形成されるシリ
カ系被膜は、導電性微粒子含有の導電性被膜よりも屈折
率が小さく、得られる透明導電性被膜付基材は反射防止
性に優れている。
When forming the above-mentioned transparent film by a wet thin film forming method, a conventionally known coating liquid for forming a transparent film can be used. As such a transparent film forming coating solution,
Specifically, a coating liquid containing an inorganic oxide such as silica, titania or zirconia, or a composite oxide of these as a transparent film forming component is used. In the present invention, as a coating liquid for forming a transparent film, a hydrolytic polycondensate of a hydrolyzable organosilicon compound, or a silica-based transparent film forming coating containing a silicic acid solution obtained by dealkalizing an aqueous alkali metal silicate solution. The liquid is preferable, and it is particularly preferable that the liquid contains a hydrolytic polycondensate of an alkoxysilane represented by the following general formula [1]. The silica-based coating film formed from such a coating liquid has a smaller refractive index than the conductive coating film containing conductive fine particles, and the obtained transparent conductive film-coated substrate has excellent antireflection properties.

【0053】RaSi(OR')4-a [1] (式中、Rはビニル基、アリール基、アクリル基、炭素
数1〜8のアルキル基、水素原子またはハロゲン原子で
あり、R'はビニル基、アリール基、アクリル基、炭系
数1〜8のアルキル基、−C24OCn2n+1(n=1
〜4)または水素原子であり、aは1〜3の整数であ
る。) このようなアルコキシランとしては、テトラメトキシシ
ラン、テトラエトキシシラン、テトライソプロポキシシ
ラン、テトラブトキシシラン、テトラオクチルシラン、
メチルトリメトキシシラン、メチルトリエトキシシラ
ン、エチルトリエトキシシラン、メチルトリイソプロポ
キシシラン、ビニルトリメトキシシラン、フェニルトリ
メトキシシラン、ジメチルジメトキシシランなどが挙げ
られる。
R a Si (OR ') 4-a [1] (In the formula, R is a vinyl group, an aryl group, an acryl group, an alkyl group having 1 to 8 carbon atoms, a hydrogen atom or a halogen atom, and R' vinyl group, an aryl group, an acrylic group, an alkyl group of carbon-based number 1~8, -C 2 H 4 OC n H 2n + 1 (n = 1
To 4) or a hydrogen atom, and a is an integer of 1 to 3. ) Such alkoxylanes include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetraoctylsilane,
Examples thereof include methyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, methyltriisopropoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane and dimethyldimethoxysilane.

【0054】上記のアルコキシシランの1種または2種
以上を、たとえば水−アルコール混合溶媒中で酸触媒の
存在下、加水分解すると、アルコキシシランの加水分解
重縮合物を含む透明被膜形成用塗布液が得られる。この
ような塗布液中に含まれる被膜形成成分の濃度は、酸化
物換算で0.5〜2.0重量%であることが好ましい。本
発明で使用される透明被膜形成用塗布液には、平均粒子
径が5〜300nm、好ましくは10〜200nmの範
囲にあり屈折率が1.28〜1.42、さらには1.28
〜1.40の範囲にある低屈折率粒子を含むことが望ま
しい。
When one or more of the above alkoxysilanes are hydrolyzed in the presence of an acid catalyst in, for example, a water-alcohol mixed solvent, a coating liquid for forming a transparent film containing a hydrolyzed polycondensate of alkoxysilane. Is obtained. The concentration of the film forming component contained in such a coating liquid is preferably 0.5 to 2.0% by weight in terms of oxide. The coating liquid for forming a transparent film used in the present invention has an average particle diameter of 5 to 300 nm, preferably 10 to 200 nm and a refractive index of 1.28 to 1.42, and further 1.28.
It is desirable to include low refractive index particles in the range of 1.40.

【0055】使用される低屈折率粒子の平均粒子径は、
形成される透明被膜の厚さに応じて適宜選択される。ま
た、使用される低屈折率粒子の屈折率が1.42以下で
あれば、得られる透明導電性被膜付基材は、ボトム反射
率および視感反射率が低く、優れた反射防止性能を発揮
することができる。
The average particle size of the low refractive index particles used is
It is appropriately selected according to the thickness of the transparent coating formed. If the low refractive index particles used have a refractive index of 1.42 or less, the resulting transparent conductive film-coated substrate has low bottom reflectance and luminous reflectance, and exhibits excellent antireflection performance. can do.

【0056】低屈折率粒子の使用量は、透明被膜中の低
屈折率粒子の含有量が酸化物に換算して、10〜90重
量%、好ましくは20〜80重量%の範囲となるように
用いることが望ましい。本発明に用いる低屈折率粒子と
しては、平均粒子径および屈折率が上記範囲にあれば特
に制限はなく従来公知の粒子を用いることができる。例
えば本願出願人の出願による特開平7−133105号
公報に開示した複合酸化物ゾル、WO00/37359
号公報に開示した被覆層を有する多孔質の複合酸化物粒
子は好適に用いることができる。
The amount of the low-refractive-index particles used is such that the content of the low-refractive-index particles in the transparent coating is 10 to 90% by weight, preferably 20 to 80% by weight, calculated as oxide. It is desirable to use. The low refractive index particles used in the present invention are not particularly limited as long as the average particle diameter and the refractive index are within the above ranges, and conventionally known particles can be used. For example, WO00 / 37359, a composite oxide sol disclosed in Japanese Patent Application Laid-Open No. 7-133105 filed by the applicant of the present application.
The porous composite oxide particles having the coating layer disclosed in Japanese Patent Laid-Open Publication can be preferably used.

【0057】さらにまた、本発明で使用される透明被膜
形成用塗布液には、フッ化マグネシウムなどの低屈折率
材料で構成された微粒子、透明被膜の透明度および反射
防止性能を阻害しない程度に少量の導電性微粒子および
/または染料または顔料などの添加剤が含まれていても
よい。本発明では、このような透明被膜形成用塗布液を
塗布して形成した被膜を、乾燥時、または乾燥後に、1
50℃以上で加熱するか、未硬化の被膜に可視光線より
も波長の短い紫外線、電子線、X線、γ線などの電磁波
を照射するか、あるいはアンモニアなどの活性ガス雰囲
気中に晒してもよい。このようにすると、被膜形成成分
の硬化が促進され、得られる透明被膜の硬度が高くな
る。
Furthermore, in the coating liquid for forming the transparent coating used in the present invention, fine particles composed of a low refractive index material such as magnesium fluoride, a small amount so as not to impair the transparency and antireflection performance of the transparent coating. The conductive fine particles and / or an additive such as a dye or a pigment may be included. In the present invention, a coating film formed by applying such a coating liquid for forming a transparent film is dried at the time of drying or after drying.
Even if it is heated at 50 ° C or higher, or the uncured film is irradiated with electromagnetic waves such as ultraviolet rays, electron rays, X-rays, and γ rays having a wavelength shorter than visible light, or exposed to an atmosphere of active gas such as ammonia. Good. By doing so, the hardening of the film-forming component is accelerated, and the hardness of the obtained transparent film is increased.

【0058】さらに、透明被膜形成用塗布液を塗布して
被膜を形成する際に、透明導電性被膜を約40〜90℃
に保持しながら透明被膜形成用塗布液を塗布して、前記
のような処理を行うと、透明被膜の表面にリング状の凹
凸が形成し、ギラツキの少ないアンチグレアの透明被膜
付基材が得られる。表示装置 本発明に係る透明導電性被膜付基材は、帯電防止、電磁
遮蔽に必要な概ね10 2〜104Ω/□の範囲の表面抵抗
を有し、また透明性に優れるとともに可視光領域および
近赤外領域で充分な反射防止性能を有し、表示装置の前
面板として好適に用いられる。
Further, by applying a coating liquid for forming a transparent film,
When forming the coating, apply a transparent conductive coating at about 40-90 ° C.
Apply the coating solution for forming a transparent film while maintaining
When a treatment such as
Anti-glare transparent film with convexity and less glare
A coated substrate is obtained.Display device The substrate with a transparent conductive film according to the present invention, antistatic, electromagnetic
Approximately 10 required for shielding 2-10FourSurface resistance in the range of Ω / □
And has excellent transparency and visible light range and
It has sufficient anti-reflection performance in the near infrared region,
It is preferably used as a face plate.

【0059】本発明に係る表示装置は、ブラウン管(C
RT)、蛍光表示管(FIP)、プラズマディスプレイ
(PDP)、液晶用ディスプレイ(LCD)などのよう
な電気的に画像を表示する装置であり、上記のような透
明導電性被膜付基材で構成された前面板を備えている。
従来の前面板を備えた表示装置を作動させると、前面板
に画像が表示されると同時に前面板が帯電したり、電磁
波が前面板から放出されるが、本発明に係る表示装置で
は、前面板が前記した概ね102〜104Ω/□の表面抵
抗を有する透明導電性被膜付基材で構成されているの
で、このような帯電を防止したり、電磁波およびこの電
磁波の放出に伴って生じる電磁場を効果的に遮蔽するこ
とができる。
The display device according to the present invention comprises a cathode ray tube (C
RT), a fluorescent display tube (FIP), a plasma display (PDP), a liquid crystal display (LCD), and the like, which is an apparatus for electrically displaying an image, and is composed of the transparent conductive film-coated substrate as described above. It has a front plate.
When a conventional display device having a front plate is operated, an image is displayed on the front plate and at the same time the front plate is charged and electromagnetic waves are emitted from the front plate. Since the face plate is composed of the base material with the transparent conductive film having the surface resistance of approximately 10 2 to 10 4 Ω / □, it is possible to prevent such charging and to prevent electromagnetic waves and the emission of the electromagnetic waves. The generated electromagnetic field can be effectively shielded.

【0060】また、表示装置の前面板で反射光が生じる
と、この反射光によって表示画像が見にくくなるが、本
発明に係る表示装置では、前面板が可視光領域および近
赤外領域で充分な反射防止性能を有する透明導電性被膜
付基材で構成されているので、このような反射光を効果
的に防止することができる。さらに、ブラウン管の前面
板が、本発明に係る透明導電性被膜付基材で構成され、
この透明導電性被膜のうち、透明導電性被膜、その上に
形成された透明被膜の少なくとも一方に少量の染料また
は顔料が含まれている場合には、これらの染料または顔
料がそれぞれ固有な波長の光を吸収し、これによりブラ
ウン管から放映される表示画像のコントラストを向上さ
せることができる。
Further, when reflected light is generated on the front plate of the display device, the reflected light makes it difficult to see the display image. However, in the display device according to the present invention, the front plate is sufficient in the visible light region and the near infrared region. Since the substrate is provided with a transparent conductive coating having antireflection performance, such reflected light can be effectively prevented. Furthermore, the front plate of the cathode ray tube is composed of the transparent conductive film-coated substrate according to the present invention,
When a small amount of a dye or a pigment is contained in at least one of the transparent conductive film and the transparent film formed on the transparent conductive film, these dyes or pigments have a wavelength of a specific wavelength. By absorbing light, the contrast of the display image projected from the cathode ray tube can be improved.

【0061】[0061]

【発明の効果】本発明に係る透明導電性被膜形成用塗布
液は、特定割合の酸化インジウム系微粒子と酸化錫系微
粒子とが均一に混合して分散しているので粘度が低くポ
ットライフが向上し、このため筋やムラ、光点等の外観
上の欠陥が発生しないので透明導電性被膜付基材の歩留
まりが高く製造信頼性に優れた透明導電性被膜形成用塗
布液を提供することができる。さらに、上記塗布液には
酸化インジウムに加えて所定量の酸化錫系微粒子が均一
に混合して分散しているので、着色剤として微粒子カー
ボンブラックおよび/またはチタンブラックを配合して
もポットライフが低下することがなく、このような塗布
液を用いた場合も、筋やムラ、光点等の外観上の欠陥が
発生することなく透明導電性被膜付基材を提供すること
ができる。
The coating liquid for forming a transparent conductive film according to the present invention has a specific ratio of indium oxide-based fine particles and tin oxide-based fine particles that are uniformly mixed and dispersed, so that the viscosity is low and the pot life is improved. However, it is possible to provide a coating liquid for forming a transparent conductive film having a high yield of a transparent conductive film-coated substrate and excellent manufacturing reliability because defects in appearance such as streaks, unevenness, and light spots do not occur. it can. Further, in addition to indium oxide, a predetermined amount of tin oxide-based fine particles are uniformly mixed and dispersed in the coating solution, so that even if fine particle carbon black and / or titanium black is blended as a colorant, the pot life is improved. It is possible to provide a substrate with a transparent conductive coating without causing deterioration in appearance defects such as streaks, unevenness, and light spots even when such a coating liquid is used.

【0062】また、帯電防止性能、電磁遮蔽性能、透明
性、反射防止性能等に優れ、さらに耐塩水性や耐酸化性
にも優れた透明導電性被膜付基材を提供することができ
る。さらに、このような透明導電性被膜付基材を表示装
置の前面板として用いれば、帯電防止性能、電磁遮蔽性
能に優れるとともに外観、コントラスト、反射防止性能
等に優れ、さらに耐塩水性や耐酸化性にも優れることか
ら耐久性に優れた表示装置を提供することができる。
Further, it is possible to provide a substrate having a transparent conductive film, which is excellent in antistatic performance, electromagnetic shielding performance, transparency, antireflection performance and the like, and is also excellent in salt water resistance and oxidation resistance. Furthermore, when such a substrate with a transparent conductive film is used as a front plate of a display device, it is excellent in antistatic performance, electromagnetic shielding performance, appearance, contrast, antireflection performance, and salt water resistance and oxidation resistance. Therefore, a display device having excellent durability can be provided.

【0063】[0063]

【実施例】以下、本発明を実施例により説明するが、本
発明はこれら実施例に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0064】[0064]

【製造実施例】a)微粒子分散液の調製 本実施例および比較例で用いた酸化インジウム系微粒子
(A)の分散液、酸化錫系微粒子(B)の分散液、金属
微粒子分散液、微粒子カーボンブラック分散液を以下の
ように調製した。
[Manufacturing Examples] a) Preparation of Fine Particle Dispersion Liquid Indium oxide fine particle (A) dispersion liquid, tin oxide fine particle (B) dispersion liquid, metal fine particle dispersion liquid, fine particle carbon used in this example and comparative example. The black dispersion was prepared as follows.

【0065】Snドープ酸化インジウム(ITO)微粒子(P-
1)分散液の調製 硝酸インジウム79.9gを水686gに溶解して得ら
れた溶液と、錫酸カリウム12.7gを濃度10重量%
の水酸化カリウム溶液に溶解して得られた溶液とを調製
し、これらの溶液を、50℃に保持された1000gの
純水に2時間かけて添加した。この間、系内のpHを1
1に保持した。得られたSnドープ酸化インジウム水和
物分散液からSnドープ酸化インジウム水和物を濾別・
洗浄した後、再び水に分散させて固形分濃度10重量%
の金属酸化物前駆体水酸化物分散液を調製した。この分
散液を、温度100℃で噴霧乾燥して金属酸化物前駆体
水酸化物粉体を調製した。上記粉体を、窒素ガス雰囲気
下、550℃で2時間加熱処理した。
Sn-doped indium oxide (ITO) fine particles (P-
1) Preparation of dispersion solution A solution obtained by dissolving 79.9 g of indium nitrate in 686 g of water and 12.7 g of potassium stannate at a concentration of 10% by weight.
And a solution obtained by dissolving it in a potassium hydroxide solution of 1. were prepared, and these solutions were added to 1000 g of pure water kept at 50 ° C. over 2 hours. During this period, the pH of the system is set to 1
It was held at 1. The Sn-doped indium oxide hydrate is filtered from the obtained Sn-doped indium oxide hydrate dispersion.
After washing, disperse in water again to obtain a solid content of 10% by weight.
A metal oxide precursor hydroxide dispersion liquid of was prepared. This dispersion was spray dried at a temperature of 100 ° C. to prepare a metal oxide precursor hydroxide powder. The above powder was heat-treated at 550 ° C. for 2 hours in a nitrogen gas atmosphere.

【0066】これを濃度が30重量%となるようにエタ
ノールに分散させ、さらに硝酸水溶液でpHを3.5に
調製した後、この混合液を30℃に保持しながらサンド
ミルで0.5時間粉砕してゾルを調製した。ついで、エ
タノールを加えて濃度20重量%のSnドープ酸化イン
ジウム微粒子(P-1)分散液を調製した。得られた導電性
金属酸化物粒子(P-1)については以下のように平均粒
子径を測定し結果を表に示した。
This was dispersed in ethanol to a concentration of 30% by weight, the pH was adjusted to 3.5 with an aqueous nitric acid solution, and the mixed solution was pulverized for 0.5 hours in a sand mill while being kept at 30 ° C. Then, a sol was prepared. Then, ethanol was added to prepare a Sn-doped indium oxide fine particle (P-1) dispersion liquid having a concentration of 20% by weight. The average particle size of the obtained conductive metal oxide particles (P-1) was measured as follows, and the results are shown in the table.

【0067】導電性微粒子についてはSEM写真を撮影
し20個の粒子について粒子径を測定しこの平均値を平
均粒子径として表に表示した。F・Snドープ酸化インジウム微粒子(P-2)分散液の調製 硝酸インジウム79.9gを水686gに溶解して得ら
れた溶液と、フッ化錫2.7gを濃度10重量%の水酸
化カリウム溶液に溶解して得られた溶液とを調製し、こ
れらの溶液を、50℃に保持された1000gの純水に
2時間かけて添加した。この間、系内のpHを11に保
持した。得られたFドープ酸化インジウム水和物分散液
からFドープ酸化インジウム水和物を濾別・洗浄した
後、再び水に分散させて固形分濃度10重量%の金属酸
化物前駆体水酸化物分散液を調製した。この分散液を、
温度100℃で噴霧乾燥して金属酸化物前駆体水酸化物
粉体を調製した。上記粉体を、窒素ガス雰囲気下、55
0℃で2時間加熱処理した。
SEM photographs of the conductive fine particles were taken, the particle diameters of 20 particles were measured, and the average value was shown in the table as the average particle diameter. Preparation of F.Sn -doped indium oxide fine particle (P-2) dispersion A solution obtained by dissolving 79.9 g of indium nitrate in 686 g of water and 2.7 g of tin fluoride in a potassium hydroxide solution having a concentration of 10% by weight. And a solution obtained by dissolving the solution were prepared, and these solutions were added to 1000 g of pure water kept at 50 ° C. over 2 hours. During this period, the system pH was maintained at 11. The F-doped indium oxide hydrate dispersion was filtered and washed from the obtained F-doped indium oxide hydrate dispersion, and then dispersed again in water to disperse the metal oxide precursor hydroxide with a solid content concentration of 10% by weight. A liquid was prepared. This dispersion is
Spray drying was carried out at a temperature of 100 ° C. to prepare a metal oxide precursor hydroxide powder. The above powder was placed under a nitrogen gas atmosphere at 55
Heat treatment was performed at 0 ° C. for 2 hours.

【0068】これを濃度が30重量%となるようにエタ
ノールに分散させ、さらに硝酸水溶液でpHを3.5に
調製した後、この混合液を30℃に保持しながらサンド
ミルで0.5時間粉砕してゾルを調製した。ついで、エ
タノールを加えて濃度20重量%のF・Snドープ酸化イ
ンジウム微粒子(P-2)分散液を調製した。平均粒子径を
測定した。
This was dispersed in ethanol to a concentration of 30% by weight, and the pH was adjusted to 3.5 with an aqueous nitric acid solution. The mixture was kept at 30 ° C. and ground with a sand mill for 0.5 hours. Then, a sol was prepared. Then, ethanol was added to prepare a dispersion of F.Sn-doped indium oxide fine particles (P-2) having a concentration of 20% by weight. The average particle size was measured.

【0069】結果を表1に示す。Sbドープ酸化錫(ATO)微粒子(P-3)分散液の調製 塩化錫57.7gと塩化アンチモン7.0gとをメタノー
ル100gに溶解して溶液を調製した。調製した溶液を
4時間かけて、90℃、攪拌下の純水1000gに添加
して加水分解を行い、生成した沈殿を濾別・洗浄した
後、再び水に分散させて固形分濃度10重量%の金属酸
化物前駆体水酸化物分散液を調製した。この分散液を、
温度100℃で噴霧乾燥して金属酸化物前駆体水酸化物
粉体を調製した。上記粉体を、窒素ガス雰囲気下、55
0℃で2時間加熱処理した。この粉末30gを水酸化カ
リウム水溶液(KOHとして3.0g含有)70gに加
え、混合液を30℃に保持しながらサンドミルで、3時
間粉砕してゾルを調製した。ついでこのゾルをイオン交
換樹脂処理して、脱アルカリし、純水を加えて濃度20
重量%のSbドープ酸化錫微粒子(P-3)分散液を調製し
た。平均粒子径を測定した。
The results are shown in Table 1. Preparation of Sb-doped tin oxide (ATO) fine particle (P-3) dispersion A solution was prepared by dissolving 57.7 g of tin chloride and 7.0 g of antimony chloride in 100 g of methanol. The prepared solution was added to 1000 g of pure water under stirring at 90 ° C. for 4 hours for hydrolysis, the generated precipitate was separated by filtration and washed, and then dispersed again in water to have a solid content concentration of 10% by weight. A metal oxide precursor hydroxide dispersion liquid of was prepared. This dispersion is
Spray drying was carried out at a temperature of 100 ° C. to prepare a metal oxide precursor hydroxide powder. The above powder was placed under a nitrogen gas atmosphere at 55
Heat treatment was performed at 0 ° C. for 2 hours. 30 g of this powder was added to 70 g of an aqueous potassium hydroxide solution (containing 3.0 g as KOH), and the mixed solution was pulverized with a sand mill for 3 hours while maintaining at 30 ° C. to prepare a sol. Then, this sol is treated with an ion exchange resin to dealkalize, and pure water is added to make the concentration 20.
A dispersion liquid of Sb-doped tin oxide fine particles (P-3) at a weight percentage was prepared. The average particle size was measured.

【0070】結果を表1に示す。酸化錫微粒子(P-4)分散液の調製 塩化錫57.7gをメタノール100gに溶解して溶液
を調製した。調製した溶液を4時間かけて、90℃、攪
拌下の濃度0.1重量%のアンモニア水1000gに添
加して加水分解を行い、生成した沈殿を濾別・洗浄した
後、再び水に分散させて固形分濃度10重量%の金属酸
化物前駆体水酸化物分散液を調製した。この分散液を、
温度100℃で噴霧乾燥して金属酸化物前駆体水酸化物
粉体を調製した。上記粉体を、窒素ガス雰囲気下、55
0℃で2時間加熱処理した。この粉末30gを水酸化カ
リウム水溶液(KOHとして3.0g含有)70gに加
え、混合液を30℃に保持しながらサンドミルで、3時
間粉砕してゾルを調製した。ついでこのゾルをイオン交
換樹脂処理して、脱アルカリし、純水を加えて濃度20
重量%の酸化錫微粒子(P-4)分散液を調製した。平均粒
子径を測定した。
The results are shown in Table 1. Preparation of tin oxide fine particle (P-4) dispersion liquid A solution was prepared by dissolving 57.7 g of tin chloride in 100 g of methanol. The prepared solution was added to 1000 g of ammonia water having a concentration of 0.1% by weight under stirring at 90 ° C. for 4 hours for hydrolysis, the generated precipitate was separated by filtration and washed, and then dispersed again in water. Thus, a metal oxide precursor hydroxide dispersion liquid having a solid content concentration of 10% by weight was prepared. This dispersion is
Spray drying was carried out at a temperature of 100 ° C. to prepare a metal oxide precursor hydroxide powder. The above powder was placed under a nitrogen gas atmosphere at 55
Heat treatment was performed at 0 ° C. for 2 hours. 30 g of this powder was added to 70 g of an aqueous potassium hydroxide solution (containing 3.0 g as KOH), and the mixed solution was pulverized with a sand mill for 3 hours while maintaining at 30 ° C. to prepare a sol. Then, this sol is treated with an ion exchange resin to dealkalize, and pure water is added to make the concentration 20.
A dispersion liquid of tin oxide fine particles (P-4) at a weight percentage was prepared. The average particle size was measured.

【0071】結果を表1に示す。銀パラジウム合金微粒子(P-5)の分散液の調製 純水100gに、あらかじめクエン酸3ナトリウムを得
られる合金微粒子1重量部当たり0.01重量部となる
ように加え、これに金属換算で濃度が10重量%とな
り、 銀とパラジウムの重量比が8:2となるように硝
酸銀および硝酸パラジウム水溶液を加え、さらに硝酸銀
および硝酸パラジウムの合計モル数と等モル数の硫酸第
一鉄の水溶液を添加し、窒素雰囲気下で1時間攪拌して
銀パラジウム合金微粒子の分散液を得た。得られた分散
液は遠心分離器により水洗して不純物を除去した後、水
に分散させて濃度3重量%の銀パラジウム合金微粒子(P
-5)の分散液を調製した。銀パラジウム合金微粒子の平
均粒子径は8nmであった。
The results are shown in Table 1. Preparation of dispersion of silver-palladium alloy fine particles (P-5) To 100 g of pure water, 0.01 parts by weight of 1 part by weight of alloy fine particles capable of obtaining trisodium citrate was added in advance, and the concentration was calculated in terms of metal. Is 10% by weight, and a silver nitrate and palladium nitrate aqueous solution is added so that the weight ratio of silver and palladium is 8: 2, and further an aqueous solution of ferrous sulfate is added in an amount equal to the total mole number of silver nitrate and palladium nitrate. Then, the mixture was stirred under a nitrogen atmosphere for 1 hour to obtain a dispersion liquid of silver-palladium alloy fine particles. The obtained dispersion liquid is washed with water by a centrifuge to remove impurities, and then dispersed in water to prepare a silver-palladium alloy fine particle having a concentration of 3% by weight (P
-5) Dispersion liquid was prepared. The average particle diameter of the silver-palladium alloy fine particles was 8 nm.

【0072】カーボン微粒子(P-6) 着色剤としてカーボン微粒子(三菱化学(株)製:平均粒
子径60nm)を濃度が20重量%となるように水に分
散させた分散液を調製した。b)マトリックス形成成分液(M)の調製 正珪酸エチル(SiO2:28重量%)50g、エタノー
ル194.6g、濃硝酸1.4gおよび純水34gの混合
溶液を室温で5時間攪拌してSiO2濃度5重量%のマト
リックス形成成分を含む液(M)を調製した。
Carbon fine particles (P-6) As a colorant, carbon fine particles (manufactured by Mitsubishi Chemical Corporation: average particle diameter 60 nm) were dispersed in water to a concentration of 20% by weight to prepare a dispersion liquid. b) Preparation of matrix-forming component liquid (M) A mixed solution of 50 g of ethyl orthosilicate (SiO 2 : 28% by weight), 194.6 g of ethanol, 1.4 g of concentrated nitric acid, and 34 g of pure water was stirred at room temperature for 5 hours to obtain SiO 2. A liquid (M) containing a matrix-forming component having a concentration of 2 % by weight was prepared.

【0073】[0073]

【表1】 [Table 1]

【0074】[0074]

【実施例1〜8、比較例1〜4】c)透明導電性被膜形
成用塗布液(C-1)〜(C-12)の調製 先ず、上記で得た微粒子(P-1)〜(P-6)分散液を表2に示
す配合割合で酸化インジウム系微粒子(A)分散液と酸
化錫系微粒子(B)分散液とを混合し、混合機(カンペ
(株)製:サンドミル)を用いて均一混合し、これに表
2の濃度となるように上記マトリックス形成成分を含む
(M)液と、水とブチルセルソルブの2:2の混合溶媒と
を混合し、透明導電性被膜形成用塗布液(C-1)〜(C-8)、
および(C-10)を調製した。
Examples 1 to 8 and Comparative Examples 1 to 4 c) Transparent conductive film type
Preparation of Application Coating Liquids (C-1) to (C-12) First, the fine particle (P-1) to (P-6) dispersions obtained above were mixed at the compounding ratios shown in Table 2 ( A) The dispersion liquid and the tin oxide type fine particle (B) dispersion liquid are mixed and uniformly mixed using a mixer (Campe Co., Ltd .: Sand Mill), and the above matrix is formed therein to have the concentration shown in Table 2. Contains ingredients
The liquid (M) and a mixed solvent of water and butyl cellosolve 2: 2 are mixed to prepare a transparent conductive film-forming coating liquid (C-1) to (C-8),
And (C-10) were prepared.

【0075】また、塗布液(C-9)、(C-11)、(C-12)は、
混合機で処理しなかった以外は同様にして調製した。な
お、混合機で導電性微粒子分散液を混合処理する前後の
分散液の粘度を、粘度計(TOKI(株)製:B型粘度
計)で測定した。結果を表2に示す。
The coating liquids (C-9), (C-11) and (C-12) are
It was prepared in the same manner except that it was not processed in the mixer. The viscosity of the dispersion liquid before and after the mixing treatment of the conductive fine particle dispersion liquid with a mixer was measured with a viscometer (TOKI Co., Ltd .: B-type viscometer). The results are shown in Table 2.

【0076】[0076]

【表2】 [Table 2]

【0077】d)透明被膜形成用塗布液(B)の調製 上記マトリックス形成成分を含む(M)液に、エタノール
/ブタノール/ジアセトンアルコール/イソプロパノー
ル(2:1:1:5重量混合比)の混合溶媒を加え、S
iO2濃度1重量%の透明被膜形成用塗布液(B)を調製
した。透明導電性被膜付パネルガラスの製造 ブラウン管用パネルガラス(17")の表面を40℃で保
持しながら、スピナー法で100rpm、90秒の条件で
上記透明導電性被膜形成用塗布液(C-1)〜(C-12)をそれ
ぞれ塗布し乾燥した。このときの導電層の膜厚を測定
し、結果を表3に示した。
D) Preparation of Coating Liquid (B) for Forming Transparent Film The liquid ( M) containing the above matrix-forming components was mixed with ethanol / butanol / diacetone alcohol / isopropanol (2: 1: 1: 5 weight ratio). Add mixed solvent and add S
A coating liquid (B) for forming a transparent film having an iO 2 concentration of 1% by weight was prepared. Manufacture of panel glass with transparent conductive coating The above coating solution for forming transparent conductive coating (C-1 under the conditions of 100 rpm and 90 seconds by spinner method while maintaining the surface of panel glass for cathode ray tubes (17 ") at 40 ° C. ) To (C-12) were applied and dried, and the thickness of the conductive layer was measured and the results are shown in Table 3.

【0078】ついで、このようにして形成された透明導
電性被膜上に、同じように、スピナー法で100rpm、
90秒の条件で透明被膜形成用塗布液(B)を塗布・乾
燥し、160℃で30分間焼成して透明導電性被膜付基
材を得た。このときの透明被膜の膜厚はいずれも50n
mとなるように形成した。これらの透明導電性被膜付基
材の表面抵抗を表面抵抗計(三菱油化(株)製:LORESTA)
で測定し、ヘーズをヘーズコンピューター(日本電色
(株)製:3000A)で測定した。反射率は反射率計(大塚電
子(株)製:MCPD-2000)を用いて測定し、波長400〜7
00nmの範囲で反射率が最も低い波長での反射率をボ
トム反射率とし、また波長400〜700nmの平均反
射率を視感反射率として求めた。
Then, on the transparent conductive film thus formed, similarly, 100 rpm by a spinner method,
The coating liquid (B) for forming a transparent coating film was applied and dried under the condition of 90 seconds and baked at 160 ° C. for 30 minutes to obtain a substrate with a transparent conductive film. The thickness of the transparent coating at this time is 50 n
It was formed so as to be m. The surface resistance of these transparent conductive film-coated substrates is measured by a surface resistance meter (Mitsubishi Oil Chemical Co., Ltd .: LORESTA).
Measured with a haze computer (Nippon Denshoku
(Mfd .: 3000A). The reflectance is measured using a reflectometer (MCPD-2000 manufactured by Otsuka Electronics Co., Ltd.), and the wavelength is 400 to 7
The reflectance at the wavelength having the lowest reflectance in the range of 00 nm was determined as the bottom reflectance, and the average reflectance at the wavelength of 400 to 700 nm was determined as the luminous reflectance.

【0079】結果を表3に示す。製造信頼性の評価とし
て、筋条、ムラについてはシャウカッセンに透かして目
し観察し、光点は直接目視観察し、以下の基準で評価
し、結果を表に示した。筋条 ○:パネルの表(おもて)面からの観察で筋条が観察さ
れない。
The results are shown in Table 3. For evaluation of manufacturing reliability, streaks and unevenness were observed by seeing through Schaucassen, and light spots were directly visually observed, evaluated according to the following criteria, and the results are shown in the table. Streak : No streak is observed when observed from the front side of the panel.

【0080】△:パネルの表(おもて)面からの観察で
観察されるが、裏面からは観察されない。 ×:パネルの裏面からも観察される。ムラ ○:膜厚の不均一さに起因する色ムラがない。
Δ: Observed from the front side of the panel, but not from the back side. X: It is also observed from the back surface of the panel. Unevenness : There is no unevenness in color due to uneven film thickness.

【0081】 △:色ムラが僅かに認められる。 ×:色ムラが明瞭に認められる。光点 ○:パネル面に、直径0.5mm以上の光点セ゛ロ、0.1mm
未満の数200未満 △:パネル面に、直径0.5mm以上の光点2以下、0.1
mm未満の数200〜249個 ×:パネル面に、直径0.5mm以上の光点3以上、0.1
mm未満の数250個以上 また信頼性評価として、下記の方法によって、耐塩水性
および耐酸化性の試験を実施した。
Δ: Color unevenness is slightly observed. X: Color unevenness is clearly recognized. Light spot ◯: Light spot zero with a diameter of 0.5 mm or more on the panel surface, 0.1 mm
Number less than 200 Less than △: Light spot on the panel surface with a diameter of 0.5 mm or more, 2 or less, 0.1
Number less than mm 200 to 249 x: Light spot with a diameter of 0.5 mm or more, 3 or more, 0.1 on the panel surface
A number of 250 or more less than mm, and as a reliability evaluation, a salt water resistance and an oxidation resistance test were conducted by the following methods.

【0082】[耐塩水性]濃度5重量%の食塩水溶液に、
前記実施例および比較例で得た透明導電性被膜付基材片
を、一部が食塩水溶液中に浸漬するように浸漬させ、2
4時間および48時間放置した後これを取り出し、未浸
漬部位との色調の変化を観察した。 [耐酸化性]濃度2重量%の過酸化水素水溶液に、上記実
施例および比較例で得た透明導電性被膜付基材片を、一
部が過酸化水素水溶液中に浸漬するように浸漬させ、2
4時間放置した後これを取り出し、未浸漬部位との色調
の変化を観察した。
[Salt water resistance] To a salt solution having a concentration of 5% by weight,
The transparent conductive film-coated substrate pieces obtained in the above Examples and Comparative Examples were dipped so as to be partially immersed in a saline solution, and 2
After leaving it for 4 hours and 48 hours, it was taken out, and the change in color tone with respect to the unimmersed part was observed. [Oxidation resistance] The transparent conductive film-coated substrate pieces obtained in the above Examples and Comparative Examples were immersed in an aqueous hydrogen peroxide solution having a concentration of 2% by weight so that a part thereof was immersed in the aqueous hydrogen peroxide solution. Two
After leaving it for 4 hours, it was taken out, and the change in color tone with respect to the unimmersed part was observed.

【0083】 [0083]

【0084】[0084]

【表3】 [Table 3]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09D 183/02 C09D 183/02 5G323 183/04 183/04 185/00 185/00 H01B 1/22 H01B 1/22 Z 5/14 5/14 A 13/00 503 13/00 503B // G02F 1/1343 G02F 1/1343 (72)発明者 小 松 通 郎 福岡県北九州市若松区北湊町13番2号 触 媒化成工業株式会社若松工場内 Fターム(参考) 2H092 HA04 MA10 MA35 MA37 4F100 AA12B AA28B AA33B AA37B AG00 AH10B AT00A BA02 CA13B DE01B EH46B GB41 JD08 JG01B JG03 JG04 JK15 JM02B JN01A JN01B JN06 JN06B 4J038 AA011 HA026 HA156 HA161 HA166 HA212 HA441 HA451 JA19 JA26 JA32 JA53 KA06 MA14 MA15 NA03 NA04 NA20 NA22 NA26 PB09 PB11 PC03 PC08 5G301 DA13 DA23 DA60 5G307 FA01 FA02 FB01 FC09 5G323 BA02 BB01 BB02 BC03 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C09D 183/02 C09D 183/02 5G323 183/04 183/04 185/00 185/00 H01B 1/22 H01B 1 / 22 Z 5/14 5/14 A 13/00 503 13/00 503B // G02F 1/1343 G02F 1/1343 (72) Inventor Toshiro Komatsu 13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu, Fukuoka F-term in Wakamatsu Plant of Mocha Chemical Industries Co., Ltd. JA19 JA26 JA32 JA53 KA06 MA14 MA15 NA03 NA04 NA20 NA22 NA26 PB09 PB11 PC03 PC08 5G301 DA13 DA23 DA60 5G307 FA01 FA02 FB01 FC09 5G323 BA02 BB01 BB02 BC03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】導電性微粒子として酸化インジウム系微粒
子(A)と酸化錫系微粒子(B)、および極性溶媒を含
む透明導電性被膜形成用塗布液の製造方法において、 酸化インジウム微粒子(A)と導電性微粒子中の酸化錫
系微粒子(B)との混合割合(A/B)が98/2〜60/40(重量
比)の範囲で極性溶媒に均一に混合し分散させることを
特徴とする透明導電性被膜形成用塗布液の製造方法。
1. A method for producing a coating liquid for forming a transparent conductive film, comprising indium oxide fine particles (A) and tin oxide fine particles (B) as conductive fine particles, and indium oxide fine particles (A). It is characterized in that the conductive oxide particles are uniformly mixed and dispersed in a polar solvent in a mixing ratio (A / B) with tin oxide particles (B) in the range of 98/2 to 60/40 (weight ratio). A method for producing a coating liquid for forming a transparent conductive film.
【請求項2】前記導電性微粒子を極性溶媒に分散させた
ときの分散液の粘度が、導電性微粒子の濃度が20重量
%のときに1.0〜5cpの範囲となるように均一に混
合し、分散させることを特徴とする請求項1に記載の透
明導電性被膜形成用塗布液の製造方法。
2. The viscosity of the dispersion when the conductive fine particles are dispersed in a polar solvent is uniformly mixed so as to be in the range of 1.0 to 5 cp when the concentration of the conductive fine particles is 20% by weight. The method for producing a coating liquid for forming a transparent conductive film according to claim 1, wherein the coating liquid is dispersed.
【請求項3】酸化インジウム系微粒子(A)の平均粒子
径が2〜200nmであり、酸化スズ系微粒子(B)の
平均粒子径が2〜200nmの範囲にあることを特徴と
する請求項1または2に記載の透明導電性被膜形成用塗
布液の製造方法。
3. The indium oxide fine particles (A) have an average particle diameter of 2 to 200 nm, and the tin oxide fine particles (B) have an average particle diameter of 2 to 200 nm. Alternatively, the method for producing a coating liquid for forming a transparent conductive film according to item 2.
【請求項4】前記酸化インジウム系微粒子(A)が酸化
インジウム、SnまたはFがドーピングされた酸化イン
ジウムであり、酸化錫系微粒子(B)が酸化錫、Sb、
FまたはPがドーピングされた酸化錫であることを特徴
とする請求項1〜3のいずれかに記載の透明導電性被膜
形成用塗布液の製造方法。
4. The indium oxide based fine particles (A) are indium oxide, indium oxide doped with Sn or F, and the tin oxide based fine particles (B) are tin oxide, Sb,
The method for producing a coating liquid for forming a transparent conductive film according to claim 1, wherein F or P is doped tin oxide.
【請求項5】導電性微粒子を分散させたのち、さらに着
色剤としてカーボンブラックおよび/またはチタンブラ
ックを分散させることを特徴とする請求項1〜4のいず
れかに記載の透明導電性被膜形成用塗布液の製造方法。
5. The transparent conductive coating film forming method according to claim 1, wherein carbon black and / or titanium black is further dispersed as a colorant after the conductive fine particles are dispersed. Method for producing coating liquid.
【請求項6】請求項1〜5のいずれかに記載の透明導電
性被膜形成用塗布液の製造方法で得られた透明導電性被
膜形成用塗布液。
6. A transparent conductive film-forming coating solution obtained by the method for producing a transparent conductive film-forming coating solution according to claim 1.
【請求項7】基材と、基材上の前記導電性微粒子を含む
透明導電性被膜と、該透明導電性被膜上に設けられ、該
透明導電性被膜よりも屈折率が低い透明被膜とからなる
透明導電性被膜付基材であって、 透明導電性被膜が請求項1〜5のいずれかに記載の方法
で製造された透明導電性被膜形成用塗布液を基材表面に
塗布することにより形成されたものであることを特徴と
する透明導電性被膜付基材。
7. A substrate, a transparent conductive film containing the conductive fine particles on the substrate, and a transparent film provided on the transparent conductive film and having a refractive index lower than that of the transparent conductive film. A substrate having a transparent conductive coating formed by applying a transparent conductive coating-forming coating liquid produced by the method according to any one of claims 1 to 5 onto the surface of the substrate. A substrate with a transparent conductive film, which is formed.
【請求項8】請求項7に記載の透明導電性被膜付基材で
構成された前面板を備え、透明導電性被膜が該前面板の
外表面に形成されていることを特徴とする表示装置。
8. A display device comprising a front plate composed of the substrate with a transparent conductive film according to claim 7, wherein the transparent conductive film is formed on the outer surface of the front plate. .
JP2001264471A 2001-08-31 2001-08-31 Method for producing coating liquid for forming electrically conductive transparent coating film and substrate and display device provided with electrically conductive transparent coating film Pending JP2003073583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001264471A JP2003073583A (en) 2001-08-31 2001-08-31 Method for producing coating liquid for forming electrically conductive transparent coating film and substrate and display device provided with electrically conductive transparent coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001264471A JP2003073583A (en) 2001-08-31 2001-08-31 Method for producing coating liquid for forming electrically conductive transparent coating film and substrate and display device provided with electrically conductive transparent coating film

Publications (1)

Publication Number Publication Date
JP2003073583A true JP2003073583A (en) 2003-03-12

Family

ID=19091063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001264471A Pending JP2003073583A (en) 2001-08-31 2001-08-31 Method for producing coating liquid for forming electrically conductive transparent coating film and substrate and display device provided with electrically conductive transparent coating film

Country Status (1)

Country Link
JP (1) JP2003073583A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173408A (en) * 2004-12-16 2006-06-29 Catalysts & Chem Ind Co Ltd Method of manufacturing substrate with circuit, and substrate with circuit obtained thereby
JP2006316264A (en) * 2005-04-15 2006-11-24 Jsr Corp Highly refractive material-forming composition and its cured product, and method for producing highly refractive material-forming composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173408A (en) * 2004-12-16 2006-06-29 Catalysts & Chem Ind Co Ltd Method of manufacturing substrate with circuit, and substrate with circuit obtained thereby
JP2006316264A (en) * 2005-04-15 2006-11-24 Jsr Corp Highly refractive material-forming composition and its cured product, and method for producing highly refractive material-forming composition

Similar Documents

Publication Publication Date Title
JP3563236B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film, method for producing the same, and display device
JP4183924B2 (en) METAL PARTICLE, PROCESS FOR PRODUCING THE PARTICLE, COATING LIQUID FOR TRANSPARENT CONDUCTIVE FILM CONTAINING THE PARTICLE, SUBSTRATE WITH TRANSPARENT CONDUCTIVE COATING, DISPLAY DEVICE
US20040016914A1 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film, and display device
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
JP4343520B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and display device
JP4522505B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4002469B2 (en) Manufacturing method of indium metal fine particles, coating liquid for forming transparent conductive film containing indium metal fine particles, dispersion sol, substrate with transparent conductive film, display device
JP3982967B2 (en) Transparent film-forming coating solution, transparent film-coated substrate and display device
JP5068298B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP2001064540A (en) Transparent, electrically conductive coated film-forming coating liquid, substrate having transparent, electrically conductive coated film and display device
JP3779088B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4959067B2 (en) Coating liquid for forming transparent low-reflective conductive film, substrate with transparent low-reflective conductive film, and display device
JP4002435B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
KR100996052B1 (en) Coating agent for forming transparent film, transparent film coated substrate and display
JP5187990B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device
JP2003073583A (en) Method for producing coating liquid for forming electrically conductive transparent coating film and substrate and display device provided with electrically conductive transparent coating film
JP4240905B2 (en) Indium-based oxide fine particles and production method thereof, coating liquid for forming transparent conductive film containing indium-based oxide fine particles, substrate with transparent conductive film, and display device
JPWO2004099074A1 (en) Coating liquid for forming transparent film, substrate with transparent film, and display device
JP2003105268A (en) Coating liquid for forming transparent coated film, base material with transparent and electroconductive coated film, and display device
JP4425530B2 (en) Method for producing indium oxide fine particles, coating liquid for forming transparent conductive film containing fine particles, substrate with transparent conductive film, and display device
JP2003261326A (en) Indium based oxide fine particle, method of producing the fine particle, coating solution for forming transparent electrically conductive film containing the fine particle, base material with transparent electrically conductive film and display
JP4902048B2 (en) Substrate with transparent conductive film and display device
JP4033646B2 (en) Conductive metal oxide particles, method for producing conductive metal oxide particles, substrate with transparent conductive film, and display device
JP2004204174A (en) Coating liquid for forming transparent electeroconductive film, substrate with transparent electroconductive film and displaying device
JP4782054B2 (en) Substrate with transparent conductive film and display device