JP5115413B2 - Silicon carbide single crystal manufacturing apparatus and manufacturing method - Google Patents

Silicon carbide single crystal manufacturing apparatus and manufacturing method Download PDF

Info

Publication number
JP5115413B2
JP5115413B2 JP2008231237A JP2008231237A JP5115413B2 JP 5115413 B2 JP5115413 B2 JP 5115413B2 JP 2008231237 A JP2008231237 A JP 2008231237A JP 2008231237 A JP2008231237 A JP 2008231237A JP 5115413 B2 JP5115413 B2 JP 5115413B2
Authority
JP
Japan
Prior art keywords
sic
single crystal
melt
crystal
sic single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008231237A
Other languages
Japanese (ja)
Other versions
JP2010064914A (en
Inventor
克典 旦野
広明 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008231237A priority Critical patent/JP5115413B2/en
Publication of JP2010064914A publication Critical patent/JP2010064914A/en
Application granted granted Critical
Publication of JP5115413B2 publication Critical patent/JP5115413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶液法における炭化珪素(以下、SiCと称する。)単結晶の製造装置およびSiC単結晶の製造方法に関し、さらに詳しくは異種および/又は多形SiC結晶の混入を防止乃至は抑制することが可能であるSiC単結晶の製造装置およびSiC単結晶の製造方法に関するものである。   The present invention relates to a silicon carbide (hereinafter referred to as SiC) single crystal manufacturing apparatus and a SiC single crystal manufacturing method in a solution method, and more particularly, to prevent or suppress mixing of different types and / or polymorphic SiC crystals. The present invention relates to a SiC single crystal manufacturing apparatus and a SiC single crystal manufacturing method.

SiC単結晶は、熱的、化学的に非常に安定であり、機械的強度に優れ、放射線に強く、しかもSi(シリコン)単結晶に比べて高い絶縁破壊電圧、高い熱伝導率などの優れた物性を有し、不純物の添加によってp、n伝導型の電子制御も容易にできるとともに、広い禁制帯幅(4H型の単結晶SiCで約3.3eV、6H型の単結晶SiCで約3.0eV)を有するという特長を備えている。このため、Si単結晶やGaAs(ガリウム砒素)単結晶などの既存の半導体材料では実現できない高温、高周波、耐電圧・耐環境性を実現することが可能であり、次世代の半導体材料として期待が高まっている。   SiC single crystal is very stable thermally and chemically, excellent in mechanical strength, resistant to radiation, and excellent in breakdown voltage and high thermal conductivity compared to Si (silicon) single crystal. It has physical properties and can easily control p- and n-conductivity type electrons by adding impurities, and has a wide forbidden band width (about 3.3 eV for 4H type single crystal SiC and about 3.3 eV for 6H type single crystal SiC). 0 eV). For this reason, it is possible to realize high temperature, high frequency, withstand voltage and environmental resistance that cannot be realized with existing semiconductor materials such as Si single crystal and GaAs (gallium arsenide) single crystal. It is growing.

従来、SiC単結晶の成長法の1つとして溶液法が知られている。この溶液法は、溶媒を入れる坩堝、例えば黒鉛坩堝、溶媒、高周波コイルなどの外部加熱装置、断熱材、昇降可能な基板支持軸および軸の先端に取付けた基板からなる基本的構造を有するSiC単結晶の製造装置を用いて、坩堝中、Si融液又はさらに金属を融解したSi合金融液中にC(炭素)供給源、例えば黒鉛坩堝からCを溶解させて、例えば低温部に設置したSiC種結晶基板上にSiC結晶層を溶液析出によって成長させる方法である。   Conventionally, the solution method is known as one of the growth methods of SiC single crystal. This solution method is a SiC single unit having a basic structure comprising a crucible containing a solvent, for example, a graphite crucible, a solvent, an external heating device such as a high-frequency coil, a heat insulating material, a substrate support shaft capable of moving up and down, and a substrate attached to the tip of the shaft. Using a crystal production apparatus, C is dissolved from a C (carbon) supply source, for example, a graphite crucible, in a Si crucible in a crucible, in a Si melt, or in a Si compound financial liquid in which a metal is further melted. In this method, a SiC crystal layer is grown on a seed crystal substrate by solution precipitation.

この溶液法によるSiC単結晶の成長法では、他の成長法、例えば気相成長法に比べて結晶性の良好な単結晶が得られるが、融液(Siを含む融液)に種結晶近傍の融液温度が他の部分の融液温度より低温になるように温度勾配を設けて成長させる方法、又は融液全体を徐冷して成長させる方法のいずれかのSiC単結晶成長法が用いられるが、いずれも融液の冷却の際の溶液中の温度分布によって結晶多形の生成が避けられないことが知られている。
SiCの結晶多形とは、化学量論的には同じ組成でありながら原子の積層様式が軸方向にのみ異なる多くの結晶構造を取り得る現象であり、SiCの結晶多形としては3C型4H型、6H型、15Rなどが知られている。
In this method of growing a single crystal of SiC, a single crystal with better crystallinity can be obtained compared to other growth methods, for example, a vapor phase growth method, but in the vicinity of a seed crystal in a melt (a melt containing Si). The SiC single crystal growth method of either the method of growing by providing a temperature gradient so that the melt temperature of the melt is lower than the melt temperature of other parts, or the method of growing by slowly cooling the entire melt is used. However, it is known that the formation of crystal polymorphs is unavoidable due to the temperature distribution in the solution during cooling of the melt.
The SiC crystal polymorphism is a phenomenon that can take many crystal structures having the same composition in stoichiometry but different in the stacking mode of atoms only in the axial direction. The SiC crystal polymorph is 3C type 4H. A type, 6H type, 15R, and the like are known.

一方、4H型SiC(以下、4H−SiCと称する。)のエピタキシャル成長に関する取り組みは主に(0001)on−axis面(以下、ジャスト面と称する。)より<11−20>方向へ数度傾けた面(オフ面)上に行われている。しかし、基板材料の有効利用や基底面欠陥の貫通抑止を考慮して、ジャスト面あるいは低角度オフ面上へのエピタキシャル成長が望ましいとされる。
しかし、ジャスト面を含めてオフ角が小さくなるほど、低温安定な多形(ポリタイプ)である3C−SiCが生成しやすいことがPhys.Stat.Sol.(b)、202号、247頁、1997年の論文に報告されている。この結果は化学気相堆積法についてのものであるが、溶液成長においても同様の問題が発生すると考えられる。そして、溶液成長においてはこれのみではなく、前記の種々の結晶多形が混入する。
特に、ジャスト面あるいは低オフ角(8°未満)基板上へのSiCエピタキシャル成長では、オフ角基板上へのエピタキシャル成長において標準的な技術であるステップフロー成長を採用できないため、異種多形が混入しやすい。その中でも特に、高速成長ではその傾向が顕著である。
2種以上の結晶形が混在すると高性能SiCパワーデバイスを実現するためには許されないことが指摘されている。
このため、結晶多形の生成を防止乃至は抑制するための解決策が求められている。
On the other hand, efforts related to epitaxial growth of 4H-type SiC (hereinafter referred to as 4H-SiC) were inclined several degrees in the <11-20> direction mainly from the (0001) on-axis plane (hereinafter referred to as just plane). It is done on the surface (off surface). However, in consideration of effective use of the substrate material and suppression of basal plane defect penetration, epitaxial growth on a just surface or a low-angle off-surface is desirable.
However, the smaller the off-angle including the just surface, the easier it is to produce 3C-SiC, which is a polymorph that is stable at low temperatures. Stat. Sol. (B), 202, p. 247, reported in 1997. Although this result is about the chemical vapor deposition method, it is considered that the same problem occurs in the solution growth. And in solution growth, not only this but the said various crystal polymorphs mix.
In particular, in SiC epitaxial growth on a just surface or a low off-angle (less than 8 °) substrate, step flow growth, which is a standard technique in epitaxial growth on an off-angle substrate, cannot be adopted. . Among them, the tendency is particularly remarkable in high-speed growth.
It has been pointed out that mixing two or more crystal forms is not allowed to realize a high-performance SiC power device.
For this reason, a solution for preventing or suppressing the formation of crystal polymorphs is desired.

特開2006−131433号公報には、坩堝、加熱手段、昇降可能なシード軸を備えたSiC単結晶において坩堝内の融液上に配置可能な断熱性構造物、さらにその上に坩堝蓋を備えたSiC単結晶の製造装置、およびこの製造装置を用いてSiC単結晶層を成長させるSiC単結晶の製造方法が記載されている。
また、特開2007−261844号公報には、SiとCrとCとを含む融液を使用して液相成長法によりSiC単結晶を高い成長速度で製造するSiC単結晶の製造方法が記載されており、SiC単結晶の製造装置として黒鉛蓋、黒鉛坩堝、種結晶基板を取付けたシード軸および加熱炉を備え、シード軸を黒鉛蓋のシード軸差し込み口から挿入可能である製造装置が記載されている。
Japanese Patent Laid-Open No. 2006-131433 discloses a heat insulating structure that can be placed on a melt in a crucible in a SiC single crystal having a crucible, a heating means, and a seed shaft that can be moved up and down, and a crucible lid on the structure. An SiC single crystal manufacturing apparatus and an SiC single crystal manufacturing method for growing an SiC single crystal layer using the manufacturing apparatus are described.
Japanese Patent Application Laid-Open No. 2007-261844 describes a method for producing a SiC single crystal in which a SiC single crystal is produced at a high growth rate by a liquid phase growth method using a melt containing Si, Cr and C. As a SiC single crystal manufacturing apparatus, a graphite lid, a graphite crucible, a seed shaft to which a seed crystal substrate is attached and a heating furnace are provided, and the seed shaft can be inserted from a seed shaft insertion hole of the graphite lid. ing.

特開2006−131433号公報JP 2006-131433 A 特開2007−261844号公報JP 2007-261844 A Phys.Stat.Sol.(b)、202号、247頁、1997年Phys. Stat. Sol. (B), 202, 247, 1997

そして、上記の特許文献1には、前記の坩堝内の融液上に備えた配置可能な断熱性構造物によって融液自由表面の面内温度差が40℃以内となり、多結晶SiCの生成抑制と大きな成長速度とを両立し得ること、装置に備えられた断熱性構造物は種結晶基板とともに融液の上を昇降することおよび従来の坩堝蓋を備えたSiC単結晶の製造装置では液自由表面の面内温度差が大きくなることが記載されている。つまり、特許文献1は、従来の坩堝蓋を備えたSiC単結晶の製造装置では多結晶SiCの生成抑制が達成されないことを示している。また、上記特許文献2に具体的に示されているSiC単結晶の製造装置は基本的に特許文献1で従来の装置として示される坩堝蓋を備えた装置である。   And in said patent document 1, the in-plane temperature difference of a melt free surface will be less than 40 degreeC by the heat insulation structure which can be arrange | positioned on the melt in the said crucible, and the production | generation suppression of polycrystalline SiC is suppressed. The thermal insulation structure provided in the device can move up and down the melt together with the seed crystal substrate, and in the conventional SiC single crystal production device with a crucible lid, it is liquid free. It is described that the in-plane temperature difference of the surface becomes large. That is, Patent Document 1 shows that the production suppression of polycrystalline SiC is not achieved in the SiC single crystal manufacturing apparatus provided with the conventional crucible lid. The SiC single crystal manufacturing apparatus specifically shown in Patent Document 2 is basically an apparatus having a crucible lid shown in Patent Document 1 as a conventional apparatus.

しかし、これら公知のSiC単結晶の製造装置を用いた溶液法によっても、異種多形の結晶生成が避けられない。
従って、この発明の目的は、溶液法によりSiC単結晶を製造する際に、結晶多形の生成を防止乃至は抑制することが可能であるSiC単結晶の製造装置およびSiC単結晶の製造方法を提供することである。
However, even by a solution method using these known SiC single crystal production apparatuses, the formation of different polymorphic crystals is inevitable.
Accordingly, an object of the present invention is to provide an SiC single crystal manufacturing apparatus and an SiC single crystal manufacturing method capable of preventing or suppressing the formation of crystal polymorphs when an SiC single crystal is manufactured by a solution method. Is to provide.

本発明者らは、前記目的を達成するために鋭意検討を行った結果、Siを含む融液への種結晶接触前に、Siを含む融液の蒸気が種結晶に付着することによって異種多形の結晶生成が起こり、所望する結晶以外の異種の結晶が生成することを見出し、さらに研究を行った結果、本発明を完成した。
本発明は、溶液成長炉内のSiを含む融液の液面にSiC種結晶を接触させてSiC結晶成長を行うSiC単結晶の製造装置であって4H−SiC種結晶基板を前記融液に接触させる直前まで前記基板が1700〜2100℃の範囲内の温度に加熱された前記融液の蒸気に触れないための保護機構を設けてなり得られるSiC単結晶がSiC単結晶成長層のラマン散乱スペクトルによって6H−SiCに基づく786cm −1 の位置のピークが確認されない4H−SiC単結晶である、前記装置に関する。
As a result of intensive studies to achieve the above object, the present inventors have found that the vapor of the Si-containing melt adheres to the seed crystal before contacting the seed crystal with the Si-containing melt. As a result of further research, it has been found that different types of crystals other than the desired crystals are formed.
The present invention is directed to an apparatus for producing a SiC single crystal by contacting the SiC seed crystal performs SiC crystal growth to the liquid surface of the melt containing Si of solution growth furnace, the melt a 4H-SiC seed crystal substrate the substrate until just before contacting the is a protective mechanism to not touch the vapor of the melt which is heated to a temperature in the range of 1700 to 2,100 ° C., is obtained SiC single crystal of the SiC single crystal growth layer It is related with the said apparatus which is a 4H-SiC single crystal in which the peak of the position of 786 cm < -1 > based on 6H-SiC is not confirmed by a Raman scattering spectrum .

また、本発明は、溶液成長炉内のSiを含む融液の液面にSiC種結晶を接触させてSiC結晶成長を行うSiC単結晶の製造方法であって4H−SiC種結晶基板を1700〜2100℃の範囲内の温度に加熱された前記融液に接触させる直前まで、前記基板が前記融液の蒸気に触れないように保護することによって、溶液成長炉内の前記融液の液面にSiC種結晶を接触させて、得られるSiC単結晶がSiC単結晶成長層のラマン散乱スペクトルによって6H−SiCに基づく786cm −1 の位置にピークが確認されない4H−SiC単結晶の成長を行う、前記方法に関する。 The present invention also relates to a method for producing a SiC single crystal in which a SiC seed crystal is brought into contact with a liquid surface of a melt containing Si in a solution growth furnace to perform SiC crystal growth, and a 4H- SiC seed crystal substrate is formed in 1700. to 2100 until immediately before the contact with the melt, which is heated to a temperature in the range of ° C., by which the substrate is protected against touching the vapor of the melt, the liquid surface of the melt solution growth furnace A SiC seed crystal is brought into contact with each other, and the resulting SiC single crystal grows a 4H—SiC single crystal whose peak is not confirmed at a position of 786 cm −1 based on 6H—SiC by the Raman scattering spectrum of the SiC single crystal growth layer . It relates to said method.

本発明によれば、溶液法により結晶多形の生成を防止乃至は抑制することが可能であるSiC単結晶の製造装置を得ることができる。
また、本発明によれば、溶液法により結晶多形の生成を防止乃至は抑制してSiC単結晶を製造することができる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing apparatus of the SiC single crystal which can prevent thru | or suppress the production | generation of a crystal polymorph by a solution method can be obtained.
Further, according to the present invention, a SiC single crystal can be produced by preventing or suppressing the formation of crystal polymorphs by a solution method.

以下、本発明を図1〜8を用いて説明する。
図1は、従来公知の溶液法によるSiC単結晶の製造に一般的に用いられている製造装置の概略を示す模式図である。図2〜6は、本発明の実施態様のSiC単結晶の製造装置の概略を示す模式図である。図7は、従来法によって得られたSiC単結晶成長層のラマン散乱スペクトルである。図8は、本発明の実施態様によって得られたSiC単結晶成長層のラマン散乱スペクトルである。
Hereinafter, the present invention will be described with reference to FIGS.
FIG. 1 is a schematic diagram showing an outline of a production apparatus generally used for producing a SiC single crystal by a conventionally known solution method. FIGS. 2-6 is a schematic diagram which shows the outline of the manufacturing apparatus of the SiC single crystal of the embodiment of this invention. FIG. 7 is a Raman scattering spectrum of the SiC single crystal growth layer obtained by the conventional method. FIG. 8 is a Raman scattering spectrum of the SiC single crystal growth layer obtained by the embodiment of the present invention.

図1に示すように、従来のSiC単結晶の製造装置10を用いると、高温に加熱されたSiC融液への4H−SiC種結晶接触前に、蒸発したSiを含む融液3の蒸気がSiC種結晶基板8の表面の種結晶に付着することが避けられない。そして、この製造装置10を用いて得られたSiC単結晶成長層のラマン散乱スペクトルを示す図7から、このSiC単結晶成長層には4H−SiC以外に6H−SiCに基づく786cm−1の位置に大きなピークが確認され異種多形の結晶生成が起こり、所望する結晶以外の異種の結晶が生成していることが理解される。 As shown in FIG. 1, when the conventional SiC single crystal manufacturing apparatus 10 is used, before the 4H-SiC seed crystal contacts the SiC melt heated to a high temperature, the vapor of the melt 3 containing evaporated Si is generated. Adhering to the seed crystal on the surface of the SiC seed crystal substrate 8 is inevitable. And from FIG. 7 which shows the Raman scattering spectrum of the SiC single crystal growth layer obtained using this manufacturing apparatus 10, this SiC single crystal growth layer has a position of 786 cm −1 based on 6H—SiC in addition to 4H—SiC. It can be seen that a large peak is observed in the crystal, and the formation of different polymorphic crystals occurs, resulting in the formation of different crystals other than the desired crystals.

これに対して、図2に示す本発明の実施態様の蓋部20である保護機構2を備えたSiC単結晶の製造装置1を用いることによって、高温に加熱されたSiを含む融液3への種結晶の接触直前まで、蒸発したSiを含む融液3の蒸気がSiC種結晶基板8の表面の4H−SiC種結晶に触れることが抑制される。本発明の実施態様の製造装置1を用いて得られたSiC単結晶成長層のラマン散乱スペクトルを示す図8から、このSiC単結晶成長層には4H−SiC以外には他の結晶形のピーク、例えば6H−SiCに基づく786cm−1の位置のピークなどが確認されないことから、異種多形の結晶生成が起こらず種結晶以外の異種の結晶が生成していないことが理解される。 On the other hand, to the melt 3 containing Si heated to a high temperature by using the SiC single crystal manufacturing apparatus 1 provided with the protection mechanism 2 that is the lid portion 20 of the embodiment of the present invention shown in FIG. The vapor of the melt 3 containing evaporated Si is prevented from coming into contact with the 4H—SiC seed crystal on the surface of the SiC seed crystal substrate 8 until just before contact with the seed crystal. From FIG. 8 which shows the Raman scattering spectrum of the SiC single crystal growth layer obtained using the manufacturing apparatus 1 of the embodiment of the present invention, this SiC single crystal growth layer has peaks of other crystal forms other than 4H—SiC. For example, since a peak at a position of 786 cm −1 based on 6H—SiC or the like is not confirmed, it is understood that the generation of different polymorphic crystals does not occur and different types of crystals other than the seed crystals are not generated.

このSiC種結晶基板8をSiを含む融液に接触させる直前まで、SiC種結晶基板がSiC蒸気に触れさせないように保護機構によって保護し、SiC結晶成長を行って得られたSiC単結晶成長層に4H−SiC種結晶以外に他の結晶形に基づくピークが確認されないことの理論的な解明はされていない。高温に加熱されたSiを含む融液3への種結晶の接触直前まで、SiC種結晶基板8が融液の蒸気に触れないための保護機構2を設けたSiC単結晶の製造装置1によれば、溶液法により結晶多形の生成を防止乃至は抑制することが可能であることが明らかになった。
本発明の溶液法によるSiC単結晶の製造装置およびSiC単結晶の製造方法に関する発明は、この高温に加熱されたSiを含む融液3への種結晶の接触直前まで、SiC種結晶基板8が融液の蒸気に触れないための保護機構2を設けたSiC単結晶の製造装置1により、溶液法によって結晶多形の生成を防止乃至は抑制することが可能であることを見出したことに基づいている。
The SiC single crystal growth layer obtained by performing the SiC crystal growth by protecting the SiC seed crystal substrate 8 from being exposed to SiC vapor until immediately before contacting the SiC seed crystal substrate 8 with the melt containing Si. Furthermore, no theoretical elucidation has been made that no peaks based on other crystal forms other than the 4H—SiC seed crystal are confirmed. According to the SiC single crystal manufacturing apparatus 1 provided with the protection mechanism 2 for preventing the SiC seed crystal substrate 8 from coming into contact with the vapor of the melt until immediately before the contact of the seed crystal with the melt 3 containing Si heated to a high temperature. For example, it has become clear that the formation of crystal polymorphs can be prevented or suppressed by the solution method.
The invention relating to the SiC single crystal manufacturing apparatus and the SiC single crystal manufacturing method according to the present invention is based on the fact that the SiC seed crystal substrate 8 is in contact with the melt 3 containing Si heated to a high temperature until just before the seed crystal contacts the melt. Based on the discovery that the production of crystal polymorphs can be prevented or suppressed by the solution method using the SiC single crystal production apparatus 1 provided with the protection mechanism 2 for preventing contact with the vapor of the melt. ing.

図2〜6は、本発明の保護機構を設けたSiC単結晶の製造装置の実施態様を示す。
図2に示す実施態様において、SiC単結晶の製造装置1は、溶液成長炉10内のSiC融液3と坩堝4、例えば黒鉛坩堝と外部加熱装置5、例えば高周波コイルと断熱材6と、SiC種結晶基板8と支持軸7、例えば黒鉛製軸とからなる溶液成長炉において、種結晶の装着軸である支持軸7の前記溶液成長炉における摺動経路の上端部に設けられた可動式の蓋部20である保護機構2を備えてなる。
この蓋部20である保護機構2により、SiC種結晶基板8をSiを含む融液3に接触させる直前まで、SiC種結晶基板8が融液の蒸気に触れないため、結晶成長前の基板を清浄に保つことができ、その結果、異種多形の混入を防ぐことができると考えられる。
この実施態様において、前記の蓋を構成する材料としては成長温度にもよるが融点が1000℃以上のものを用いることが好ましい。
2-6 shows the embodiment of the manufacturing apparatus of the SiC single crystal provided with the protection mechanism of the present invention.
In the embodiment shown in FIG. 2, the SiC single crystal manufacturing apparatus 1 includes an SiC melt 3 and a crucible 4 in a solution growth furnace 10, such as a graphite crucible and an external heating device 5, such as a high-frequency coil and a heat insulating material 6, and SiC. In a solution growth furnace comprising a seed crystal substrate 8 and a support shaft 7, for example, a graphite shaft, a movable type provided at the upper end of the sliding path in the solution growth furnace of the support shaft 7, which is a seed crystal mounting shaft. The protection mechanism 2 which is the cover part 20 is provided.
The SiC seed crystal substrate 8 does not come into contact with the melt vapor until the SiC seed crystal substrate 8 is brought into contact with the melt 3 containing Si by the protection mechanism 2 that is the lid portion 20. It can be kept clean, and as a result, mixing of different polymorphs can be prevented.
In this embodiment, the material constituting the lid is preferably a material having a melting point of 1000 ° C. or higher, depending on the growth temperature.

図3に示す実施態様において、SiC単結晶の製造装置1は、前記の溶液成長炉において、前記種結晶の装着軸である支持軸7の前記溶液成長炉における摺動経路の上端部に設けられ、前記基板支持軸の挿入によって破壊可能な蓋部21である保護機構2を備えてなる。
この基板支持軸の挿入によって破壊可能な蓋部21である保護機構2としては、坩堝の上部を覆うのに十分な大きさの薄膜板あるいはシートを蓋として用いることができ、この蓋を結晶成長の直前に基板が保持された支持軸7、例えば黒鉛基板支持軸により割るなどして破壊する。
In the embodiment shown in FIG. 3, the SiC single crystal manufacturing apparatus 1 is provided at the upper end portion of the sliding path in the solution growth furnace of the support shaft 7 which is the mounting shaft for the seed crystal in the solution growth furnace. The protective mechanism 2 is a lid 21 that can be broken by inserting the substrate support shaft.
As the protection mechanism 2 which is the lid portion 21 that can be broken by inserting the substrate support shaft, a thin film plate or sheet large enough to cover the upper part of the crucible can be used as the lid, and this lid can be used for crystal growth. The support shaft 7 on which the substrate is held immediately before, for example, a graphite substrate support shaft is broken to break it.

図4に示す実施態様において、SiC単結晶の製造装置1は、前記の溶液成長炉において、Siを含む融液の表面に浮かせた蓋部22である保護機構2を備えてなる。
このSiを含む融液の表面に浮かせた蓋部22である保護機構2としては、その径が坩堝の内径と近い値であることが適当である。成長時にSiC種結晶基板8とSiを含む融液3の表面に浮かせた蓋部22との接触を避けたい場合には、例えば図4に示すような基板接着部の凹んだ黒鉛軸を用いてもよく、あるいは図5に示すロの字型の黒鉛支持軸を用いてもよく、さらに凹凸あるいはジグザグ、波形の浮き蓋22を用いてもよい。
図5に示す実施態様において、SiC単結晶の製造装置1は、前記の溶液成長炉において、前記種結晶の装着軸である支持軸7の先端部を覆う蓋部23、例えばロの字型の黒鉛軸にSiC種結晶基板8を保持した構造の蓋部23である保護機構2を備えてなる。この実施態様によれば、SiC種結晶基板をSiを含む融液に接触させる直前までSiC種結晶基板が融液の蒸気に触れさせないように保護する機能に加えて、前記の成長前に基板を均一に加熱することが可能となり、基板が溶液に接触する際の熱衝撃を抑制することができるので、成長開始時の結晶転位発生をさらに低減することが可能となり好適である。
図6に示す実施態様において、SiC単結晶の製造装置1は、前記の溶液成長炉において、溶液成長炉11とは別室の前記SiC種結晶基板の交換室24である保護機構2を備えており、交換室24は溶液成長炉10を含む成長室11とゲートバルブ202によって隔離されてなる。
In the embodiment shown in FIG. 4, the SiC single crystal production apparatus 1 includes the protection mechanism 2 that is the lid portion 22 floated on the surface of the melt containing Si in the solution growth furnace.
As the protection mechanism 2 which is the lid portion 22 floated on the surface of the melt containing Si, it is appropriate that the diameter is close to the inner diameter of the crucible. When it is desired to avoid contact between the SiC seed crystal substrate 8 and the lid portion 22 floated on the surface of the melt 3 containing Si at the time of growth, for example, a graphite shaft with a concave substrate bonding portion as shown in FIG. 4 is used. Alternatively, a square-shaped graphite support shaft shown in FIG. 5 may be used, and an uneven, zigzag, or corrugated floating lid 22 may be used.
In the embodiment shown in FIG. 5, the SiC single crystal manufacturing apparatus 1 includes a lid portion 23 that covers the tip end portion of the support shaft 7 that is the mounting shaft for the seed crystal in the solution growth furnace, for example, a rectangular shape. The protection mechanism 2 which is the cover part 23 of the structure which hold | maintained the SiC seed crystal substrate 8 on the graphite axis | shaft is provided. According to this embodiment, in addition to the function of protecting the SiC seed crystal substrate from coming into contact with the melt vapor until immediately before the SiC seed crystal substrate is brought into contact with the Si-containing melt, the substrate is grown before the growth. Since heating can be performed uniformly and thermal shock when the substrate comes into contact with the solution can be suppressed, generation of crystal dislocations at the start of growth can be further reduced, which is preferable.
In the embodiment shown in FIG. 6, the SiC single crystal manufacturing apparatus 1 includes the protection mechanism 2 which is the SiC seed crystal substrate exchange chamber 24 in a separate chamber from the solution growth furnace 11 in the solution growth furnace. The exchange chamber 24 is separated from the growth chamber 11 including the solution growth furnace 10 by the gate valve 202.

本発明の図2又は図3に示す実施態様のSiC単結晶の製造装置において、蓋部の表面を鏡面加工してなるおよび/又は蓋部が高断熱材料からなると好適である。蓋部の表面を鏡面加工することにより、Siを含む融液からの結晶成長前の熱輻射がSiC種結晶基板へ伝わることを低減することができ、また、前記の蓋部が高断熱材料であると、成長前の基板に発生する熱応力を抑制することができ、基板剥離を防止することができる。
また、本発明の図3又は図4に示す実施態様のSiC単結晶の製造装置において、蓋部が、炭素材料又は炭素化合物材料からなる製造装置が好適である。蓋部が炭素材料又は炭素化合物材料からなると、Siを含む溶液への炭素溶出が促進される。
本発明における前記の実施態様において、支持軸とSiC種結晶基板とは接着剤で固定するのが一般的である。これらの実施態様において、軸を接着後に前記の保護構造を組み立てる構成にすることが好ましい。
In the SiC single crystal manufacturing apparatus according to the embodiment shown in FIG. 2 or 3 of the present invention, it is preferable that the surface of the lid portion is mirror-finished and / or the lid portion is made of a highly heat insulating material. By mirror-finishing the surface of the lid, it is possible to reduce the heat radiation before crystal growth from the Si-containing melt to the SiC seed crystal substrate, and the lid is made of a highly heat-insulating material. If it exists, the thermal stress which generate | occur | produces in the board | substrate before growth can be suppressed, and board | substrate peeling can be prevented.
In addition, in the SiC single crystal manufacturing apparatus of the embodiment shown in FIG. 3 or FIG. 4 of the present invention, a manufacturing apparatus in which the lid portion is made of a carbon material or a carbon compound material is preferable. When the lid is made of a carbon material or a carbon compound material, carbon elution into the solution containing Si is promoted.
In the above-described embodiment of the present invention, the support shaft and the SiC seed crystal substrate are generally fixed with an adhesive. In these embodiments, it is preferable that the protection structure is assembled after the shaft is bonded.

次に、本発明のSiC単結晶の製造方法について図2Aおよび2Bを用いて説明する。
図2Aは、本発明の実施態様の図2に示す可動式の蓋部20を保護機構2とする製造装置1の溶媒加熱時の状態を示し、図2Bは、図2Aにおける可動式の蓋部20を回転させて結晶成長開始時の状態を示す。
図2Aに示す実施態様において、可動式蓋部20の1例である遮蔽板が坩堝4の上面より1〜5cm程度の位置に配置されていて、遮蔽板はハンドル201によって外部より抜き差し可能な構造となっていて、溶媒を加熱、例えば2000℃程度の温度に加熱前より支持軸7の下降時までの間遮蔽板からなる蓋部20を設置し、SiC種結晶をセットしてから、例えば遅くとも溶媒元素のうち最も融点の低い元素の融点温度に達してからSiC種結晶基板8を前記Siを含む融液3に接触させる直前まで、前記SiC種結晶基板8が融液の蒸気に触れさせないように保護する。
次いで、図2Bに示すように、成長開始時にハンドル201によって可動式蓋部20を坩堝4のSiを含む融液3の上から除いて、制御装置(図示せず)によって支持軸7を下降させてSiC種結晶基板8をSiを含む融液3と接触させてSiC結晶成長を行って、SiC単結晶を製造することができる。
Next, the manufacturing method of the SiC single crystal of this invention is demonstrated using FIG. 2A and 2B.
FIG. 2A shows a state during heating of the solvent in the manufacturing apparatus 1 using the movable lid 20 shown in FIG. 2 of the embodiment of the present invention as the protection mechanism 2, and FIG. 2B shows the movable lid in FIG. 2A. The state at the start of crystal growth by rotating 20 is shown.
In the embodiment shown in FIG. 2A, a shielding plate as an example of the movable lid 20 is arranged at a position of about 1 to 5 cm from the upper surface of the crucible 4, and the shielding plate can be inserted and removed from the outside by the handle 201. After the solvent is heated, for example, at a temperature of about 2000 ° C. until the support shaft 7 is lowered from before the heating, the lid portion 20 made of a shielding plate is set and the SiC seed crystal is set. The SiC seed crystal substrate 8 is not allowed to come into contact with the vapor of the melt until the melting point temperature of the lowest melting element of the solvent elements is reached and immediately before the SiC seed crystal substrate 8 is brought into contact with the melt 3 containing Si. To protect.
Next, as shown in FIG. 2B, at the start of growth, the movable lid 20 is removed from the top of the melt 3 containing Si in the crucible 4 by the handle 201, and the support shaft 7 is lowered by the control device (not shown). Then, the SiC seed crystal substrate 8 is brought into contact with the melt 3 containing Si to perform SiC crystal growth, thereby producing a SiC single crystal.

前記のSiC単結晶の製造方法におけるSiを含む融液としては、SiとCとを必須成分とする任意の融液を挙げることができる。例えば、Siを含む融液として、さらにTiおよび/又はCrを含むもの、例えばSi−Ti−C融液又はNiを含みとCrとの割合(原子比)(Ni/Cr)が0.2以下であるもの、例えば前記Si、Cr、NiおよびC以外の元素であって希土類元素、遷移金属元素およびアルカリ土類金属元素のうちから選ばれるいずれか1種の元素を含むもの、例えば前記の元素がCeであるものが挙げられる。   Examples of the melt containing Si in the method for producing a SiC single crystal include any melt containing Si and C as essential components. For example, as a melt containing Si, further containing Ti and / or Cr, for example, a Si-Ti-C melt or a ratio of Ni to Cr (atomic ratio) (Ni / Cr) is 0.2 or less. For example, elements other than Si, Cr, Ni and C, which include any one element selected from rare earth elements, transition metal elements and alkaline earth metal elements, for example, the above elements In which Ce is Ce.

この発明の方法においては、溶液法におけるそれ自体公知の製造法、例えば黒鉛坩堝の形状、加熱方法、加熱時間、雰囲気、昇温速度および冷却速度を適用することができる。
例えば、加熱方法としては高周波誘導加熱が挙げられ、加熱時間(原料の仕込みからSiC飽和濃度に達するまでの凡その時間)としては坩堝の大きさにもよるが20分間〜10時間程度(例えば3〜7時間程度)で、雰囲気としては希ガス、例えばHe、Ne、Arなどの不活性ガスやそれらの一部をNやメタンガスで置き換えたものが挙げられる。
In the method of the present invention, a production method known per se in the solution method, for example, the shape of the graphite crucible, the heating method, the heating time, the atmosphere, the heating rate and the cooling rate can be applied.
For example, the heating method includes high frequency induction heating, and the heating time (approximately the time from the preparation of the raw material to reaching the SiC saturation concentration) is about 20 minutes to 10 hours (for example, 3 hours depending on the size of the crucible). The atmosphere may be a rare gas such as an inert gas such as He, Ne, or Ar, or a part of them replaced with N 2 or methane gas.

本発明の方法によって、異種多形の結晶成長を防止乃至は抑制したSiC単結晶を得ることができる。
本発明の製造方法の実施態様によって得られたSiC単結晶は、例えば4H−SiC種結晶を用いた場合、図8のSiC単結晶成長層のラマン散乱スペクトルに示すように、従来技術の溶液成長法によって得られたSiC単結晶成長層のラマン散乱スペクトルを示す図7と比べて、4H−SiC以外に6H−SiCに基づく786cm−1の位置のピークなどの他の結晶形のピークが確認されないか実質的に確認されない。
By the method of the present invention, a SiC single crystal can be obtained in which the growth of different polymorphic crystals is prevented or suppressed.
When the SiC single crystal obtained by the embodiment of the manufacturing method of the present invention is a 4H-SiC seed crystal, for example, as shown in the Raman scattering spectrum of the SiC single crystal growth layer in FIG. Compared with FIG. 7 which shows the Raman scattering spectrum of the SiC single crystal growth layer obtained by the method, other crystal-shaped peaks such as a peak at 786 cm −1 based on 6H—SiC other than 4H—SiC are not confirmed. Or virtually not confirmed.

以下、この発明の実施例を示す。
以下の各例において、得られたSiC単結晶成長層のラマン散乱によって得られる766cm−1および786cm−1にあるFTO(フッ素ドープ酸化錫)モードは6H−SiCの存在を、774cm−1にあるFTOモードは4H−SiCの存在を証明していることに基づいて、ラマン散乱によって得られたスペクトルによってSiC単結晶成長層の結晶形を評価した。
ラマン散乱測定:
Arレーザーを使用(波長488nm)
測定温度:室温
測定雰囲気:空気中
Examples of the present invention will be described below.
In the examples, FTO in 766cm -1 and 786cm -1 are obtained by Raman scattering of the obtained SiC single crystal growth layer (fluorine doped tin oxide) mode the presence of 6H-SiC, in 774cm -1 Based on the fact that the FTO mode proves the existence of 4H—SiC, the crystal form of the SiC single crystal growth layer was evaluated by the spectrum obtained by Raman scattering.
Raman scattering measurement:
Ar laser is used (wavelength 488nm)
Measurement temperature: Room temperature Measurement atmosphere: In air

実施例1
図2に示すSiC単結晶の製造装置を用いて、下記の成長準備を行った。黒鉛製坩堝に溶媒を収容し、1700〜2100℃の範囲内の温度に加熱し、溶融させると、Cはこの時黒鉛製坩堝から供給された。
(1)n型4H−SiC(0001)ジャスト面の4H−SiC種結晶基板を黒鉛製基板支持軸に接着。
(2)黒鉛坩堝にSi−10%Ti溶媒を投入。
(3)これらを図2のように構成。
(4)大気圧のArを導入する。
(5)SiC種結晶基板と溶媒との間にステンレスと多結晶SiCとからなる遮蔽板をセット。
(6)成長時の基板温度が約1950℃となる温度まで昇温する。
Example 1
The following growth preparation was performed using the SiC single crystal manufacturing apparatus shown in FIG. When the solvent was accommodated in the graphite crucible, heated to a temperature in the range of 1700 to 2100 ° C. and melted, C was supplied from the graphite crucible at this time.
(1) Adhering a 4H—SiC seed crystal substrate with n-type 4H—SiC (0001) just surface to a graphite substrate support shaft.
(2) A Si-10% Ti solvent is put into a graphite crucible.
(3) These are configured as shown in FIG.
(4) Ar at atmospheric pressure is introduced.
(5) A shielding plate made of stainless steel and polycrystalline SiC is set between the SiC seed crystal substrate and the solvent.
(6) The temperature is raised to a temperature at which the substrate temperature during growth is about 1950 ° C

次いで、以下のようにしてエピタキシャル成長を行った。Siを含む溶液(融液)にSiC種結晶基板を接触させると、基板を溶液に接触させたために生じた温度勾配により、基板周辺では原料が過飽和な状態となり、エピタキシャル成長が進行した。
(7)溶液温度が十分な温度に達したら、遮蔽物を取り除き、4H−SiC種結晶基板を接着した支持軸を下降させる。
(8)基板が溶液に接触したら、支持軸の下降を止め、成長を開始させる。
(高い温度勾配を実現することにより高い成長速度を得ることができる。)
(9)20分間成長後、基板を引き上げる。
(10)数時間かけて溶液を冷却し、基板を取り出す。
Next, epitaxial growth was performed as follows. When the SiC seed crystal substrate was brought into contact with a solution (melt) containing Si, the raw material was supersaturated around the substrate due to a temperature gradient generated when the substrate was brought into contact with the solution, and epitaxial growth proceeded.
(7) When the solution temperature reaches a sufficient temperature, the shielding is removed, and the support shaft to which the 4H—SiC seed crystal substrate is bonded is lowered.
(8) When the substrate comes into contact with the solution, the lowering of the support shaft is stopped and the growth is started.
(A high growth rate can be obtained by realizing a high temperature gradient.)
(9) Pull up the substrate after growth for 20 minutes.
(10) Cool the solution over several hours and take out the substrate.

この手順によりSiC種結晶基板を前記Siを含む融液に接触させる直前まで、前記SiC種結晶基板が融液の蒸気に触れさせないように保護することによって、溶液成長炉内のSiを含む融液の液面にSiC種結晶を接触させて、成長温度約1950℃でSiC結晶成長を行った後、坩堝を室温まで徐冷して、成長したSiC単結晶を得た。
その結果、結晶の成長層の全面で4H−SiCが得られ、異種多形の混入を防ぐことができた。また、成長速度は100μm/h(時間)を超える値であり、十分な成長速度が得られた。また、得られた成長層の表面平坦性も優れていた。
得られたSiC単結晶成長層のラマン散乱スペクトルによってSiC単結晶成長層の結晶形を評価した結果を図8に示す。
By this procedure, the SiC seed crystal substrate is protected from being exposed to the vapor of the melt until immediately before the SiC seed crystal substrate is brought into contact with the Si-containing melt. After the SiC seed crystal was brought into contact with the liquid surface of this and SiC crystal growth was performed at a growth temperature of about 1950 ° C., the crucible was slowly cooled to room temperature to obtain a grown SiC single crystal.
As a result, 4H—SiC was obtained on the entire surface of the crystal growth layer, and mixing of different polymorphs could be prevented. The growth rate exceeded 100 μm / h (hour), and a sufficient growth rate was obtained. Moreover, the surface flatness of the obtained growth layer was also excellent.
FIG. 8 shows the result of evaluating the crystal form of the SiC single crystal growth layer based on the Raman scattering spectrum of the obtained SiC single crystal growth layer.

比較例1
図1に示すSiC単結晶成長装置を用いて、保護機構によって基板上の種結晶を保護しないで、前記SiC種結晶基板が融液の蒸気に触れさせた後、溶液成長炉内のSiを含む融液の液面にSiC種結晶を接触させた他は実施例1と同様にして、SiC結晶成長を行った。成長時間経過後、坩堝を室温まで徐冷して、成長したSiC単結晶を得た。
その結果、十分な成長速度が得られ、得られた成長層の表面平坦性は優れていたが、4H−SiCの他に3C−SiC、6H−SiCや15R−SiCなどの異種多形の混入が見られた。
得られたSiC単結晶成長層のラマン散乱スペクトルによってSiC単結晶成長層の結晶形を評価した結果を図7に示す。
Comparative Example 1
Using the SiC single crystal growth apparatus shown in FIG. 1, the SiC seed crystal substrate contains Si in the solution growth furnace after the SiC seed crystal substrate is exposed to the vapor of the melt without protecting the seed crystal on the substrate by a protection mechanism. The SiC crystal was grown in the same manner as in Example 1 except that the SiC seed crystal was brought into contact with the melt surface. After the growth time, the crucible was gradually cooled to room temperature to obtain a grown SiC single crystal.
As a result, a sufficient growth rate was obtained, and the surface flatness of the obtained growth layer was excellent. However, in addition to 4H—SiC, different polymorphs such as 3C—SiC, 6H—SiC, and 15R—SiC were mixed. It was observed.
FIG. 7 shows the results of evaluating the crystal form of the SiC single crystal growth layer based on the Raman scattering spectrum of the obtained SiC single crystal growth layer.

以上の結果は、本発明の溶液法におけるSiC単結晶の製造装置を用いることにより、また本発明のSiC単結晶の製造方法により、結晶の成長層の全面で4H−SiCが得られ、異種多形の混入を防ぐことができ、さらに、100μm/h(時間)を超える値の十分な成長速度で、成長層の表面平坦性が優れているSiC単結晶を得ることを可能とすることを示している。
なお、上記の実施例は溶液成長による4H−SiCの単結晶の製造例について示しているが、これに限定されず任意のSiC単結晶、例えば6H−SiCの単結晶の製造についても同様に適用できることが理解されるべきである。
The above results show that 4H—SiC is obtained on the entire surface of the crystal growth layer by using the SiC single crystal manufacturing apparatus in the solution method of the present invention and the SiC single crystal manufacturing method of the present invention. This indicates that it is possible to prevent the mixing of shapes, and to obtain a SiC single crystal with excellent surface flatness of the growth layer at a sufficient growth rate exceeding 100 μm / h (hour). ing.
In addition, although said Example has shown about the manufacture example of the single crystal of 4H-SiC by solution growth, it is not limited to this, It applies similarly also to manufacture of arbitrary SiC single crystals, for example, the single crystal of 6H-SiC. It should be understood that it can be done.

図1は、従来公知の溶液法によるSiC単結晶の製造に用いられた製造装置の概略を示す模式図である。FIG. 1 is a schematic view showing an outline of a production apparatus used for producing a SiC single crystal by a conventionally known solution method. 図2は、本発明の実施態様のSiC単結晶の製造装置の概略を示す模式図である。FIG. 2 is a schematic diagram showing an outline of a SiC single crystal production apparatus according to an embodiment of the present invention. 図2Aは、本発明の実施態様のSiC単結晶の製造装置における溶媒加熱時の状態を示す概略図である。FIG. 2A is a schematic diagram showing a state during solvent heating in the SiC single crystal production apparatus of the embodiment of the present invention. 図2Bは、図2Aにおける可動式の蓋部20を回転させて結晶成長開始時の状態を示す。FIG. 2B shows a state at the start of crystal growth by rotating the movable lid 20 in FIG. 2A. 図3は、本発明の他の実施態様のSiC単結晶の製造装置の溶液成長炉の概略を示す模式図である。FIG. 3 is a schematic view showing an outline of a solution growth furnace of an apparatus for producing an SiC single crystal according to another embodiment of the present invention. 図4は、本発明の他の実施態様のSiC単結晶の製造装置の溶液成長炉の概略を示す模式図である。FIG. 4 is a schematic diagram showing an outline of a solution growth furnace of an apparatus for producing an SiC single crystal according to another embodiment of the present invention. 図5は、本発明の他の実施態様のSiC単結晶の製造装置の溶液成長炉の概略を示す模式図である。FIG. 5 is a schematic diagram showing an outline of a solution growth furnace of an apparatus for producing an SiC single crystal according to another embodiment of the present invention. 図6は、本発明の他の実施態様のSiC単結晶の製造装置の溶液成長炉の概略を示す模式図である。FIG. 6 is a schematic diagram showing an outline of a solution growth furnace of an apparatus for producing an SiC single crystal according to another embodiment of the present invention. 図7は、従来のSiC単結晶の製造装置を用いて得られたSiC単結晶成長層のラマン散乱スペクトルを示す。FIG. 7 shows a Raman scattering spectrum of a SiC single crystal growth layer obtained using a conventional SiC single crystal production apparatus. 図8は、本発明の実施態様のSiC単結晶の製造装置を用いて得られたSiC単結晶成長層のラマン散乱スペクトルを示す。FIG. 8 shows the Raman scattering spectrum of the SiC single crystal growth layer obtained by using the SiC single crystal manufacturing apparatus of the embodiment of the present invention.

符号の説明Explanation of symbols

1 SiC単結晶の製造装置
2 保護機構
3 Siを含む融液
4 坩堝
5 外部加熱装置
6 断熱材
7 支持軸
8 SiC種結晶基板
10 従来の製造装置
11 溶液成長炉
20 可動式の蓋部
21 破壊可能な蓋部
22 SiC融液の表面に浮かせた蓋部
23 支持軸の先端部を覆う蓋部
24 溶液成長炉とは別室のSiC種結晶基板の交換室
201 ハンドル
202 ゲートバルブ
DESCRIPTION OF SYMBOLS 1 SiC single crystal manufacturing apparatus 2 Protection mechanism 3 Si-containing melt 4 Crucible 5 External heating apparatus 6 Heat insulating material 7 Support shaft 8 SiC seed crystal substrate 10 Conventional manufacturing apparatus 11 Solution growth furnace 20 Movable lid 21 Destruction Possible lid 22 Lid floated on the surface of the SiC melt 23 Lid covering the tip of the support shaft 24 Exchange chamber of SiC seed crystal substrate separate from the solution growth furnace 201 Handle 202 Gate valve

Claims (10)

溶液成長炉内のSiを含む融液の液面にSiC種結晶を接触させてSiC結晶成長を行うSiC単結晶の製造装置であって4H−SiC種結晶基板を前記融液に接触させる直前まで前記基板が1700〜2100℃の範囲内の温度に加熱された前記融液の蒸気に触れないための保護機構を設けてなり得られるSiC単結晶がSiC単結晶成長層のラマン散乱スペクトルによって6H−SiCに基づく786cm −1 の位置のピークが確認されない4H−SiC単結晶である、前記装置。 An apparatus for producing a SiC single crystal by contacting the SiC seed crystal performs SiC crystal growth to the liquid surface of the melt containing Si of solution growth furnace, immediately prior to contacting the 4H-SiC seed crystal substrate in the melt Until the substrate is heated to a temperature in the range of 1700 to 2100 ° C., and a protective mechanism is provided to prevent contact with the vapor of the melt, and the obtained SiC single crystal is determined by the Raman scattering spectrum of the SiC single crystal growth layer. The said apparatus which is a 4H-SiC single crystal in which the peak of the position of 786 cm < -1 > based on 6H-SiC is not confirmed . 前記保護機構が、前記SiC種結晶を装着した基板支持軸を下降させるための溶液成長炉の上端部に設けられた可動式の蓋部である請求項1に記載の製造装置。 The protection mechanism, the manufacturing apparatus according to claim 1 wherein a lid movable provided at the upper portion of the solution growth furnace for lowering the SiC seed substrate supporting shaft equipped with crystals. 前記保護機構が、前記SiC種結晶を装着した基板支持軸を下降させるための溶液成長炉の上端部に設けられ、基板支持軸の挿入によって破壊可能な蓋部である請求項1に記載の製造装置。 The protection mechanism is provided at the upper end of the solution growth furnace for lowering the substrate support shaft equipped with the SiC seed crystal, prepared according to claim 1, wherein the lid can be destroyed by the insertion of the substrate support shaft apparatus. 前記保護機構が、前記融液の表面に浮かせた蓋部である請求項1に記載の製造装置。 The protection mechanism, the manufacturing apparatus according to claim 1, wherein the lid floated on the surface of the melt. 前記保護機構が、前記SiC種結晶を装着した基板支持軸の先端部を覆う蓋部である請求項1に記載の製造装置。 The protection mechanism, the manufacturing apparatus according to claim 1, wherein the lid for covering the front end portion of the substrate support shaft equipped with the SiC seed crystal. 前記保護機構が、溶液成長炉とは別室の前記SiC種結晶基板の交換室である請求項1に記載の製造装置。 The protection mechanism, the manufacturing apparatus according to claim 1, wherein the exchange chamber of another room of the SiC seed crystal substrate from the solution growth furnace. 前記蓋部が、表面を鏡面加工してなるおよび/又は高断熱材料からなる請求項2又は3に記載の製造装置。   The manufacturing apparatus according to claim 2 or 3, wherein the lid portion is obtained by mirror-finishing the surface and / or made of a highly heat insulating material. 前記蓋部が、炭素材料又は炭素化合物材料からなる請求項3又は4に記載の製造装置。   The manufacturing apparatus according to claim 3, wherein the lid is made of a carbon material or a carbon compound material. 溶液成長炉内のSiを含む融液の液面にSiC種結晶を接触させてSiC結晶成長を行うSiC単結晶の製造方法であって4H−SiC種結晶基板を前記融液に接触させる直前まで、前記基板が1700〜2100℃の範囲内の温度に加熱された前記融液の蒸気に触れないように保護することによって、溶液成長炉内の前記融液の液面にSiC種結晶を接触させて、得られるSiC単結晶がSiC単結晶成長層のラマン散乱スペクトルによって6H−SiCに基づく786cm −1 の位置にピークが確認されない4H−SiC単結晶の成長を行う、前記方法。 A method of manufacturing a SiC single crystal by contacting the SiC seed crystal performs SiC crystal growth to the liquid surface of the melt containing Si of solution growth furnace, immediately prior to contacting the 4H-SiC seed crystal substrate in the melt up by the substrate is protected against touching the vapor of the melt which is heated to a temperature in the range of from 1,700 to 2,100 ° C., contacting the SiC seed crystal to the liquid surface of the melt solution growth furnace The method, wherein the obtained SiC single crystal grows a 4H—SiC single crystal whose peak is not confirmed at a position of 786 cm −1 based on 6H—SiC by the Raman scattering spectrum of the SiC single crystal growth layer . 前記成長が、4H−SiC単結晶を異種多形の混入を防ぎ、且つ100μm/h(時間)を超える成長速度で行われる請求項9に記載の製造方法。 The growth method according to claim 9, a 4H-SiC single crystal prevents contamination of different polymorphs, carried out in growth rate and greater than 100 [mu] m / h (hour).
JP2008231237A 2008-09-09 2008-09-09 Silicon carbide single crystal manufacturing apparatus and manufacturing method Active JP5115413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008231237A JP5115413B2 (en) 2008-09-09 2008-09-09 Silicon carbide single crystal manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008231237A JP5115413B2 (en) 2008-09-09 2008-09-09 Silicon carbide single crystal manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JP2010064914A JP2010064914A (en) 2010-03-25
JP5115413B2 true JP5115413B2 (en) 2013-01-09

Family

ID=42190828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008231237A Active JP5115413B2 (en) 2008-09-09 2008-09-09 Silicon carbide single crystal manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP5115413B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2455515B1 (en) * 2009-07-17 2018-01-10 Toyota Jidosha Kabushiki Kaisha Process for producing sic single crystal
JP5318047B2 (en) * 2010-08-27 2013-10-16 新日鐵住金株式会社 Method for producing SiC single crystal
JP5630369B2 (en) * 2011-05-16 2014-11-26 トヨタ自動車株式会社 Single crystal manufacturing equipment
US9896778B2 (en) 2013-05-31 2018-02-20 Toyota Jidosha Kabushiki Kaisha Apparatus for producing SiC single crystals and method of producing SiC single crystals using said production apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891099A (en) * 1981-11-27 1983-05-30 Kokusai Electric Co Ltd Vertical liquid phase epitaxial growth device
JPS60195090A (en) * 1984-03-16 1985-10-03 Fujitsu Ltd Apparatus for liquid-phase epitaxial growth
JPH0656573A (en) * 1992-08-05 1994-03-01 Murata Mfg Co Ltd Liquid phase epitaxial growth device
JP4094780B2 (en) * 1999-08-24 2008-06-04 株式会社リコー Crystal growth method, crystal growth apparatus, group III nitride crystal production method, and crystal production apparatus
JP2005272153A (en) * 2004-03-22 2005-10-06 Sharp Corp Thin plate manufacturing apparatus
JP4736401B2 (en) * 2004-11-02 2011-07-27 住友金属工業株式会社 Method for producing silicon carbide single crystal
JP4225296B2 (en) * 2005-06-20 2009-02-18 トヨタ自動車株式会社 Method for producing silicon carbide single crystal

Also Published As

Publication number Publication date
JP2010064914A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
US8052793B2 (en) Method for producing silicon carbide single crystal
JP5706823B2 (en) SiC single crystal wafer and manufacturing method thereof
KR101310546B1 (en) Manufacturing method for silicon carbide monocrystals
KR101666596B1 (en) Sic single crystal and method for producing same
JP3692076B2 (en) SiC single crystal and growth method thereof
EP2940196B1 (en) Method for producing n-type sic single crystal
JP2009091222A (en) PRODUCTION METHOD FOR SiC SINGLE CRYSTAL, SiC SINGLE CRYSTAL WAFER AND SiC SEMICONDUCTOR DEVICE
KR100773624B1 (en) Seed crystal of silicon carbide single crystal and method for producing ingot using same
US9732436B2 (en) SiC single-crystal ingot, SiC single crystal, and production method for same
JP2000264790A (en) Production of silicon carbide single crystal
JP4470690B2 (en) Silicon carbide single crystal, silicon carbide substrate, and method for producing silicon carbide single crystal
WO2017057581A1 (en) P-type 4h-sic single crystal and method for producing p-type 4h-sic single crystal
JP2006321681A (en) Method for producing silicon carbide single crystal
KR101152857B1 (en) Method for growing silicon carbide single crystal
JP4998488B2 (en) SiC single crystal production equipment by solution method
JP5115413B2 (en) Silicon carbide single crystal manufacturing apparatus and manufacturing method
JP5418385B2 (en) Method for producing silicon carbide single crystal ingot
KR101744287B1 (en) Growth device for silicon carbide single crystal
JP4941088B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP4253974B2 (en) SiC single crystal and growth method thereof
JP2007197274A (en) Method for manufacturing silicon carbide single crystal
JP4304783B2 (en) SiC single crystal and growth method thereof
JP4987784B2 (en) Method for producing silicon carbide single crystal ingot
JP4850807B2 (en) Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
EP1498518B1 (en) Method for the production of silicon carbide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

R151 Written notification of patent or utility model registration

Ref document number: 5115413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3