JP2006321681A - Method for producing silicon carbide single crystal - Google Patents

Method for producing silicon carbide single crystal Download PDF

Info

Publication number
JP2006321681A
JP2006321681A JP2005146627A JP2005146627A JP2006321681A JP 2006321681 A JP2006321681 A JP 2006321681A JP 2005146627 A JP2005146627 A JP 2005146627A JP 2005146627 A JP2005146627 A JP 2005146627A JP 2006321681 A JP2006321681 A JP 2006321681A
Authority
JP
Japan
Prior art keywords
silicon carbide
crystal
single crystal
carbide single
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005146627A
Other languages
Japanese (ja)
Inventor
Ryochi Shintani
良智 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005146627A priority Critical patent/JP2006321681A/en
Publication of JP2006321681A publication Critical patent/JP2006321681A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a silicon carbide single crystal with a desired crystal structure by controlling the transformation of polymorphism. <P>SOLUTION: The method for producing the silicon carbide single crystal involves that a silicon carbide single crystal substrate is in contact with a molten liquid where Si, C and a raw material containing a third element or its compound are melted at an atmospheric temperature of 1,700-1,900°C and that the silicon carbide single crystal is grown on the substrate where the temperature of a contacting portion is lower than that of the molten liquid. The silicon carbide single crystal with the desired crystal structure among 15R, 3C and 6H is grown by selecting the third element. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、マイクロパイプの発生を防ぎ、所望の結晶構造の炭化珪素単結晶を製造することができる方法に関する。   The present invention relates to a method capable of preventing generation of micropipes and producing a silicon carbide single crystal having a desired crystal structure.

炭化珪素は、熱的、化学的に非常に安定であり、耐熱性及び機械的強度に優れていることから、耐環境性半導体材料として理想的な材料である。また、炭化珪素の結晶構造は数百種類あり、結晶多形を示すことが知られている。この結晶多形とは、化学組成が同じであっても多数の異なる結晶構造をとる現象であり、結晶構造においてSiとCとが結合した分子を一単位として考えた場合に、この単位構造分子が結晶のc軸方向([0001]方向)に積層する際の周期構造が異なることにより生ずる。   Silicon carbide is an ideal material as an environment-resistant semiconductor material because it is very stable thermally and chemically and has excellent heat resistance and mechanical strength. In addition, there are hundreds of crystal structures of silicon carbide, and it is known to exhibit crystal polymorphism. This crystal polymorphism is a phenomenon that takes many different crystal structures even if the chemical composition is the same. When the molecule in which the Si and C are bonded in the crystal structure is considered as one unit, this unit structure molecule Is caused by the difference in the periodic structure when stacked in the c-axis direction ([0001] direction) of the crystal.

代表的な結晶多形としては、2H、3C、4H、6H及び15Rがある。ここで最初の数字は積層の繰り返し周期を示し、アルファベットは結晶系を表し、Hは六方晶系を、Rは菱面体晶系を、そしてCは立方晶系を表す。各結晶構造はそれぞれ物理的、電気的特性が異なり、その違いを利用して各種用途への応用が考えられている。例えば、4Hは高周波高耐電圧電子デバイス等の基板ウエハとして、また6Hはバンドギャップが約3eVと大きいため青色LEDの発光素子材料として用いられている。一方15Rは4H、6Hと比較して移動度が大きいが、基板の入手が困難である。そして3Cは結晶の対称性が高く、電子の移動度も大きいため、高速で動作する半導体素子材料として用いられている。   Representative crystal polymorphs include 2H, 3C, 4H, 6H and 15R. Here, the first number represents the repetition period of the lamination, the alphabet represents the crystal system, H represents the hexagonal system, R represents the rhombohedral system, and C represents the cubic system. Each crystal structure has different physical and electrical characteristics, and application to various uses is considered using the difference. For example, 4H is used as a substrate wafer for high frequency, high withstand voltage electronic devices and the like, and 6H is used as a light emitting element material for blue LEDs because the band gap is as large as about 3 eV. On the other hand, 15R has higher mobility than 4H and 6H, but it is difficult to obtain a substrate. 3C is used as a semiconductor element material that operates at high speed because of its high crystal symmetry and high electron mobility.

ところで従来、炭化珪素単結晶の成長方法としては、気相成長法、アチソン法、及び溶液成長法が知られている。   Conventionally, as a method for growing a silicon carbide single crystal, a vapor phase growth method, an atchison method, and a solution growth method are known.

気相成長法としては、昇華法と化学反応堆積法(CVD法)がある。昇華法は、炭化珪素粉末を原料として、2000℃以上の高温下で昇華させ、SiとCからなる蒸気を低温にされた種結晶基板上で過飽和とさせ、単結晶を析出させる方法である。CVD法は、シランガスと炭化水素系のガスを用い、加熱したSiなどの基板上において化学反応により炭化珪素単結晶をエピタキシャル成長させる方法であり、炭化珪素単結晶薄膜の製造に用いられている。   As the vapor phase growth method, there are a sublimation method and a chemical reaction deposition method (CVD method). The sublimation method is a method in which a silicon carbide powder is used as a raw material, is sublimated at a high temperature of 2000 ° C. or higher, and a vapor composed of Si and C is supersaturated on a low-temperature seed crystal substrate to precipitate a single crystal. The CVD method is a method of epitaxially growing a silicon carbide single crystal by a chemical reaction on a heated substrate such as Si using a silane gas and a hydrocarbon-based gas, and is used for manufacturing a silicon carbide single crystal thin film.

アチソン法は、無水ケイ酸と炭素を2000℃以上の高温に加熱して人造研磨剤を製造する方法であり、単結晶は副産物として生成する。   The Atchison method is a method for producing an artificial abrasive by heating silicic acid anhydride and carbon to a high temperature of 2000 ° C. or more, and a single crystal is produced as a by-product.

溶液成長法は、炭素を含む材料(一般には黒鉛)からなるるつぼを用い、このるつぼ内で珪素を融解して融液とし、この融液にるつぼから炭素を溶解させ、低温部に配置された種結晶基板上に炭化珪素を結晶化させ、その結晶を成長させる方法である。   The solution growth method uses a crucible made of a material containing carbon (generally graphite), melts silicon in the crucible to form a melt, dissolves the carbon from the crucible, and is placed in a low temperature portion. In this method, silicon carbide is crystallized on a seed crystal substrate and the crystal is grown.

しかしながら、上記の昇華法により製造した単結晶にはマイクロパイプ欠陥と呼ばれる中空貫通状の欠陥や積層欠陥などの多種の格子欠陥が存在することが知られている。さらに昇華法では結晶成長条件と結晶多形の変態が密接に関わっているため、格子欠陥制御と多形制御を両立させることが困難であり、結晶多形が生じやすいという欠点を有する。   However, it is known that a single crystal produced by the above-described sublimation method has various lattice defects such as hollow through defects and stacking faults called micropipe defects. Further, in the sublimation method, the crystal growth conditions and the transformation of the crystal polymorph are closely related, so that it is difficult to achieve both lattice defect control and polymorph control, and crystal polymorphism tends to occur.

またCVD法ではガスで原料を供給するために原料供給量が少なく、生成する炭化珪素単結晶は薄膜に限られ、デバイス用の基板材料としてバルク単結晶を製造することは困難である。   In addition, in the CVD method, since the raw material is supplied by gas, the raw material supply amount is small, and the generated silicon carbide single crystal is limited to a thin film, and it is difficult to produce a bulk single crystal as a substrate material for a device.

アチソン法では原料中に不純物が多く存在し、高純度化が困難であり、また大型の結晶を得ることができない。   In the Atchison method, there are many impurities in the raw material, and it is difficult to achieve high purity, and large crystals cannot be obtained.

一方、溶液成長法では、格子欠陥が少なく、また結晶多形が生ずることも少ないため、結晶性の良好な単結晶が得られるとされている(例えば、特許文献1及び2参照)。   On the other hand, in the solution growth method, since there are few lattice defects and crystal polymorphism rarely occurs, it is said that a single crystal with good crystallinity can be obtained (see, for example, Patent Documents 1 and 2).

特開2000−264790号公報JP 2000-264790 A 特開2002−356397号公報JP 2002356563 A

単結晶の製造は、特定方向に結晶を成長(積層)させて行うが、ある積層を境に、これまでとは異なる性質の単結晶が成長するという、結晶多形の変態が生ずる。従って種結晶と同じ性質の単結晶を成長させるには、積層中における結晶多形の変態を防ぐことが必要である。しかしながら、上記のような昇華法等では結晶多形の変態を防ぐことはできなかった。また、溶液成長法では結晶多形の変態を防ぐことができるが、得られる結晶構造は種結晶と同じものであり、結晶多形の変態を制御し、種結晶の結晶構造にかかわらず、所望の結晶構造の炭化珪素単結晶を得ることはできなかった。   A single crystal is manufactured by growing (stacking) crystals in a specific direction, but a single crystal having a different property from that of a single stack grows at a certain stack. Therefore, in order to grow a single crystal having the same properties as the seed crystal, it is necessary to prevent the transformation of the crystal polymorph in the stack. However, the above-described sublimation method or the like cannot prevent the transformation of the crystal polymorph. Although the solution growth method can prevent the transformation of the crystal polymorph, the crystal structure obtained is the same as that of the seed crystal, and the transformation of the crystal polymorph is controlled, regardless of the crystal structure of the seed crystal. A silicon carbide single crystal having the following crystal structure could not be obtained.

本発明は、このような問題を解消し、種結晶の結晶構造にかかわらず、結晶多形の変態を制御し、所望の結晶構造の炭化珪素単結晶を得ることができる方法を提供することを目的とする。   The present invention provides a method for solving such problems and controlling the transformation of crystal polymorphism and obtaining a silicon carbide single crystal having a desired crystal structure regardless of the crystal structure of the seed crystal. Objective.

上記問題点を解決するために1番目の発明によれば、1700〜1900℃の雰囲気温度において、Siと、Cと、第3の元素もしくはその化合物を含む原料を融解した融液に炭化珪素単結晶基板を接触させ、この接触部の温度を前記融液の温度よりも低い温度にして前記基板上に炭化珪素単結晶を成長させることを含む炭化珪素単結晶の製造方法であって、前記第3の元素を選択することにより15R、3C及び6Hのうち所望の結晶構造の炭化珪素単結晶を成長させることができることを特徴とする。   In order to solve the above problems, according to the first invention, silicon carbide is used in a melt obtained by melting a raw material containing Si, C, and a third element or a compound thereof at an ambient temperature of 1700 to 1900 ° C. A method for producing a silicon carbide single crystal, comprising: bringing a crystal substrate into contact; and growing the silicon carbide single crystal on the substrate with the temperature of the contact portion being lower than the temperature of the melt. By selecting 3 elements, it is possible to grow a silicon carbide single crystal having a desired crystal structure among 15R, 3C, and 6H.

2番目の発明では1番目の発明において、前記第3の元素もしくはその化合物が硼化物又はSnであり、15R−炭化珪素単結晶が得られる。   In a second invention, in the first invention, the third element or a compound thereof is boride or Sn, and a 15R-silicon carbide single crystal is obtained.

3番目の発明では2番目の発明において、前記硼化物がFeB又はNiBである。   According to a third aspect, in the second aspect, the boride is FeB or NiB.

4番目の発明では1番目の発明において、前記第3の元素もしくはその化合物がGdであり、3C−炭化珪素単結晶が得られる。   In a fourth invention, in the first invention, the third element or a compound thereof is Gd, and a 3C-silicon carbide single crystal is obtained.

5番目の発明では1番目の発明において、前記第3の元素もしくはその化合物がAl、DyもしくはLaであり、6H−炭化珪素単結晶が得られる。   According to a fifth aspect, in the first aspect, the third element or a compound thereof is Al, Dy, or La, and a 6H-silicon carbide single crystal is obtained.

本発明によれば、溶液成長法に準じて結晶を成長させることにより、マイクロパイプ欠陥等の格子欠陥のない炭化珪素単結晶が得られる。さらに、珪素を含む融液に所定の成分を添加することにより、その添加成分に応じて得られる炭化珪素を所望の結晶構造に結晶多形を制御することができる。   According to the present invention, a silicon carbide single crystal free from lattice defects such as micropipe defects can be obtained by growing a crystal according to the solution growth method. Furthermore, by adding a predetermined component to the melt containing silicon, it is possible to control the crystal polymorphism of silicon carbide obtained according to the added component to a desired crystal structure.

以下、本発明の炭化珪素単結晶の製造方法を具体的に説明する。まず、本発明の炭化珪素単結晶の製造方法に用いる製造装置の構成について図1を参照して説明する。この製造装置はチャンバー1を備え、このチャンバー1内にはるつぼ2が配置されている。るつぼ2の内部の底面部には種結晶5を配置し、るつぼ2の内部には、Siと、Cと、第3の元素もしくはその化合物を含む原料4が充填される。るつぼ2として黒鉛製のるつぼを用いる場合、Cはこのるつぼ2から溶融してくるため、原料に添加しなくてもよい。るつぼ2の周囲には加熱装置3が配置され、るつぼ2の外底面部には冷却板6が配置されている。   Hereinafter, the method for producing a silicon carbide single crystal of the present invention will be specifically described. First, the structure of the manufacturing apparatus used for the manufacturing method of the silicon carbide single crystal of this invention is demonstrated with reference to FIG. The manufacturing apparatus includes a chamber 1, and a crucible 2 is disposed in the chamber 1. A seed crystal 5 is disposed on the bottom surface inside the crucible 2, and the crucible 2 is filled with a raw material 4 containing Si, C, and a third element or a compound thereof. When a graphite crucible is used as the crucible 2, C melts from the crucible 2, so it is not necessary to add it to the raw material. A heating device 3 is disposed around the crucible 2, and a cooling plate 6 is disposed on the outer bottom surface of the crucible 2.

この製造装置を用いて炭化珪素単結晶を製造する方法について説明する。まず、るつぼ2内の底面に種結晶5を入れ、次いで内部に原料4を充填する。その後チャンバー1内を真空にした後、例えばAr等の不活性ガス雰囲気としてチャンバー1内を大気圧もしくはそれ以上に加圧する。加熱装置3によりるつぼ2を加熱し、原料4を溶融させ、SiとCと第3の元素もしくはその化合物を含む融液を形成し、この融液と種結晶5を接触させる。融液が1700〜1900℃の温度範囲になったときに冷却板6を冷却し、融液と種結晶の接触部の温度を融液の温度よりも低い温度にし、その結果、融液に温度勾配が生じ、種結晶5上に炭化珪素単結晶を成長させることができる。   A method for producing a silicon carbide single crystal using this production apparatus will be described. First, the seed crystal 5 is put on the bottom surface in the crucible 2, and then the raw material 4 is filled inside. Thereafter, the inside of the chamber 1 is evacuated, and then the inside of the chamber 1 is pressurized to atmospheric pressure or higher as an inert gas atmosphere such as Ar. The crucible 2 is heated by the heating device 3 to melt the raw material 4 to form a melt containing Si, C and the third element or a compound thereof, and this melt is brought into contact with the seed crystal 5. When the melt is in the temperature range of 1700 to 1900 ° C., the cooling plate 6 is cooled, and the temperature of the contact portion between the melt and the seed crystal is set lower than the melt temperature. As a result, the temperature of the melt is increased. A gradient is generated, and a silicon carbide single crystal can be grown on seed crystal 5.

図2は、本発明の炭化珪素単結晶の製造方法に用いる他の製造装置の構成を示す。この製造装置は、図1に示す製造装置と同様にチャンバー1を備え、このチャンバー1内にはるつぼ2が配置されている。るつぼ2の内部には、Siと、Cと、第3の元素もしくはその化合物を含む原料4が充填される。るつぼ2の周囲には加熱装置3が配置されている。るつぼ2の上方には治具7で固定された種結晶5が引き上げ棒8の先端に配置されている。図示していないが、引き上げ棒8には冷却装置が接続され、種結晶を所定の温度に冷却できるようになっている。   FIG. 2 shows the configuration of another manufacturing apparatus used in the method for manufacturing a silicon carbide single crystal of the present invention. This manufacturing apparatus includes a chamber 1 as in the manufacturing apparatus shown in FIG. 1, and a crucible 2 is disposed in the chamber 1. The crucible 2 is filled with a raw material 4 containing Si, C, and a third element or a compound thereof. A heating device 3 is arranged around the crucible 2. Above the crucible 2, a seed crystal 5 fixed by a jig 7 is disposed at the tip of the pulling rod 8. Although not shown, a cooling device is connected to the pulling rod 8 so that the seed crystal can be cooled to a predetermined temperature.

この製造装置を用いて炭化珪素単結晶を製造する方法について説明する。まず、るつぼ2の内部に原料4を充填し、その後チャンバー1内を真空にした後、例えばAr等の不活性ガス雰囲気としてチャンバー1内を大気圧もしくはそれ以上に加圧する。加熱装置3によりるつぼ2を加熱し、原料4を溶融させ、SiとCと第3の元素もしくはその化合物を含む融液を形成する。融液が1700〜1900℃の温度範囲になったときに引き上げ棒8を下降させ、種結晶5を融液と接触させる。種結晶を冷却させるとこの種結晶上に単結晶が成長するため、この結晶の成長にあわせて引き上げ棒8を徐々に引き上げ、種結晶5上に炭化珪素単結晶を成長させることができる。   A method for producing a silicon carbide single crystal using this production apparatus will be described. First, the inside of the crucible 2 is filled with the raw material 4, and then the inside of the chamber 1 is evacuated, and then the inside of the chamber 1 is pressurized to atmospheric pressure or higher as an inert gas atmosphere such as Ar. The crucible 2 is heated by the heating device 3, the raw material 4 is melted, and a melt containing Si, C and the third element or a compound thereof is formed. When the melt reaches a temperature range of 1700 to 1900 ° C., the pulling rod 8 is lowered to bring the seed crystal 5 into contact with the melt. When the seed crystal is cooled, a single crystal grows on the seed crystal. Accordingly, the pulling rod 8 is gradually pulled up as the crystal grows, and a silicon carbide single crystal can be grown on the seed crystal 5.

上記のいずれの装置を用いる場合においても、得られる炭化珪素単結晶の結晶形は、原料に添加する第3の元素もしくはその化合物によってきまる。換言すると、原料に添加する第3の元素もしくはその化合物を選択することにより、得られる炭化珪素単結晶の結晶形を任意に設定することができる。   In any of the above apparatuses, the crystal form of the obtained silicon carbide single crystal is determined by the third element or compound thereof added to the raw material. In other words, the crystal form of the obtained silicon carbide single crystal can be arbitrarily set by selecting the third element or compound thereof added to the raw material.

具体的には、第3の元素もしくはその化合物が硼化物(例えばFeB又はNiB)又はSnである場合15R−炭化珪素単結晶が得られ、第3の元素もしくはその化合物がGdである場合3C−炭化珪素単結晶が得られ、第3の元素もしくはその化合物がAl、DyもしくはLaである場合6H−炭化珪素単結晶が得られる。   Specifically, 15R-silicon carbide single crystal is obtained when the third element or a compound thereof is boride (for example, FeB or NiB) or Sn, and 3C- when the third element or a compound thereof is Gd. A silicon carbide single crystal is obtained. When the third element or a compound thereof is Al, Dy or La, a 6H-silicon carbide single crystal is obtained.

この第3の元素もしくはその化合物の添加量は、原料の融液の0.5〜50wt%であることが好ましい。   The amount of the third element or compound added is preferably 0.5 to 50 wt% of the raw material melt.

種結晶の結晶構造は、製造しようとする炭化珪素単結晶の結晶構造と同一であっても異なっていてもよい。従来の方法では、種結晶は製造しようとする炭化珪素単結晶と同じ結晶構造を有するものを用いる必要があり、例えば6H−炭化珪素単結晶を得ようとする場合には6H−炭化珪素の種結晶を用いる必要があった。これに対して本発明では、用いる種結晶の結晶構造に関係なく、目的とする結晶構造の炭化珪素単結晶を得ることができる。具体的には、種結晶として6H−炭化珪素を用いた場合、原料に硼化物もしくはSnを加えれば15R−単結晶が得られ、Gdを加えれば3C−単結晶が得られ、Al、DyもしくはLaを加えれば6H−単結晶が得られる。種結晶として3C−炭化珪素を用いた場合でも同様である。   The crystal structure of the seed crystal may be the same as or different from the crystal structure of the silicon carbide single crystal to be manufactured. In the conventional method, it is necessary to use a seed crystal having the same crystal structure as that of the silicon carbide single crystal to be manufactured. For example, when a 6H-silicon carbide single crystal is to be obtained, the seed crystal of 6H-silicon carbide is used. It was necessary to use crystals. In contrast, in the present invention, a silicon carbide single crystal having a target crystal structure can be obtained regardless of the crystal structure of the seed crystal used. Specifically, when 6H-silicon carbide is used as a seed crystal, 15R-single crystal is obtained by adding boride or Sn to the raw material, and 3C-single crystal is obtained by adding Gd, and Al, Dy or If La is added, a 6H-single crystal is obtained. The same applies when 3C-silicon carbide is used as a seed crystal.

[添加元素の影響]
図1に示す装置を用い、黒鉛製るつぼに珪素粒子と各種添加元素を所定量添加し、各雰囲気温度において12時間保持し、炭化珪素単結晶を成長させた。種結晶として6H及び15Rを用いたときの結晶多形の変態について調べ、結果を以下の表1及び表2に示す。なお、表1は種結晶として6Hを用いた場合の結果を示し、表2は種結晶として15Rを用いた場合の結果を示す。
[Influence of additive elements]
A predetermined amount of silicon particles and various additive elements were added to a graphite crucible using the apparatus shown in FIG. 1 and held at each ambient temperature for 12 hours to grow a silicon carbide single crystal. The crystal polymorphic transformations when 6H and 15R were used as seed crystals were examined, and the results are shown in Tables 1 and 2 below. Table 1 shows the results when 6H is used as a seed crystal, and Table 2 shows the results when 15R is used as a seed crystal.

Figure 2006321681
Figure 2006321681

Figure 2006321681
Figure 2006321681

表1に示す結果より、1700〜1900℃の温度において、FeB、NiB、Snを添加することにより、6H種結晶を15Rに変態させることができることがわかった。また、1790℃においてGdを添加することにより、6H種結晶を3Cに変態させることができることがわかった。さらにAl、Dy、Laを添加することにより、6H種結晶から変態させることなく6H単結晶を得ることができることがわかった。   From the results shown in Table 1, it was found that the 6H seed crystal can be transformed to 15R by adding FeB, NiB, and Sn at a temperature of 1700 to 1900 ° C. It was also found that the 6H seed crystal can be transformed to 3C by adding Gd at 1790 ° C. Furthermore, it was found that by adding Al, Dy, and La, a 6H single crystal can be obtained without transformation from the 6H seed crystal.

表2に示す結果より、1700〜1900℃の温度において、Al、Dy、Laを添加することにより、15R種結晶を6Hに変態させることができることがわかった。また、1790℃においてGdを添加することにより、15R種結晶を3Cに変態させることができることがわかった。さらにFeB、NiB、Snを添加することにより、15R種結晶から変態させることなく15R単結晶を得ることができることがわかった。   From the results shown in Table 2, it was found that the 15R seed crystal can be transformed to 6H by adding Al, Dy, and La at a temperature of 1700 to 1900 ° C. It was also found that the 15R seed crystal can be transformed to 3C by adding Gd at 1790 ° C. Furthermore, it was found that by adding FeB, NiB, and Sn, a 15R single crystal can be obtained without transformation from the 15R seed crystal.

[雰囲気温度の影響]
図1に示す装置を用い、黒鉛製るつぼに珪素粒子と3wt%のSnを添加し、各雰囲気温度において12時間保持し、炭化珪素単結晶を成長させた。種結晶として6Hを用いたときの結晶多形の変態について調べ、結果を以下の表3に示す。
[Influence of ambient temperature]
Using the apparatus shown in FIG. 1, silicon particles and 3 wt% Sn were added to a graphite crucible, and held for 12 hours at each ambient temperature to grow a silicon carbide single crystal. The crystal polymorphic transformation when 6H was used as a seed crystal was examined, and the results are shown in Table 3 below.

Figure 2006321681
Figure 2006321681

図1に示す装置を用い、黒鉛製るつぼに珪素粒子と10wt%のAlを添加し、各雰囲気温度において12時間保持し、炭化珪素単結晶を成長させた。種結晶として15Rを用いたときの結晶多形の変態について調べ、結果を以下の表4に示す。   Using the apparatus shown in FIG. 1, silicon particles and 10 wt% Al were added to a graphite crucible, and held for 12 hours at each ambient temperature to grow a silicon carbide single crystal. The crystal polymorphic transformation when 15R was used as a seed crystal was examined, and the results are shown in Table 4 below.

Figure 2006321681
Figure 2006321681

表3に示す結果より、1700℃以上の温度においてSnを添加することにより、6H種結晶を15Rに変態させることができることがわかった。ただし、1900℃以上に加熱すると、結晶多形の変態は示すが、溶湯からのSiの蒸発が著しく進行する問題がある。また表4に示す結果より、1700℃以上の温度においてAlを添加することにより、15R種結晶を6Hに変態させることができることがわかった。また、上記と同様に、1900℃以上に加熱すると、結晶多形の変態は示すが、溶湯からのSiの蒸発が著しく進行する問題がある。   From the results shown in Table 3, it was found that the 6H seed crystal can be transformed to 15R by adding Sn at a temperature of 1700 ° C. or higher. However, when heated to 1900 ° C. or higher, crystal polymorphic transformation is shown, but there is a problem that the evaporation of Si from the molten metal proceeds remarkably. From the results shown in Table 4, it was found that the 15R seed crystal can be transformed to 6H by adding Al at a temperature of 1700 ° C. or higher. Similarly to the above, when heated to 1900 ° C. or higher, there is a problem that the evaporation of Si from the molten metal proceeds remarkably, although a polymorphic transformation is exhibited.

[添加量の影響]
図1に示す装置を用い、黒鉛製るつぼに珪素粒子とNiBを各種添加量で添加し、雰囲気温度1810℃において12時間保持し、炭化珪素単結晶を成長させた。種結晶として6Hを用いたときの結晶多形の変態について調べ、結果を以下の表5に示す。
[Influence of added amount]
Using the apparatus shown in FIG. 1, silicon particles and NiB were added in various amounts to a graphite crucible and held at an atmospheric temperature of 1810 ° C. for 12 hours to grow a silicon carbide single crystal. The crystal polymorphic transformation when 6H was used as a seed crystal was examined, and the results are shown in Table 5 below.

Figure 2006321681
Figure 2006321681

図1に示す装置を用い、黒鉛製るつぼに珪素粒子とDyを各種添加量で添加し、雰囲気温度1830℃において12時間保持し、炭化珪素単結晶を成長させた。種結晶として15Rを用いたときの結晶多形の変態について調べ、結果を以下の表6に示す。   Using the apparatus shown in FIG. 1, silicon particles and Dy were added in various amounts to a graphite crucible and held at an ambient temperature of 1830 ° C. for 12 hours to grow a silicon carbide single crystal. The crystal polymorphic transformation when 15R was used as a seed crystal was examined, and the results are shown in Table 6 below.

Figure 2006321681
Figure 2006321681

表5及び表6に示す結果より、添加量0wt%では結晶多形の変態は示さなかったが、添加量0.5wt%以上で結晶多形の変態を示した。   From the results shown in Tables 5 and 6, the polymorphic transformation was not shown when the addition amount was 0 wt%, but the polymorphic transformation was shown when the addition amount was 0.5 wt% or more.

[無添加における雰囲気温度の影響]
図1に示す装置を用い、黒鉛製るつぼに珪素粒子を添加し、第3の元素を添加せず、各雰囲気温度において12時間保持し、炭化珪素単結晶を成長させた。種結晶として6H及び15Rを用いたときの結晶多形の変態について調べ、結果を以下の表7及び表8に示す。
[Influence of ambient temperature without additive]
Using the apparatus shown in FIG. 1, silicon particles were added to a graphite crucible, the third element was not added, and maintained at each ambient temperature for 12 hours to grow a silicon carbide single crystal. The crystal polymorphic transformations when 6H and 15R were used as seed crystals were examined, and the results are shown in Tables 7 and 8 below.

Figure 2006321681
Figure 2006321681

Figure 2006321681
Figure 2006321681

上記結果より、雰囲気温度が1700℃未満ではいずれの種結晶も3Cに変態することがわかった。1700℃以上の温度では用いた種結晶の結晶形を維持していた。   From the above results, it was found that any seed crystal was transformed to 3C when the ambient temperature was less than 1700 ° C. The crystal form of the seed crystal used was maintained at a temperature of 1700 ° C or higher.

本発明の炭化珪素単結晶の製造方法に用いる製造装置の構成を示す略図である。1 is a schematic diagram showing the configuration of a manufacturing apparatus used in the method for manufacturing a silicon carbide single crystal of the present invention. 本発明の炭化珪素単結晶の製造方法に用いる製造装置の構成を示す略図である。1 is a schematic diagram showing the configuration of a manufacturing apparatus used in the method for manufacturing a silicon carbide single crystal of the present invention.

符号の説明Explanation of symbols

1 チャンバー
2 るつぼ
3 加熱装置
4 原料
5 種結晶
6 冷却板
7 治具
8 引き上げ棒
1 Chamber 2 Crucible 3 Heating Device 4 Raw Material 5 Seed Crystal 6 Cooling Plate 7 Jig 8 Lifting Rod

Claims (6)

1700〜1900℃の雰囲気温度において、Siと、Cと、第3の元素もしくはその化合物を含む原料を融解した融液に炭化珪素単結晶基板を接触させ、この接触部の温度を前記融液の温度よりも低い温度にして前記基板上に炭化珪素単結晶を成長させることを含む炭化珪素単結晶の製造方法であって、前記第3の元素を選択することにより15R、3C及び6Hのうち所望の結晶構造の炭化珪素単結晶を成長させることができることを特徴とする炭化珪素単結晶の製造方法。   At an ambient temperature of 1700 to 1900 ° C., a silicon carbide single crystal substrate is brought into contact with a melt obtained by melting a raw material containing Si, C, and a third element or a compound thereof, and the temperature of the contact portion is set to the temperature of the melt. A method for producing a silicon carbide single crystal comprising growing a silicon carbide single crystal on the substrate at a temperature lower than a temperature, wherein a desired one of 15R, 3C and 6H is selected by selecting the third element A method for producing a silicon carbide single crystal, characterized in that a silicon carbide single crystal having a crystal structure of 1 can be grown. 前記第3の元素もしくはその化合物が硼化物又はSnであり、15R−炭化珪素単結晶が得られる、請求項1記載の方法。   The method according to claim 1, wherein the third element or a compound thereof is boride or Sn, and a 15R-silicon carbide single crystal is obtained. 前記硼化物がFeB又はNiBである、請求項2記載の方法。   The method of claim 2, wherein the boride is FeB or NiB. 前記第3の元素もしくはその化合物がGdであり、3C−炭化珪素単結晶が得られる、請求項1記載の方法。   The method according to claim 1, wherein the third element or a compound thereof is Gd, and a 3C-silicon carbide single crystal is obtained. 前記第3の元素もしくはその化合物がAl、DyもしくはLaであり、6H−炭化珪素単結晶が得られる、請求項1記載の方法。   The method according to claim 1, wherein the third element or a compound thereof is Al, Dy, or La, and a 6H-silicon carbide single crystal is obtained. 前記第3の元素もしくはその化合物の添加量が、融液の0.5〜50wt%である、請求項1〜5のいずれか1項に記載の方法。   The method according to any one of claims 1 to 5, wherein the added amount of the third element or a compound thereof is 0.5 to 50 wt% of the melt.
JP2005146627A 2005-05-19 2005-05-19 Method for producing silicon carbide single crystal Pending JP2006321681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005146627A JP2006321681A (en) 2005-05-19 2005-05-19 Method for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005146627A JP2006321681A (en) 2005-05-19 2005-05-19 Method for producing silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JP2006321681A true JP2006321681A (en) 2006-11-30

Family

ID=37541618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005146627A Pending JP2006321681A (en) 2005-05-19 2005-05-19 Method for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP2006321681A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116315A1 (en) * 2006-04-07 2007-10-18 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a silicon carbide single crystal
WO2009069564A1 (en) * 2007-11-27 2009-06-04 Toyota Jidosha Kabushiki Kaisha Process for growing single-crystal silicon carbide
WO2009090535A1 (en) * 2008-01-15 2009-07-23 Toyota Jidosha Kabushiki Kaisha Method for growing silicon carbide single crystal
JP2009274894A (en) * 2008-05-13 2009-11-26 Toyota Motor Corp METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP2010228939A (en) * 2009-03-26 2010-10-14 Nagoya Univ METHOD FOR PRODUCING 3C-SiC SINGLE CRYSTAL
KR101093097B1 (en) 2009-12-01 2011-12-13 동의대학교 산학협력단 Synthesis method for carbide power
KR101093098B1 (en) 2009-12-01 2011-12-13 동의대학교 산학협력단 Synthesis method for carbide power
KR101108884B1 (en) 2009-11-02 2012-01-30 동의대학교 산학협력단 Synthesis method for carbide power
JP2012046384A (en) * 2010-08-27 2012-03-08 Sumitomo Metal Ind Ltd METHOD OF PRODUCING SiC SINGLE CRYSTAL
EP2339053A3 (en) * 2009-12-24 2012-04-04 Denso Corporation Manufacturing apparatus and manufacturing method of silicon carbide single crystal
EP2458039A1 (en) 2010-11-26 2012-05-30 Shin-Etsu Chemical Co., Ltd. Method of producing sic single crystal
JP2012111670A (en) * 2010-11-26 2012-06-14 Shin-Etsu Chemical Co Ltd METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP2012111669A (en) * 2010-11-26 2012-06-14 Shin-Etsu Chemical Co Ltd METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
WO2012090951A1 (en) * 2010-12-27 2012-07-05 住友金属工業株式会社 DEVICE FOR PRODUCING SiC SINGLE CRYSTALS, JIG USED IN SAID PRODUCTION DEVICE, AND METHOD OF PRODUCING SiC SINGLE CRYSTALS
US8287644B2 (en) 2008-01-15 2012-10-16 Toyota Jidosha Kabushiki Kaisha Method for growing silicon carbide single crystal

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116315A1 (en) * 2006-04-07 2007-10-18 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a silicon carbide single crystal
US8118933B2 (en) 2006-04-07 2012-02-21 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a silicon carbide single crystal
WO2009069564A1 (en) * 2007-11-27 2009-06-04 Toyota Jidosha Kabushiki Kaisha Process for growing single-crystal silicon carbide
KR101085690B1 (en) 2007-11-27 2011-11-22 도요타지도샤가부시키가이샤 Process for growing single-crystal silicon carbide
US8685163B2 (en) 2007-11-27 2014-04-01 Toyota Jidosha Kabushiki Kaisha Method for growing silicon carbide single crystal
US8287644B2 (en) 2008-01-15 2012-10-16 Toyota Jidosha Kabushiki Kaisha Method for growing silicon carbide single crystal
WO2009090535A1 (en) * 2008-01-15 2009-07-23 Toyota Jidosha Kabushiki Kaisha Method for growing silicon carbide single crystal
DE112009000360B4 (en) * 2008-01-15 2015-06-18 Toyota Jidosha Kabushiki Kaisha Process for growing a silicon carbide single crystal
US8702864B2 (en) 2008-01-15 2014-04-22 Toyota Jidosha Kabushiki Kaisha Method for growing silicon carbide single crystal
JP2009274894A (en) * 2008-05-13 2009-11-26 Toyota Motor Corp METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP2010228939A (en) * 2009-03-26 2010-10-14 Nagoya Univ METHOD FOR PRODUCING 3C-SiC SINGLE CRYSTAL
KR101108884B1 (en) 2009-11-02 2012-01-30 동의대학교 산학협력단 Synthesis method for carbide power
KR101093098B1 (en) 2009-12-01 2011-12-13 동의대학교 산학협력단 Synthesis method for carbide power
KR101093097B1 (en) 2009-12-01 2011-12-13 동의대학교 산학협력단 Synthesis method for carbide power
EP2339053A3 (en) * 2009-12-24 2012-04-04 Denso Corporation Manufacturing apparatus and manufacturing method of silicon carbide single crystal
JP2012046384A (en) * 2010-08-27 2012-03-08 Sumitomo Metal Ind Ltd METHOD OF PRODUCING SiC SINGLE CRYSTAL
CN102534797A (en) * 2010-11-26 2012-07-04 信越化学工业株式会社 Method of producing sic single crystal
EP2458039A1 (en) 2010-11-26 2012-05-30 Shin-Etsu Chemical Co., Ltd. Method of producing sic single crystal
US20120132130A1 (en) * 2010-11-26 2012-05-31 Shin-Etsu Chemical Co., Ltd. METHOD OF PRODUCING SiC SINGLE CRYSTAL
JP2012111669A (en) * 2010-11-26 2012-06-14 Shin-Etsu Chemical Co Ltd METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2012111670A (en) * 2010-11-26 2012-06-14 Shin-Etsu Chemical Co Ltd METHOD FOR PRODUCING SiC SINGLE CRYSTAL
TWI554659B (en) * 2010-11-26 2016-10-21 信越化學工業股份有限公司 Method of producing sic single crystal
KR101827928B1 (en) * 2010-11-26 2018-02-09 신에쓰 가가꾸 고교 가부시끼가이샤 Method of Producing SiC Single Crystal
CN108286075A (en) * 2010-11-26 2018-07-17 信越化学工业株式会社 The manufacturing method of SiC single crystal
US10167573B2 (en) 2010-11-26 2019-01-01 Shin-Etsu Chemical Co., Ltd. Method of producing SiC single crystal
WO2012090951A1 (en) * 2010-12-27 2012-07-05 住友金属工業株式会社 DEVICE FOR PRODUCING SiC SINGLE CRYSTALS, JIG USED IN SAID PRODUCTION DEVICE, AND METHOD OF PRODUCING SiC SINGLE CRYSTALS
CN103282558A (en) * 2010-12-27 2013-09-04 新日铁住金株式会社 Device for producing sic single crystals, jig used in said production device, and method of producing sic single crystals
US9388508B2 (en) 2010-12-27 2016-07-12 Toyota Jidosha Kabushiki Kaisha Manufacturing apparatus of SiC single crystal, jig for use in the manufacturing apparatus, and method for manufacturing SiC single crystal

Similar Documents

Publication Publication Date Title
JP4225296B2 (en) Method for producing silicon carbide single crystal
JP2006321681A (en) Method for producing silicon carbide single crystal
JP4419937B2 (en) Method for producing silicon carbide single crystal
JP5304793B2 (en) Method for producing silicon carbide single crystal
US8287644B2 (en) Method for growing silicon carbide single crystal
JP4277926B1 (en) Growth method of silicon carbide single crystal
WO2011040240A1 (en) Sic single crystal and method for producing same
JP4661571B2 (en) Method for producing silicon carbide single crystal
JP5218348B2 (en) Method for producing silicon carbide single crystal
JP2000264790A (en) Production of silicon carbide single crystal
JP2004002173A (en) Silicon carbide single crystal and its manufacturing method
US20050183657A1 (en) Silicon carbide single crystal and a method for its production
JP4450075B2 (en) Method for growing silicon carbide single crystal
JP5244007B2 (en) Method for producing 3C-SiC single crystal
JP2007197274A (en) Method for manufacturing silicon carbide single crystal
JP5167947B2 (en) Method for producing silicon carbide single crystal thin film
JP4992821B2 (en) Method for producing SiC single crystal
JP4466293B2 (en) Method for producing silicon carbide single crystal
WO2003087440A1 (en) Silicon carbide single crystal and method for preparation thereof
JP4707148B2 (en) Silicon carbide single crystal substrate and method for manufacturing the same