JP5630369B2 - Single crystal manufacturing equipment - Google Patents

Single crystal manufacturing equipment Download PDF

Info

Publication number
JP5630369B2
JP5630369B2 JP2011109388A JP2011109388A JP5630369B2 JP 5630369 B2 JP5630369 B2 JP 5630369B2 JP 2011109388 A JP2011109388 A JP 2011109388A JP 2011109388 A JP2011109388 A JP 2011109388A JP 5630369 B2 JP5630369 B2 JP 5630369B2
Authority
JP
Japan
Prior art keywords
circuit
single crystal
value
seed
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011109388A
Other languages
Japanese (ja)
Other versions
JP2012240854A (en
Inventor
健一 濱本
健一 濱本
克典 旦野
克典 旦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011109388A priority Critical patent/JP5630369B2/en
Publication of JP2012240854A publication Critical patent/JP2012240854A/en
Application granted granted Critical
Publication of JP5630369B2 publication Critical patent/JP5630369B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、単結晶製造装置に関し、さらに詳しくは単結晶成長させる際の着液検出精度を向上させて多結晶の生成を抑制し得る単結晶、特にSiC単結晶を製造するための単結晶製造装置に関する。   The present invention relates to a single crystal manufacturing apparatus, and more specifically, single crystal manufacturing for manufacturing a single crystal, particularly a SiC single crystal, capable of suppressing the formation of a polycrystal by improving the accuracy of liquid landing detection during single crystal growth. Relates to the device.

従来、SiC単結晶の成長法の1つとして溶液法が知られている。この溶液法は、溶媒を入れる坩堝、例えば黒鉛坩堝、溶媒、高周波コイルなどの外部エネルギー放出体、断熱材、昇降可能な基板支持用の炭素棒および炭素棒の先端に取付けた種結晶基板からなる基本的構造を有するSiC単結晶の製造装置を用いて、坩堝中、Si融液又はさらに金属を融解したSi合金融液(溶液ともいう)などのSi含有融液中にC(炭素)供給源、例えば黒鉛坩堝からCを溶解させて、例えば低温部に設置したSiC種結晶基板上に原料融液からSiC単結晶を融液析出によって成長させる方法である。   Conventionally, the solution method is known as one of the growth methods of SiC single crystal. This solution method is composed of a crucible containing a solvent, for example, a graphite crucible, a solvent, an external energy emitter such as a high-frequency coil, a heat insulating material, a carbon rod for supporting the substrate that can be moved up and down, and a seed crystal substrate attached to the tip of the carbon rod. C (carbon) supply source in a crucible, Si melt or Si-containing melt such as Si compound financial liquid (also referred to as solution) in which a metal is melted, using an apparatus for producing an SiC single crystal having a basic structure For example, C is melted from a graphite crucible, for example, and a SiC single crystal is grown from the raw material melt by melt deposition on a SiC seed crystal substrate placed in a low temperature portion, for example.

この溶液法によるSiC単結晶製造装置では、結晶形の良好な単結晶を得るために、種結晶近傍の融液温度が他の部分の融液温度より低温になるように融液に温度勾配を設けて成長させる方法、又は融液全体を徐冷して成長させる方法のいずれかのSiC単結晶成長法が用いられるが、いずれも融液の冷却の際の融液中の温度分布や濃度分布によって多結晶の生成が避けられないことが知られている。
この単結晶を成長させる際に多結晶の生成のような欠陥の発生を防止乃至は抑制することの必要性は半導体の結晶製造装置において共通する課題であり、その解決策の1つとして固液界面の位置を正確に把握することが重要であることが認識され、様々な技術が検討されている。
In order to obtain a single crystal with a good crystal form, this SiC single crystal manufacturing apparatus using the solution method has a temperature gradient in the melt so that the melt temperature in the vicinity of the seed crystal is lower than the melt temperature in other parts. The SiC single crystal growth method of either the method of providing and growing, or the method of slowly cooling and growing the entire melt is used, both of which are the temperature distribution and concentration distribution in the melt during cooling of the melt It is known that the formation of polycrystals is unavoidable.
The necessity to prevent or suppress the occurrence of defects such as the formation of polycrystals when growing a single crystal is a common problem in semiconductor crystal manufacturing apparatuses. It is recognized that it is important to accurately grasp the position of the interface, and various techniques are being studied.

例えば、特許文献1には、容器の底部に種結晶を配置し、前記種結晶の上層に原料融液と封止用液体を下から順に配置し、当該容器を所定の温度分布内において当該温度分布に対して相対的に移動させて、容器内の原料融液の下部から上方に向けて結晶を成長させる縦型ボード法が行われる半導体単結晶の製造装置であって、前記容器内の原料融液の上界面の位置又は前記封止用液体の上界面の位置を測定する、下端面が揃えられた2つの電極と、当該2つの電極に電位差を与える電源と、前記電極を前記上界面に接触させるために上下動させる昇降機構を備えた半導体単結晶の製造装置が記載されている。   For example, in Patent Document 1, a seed crystal is arranged at the bottom of a container, a raw material melt and a sealing liquid are arranged in order from the bottom in the upper layer of the seed crystal, and the temperature of the container is within a predetermined temperature distribution. An apparatus for manufacturing a semiconductor single crystal, in which a vertical board method is performed in which a crystal is grown from the lower part of a raw material melt in a container upward while being moved relative to the distribution, the raw material in the container Measuring the position of the upper interface of the melt or the upper interface of the sealing liquid, two electrodes having the same bottom end surface, a power source for applying a potential difference to the two electrodes, and the electrode connected to the upper interface An apparatus for manufacturing a semiconductor single crystal provided with an elevating mechanism that moves up and down to make contact with the semiconductor is described.

また、特許文献2には、原料融液が収容される坩堝と、下端に種結晶が保持されたシード軸と、絶縁膜で被覆された第1電極と、第2電極とを備え、原料融液の液面に対して上方からシード軸と下端面を揃えた第1電極とを一体的に下降させ、前記絶縁膜が原料融液の液面に接触して溶融したときに、第1電極と第2電極との間に原料融液を介して流れる電流を検出することにより種結晶と原料融液との接触界面の位置を特定する、単結晶製造装置が記載されている。そして、具体例として種結晶が保持されるシード軸と、別に設けた融液とは異なる種類の物質からなる絶縁膜で被覆された第1電極と、坩堝の下部に配置された第2電極とを備えたSiC単結晶製造装置が示されている。   Patent Document 2 includes a crucible for storing a raw material melt, a seed shaft having a seed crystal held at the lower end, a first electrode covered with an insulating film, and a second electrode. When the seed electrode and the first electrode with the lower end face aligned are lowered from above with respect to the liquid level of the liquid, the first electrode is melted when the insulating film contacts and melts the liquid surface of the raw material melt. Describes a single crystal manufacturing apparatus that identifies a position of a contact interface between a seed crystal and a raw material melt by detecting a current flowing through the raw material melt between the first electrode and the second electrode. As a specific example, a seed shaft for holding a seed crystal, a first electrode covered with an insulating film made of a material different from the melt provided separately, a second electrode disposed at the bottom of the crucible, An SiC single crystal manufacturing apparatus with

また、特許文献3には、引き上げ軸の昇降機構と、引き上げ軸と、引き上げ軸の先端に取付けた種結晶と、石英ガラス坩堝と、ヒーターと、坩堝と引き上げ軸との間に電圧を印加する電源装置と、昇降機構、ヒーターおよび電源装置を制御する制御装置とを備え、前記制御装置が、引き上げ軸を降下させて種結晶をシリコン融液に着液させると共に、坩堝側をマイナス極、引き上げ軸をプラス極とする第1の電圧を印加しながら電圧を監視することで種結晶の着液状態を検出する着液制御部を備えたシリコン単結晶引き上げ装置が記載されている。   In Patent Document 3, a voltage is applied between a lifting shaft lifting mechanism, a lifting shaft, a seed crystal attached to the tip of the lifting shaft, a quartz glass crucible, a heater, and the crucible and the lifting shaft. A power supply device and a control device for controlling the elevating mechanism, the heater, and the power supply device. The control device lowers the pulling shaft to land the seed crystal on the silicon melt and pulls the crucible side to the negative pole. A silicon single crystal pulling apparatus including a liquid deposition control unit that detects a liquid deposition state of a seed crystal by monitoring the voltage while applying a first voltage having a positive axis as an axis is described.

特開2005−104767号公報JP 2005-104767 A 特開2008−030969号公報JP 2008-030969 A 特開2010−275139号公報JP 2010-275139 A

しかし、これら公知の技術をSiC単結晶のような高温環境での種結晶成長装置に適用すると、高温液面から蒸気が発生して至近距離では導通状態となり、検出される電圧が連続的な変化を示す傾向にあり、値自体の変動も合算されて正確な着液検出と成長面の把握が困難となる。このため、従来の技術を適用して着液の検出が遅れた場合、融液が過度に着き過ぎて軸にまで結晶成長が進み多結晶化の一因にもなり得る。
従って、本発明の目的は、単結晶を成長させる際の着液検出精度を向上させ得る単結晶製造装置を提供することである。
However, when these known techniques are applied to a seed crystal growth apparatus in a high-temperature environment such as a SiC single crystal, vapor is generated from the high-temperature liquid surface and becomes conductive at a short distance, and the detected voltage continuously changes. The fluctuation of the value itself is added together, so that it is difficult to accurately detect the liquid landing and grasp the growth surface. For this reason, when the detection of the landing liquid is delayed by applying the conventional technique, the melt is excessively deposited and crystal growth proceeds to the axis, which may contribute to polycrystallization.
Accordingly, an object of the present invention is to provide a single crystal manufacturing apparatus capable of improving the liquid landing detection accuracy when growing a single crystal.

本発明は、原料融液から種結晶基板上に単結晶を成長させるための種結晶を有する成長炉と、下端に種結晶が保持されたシード軸と、前記原料融液を収容する坩堝と、成長炉を囲んで成長炉外に配置されたエネルギー放出体とを備えた単結晶製造装置であって、
前記坩堝とシード軸との間に電圧を印加する電源回路と、
前記坩堝シード軸間に電源回路と並列の抵抗を用いた測定回路と、
前記電源回路に、定電圧回路およびカットオフ回路を備え、
前記カットオフ回路に、液面接触時の電流値よりも低く非接触時に流れる電流値よりも大きい電流値に基づく設定値が設けられて、源回路を流れる電流値が前記設定値未満の場合には、カットオフ回路が機能せず、電源回路に並列の抵抗にあらかじめ設定した電源電圧が検出され、電源回路を流れる電流値が前記設定値以上の場合には、過電流を抑制するためカットオフ回路により、電流値を設定値に抑えるために電源電圧値を減少させ、これにともない前記並列の抵抗に印加される電圧が減少し、この電圧値の変化値を測定することにより、着液を検出することを特徴とする、前記装置に関する。
The present invention includes a growth furnace having a seed crystal for growing a single crystal on a seed crystal substrate from a raw material melt, a seed shaft having a seed crystal held at the lower end, a crucible containing the raw material melt, A single crystal manufacturing apparatus comprising an energy emitter disposed outside the growth furnace and surrounding the growth furnace,
A power supply circuit for applying a voltage between the crucible and the seed shaft;
A measurement circuit using a resistor in parallel with the power supply circuit between the crucible seed shafts;
The power supply circuit includes a constant voltage circuit and a cutoff circuit,
The cut-off circuit, and setting value based on the current value greater than the value of the current flowing through the non-contact time lower than the current value at the time of liquid surface contact is provided, if the value of the current flowing through the power circuit is less than the set value When the power supply voltage preset in the resistor parallel to the power supply circuit is detected without the cut-off circuit functioning and the current value flowing through the power supply circuit is equal to or higher than the set value, the cut-off circuit is cut to suppress overcurrent. By reducing the power supply voltage value in order to keep the current value at the set value by the off-circuit, the voltage applied to the parallel resistor is reduced accordingly, and the change value of this voltage value is measured, so that the liquid landing It is related with the said apparatus characterized by detecting .

本発明によれば、単結晶を成長させる際の着液検出精度を向上させ得る単結晶製造装置を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the single crystal manufacturing apparatus which can improve the liquid landing detection precision at the time of growing a single crystal can be obtained.

図1は、本発明の実施態様の溶液法によるSiC単結晶製造装置の概略図である。FIG. 1 is a schematic view of an apparatus for producing an SiC single crystal by a solution method according to an embodiment of the present invention. 図2は、従来の溶液法によるSiC単結晶製造装置の概略図である。FIG. 2 is a schematic view of a conventional SiC single crystal manufacturing apparatus using a solution method. 図3は、従来の他の溶液法によるSiC単結晶製造装置の概略図である。FIG. 3 is a schematic view of an SiC single crystal manufacturing apparatus according to another conventional solution method. 図4は、従来技術によるSiC単結晶成長装置を用いた場合の測定電流と種結晶の位置との関係を模式的に示すグラフ。FIG. 4 is a graph schematically showing the relationship between the measured current and the position of the seed crystal when a SiC single crystal growth apparatus according to the prior art is used. 図5は、本発明の実施態様および従来技術によるSiC単結晶成長装置を用いて融液有りの条件で坩堝内の融液面と種結晶との距離に対する測定回路の電圧の変化値(ΔV)とを比較して示すグラフである。FIG. 5 shows a change value (ΔV) of the voltage of the measurement circuit with respect to the distance between the melt surface in the crucible and the seed crystal in the presence of the melt using the SiC single crystal growth apparatus according to the embodiment of the present invention and the prior art. It is a graph which compares and shows. 図6は、本発明の実施態様の溶液法によるSiC単結晶製造装置での着液状態を示す模式図である。FIG. 6 is a schematic view showing a liquid landing state in the SiC single crystal manufacturing apparatus according to the solution method of the embodiment of the present invention. 図7は、従来の溶液法によるSiC単結晶製造装置での着液状態の一例を示す模式図である。FIG. 7 is a schematic view showing an example of a liquid deposition state in a conventional SiC single crystal manufacturing apparatus using a solution method. 図8は、従来の溶液法によるSiC単結晶製造装置での結晶成長の状態を示す模式図である。FIG. 8 is a schematic diagram showing a state of crystal growth in a conventional SiC single crystal manufacturing apparatus using a solution method.

特に、本発明において、以下の実施態様を好適に挙げることができる。
1)前記設定値が、非接触時に流れる電流値よりも大きい、前記装置。
2)SiC単結晶を製造するための装置である、前記装置。
In particular, in the present invention, the following embodiments can be preferably mentioned.
1) The apparatus, wherein the set value is larger than a current value flowing when not in contact.
2) The said apparatus which is an apparatus for manufacturing a SiC single crystal.

本発明においては、原料融液から種結晶基板上に単結晶を成長させるための種結晶を有する成長炉と、下端に種結晶が保持されたシード軸と、前記原料融液を収容する坩堝と、成長炉を囲んで成長炉外に配置されたエネルギー放出体とを備えた単結晶製造装置であって、前記坩堝とシード軸との間に電圧を印加する電源回路と、前記坩堝シード軸間に電源回路と並列の測定回路と、前記電源回路に、定電圧回路および液面接触時の電流値よりも低く設定された設定値より大きい電流値が測定されたときには電流をカットするカットオフ回路とを備えてなることが必要であり、これによって単結晶成長させる際の着液検出精度を向上させて多結晶の生成を抑制し得る。 In the present invention, a growth furnace having a seed crystal for growing a single crystal on a seed crystal substrate from a raw material melt, a seed shaft having a seed crystal held at the lower end, and a crucible containing the raw material melt A single crystal manufacturing apparatus comprising an energy emitter disposed outside the growth furnace so as to surround the growth furnace, the power supply circuit applying a voltage between the crucible and the seed shaft, and between the crucible seed shaft A measurement circuit in parallel with the power supply circuit, and a cut-off circuit that cuts off the current when a current value greater than a set value set lower than the current value at the time of contact with the constant voltage circuit and the liquid level is measured in the power supply circuit Thus, it is possible to improve the liquid landing detection accuracy when growing a single crystal and to suppress the formation of polycrystals.

以下、図面を参照して本発明の実施の形態を詳説する。
本発明の実施態様のSiC単結晶成長装置1は、図1に示すように、溶液法により原料融液2からSiC種結晶基板上にSiC単結晶を成長させるための種結晶3を有する成長炉4と、下端に種結晶が保持されたシード軸5と、シード軸を昇降させる昇降機構6と、前記原料融液を収容する坩堝7と、成長炉を囲んで成長炉外に配置されたエネルギー放出体8とを備えていて、前記坩堝とシード軸との間に、通常シード軸をプラス(+)とし坩堝をマイナス(−)として、電圧を印加する電源回路9と、前記坩堝シード軸間に電源回路と並列の測定回路11と、前記電源回路9に、定電圧回路9Bおよび液面接触時の電流値よりも低く非接触時に流れる電流値よりも大きい電流値に基づく設定値が設けられて、設定された設定値より大きい電流値が測定されたときは電流値をカットするカットオフ回路9Cとを備えてなる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, a SiC single crystal growth apparatus 1 according to an embodiment of the present invention includes a growth furnace having a seed crystal 3 for growing a SiC single crystal from a raw material melt 2 on a SiC seed crystal substrate by a solution method. 4, a seed shaft 5 with a seed crystal held at the lower end, an elevating mechanism 6 for raising and lowering the seed shaft, a crucible 7 for storing the raw material melt, and energy disposed outside the growth furnace surrounding the growth furnace A power source circuit 9 for applying a voltage between the crucible and the seed shaft, the normal seed shaft being positive (+) and the crucible being negative (−), and the crucible seed shaft between the crucible and the seed shaft The measurement circuit 11 in parallel with the power supply circuit and the power supply circuit 9 are provided with a set value based on the constant voltage circuit 9B and a current value that is lower than the current value at the time of liquid surface contact and larger than the current value flowing at the time of non-contact. Te, larger currents than the set setpoint There comprising a cut-off circuit 9C for cutting the current value when measured.

そして、測定回路11で測定された測定電流は、通常サブコントローラ12に送られて電圧差として表示され、サブコントローラの指示に基き昇降機構6は昇降速度が制御され、一方サブコントローラ12の情報はコントローラ13に送られ、コントローラの指示に基きエネルギー放出体8の一部の加熱条件が維持又は変更される。   The measurement current measured by the measurement circuit 11 is normally sent to the sub-controller 12 and displayed as a voltage difference. The elevating mechanism 6 controls the elevating speed based on the instruction from the sub-controller, while the information on the sub-controller 12 is It is sent to the controller 13 and a heating condition of a part of the energy emitter 8 is maintained or changed based on the instruction of the controller.

一方、従来技術のSiC単結晶成長装置10は、図2に示すように、溶液法により原料融液2からSiC種結晶基板上にSiC単結晶を成長させるための種結晶3を有する成長炉4と、下端に種結晶が保持されたシード軸5と、シード軸を昇降させる昇降機構6と、前記原料融液を収容する坩堝7と、成長炉を囲んで成長炉外に配置されたエネルギー放出体8とを備えていて、前記坩堝とシード軸との間に電圧を印加する電源回路9と、前記電源回路の電流値測定回路14と前記電源回路9に定電圧回路9Bを備えてなる。   On the other hand, as shown in FIG. 2, a conventional SiC single crystal growth apparatus 10 has a growth furnace 4 having a seed crystal 3 for growing an SiC single crystal on a SiC seed crystal substrate from a raw material melt 2 by a solution method. And a seed shaft 5 with a seed crystal held at the lower end, an elevating mechanism 6 for moving the seed shaft up and down, a crucible 7 for storing the raw material melt, and an energy release disposed outside the growth furnace. A power supply circuit 9 for applying a voltage between the crucible and the seed shaft, a current value measuring circuit 14 for the power supply circuit, and a constant voltage circuit 9B.

また、従来技術の他のSiC単結晶成長装置10は、図3に示すように、溶液法により原料融液2からSiC種結晶基板上にSiC単結晶を成長させるための種結晶3を有する成長炉4と、下端に種結晶が保持されたシード軸5と、シード軸を昇降させる昇降機構6と、前記原料融液を収容する坩堝7と、成長炉を囲んで成長炉外に配置されたエネルギー放出体8とを備えていて、前記坩堝とシード軸との間に電圧を印加する電源回路9と、前記電源回路の電圧測定回路15と、前記電源回路9に定電圧回路9Bを備えてなる。   Further, another SiC single crystal growth apparatus 10 of the prior art has a seed crystal 3 for growing an SiC single crystal from a raw material melt 2 on an SiC seed crystal substrate by a solution method as shown in FIG. A furnace 4, a seed shaft 5 with a seed crystal held at the lower end, an elevating mechanism 6 for raising and lowering the seed shaft, a crucible 7 for housing the raw material melt, and a growth furnace are disposed outside the growth furnace. A power supply circuit 9 for applying a voltage between the crucible and the seed shaft, a voltage measurement circuit 15 for the power supply circuit, and a constant voltage circuit 9B for the power supply circuit 9. Become.

そして、従来技術のSiC単結晶成長装置10においても、電流値測定回路14又は電圧測定回路15で測定された値は、通常サブコントローラ12に送られて電圧差として表示され、サブコントローラの指示に基き昇降機構6は昇降速度が制御され、一方サブコントローラ12の情報はコントローラ13に送られ、コントローラの指示に基きエネルギー放出体8の一部の加熱条件が維持又は変更される。   In the SiC single crystal growth apparatus 10 of the prior art, the value measured by the current value measuring circuit 14 or the voltage measuring circuit 15 is normally sent to the sub-controller 12 and displayed as a voltage difference. The raising / lowering mechanism 6 controls the raising / lowering speed, while the information of the sub-controller 12 is sent to the controller 13, and the heating conditions for a part of the energy emitting body 8 are maintained or changed based on instructions from the controller.

そして、従来技術の図2示すSiC単結晶成長装置における電流値測定回路によれば、図4に示すように、坩堝内の融液面と種結晶との距離(L)の変動に対して測定電流(A)が着液(軸の位置=0)に近づくにつれて上下に変動しつつ上昇している。これは、通常1800℃以上の高温に加熱される融液から出る蒸気によってわずかに導電性となるため、着液の前から坩堝→融液からの蒸気→融液→シード軸の間に若干の電流が流れるためであると考えられる。
このため、従来技術によれば、電流から着液の位置を正確に把握することが困難であり成長面の位置を0.1mm以下の精度で制御することが求められるSiC単結晶のような単結晶成長装置には適していないと考えられる。
この着液の前から若干の電流値が流れることによる着液の位置を正確に把握することが困難な点は電圧測定回路を用いる従来技術においても共通で、縦軸を電圧とし横軸を軸の位置として同様のグラフが得られ、電圧の変動から着液の位置を正確に把握することは困難である。
Then, according to the current value measurement circuit in the SiC single crystal growth apparatus shown in FIG. 2 of the prior art, as shown in FIG. 4, the measurement is performed with respect to the variation in the distance (L) between the melt surface in the crucible and the seed crystal. As the current (A) approaches the liquid landing (axis position = 0), it rises while fluctuating up and down. This is made slightly conductive by the vapor emitted from the melt heated to a high temperature of 1800 ° C. or higher, so that there is a slight gap between the crucible → the vapor from the melt → the melt → the seed axis before the liquid is deposited. This is thought to be because current flows.
For this reason, according to the prior art, it is difficult to accurately grasp the position of the landing liquid from the current, and it is necessary to control the position of the growth surface with an accuracy of 0.1 mm or less. It is considered unsuitable for a crystal growth apparatus.
It is difficult to accurately determine the position of the liquid landing due to the flow of a slight current value before the liquid landing. This is also common in the prior art using the voltage measuring circuit. The vertical axis is the voltage and the horizontal axis is the axis. A similar graph is obtained as the position of the liquid, and it is difficult to accurately grasp the position of the liquid landing from the fluctuation of the voltage.

本発明の実施態様のSiC単結晶成長装置によれば、図5に示すように、坩堝内の融液面と種結晶との距離に対する測定回路で測定された電流から後述の実施例の欄に詳述する換算法により換算される電圧の変化値(ΔV)のグラフおいて、図5の線1に示すように着液点で変化値が急激に変化している。
このため、本発明の実施態様のSiC単結晶成長装置によれば、図6に示すように、電圧の変化値(ΔV)をモニターすることにより種結晶と融液とが接する位置を正確に把握し得て、単結晶の成長が種結晶の表面から徐々に始めることが可能となり、多結晶の形成を抑制し得る。
According to the SiC single crystal growth apparatus of the embodiment of the present invention, as shown in FIG. 5, from the current measured by the measurement circuit with respect to the distance between the melt surface in the crucible and the seed crystal, in the column of Examples described later. In the graph of the change value (ΔV) of the voltage converted by the conversion method described in detail, as shown by the line 1 in FIG.
Therefore, according to the SiC single crystal growth apparatus of the embodiment of the present invention, as shown in FIG. 6, the position where the seed crystal and the melt are in contact with each other can be accurately grasped by monitoring the voltage change value (ΔV). In addition, the growth of the single crystal can be gradually started from the surface of the seed crystal, and the formation of the polycrystal can be suppressed.

本発明の実施態様において、前記の電流値の設定値として、液面接触時の電流値よりも低く、好適には非接触時に流れる電流値よりも大きい値を設定することが必要である。前記の設定値を設けることにより、従来技術において避けられなかった図4におけるノイズを除くことが可能となり、且つ前記の電圧差(ΔV)−溶液面と種結晶の融液からの距離の関係を示すグラフにおいて、図5に示すような着液での大きな電圧差を正確に把握することが可能となり得る。 In the embodiment of the present invention , it is necessary to set a value that is lower than the current value at the time of liquid surface contact and preferably larger than the current value that flows at the time of non-contact as the set value of the current value. By providing the set value, it becomes possible to remove the noise in FIG. 4 that was unavoidable in the prior art, and the relationship between the voltage difference (ΔV) −the distance from the solution surface and the seed crystal melt. In the graph shown, it may be possible to accurately grasp a large voltage difference in the landing liquid as shown in FIG.

本発明の実施態様のSiC単結晶成長装置において、前記定電圧回路における定電圧としては、好適には1〜20Vの範囲内の電圧、例えば5Vであり得る。また、前記の測定回路において、好適には抵抗値が20〜30Ωであり得る。前記定電圧として5Vを設定した場合、前記の電流値の設定値は0.17〜0.25Aの範囲であり得る。
そして、前記の測定回路における抵抗値を30Ωとした場合、前記の設定電流値は0.17Aであり得る。
この場合、本発明の実施態様のSiC単結晶成長装置によれば、種結晶が融液から少しでも離れていると回路に流れる電流が小さいため、カットオフ回路のカットオフ機能が働かず電圧は5Vで、電圧差(ΔV:5V−回路に流れる電流に基く電圧)は0Vとして表示される。
一方、種結晶が融液に接すると、流れる電流>0.17Aとなり、電流が流れすぎるので電圧を自動的に一定電圧(例えば1.5V)に落すカットオフ機能が作用し、電圧の変化値(ΔV)3.5Vが表示される。
In the SiC single crystal growth apparatus of the embodiment of the present invention, the constant voltage in the constant voltage circuit may be a voltage within the range of 1 to 20V, for example, 5V. In the measurement circuit, the resistance value may preferably be 20 to 30Ω. When 5V is set as the constant voltage, the set value of the current value may be in the range of 0.17 to 0.25A.
When the resistance value in the measurement circuit is 30Ω, the set current value can be 0.17A.
In this case, according to the SiC single crystal growth apparatus according to an embodiment of the present invention, since the current flowing through the circuit when the seed crystal is separated even slightly from the melt small cut-off is activated Kaz voltage cutoff circuit At 5V, the voltage difference (ΔV: 5V−voltage based on the current flowing through the circuit) is displayed as 0V.
On the other hand, when the seed crystal comes into contact with the melt, the flowing current becomes> 0.17 A, and since the current flows too much, a cut-off function that automatically drops the voltage to a constant voltage (for example, 1.5 V) acts, and the voltage change value (ΔV) 3.5V is displayed.

一方、従来技術のSiC単結晶成長装置によれば、図5の線2に示すように着液点でも変化値がなだらかに変化しており、変化値(ΔV)をモニターしていても正確な着液位置を把握することが出来ない。
このため、従来技術のSiC単結晶成長装置によれば、図7に示すように、電圧の変化値(ΔV)をモニターしても種結晶と融液とが接する位置を正確に把握し得ず、単結晶の成長が種結晶の表面だけでなく種結晶の周囲、場合によりシード軸にまで一度に始まる。このため、従来技術のSiC単結晶成長装置によれば、図8に示すように、多結晶の形成を抑制し得ない。
On the other hand, according to the SiC single crystal growth apparatus of the prior art, as shown by the line 2 in FIG. 5, the change value gradually changes even at the liquid landing point, and it is accurate even if the change value (ΔV) is monitored. It is not possible to grasp the landing position.
Therefore, according to the SiC single crystal growth apparatus of the prior art, as shown in FIG. 7, the position where the seed crystal and the melt are in contact cannot be accurately grasped even if the change value (ΔV) of the voltage is monitored. Single crystal growth begins at once, not only on the surface of the seed crystal but also around the seed crystal, and possibly on the seed axis. For this reason, according to the SiC single crystal growth apparatus of a prior art, as shown in FIG. 8, formation of a polycrystal cannot be suppressed.

本発明の実施態様のSiC単結晶成長装置において、前記種結晶は任意のSiC単結晶、例えば4H−SiC、6H−SiCや3C−SiCなどであり得る。
また、本発明の前記実施態様のSiC単結晶成長装置において、坩堝は通常炭素製であって原料融液に炭素(C)を溶出してSiCの炭素源となり得る。そして、この坩堝は単一の構成材からなるものであってもよいが、中坩堝および外坩堝から構成されてもよい。
In the SiC single crystal growth apparatus according to the embodiment of the present invention, the seed crystal may be any SiC single crystal, for example, 4H—SiC, 6H—SiC, 3C—SiC, or the like.
Moreover, in the SiC single crystal growth apparatus of the said embodiment of this invention, a crucible is normally made from carbon, and carbon (C) can be eluted to a raw material melt, and can become a carbon source of SiC. And this crucible may consist of a single component, but may consist of an intermediate crucible and an outer crucible.

また、本発明の実施態様のSiC単結晶成長装置において、シード軸は耐熱性が必要なことからSUS製又は炭素棒であり得て、種結晶から熱を外部に伝達するために炉外に冷却機構(図示せず)が設けられていてもよい。また、シード軸は昇降機構によって上下の動きをさせられる。
また、本発明の実施態様のSiC単結晶成長装置において、複数の異なるエネルギーを放出可能なエネルギー放出体としては高周波エネルギーを放出する高周波コイルが挙げられる。
Further, in the SiC single crystal growth apparatus according to the embodiment of the present invention, the seed shaft needs to be heat resistant, so it can be made of SUS or a carbon rod, and is cooled outside the furnace in order to transfer heat from the seed crystal to the outside. A mechanism (not shown) may be provided. The seed shaft can be moved up and down by an elevating mechanism.
In the SiC single crystal growth apparatus of the embodiment of the present invention, examples of the energy emitter that can emit a plurality of different energies include a high-frequency coil that emits high-frequency energy.

また、本発明の実施態様のSiC単結晶成長装置において、前記構成に加えて、前記成長炉が坩堝の少なくとも上方に空間を有し得る。
そして、本発明の実施態様のSiC単結晶製造装置を用いれば、少なくとも2個の高周波コイルのエネルギー出力比率、例えば電流比率を変えることにより、坩堝内の融液中の深さ方向の温度分布を狭い範囲で付与することが可能となり、融液内での対流を起こし易くなり、炭素(C)濃度の均一化が達成し得て、経時的なSiC単結晶成長の変化を抑制し得る。
Moreover, in the SiC single crystal growth apparatus of the embodiment of the present invention, in addition to the above configuration, the growth furnace may have a space at least above the crucible.
And if the SiC single crystal manufacturing apparatus of the embodiment of the present invention is used, the temperature distribution in the depth direction in the melt in the crucible is changed by changing the energy output ratio of at least two high frequency coils, for example, the current ratio. It becomes possible to apply in a narrow range, it becomes easy to cause convection in the melt, a uniform carbon (C) concentration can be achieved, and a change in SiC single crystal growth over time can be suppressed.

本発明の実施態様における原料融液としては、SiとCとを必須成分とする任意の融液を挙げることができる。例えば、Si含有融液として、さらにTiおよび/又はCrを含むもの、例えばSi−Ti−C融液又はNiおよびCrを含むもの、さらに前記Si、Cr、NiおよびC以外の元素であって希土類元素、遷移金属元素およびアルカリ土類金属元素のうちから選ばれるいずれか1種の元素を含むもの、例えば前記の元素がCeであるものが挙げられる。また、半導体材料用に任意のドーパントを含有し得る。
前記の原料融液の温度は1800〜2100℃、特に1850〜2050℃程度であり得る。
Examples of the raw material melt in the embodiment of the present invention include any melt containing Si and C as essential components. For example, a Si-containing melt further containing Ti and / or Cr, such as a Si-Ti-C melt or Ni and Cr, and elements other than Si, Cr, Ni and C, and rare earth An element containing any one element selected from an element, a transition metal element, and an alkaline earth metal element, for example, an element in which the element is Ce. Moreover, arbitrary dopants can be contained for semiconductor materials.
The temperature of the raw material melt may be about 1800 to 2100 ° C, particularly about 1850 to 2050 ° C.

本発明の実施態様のSiC単結晶製造装置において、着液位置を測定後の融液の温度の制御は、例えば放射温度計による融液面の温度観察および/又は炭素棒内側に設置した熱電対、例えばW−Re(タングステン/レニューム)熱電対を用いて温度測定を行って求められた測定温度に基づいて、前記サブコントローラによって行うことができる。   In the SiC single crystal manufacturing apparatus according to the embodiment of the present invention, the temperature of the melt after measuring the landing position is controlled by, for example, observing the temperature of the melt surface with a radiation thermometer and / or a thermocouple installed inside the carbon rod. For example, it can be performed by the sub-controller based on the measured temperature obtained by measuring the temperature using a W-Re (tungsten / renium) thermocouple.

本発明の実施態様のSiC単結晶製造装置を用いてSiC単結晶を製造する方法においては、着液の位置を正確に制御することを除いて、それ自体公知の単結晶製造装置、例えば溶液法におけるそれ自体公知の製造装置、例えば黒鉛坩堝の形状、加熱手段、雰囲気、昇温速度および冷却速度を適用することができる。
例えば、雰囲気としては希ガス、例えばHe、Ne、Arなどの不活性ガスやそれらの一部をNやメタンガスで置き換えたものが挙げられる。
本発明の実施態様のSiC単結晶製造装置を用いることによって、2000℃程度の高温、例えば1800〜2100℃、特に1850〜2050℃程度の融液温度で、多結晶の成長を防止乃至は抑制したSiC単結晶を得ることができる。
In the method for producing a SiC single crystal using the SiC single crystal production apparatus according to the embodiment of the present invention, a single crystal production apparatus known per se, for example, a solution method, except for accurately controlling the position of the landing liquid. In the manufacturing apparatus known per se, for example, the shape of a graphite crucible, heating means, atmosphere, heating rate and cooling rate can be applied.
For example, the atmosphere includes a rare gas, for example, an inert gas such as He, Ne, or Ar, or a part of them replaced with N 2 or methane gas.
By using the SiC single crystal manufacturing apparatus of the embodiment of the present invention, the growth of polycrystal is prevented or suppressed at a high temperature of about 2000 ° C., for example, at a melt temperature of about 1800 to 2100 ° C., particularly about 1850 to 2050 ° C. A SiC single crystal can be obtained.

以下、本発明の実施態様のSiC単結晶製造装置と従来の溶液法によるSiC単結晶製造装置を用いて融液有りの条件で、坩堝内の融液面と種結晶との距離に対する測定回路で測定された電流から、以下の換算法により換算される電圧の変化値(ΔV)を求め、シミュレーションを行った。
ΔV=ΔIxR
または
ΔV=[(R1/(R1+R2))−(R1’/(R1’+R2’))]E
R1:シード軸回りの抵抗(Ω)
R2:回路の抵抗(Ω)
R1’:種結晶が融液に着液したときのシード軸回りの抵抗(Ω)
R2’:種結晶が融液に着液したときの回路の抵抗(Ω)
E:定電圧(5V)
以下の各例において、シミュレーションは以下の条件で行った。
融液温度:1900℃
定電圧=5V
In the following, a measurement circuit for the distance between the melt surface in the crucible and the seed crystal under the condition of the melt using the SiC single crystal production apparatus of the embodiment of the present invention and the conventional SiC single crystal production apparatus by the solution method. A voltage change value (ΔV) converted by the following conversion method was obtained from the measured current, and a simulation was performed.
ΔV = ΔIxR
Or ΔV = [(R1 / (R1 + R2)) − (R1 ′ / (R1 ′ + R2 ′))] E
R1: Resistance around the seed axis (Ω)
R2: Circuit resistance (Ω)
R1 ′: Resistance around the seed axis when the seed crystal has landed on the melt (Ω)
R2 ′: resistance of the circuit when the seed crystal has landed on the melt (Ω)
E: Constant voltage (5V)
In each of the following examples, the simulation was performed under the following conditions.
Melt temperature: 1900 ° C
Constant voltage = 5V

シミュレーション1
図1に示す本発明の実施態様のSiC単結晶製造装置を用いて、シミュレーションを行った。
得られた坩堝内の融液面と種結晶との距離と、電圧の変化値(ΔV)との関係を示すグラフを図5に示す。
Simulation 1
A simulation was performed using the SiC single crystal manufacturing apparatus according to the embodiment of the present invention shown in FIG.
A graph showing the relationship between the distance between the melt surface in the obtained crucible and the seed crystal and the change value (ΔV) of the voltage is shown in FIG.

比較シミュレーション1
図2に示す従来の溶液法によるSiC単結晶製造装置を用いて、シミュレーションを行った。
得られた坩堝内の融液面と種結晶との距離と、電圧の変化値(ΔV)との関係を示すグラフを図5に示す。
Comparative simulation 1
The simulation was performed using the SiC single crystal manufacturing apparatus by the conventional solution method shown in FIG.
A graph showing the relationship between the distance between the melt surface in the obtained crucible and the seed crystal and the change value (ΔV) of the voltage is shown in FIG.

図5の結果は、本発明の実施態様のSiC単結晶製造装置を用いれば、正確な種結晶の融液への着液位置が把握し得ることを示している。   The results in FIG. 5 indicate that the use of the SiC single crystal production apparatus according to the embodiment of the present invention can grasp the exact position of the seed crystal on the melt.

本発明の単結晶製造装置によって、単結晶成長させる際の着液検出精度を向上させて多結晶の生成を抑制し得る。   With the single crystal manufacturing apparatus of the present invention, it is possible to improve the liquid landing detection accuracy during single crystal growth and suppress the formation of polycrystals.

1 本発明の実施態様のSiC単結晶製造装置
2 原料融液
3 種結晶
4 成長炉
5 シード軸
6 昇降機構
7 坩堝
8 エネルギー放出体
9 電源回路
9B 定電圧回路
9C カットオフ回路
10 従来技術のSiC単結晶成長装置
11 測定回路
12 サブコントローラ
13 コントローラ
14 電流値測定回路
15 電圧測定回路
DESCRIPTION OF SYMBOLS 1 SiC single crystal manufacturing apparatus of embodiment of this invention 2 Raw material melt 3 Seed crystal 4 Growth furnace 5 Seed shaft 6 Lifting mechanism 7 Crucible 8 Energy emitter 9 Power supply circuit 9B Constant voltage circuit 9C Cut-off circuit 10 Conventional SiC Single crystal growth apparatus 11 Measurement circuit 12 Sub-controller 13 Controller 14 Current value measurement circuit 15 Voltage measurement circuit

Claims (2)

原料融液から種結晶基板上に単結晶を成長させるための種結晶を有する成長炉と、下端に種結晶が保持されたシード軸と、前記原料融液を収容する坩堝と、成長炉を囲んで成長炉外に配置されたエネルギー放出体とを備えた単結晶製造装置であって、
前記坩堝とシード軸との間に電圧を印加する電源回路と、
前記坩堝シード軸間に電源回路と並列の抵抗を用いた測定回路と、
前記電源回路に、定電圧回路およびカットオフ回路を備え、
前記カットオフ回路に、液面接触時の電流値よりも低く非接触時に流れる電流値よりも大きい電流値に基づく設定値が設けられて、源回路を流れる電流値が前記設定値未満の場合には、カットオフ回路が機能せず、電源回路に並列の抵抗にあらかじめ設定した電圧が検出され、電源回路を流れる電流値が前記設定値以上の場合には、過電流を抑制するためカットオフ回路により、電流値を設定値に抑えるために電圧値を減少させ、これにともない前記並列の抵抗に印加される電圧が減少し、この電圧値の変化値を測定することにより、着液を検出することを特徴とする、前記装置。
Surrounding the growth furnace, a growth furnace having a seed crystal for growing a single crystal on the seed crystal substrate from the raw material melt, a seed shaft having a seed crystal held at the lower end, a crucible containing the raw material melt, and An apparatus for producing a single crystal comprising an energy emitter disposed outside the growth furnace,
A power supply circuit for applying a voltage between the crucible and the seed shaft;
A measurement circuit using a resistor in parallel with the power supply circuit between the crucible seed shafts;
The power supply circuit includes a constant voltage circuit and a cutoff circuit,
The cut-off circuit, and setting value based on the current value greater than the value of the current flowing through the non-contact time lower than the current value at the time of liquid surface contact is provided, if the value of the current flowing through the power circuit is less than the set value In the case where the cut-off circuit does not function, a preset voltage is detected in a resistor parallel to the power supply circuit, and the current value flowing through the power supply circuit is equal to or higher than the set value, the cut-off circuit is used to suppress overcurrent. The circuit reduces the voltage value in order to keep the current value at the set value, and accordingly the voltage applied to the parallel resistor decreases, and by measuring the change value of this voltage value, the liquid contact is detected. Said apparatus characterized in that:
SiC単結晶を製造するための装置であることを特徴とする、請求項1に記載の装置。 The apparatus according to claim 1, wherein the apparatus is for manufacturing a SiC single crystal.
JP2011109388A 2011-05-16 2011-05-16 Single crystal manufacturing equipment Expired - Fee Related JP5630369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011109388A JP5630369B2 (en) 2011-05-16 2011-05-16 Single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011109388A JP5630369B2 (en) 2011-05-16 2011-05-16 Single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2012240854A JP2012240854A (en) 2012-12-10
JP5630369B2 true JP5630369B2 (en) 2014-11-26

Family

ID=47462943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011109388A Expired - Fee Related JP5630369B2 (en) 2011-05-16 2011-05-16 Single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP5630369B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5823947B2 (en) * 2012-12-27 2015-11-25 トヨタ自動車株式会社 Method for producing SiC single crystal
JP6259053B2 (en) * 2016-11-29 2018-01-10 京セラ株式会社 Crystal production method
JP2018035069A (en) * 2017-12-07 2018-03-08 京セラ株式会社 Crystal producing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042295A (en) * 1984-07-09 1985-03-06 Toshiba Corp Manufacture of single crystal
JPH0686353B2 (en) * 1990-02-21 1994-11-02 昭和電工株式会社 Seed crystal contact detection method
JPH07172998A (en) * 1993-12-21 1995-07-11 Toshiba Corp Production of single crystal of silicon carbide
JP3676526B2 (en) * 1996-11-18 2005-07-27 三菱電機株式会社 Air conditioner control device
JPH11318045A (en) * 1998-05-07 1999-11-16 Kajima Corp Housing wiring system concurrently serving as optical fiber
JP2008030969A (en) * 2006-07-26 2008-02-14 Toyota Motor Corp Single crystal production apparatus
JP4941088B2 (en) * 2007-05-14 2012-05-30 住友金属工業株式会社 Single crystal manufacturing method and manufacturing apparatus
JP5115413B2 (en) * 2008-09-09 2013-01-09 トヨタ自動車株式会社 Silicon carbide single crystal manufacturing apparatus and manufacturing method

Also Published As

Publication number Publication date
JP2012240854A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
US10526722B2 (en) Method for manufacturing silicon carbide single crystal
JP5803519B2 (en) Method and apparatus for producing SiC single crystal
JP5580764B2 (en) SiC single crystal manufacturing equipment
JP5630369B2 (en) Single crystal manufacturing equipment
JP6238249B2 (en) Silicon carbide single crystal and method for producing the same
US9982365B2 (en) Method for producing SiC single crystal
JP2012193055A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND APPARATUS USED THEREFOR
JP2014125404A (en) Sapphire single crystal growth apparatus
JP6119732B2 (en) SiC single crystal and method for producing the same
KR20110134827A (en) Method for producing semiconductor wafers composed of silicon
JP6387907B2 (en) Single crystal manufacturing method
JP2008254946A (en) Apparatus for manufacturing single crystal, single crystal material, electronic component, and method for manufacturing single crystal
CN116334744A (en) Crystal preparation method
JP6424806B2 (en) Method of manufacturing SiC single crystal
KR101679071B1 (en) Melt Gap Controlling System, Method of Manufacturing Single Crystal including the Melt Gap Controlling System
JP5823947B2 (en) Method for producing SiC single crystal
JP2008030969A (en) Single crystal production apparatus
KR102241310B1 (en) Single crystal production method
JP5573753B2 (en) SiC growth equipment
JP6030525B2 (en) Method for producing SiC single crystal
JP2018043898A (en) PRODUCING METHOD OF SiC SINGLE CRYSTAL
JP2016193807A (en) Manufacturing method of sapphire single crystal
KR20130058686A (en) Apparatus and method for manufacturing single crystal
JP2018043907A (en) METHOD OF MANUFACTURING SiC SINGLE CRYSTAL
JP2019178028A (en) Method and apparatus for manufacturing single crystal body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R151 Written notification of patent or utility model registration

Ref document number: 5630369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees