JP5076135B2 - Manufacturing method of nickel powder with hcp structure - Google Patents

Manufacturing method of nickel powder with hcp structure Download PDF

Info

Publication number
JP5076135B2
JP5076135B2 JP2005067969A JP2005067969A JP5076135B2 JP 5076135 B2 JP5076135 B2 JP 5076135B2 JP 2005067969 A JP2005067969 A JP 2005067969A JP 2005067969 A JP2005067969 A JP 2005067969A JP 5076135 B2 JP5076135 B2 JP 5076135B2
Authority
JP
Japan
Prior art keywords
hcp
powder
phase
particles
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005067969A
Other languages
Japanese (ja)
Other versions
JP2006249512A (en
Inventor
和幸 田路
王高 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Dowa Electronics Materials Co Ltd
Original Assignee
Tohoku University NUC
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Dowa Electronics Materials Co Ltd filed Critical Tohoku University NUC
Priority to JP2005067969A priority Critical patent/JP5076135B2/en
Publication of JP2006249512A publication Critical patent/JP2006249512A/en
Application granted granted Critical
Publication of JP5076135B2 publication Critical patent/JP5076135B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、hcp構造をもつニッケル粉の製法に関する。   The present invention relates to a method for producing nickel powder having an hcp structure.

ニッケル粉はその優れた耐食性および耐熱性により導電材料や触媒材料等に広く応用されているが、その結晶構造はfcc構造(面心立方構造)であった。   Nickel powder has been widely applied to conductive materials and catalyst materials due to its excellent corrosion resistance and heat resistance, but its crystal structure was an fcc structure (face-centered cubic structure).

fcc構造のニッケルは磁性を有する。したがって、従来のニッケル粉は磁性をもつものが多く、磁性をもつことが利用される面もあるが、用途に制限を受ける場合もある。例えば積層セラミックコンデンサー用内部電極を構成するような場合には、最近の薄層化が進んだ状況下では磁性を有すると不都合が生じることがある。ニッケルの微粉を樹脂・溶剤に分散させたペーストとし、これを該内部電極構成用に使用する場合に、ニッケル微粉が磁性を有すると、ペースト内でニッケル微粉が磁気凝集を起こし、これが電極切れや電極層と誘電体層界面の平滑性悪化などの原因になることがある。   Nickel having an fcc structure is magnetic. Therefore, many of the conventional nickel powders have magnetism, and there are aspects in which the magnetism is used, but there are cases where the use is limited. For example, in the case where an internal electrode for a multilayer ceramic capacitor is formed, there may be inconvenience if it has magnetism under the recent progress of thinning. When a fine nickel powder is dispersed in a resin / solvent and used for the internal electrode structure, if the fine nickel powder has magnetism, the fine nickel powder will cause magnetic aggregation in the paste, This may cause deterioration of the smoothness of the interface between the electrode layer and the dielectric layer.

また、次世代の配線基板の回路形成方法として、顔料インクの代わりに、金属ナノ粒子を用いた導電性インクをインクジェットプリンターで基板に配線を描画する方法の開発が進められているが、このインクジェット法に用いる導電性インクの金属粒子は微粒でかつ単分散状態であることが極めて重要である。しかし、磁性を有すると磁気凝集を起こしてノズル詰まりやインクの吐出が不安定になりやすく, その結果, 微細で均一な配線が引けないなどの現象がおきるので、強磁性体であるfcc構造のニッケル粉はその使用に制限を受けることになる。   In addition, as a next-generation wiring board circuit formation method, a method of drawing wiring on a substrate with an ink jet printer using conductive ink using metal nanoparticles instead of pigment ink is being developed. It is very important that the metal particles of the conductive ink used in the method are fine and monodispersed. However, if it has magnetism, it causes magnetic agglomeration and nozzle clogging and ink ejection are likely to become unstable. As a result, phenomena such as the inability to draw fine and uniform wiring occur. Nickel powder is subject to restrictions on its use.

さらに、燃料電池などの触媒の用途では、シングルナノオーダーのNi粒子が電極触媒として用いられているが、このような触媒用途ではシングルナノオーダーのNi粒子を担体に均一に分散させることが重要であるところ、磁性を有すると磁気凝集を起こすので強磁性体であるfcc構造のニッケル粉の使用は制限を受ける。   Furthermore, in the application of a catalyst such as a fuel cell, single nano-order Ni particles are used as an electrode catalyst. In such a catalyst application, it is important to uniformly disperse the single nano-order Ni particles on the support. There is a limit to the use of fcc-structured nickel powder, which is a ferromagnetic material, because magnetic aggregation occurs when it has magnetism.

このようにニッケル粉の用途では磁性を有することが不利となることがある。非特許文献1において本願発明者の一人はポリオール法によるNiイオンの還元法によれば、fcc構造(面心立方格子)とhcp構造(最密六方格子)の混合相のニッケル粉が得られることを示した。そして、hcp構造をもつNiの微粒子からなるニッケル粉を特願2004−231584号の明細書および図面に開示した。hcp構造のニッケルは非磁性となる。
JOURNAL OF APPLIED PHYSICS VOLUME 95, NUMBER 11, 1 JUNE P.7477-7479
Thus, it may be disadvantageous to have magnetism in the use of nickel powder. In Non-Patent Document 1, one of the inventors of the present invention can obtain nickel powder of a mixed phase of fcc structure (face-centered cubic lattice) and hcp structure (close-packed hexagonal lattice) according to the reduction method of Ni ions by the polyol method. showed that. A nickel powder made of Ni fine particles having an hcp structure is disclosed in the specification and drawings of Japanese Patent Application No. 2004-231384. Nickel having an hcp structure is nonmagnetic.
JOURNAL OF APPLIED PHYSICS VOLUME 95, NUMBER 11, 1 JUNE P.7477-7479

磁性をもたないニッケル粉が得られると、磁性をもつことで用途の制限を受けている分野において、用途の拡大を図ることができる。非特許文献1ではポリオール法によるとfcc構造とhcp構造の混合相が得られることを示したが、hcp単相を安定して得られるところまでには至っていなかった。したがって、本発明はhcp単相を安定して得ることのできるニッケル粉の製法の開発を目的としたものである。   When nickel powder having no magnetism is obtained, the use can be expanded in the field where the use is restricted due to the magnetism. Non-Patent Document 1 shows that a mixed phase having an fcc structure and an hcp structure can be obtained by the polyol method, but has not yet reached a point where an hcp single phase can be stably obtained. Accordingly, the object of the present invention is to develop a nickel powder production method capable of stably obtaining an hcp single phase.

前記の課題は、ポリオール中に溶存するNiイオンをポリオールで還元して液中に金属Niの微粒子を析出させるさいに、ヘキサクロロ白金(IV)酸のような核誘起剤の存在下で還元するニッケル粉の製法によって解決できることがわかった。   The above-mentioned problem is that nickel that is reduced in the presence of a nucleating agent such as hexachloroplatinum (IV) acid when Ni ions dissolved in the polyol are reduced with the polyol to precipitate fine particles of metallic Ni in the liquid. It was found that this can be solved by the powder manufacturing method.

したがって本発明によると、テトラエチレングリコール中に溶存するNiイオンをヘキサクロロ白金(IV)酸の存在下においてテトラエチレングリコールにより290℃で1時間還元して液中に金属Niの微粒子を析出させることからなるhcp構造をもつニッケル粉の製法を提供する。   Therefore, according to the present invention, Ni ions dissolved in tetraethylene glycol are reduced with tetraethylene glycol at 290 ° C. for 1 hour in the presence of hexachloroplatinum (IV) acid to deposit metal Ni fine particles in the liquid. A method for producing nickel powder having an hcp structure is provided.

本発明者らは、Niイオンを溶存したポリオールを蒸発・還流条件下で処理する方法(ポリオール法)により、液中のNiイオンを該ポリオールでNiに適正に還元するとhcp構造を含むNi微粒子が得られることを知見した。   When the present inventors appropriately reduced Ni ions in a liquid to Ni by a method of treating a polyol in which Ni ions are dissolved under evaporation and reflux conditions (polyol method), Ni fine particles containing an hcp structure are obtained. It was found that it was obtained.

Ni源の出発物質として酢酸ニッケルの四水塩を使用し、これを、エチレングリコール(EG)、トリメチレングリコール(TMEG)またはテトラエチレングリコール(TEG)に溶解したうえ、このポリオール媒体を還流器付きの容器内で蒸発・還流させるポリオール法の実験を行った。   Nickel acetate tetrahydrate is used as a starting material for the Ni source, which is dissolved in ethylene glycol (EG), trimethylene glycol (TMEG) or tetraethylene glycol (TEG), and the polyol medium is equipped with a refluxer. The polyol method was evaporated and refluxed in the container.

EG中に存在する水酸化イオンは反応に影響を与え、OH-イオンの導入は生成するNi粒子の形態に変化を与えることがわかった。図1に、Niイオンを溶存したエチレングリコール溶液に共存するOH-イオン濃度(OH-/Ni比)が異なる場合に、生成するNi粒子がどの様に変化するかをSEM写真で示した。 It has been found that hydroxide ions present in EG affect the reaction, and introduction of OH - ions changes the morphology of the Ni particles produced. FIG. 1 is an SEM photograph showing how the generated Ni particles change when the OH ion concentration (OH / Ni ratio) coexisting in the ethylene glycol solution in which Ni ions are dissolved is different.

図1の(a)〜(d)の写真において、(a)のものはOH-/Ni比=0、(b)ではOH-/Ni比=10、(c)ではOH-/Ni比=50、(d)ではOH-/Ni比=150である。これらの図に見られるように、水素イオン濃度が増大すると、生成する粒子の粒径が減少する。図1(a)のものではμmオーダの不規則な板状の粒子が認められ、X線回折ではfcc相が認められた。(b)〜(c)では生成する粒子の形状が球状になり、粒径が数100nm程度に減少し、(d)では数10nmに減少する。XRDから平均X線結晶粒径を求めたところ、OH-/Ni比が0から50に増大した場合、その平均結晶粒径は50nmから16nmに減少した。室温での飽和磁化値は55〜38emu/g であった。飽和磁化値の低下は非磁性のhcp相の生成が寄与していると見てよい。 In photograph of FIG. 1 (a) ~ (d) , OH those of (a) - / Ni ratio = 0, in (b) OH - / Ni ratio = 10, (c) in OH - / Ni ratio = In 50, (d), the OH / Ni ratio = 150. As seen in these figures, as the hydrogen ion concentration increases, the particle size of the generated particles decreases. In FIG. 1A, irregular plate-like particles having an order of μm were observed, and an fcc phase was observed by X-ray diffraction. In (b) to (c), the shape of the generated particles is spherical, and the particle size is reduced to about several hundred nm, and in (d), it is reduced to several tens of nm. When the average X-ray crystal grain size was determined from XRD, when the OH / Ni ratio increased from 0 to 50, the average crystal grain size decreased from 50 nm to 16 nm. The saturation magnetization value at room temperature was 55 to 38 emu / g. It can be considered that the decrease in the saturation magnetization value is caused by the generation of a nonmagnetic hcp phase.

EGに代えてTMEGを用いてNi粒子を生成させたところ、反応が促進され不安定なhcp構造をもつNi粒子が生成した。そのXRDパターンを図2の(b)に示した。このパターンに見られるように、このNi粒子粉末にはhcp相が現れている。図2の(a)の純粋のfcc相からfccとhcpの混合相に変わったと見られるが、hcp構造のNiは非磁性であることから、飽和磁化値は55emu/g から21emu/g に低下した。   When Ni particles were produced using TMEG instead of EG, the reaction was accelerated and Ni particles having an unstable hcp structure were produced. The XRD pattern is shown in FIG. As can be seen from this pattern, an hcp phase appears in the Ni particle powder. Although it seems that the pure fcc phase in FIG. 2A has changed to a mixed phase of fcc and hcp, the saturation magnetization value is reduced from 55 emu / g to 21 emu / g because Ni in the hcp structure is non-magnetic. did.

なお、上記の実験は, エチレングリコールまたはトリメチレングリコール100mLに酢酸ニッケルの四水塩を所定量溶解し、その溶液を還流器付きの容器に入れ、この容器をオイルバス(マントルヒータ付き)にセットして、ゆるやかな機械的な攪拌を行いながら所定の昇温速度で加熱するという方法で実施したものである。   In the above experiment, a predetermined amount of nickel acetate tetrahydrate was dissolved in 100 mL of ethylene glycol or trimethylene glycol, and the resulting solution was placed in a container equipped with a reflux device, and this container was set in an oil bath (with a mantle heater). Then, it is carried out by a method of heating at a predetermined temperature increase rate while performing gentle mechanical stirring.

さらに、実験を重ねた結果、TEGを用いて反応温度290℃でNi粒子を生成させたところ、hcp単相のNiナノ粒子を合成することができた。その詳細は後記の実施例に示すが、例えばTMEGでNiイオン濃度が0.02Mでは、図3(a)のXRDパターンおよび図4(a)のSEM像に見られるように、fcc 単相が現れた。TEGで反応温度290℃、同じNiイオン濃度0.02Mでもfcc単相であった。しかし、TEGでNiイオン濃度を低下させた場合にはfcc相とhcp相の混合したものが現れるようになり、さらにNiイオン濃度を0.0025Mまで低下させた場合には、純粋なhcp構造のNi粒子を得ることができた。その結果を図3(b)のXRDパターンおよび図4(b)のSEM像に示した。図3(b)はhcpだけのピークが現れており、このNi粒子粉末は純粋なhcp構造を有することがわかる。このNi粒子粉末は図4(b)のSEM像に見られるように、1次粒子の平均粒径が約150nmであり、飽和磁化値は実測されるような値を有しなかった。   Furthermore, as a result of repeated experiments, when Ni particles were generated at a reaction temperature of 290 ° C. using TEG, hcp single-phase Ni nanoparticles could be synthesized. The details will be shown in the examples described later. For example, at TMEG with a Ni ion concentration of 0.02 M, as shown in the XRD pattern of FIG. 3A and the SEM image of FIG. Appeared. Even when the reaction temperature was 290 ° C. with TEG and the same Ni ion concentration was 0.02 M, it was an fcc single phase. However, when the Ni ion concentration is decreased by TEG, a mixture of the fcc phase and the hcp phase appears, and when the Ni ion concentration is further decreased to 0.0025M, a pure hcp structure is obtained. Ni particles could be obtained. The results are shown in the XRD pattern of FIG. 3B and the SEM image of FIG. 4B. FIG. 3B shows a peak only for hcp, and it can be seen that this Ni particle powder has a pure hcp structure. As seen in the SEM image of FIG. 4B, this Ni particle powder had an average primary particle diameter of about 150 nm, and the saturation magnetization value did not have a value as measured.

ここまでは、先述の特願2004−231584号に記載したとおりであるが、さらに研究を続けた結果、Ni核の生成を促進する適切な物質(核誘起剤と呼ぶ)、代表的にはヘキサクロロ白金(IV)酸、の存在下で前記のNi粒子の生成反応を進行させると一層hcp構造が発現しやすいことがわかった。この関係を図6に示す。図6は、溶媒且つ還元剤のテトラエチレングリコールに、酢酸ニッケル(II)四水和物を0.01mol /Lの量で添加して昇温しNi粒子の析出反応を行なわせた場合に、ヘキサクロロ白金(IV)酸を0.0125g添加した場合(●印)と、無添加の場合(◆印)とについて(いずれも反応時間は1時間で同条件の攪拌を実施)、横軸に反応温度を、縦軸に得られたNi粒子の飽和磁化量をとってhcp構造の生成挙動を対比したものである。図6から明らかなように、ヘキサクロロ白金(IV)酸無添加の場合(◆印)では、反応温度の上昇に伴う飽和磁化の低下は僅かであるのに対し、ヘキサクロロ白金(IV)酸を添加した場合(●印))では、反応温度が523K(250℃)近くになると飽和磁化が極端に落ちている(磁性をもたないhcp構造が支配的になる)ことがわかる。事実、反応温度563K(290℃)で得られたNi粒子粉末(ヘキサクロロ白金(IV)酸を添加したもの)のX線回折測定ではhcp―Niに由来するピークしか観察されなかった。他方、核誘発剤無添加で反応温度563K(290℃)で得られたもののX線回折測定ではfcc+hcpの混合相でであり、適切な核誘発剤の添加はhcp相の発現促進に効果があることが確められた。   Up to this point, as described in the above-mentioned Japanese Patent Application No. 2004-231484, as a result of further research, an appropriate substance that promotes the formation of Ni nuclei (called a nuclear inducer), typically hexachloro It was found that the hcp structure is more easily expressed when the formation reaction of the Ni particles proceeds in the presence of platinum (IV) acid. This relationship is shown in FIG. FIG. 6 shows a case where nickel acetate (II) tetrahydrate is added in an amount of 0.01 mol / L to tetraethylene glycol as a solvent and a reducing agent, and the temperature is raised to cause precipitation of Ni particles. When 0.0125 g of hexachloroplatinic (IV) acid is added (marked with ●) and when it is not added (marked with ◆), the reaction time is 1 hour and stirring is performed under the same conditions. The temperature is taken as the saturation magnetization of the Ni particles obtained on the vertical axis, and the generation behavior of the hcp structure is compared. As is clear from FIG. 6, in the case of no hexachloroplatinum (IV) acid added (♦ mark), the decrease in saturation magnetization with the increase in the reaction temperature is slight, while hexachloroplatinum (IV) acid is added. When the reaction temperature is close to 523 K (250 ° C.), the saturation magnetization is extremely lowered (the hcp structure having no magnetism is dominant). In fact, only a peak derived from hcp-Ni was observed in the X-ray diffraction measurement of Ni particle powder (added with hexachloroplatinum (IV) acid) obtained at a reaction temperature of 563 K (290 ° C.). On the other hand, what was obtained at a reaction temperature of 563 K (290 ° C.) without addition of a nuclear inducer was a mixed phase of fcc + hcp in the X-ray diffraction measurement, and the addition of an appropriate nuclear inducer is effective in promoting the expression of the hcp phase. It was confirmed.

このように本発明によると、fcc 相とhcp相の複相構造の微粒子からなるニッケル粉, さらには、hcp単相の微粒子からなるニッケル粉が得られる。前者ではhcp相の割合が増えるに従って飽和磁化値が下がり、後者では飽和磁化値は0emu/g に近くなる。したがって、本発明のニッケル粉は磁性をもたないか、有しても僅かであるという特徴を有しており、このために、これまでの強磁性ニッケル粉のものでは適用できなかった分野への利用ができるようになり、ニッケル粉の用途の拡大ができる。そして、本発明に従うニッケル粉は極めて微粒子であるから、ナノテクノロジー分野での新規材料として有用である。   As described above, according to the present invention, nickel powder composed of fine particles having a multi-phase structure of fcc phase and hcp phase, and further nickel powder composed of fine particles of hcp single phase can be obtained. In the former, the saturation magnetization value decreases as the ratio of the hcp phase increases, and in the latter, the saturation magnetization value approaches 0 emu / g. Therefore, the nickel powder of the present invention has a feature that it has no or little magnetism, and for this reason, to the field that could not be applied with conventional ferromagnetic nickel powders. The use of nickel powder can be expanded. And since the nickel powder according to the present invention is extremely fine, it is useful as a new material in the nanotechnology field.

以下に実施例を挙げるが、各例のX線結晶粒径(Dx)は Scherrer の式を用いて求めたものである。 Scherrer の式、D=K・λ/β COSθにおけるKとして0.94を採用し、X線の管球はCuを用いて、D=0.94×1.5405/β COSθより算出した。回折ピークに関しては、hcp相、fcc相ともに45度付近にメインピークが観察されるのでこのメインピークを採用した。   Examples are given below, and the X-ray crystal grain size (Dx) in each example is determined using the Scherrer equation. The Scherrer's equation, D = K · λ / β COSθ was 0.94 as K, and the X-ray tube was calculated from D = 0.94 × 1.5405 / βCOSθ using Cu. Regarding the diffraction peak, since the main peak is observed at around 45 degrees in both the hcp phase and the fcc phase, this main peak was adopted.

〔例1〕
エチレングリコール(沸点:197℃)100mLに、酢酸ニッケル(II)四水和物を0.01mol /Lになるよう添加し、固形分が存在しなくなるまで溶解した。この溶液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該溶液をマグネットスターラーを用いて(以下の例も同じ)160rpmの回転速度で撹拌しつつ加熱し、192℃の温度で1時間の還流を行って、反応を終了した。そのさい、昇温速度は10℃/min とした。
[Example 1]
Nickel (II) acetate tetrahydrate was added to 100 mL of ethylene glycol (boiling point: 197 ° C.) to a concentration of 0.01 mol / L and dissolved until no solid content existed. This solution is transferred to a container equipped with a refluxer and placed in an oil bath. While blowing nitrogen gas as an inert gas at a flow rate of 400 mL / min into the container, the solution is removed using a magnetic stirrer (the following examples are also used). The same) was heated with stirring at a rotation speed of 160 rpm, and refluxed at a temperature of 192 ° C. for 1 hour to complete the reaction. At that time, the heating rate was set to 10 ° C./min.

反応終了後の液に3倍量のメタノールを添加したうえで遠心分離器にかけ、その後、上澄み液を取り除いた。上澄み液を除いたあとの残留分(粒子粉末)に再びメタノール100mLを添加して超音波洗浄槽に装填し、この超音波洗浄槽で該粒子粉末を分散させた。得られた分散液を遠心分離器にかけたあと上澄み液を取り除いた。得られた残留分(粒子粉末)に対し、前記同様のメタノールを加えて超音波洗浄槽および遠心分離器で処理する洗浄操作を、さらに2回繰り返した。最後に上澄み液を分別して得られたニッケル粉含有物を、X線回折(XRD)、磁気測定(VSM)に供し、下記の結果を得た。なお、TEMおよびSEM観察も行った。   Three times the amount of methanol was added to the liquid after completion of the reaction, followed by centrifugation, and then the supernatant was removed. 100 mL of methanol was again added to the residue (particle powder) after removing the supernatant, and the mixture was loaded into an ultrasonic cleaning tank, and the particle powder was dispersed in this ultrasonic cleaning tank. After the obtained dispersion was centrifuged, the supernatant was removed. The washing operation of adding the same methanol as described above to the obtained residue (particle powder) and treating the residue with an ultrasonic washing tank and a centrifuge was further repeated twice. Finally, the nickel powder-containing material obtained by separating the supernatant was subjected to X-ray diffraction (XRD) and magnetic measurement (VSM), and the following results were obtained. TEM and SEM observations were also performed.

透過電子顕微鏡(TEM)から観測された1次粒子の平均粒径は数μmであった。SEM観察から不規則な板状粒子であることが観察された。X線回折ではfcc構造に由来する回折ピークしか観察されなかった。VSMによる飽和磁化の測定結果は、55emu/g であった。X線結晶粒径(Dx)は50nmであった。SEM観察結果を図1の(a)に示した。X線回折結果および飽和磁化値から本例のニッケル粉はfcc構造であると見てよい。   The average particle diameter of primary particles observed from a transmission electron microscope (TEM) was several μm. From SEM observation, it was observed that the particles were irregular plate-like particles. In X-ray diffraction, only diffraction peaks derived from the fcc structure were observed. The measurement result of saturation magnetization by VSM was 55 emu / g. The X-ray crystal grain size (Dx) was 50 nm. The result of SEM observation is shown in FIG. From the X-ray diffraction result and the saturation magnetization value, it can be seen that the nickel powder of this example has an fcc structure.

〔例2〕
水酸化イオン(OH-)の導入のために、OH-/Niのモル比が150となる量のNaOHを原料溶解時に添加した以外は例1を繰り返した。
[Example 2]
Example 1 was repeated except that NaOH was added at the time of melting the raw material in order to introduce hydroxide ions (OH ) so that the molar ratio of OH / Ni was 150.

得られたニッケル粉含有物を例1と同様の測定に供した。透過電子顕微鏡(TEM)から観測された1次粒子の平均粒径は数100nmであった。SEM観察からは球状粒子が観察された。X線回折ではfcc構造に由来する回折ピークしか観察されなかった。しかし、VSMによる飽和磁化の測定結果は38emu/g であり、例1のものより低下した。X線結晶粒径(Dx)は16nmであった。SEM観察結果を図1(c)に示した。X線回折ではfcc相が現れたが、飽和磁化値から本例のニッケル粉はfcc相+hcp相の複相であると見てよい。   The obtained nickel powder-containing material was subjected to the same measurement as in Example 1. The average particle diameter of primary particles observed from a transmission electron microscope (TEM) was several hundred nm. Spherical particles were observed from SEM observation. In X-ray diffraction, only diffraction peaks derived from the fcc structure were observed. However, the measurement result of saturation magnetization by VSM was 38 emu / g, which was lower than that of Example 1. The X-ray crystal grain size (Dx) was 16 nm. The SEM observation result is shown in FIG. Although the fcc phase appeared in the X-ray diffraction, it can be seen from the saturation magnetization value that the nickel powder of this example is a double phase of the fcc phase + hcp phase.

〔例3〕
トリメチレングリコール(沸点:229.2℃)100mLに、酢酸ニッケル(II)四水和物を0.02mol /Lになるよう添加し、固形分が存在しなくなるまで溶解した。この溶液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該溶液を160rpmの回転速度で撹拌しつつ加熱し、200℃の温度で1時間の還流を行って、反応を終了した。そのさい、昇温速度は10℃/min とした。
[Example 3]
To 100 mL of trimethylene glycol (boiling point: 229.2 ° C.), nickel (II) acetate tetrahydrate was added to 0.02 mol / L and dissolved until no solid content existed. This solution is transferred to a container equipped with a reflux device and placed in an oil bath. While blowing nitrogen gas as an inert gas at a flow rate of 400 mL / min into the container, the solution is heated while being stirred at a rotation speed of 160 rpm. The reaction was terminated by refluxing at a temperature of 200 ° C. for 1 hour. At that time, the heating rate was set to 10 ° C./min.

その結果、透過電子顕微鏡(TEM)から観測された1次粒子の平均粒径は100〜600nmであった。また、SEM観察から球状粒子が観察された。X線回折ではfcc構造に由来する回折ピークしか観察されなかった。VSMによる飽和磁化の測定結果は、55emu/g であった。X線結晶粒径(Dx)は29nmであった。SEM観察結果を図4(a)に、またX線回折パターンを図3(a)に示した。X線回折結果および飽和磁化値から本例のニッケル粉はfcc構造であると見てよい。   As a result, the average particle diameter of primary particles observed from a transmission electron microscope (TEM) was 100 to 600 nm. In addition, spherical particles were observed from SEM observation. In X-ray diffraction, only diffraction peaks derived from the fcc structure were observed. The measurement result of saturation magnetization by VSM was 55 emu / g. The X-ray crystal grain size (Dx) was 29 nm. The SEM observation result is shown in FIG. 4A, and the X-ray diffraction pattern is shown in FIG. From the X-ray diffraction result and the saturation magnetization value, it can be seen that the nickel powder of this example has an fcc structure.

〔例4〕
酢酸ニッケル(II)四水和物を0.0025mol /Lになるように添加した以外は、例3を繰り返した。
[Example 4]
Example 3 was repeated except that nickel acetate (II) tetrahydrate was added to 0.0025 mol / L.

得られたニッケル粉含有物を例3と同様の測定に供した。透過電子顕微鏡(TEM)から観測された1次粒子の平均粒径は60〜70nmであった。SEM観察からは球状粒子が観察された。X線回折ではfcc構造とhcp構造に由来する回折ピークが観察された。VSMによる飽和磁化の測定結果は21emu/g であった。X線結晶粒径(Dx)は12nmであった。SEM観察結果を図5に示した。またX線回折パターンを図2(b)に示しが、fcc相+hcp相が共存しているのがわかる。   The obtained nickel powder-containing material was subjected to the same measurement as in Example 3. The average particle diameter of primary particles observed from a transmission electron microscope (TEM) was 60 to 70 nm. Spherical particles were observed from SEM observation. In X-ray diffraction, diffraction peaks derived from the fcc structure and the hcp structure were observed. The measurement result of saturation magnetization by VSM was 21 emu / g. The X-ray crystal grain size (Dx) was 12 nm. The SEM observation results are shown in FIG. Further, the X-ray diffraction pattern is shown in FIG. 2B, and it can be seen that the fcc phase + hcp phase coexist.

〔例5〕
テトラエチングリコール(沸点:327.3℃)100mLに、酢酸ニッケル(II)四水和物を0.0025mol /Lになるよう添加し、固形分が存在しなくなるまで溶解した。この溶液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該溶液を160rpmの回転速度で撹拌しつつ加熱し、290℃の温度で1時間の還流を行って、反応を終了した。そのさい、昇温速度は10℃/min とした。
[Example 5]
To 100 mL of tetraethine glycol (boiling point: 327.3 ° C.), nickel (II) acetate tetrahydrate was added to a concentration of 0.0025 mol / L and dissolved until no solid content existed. This solution is transferred to a container equipped with a reflux device and placed in an oil bath. While blowing nitrogen gas as an inert gas at a flow rate of 400 mL / min into the container, the solution is heated while being stirred at a rotation speed of 160 rpm. The reaction was terminated by refluxing at a temperature of 290 ° C. for 1 hour. At that time, the heating rate was set to 10 ° C./min.

その結果、透過電子顕微鏡(TEM)から観測された1次粒子の平均粒径は約150nmであった。また、SEM観察から球状粒子が観察された。X線回折ではhcp構造に由来する回折ピークしか観察されなかった。VSMによる飽和磁化の測定結果は、ほぼ0emu/g であった。X線結晶粒径(Dx)は43nmであった。SEM観察結果を図4(b)に、またX線回折パターンを図3(b)に示したが、hcp単相であることがわかる。   As a result, the average particle diameter of primary particles observed from a transmission electron microscope (TEM) was about 150 nm. In addition, spherical particles were observed from SEM observation. In X-ray diffraction, only diffraction peaks derived from the hcp structure were observed. The measurement result of saturation magnetization by VSM was almost 0 emu / g. The X-ray crystal grain size (Dx) was 43 nm. The SEM observation result is shown in FIG. 4 (b) and the X-ray diffraction pattern is shown in FIG. 3 (b). It can be seen that it is an hcp single phase.

〔例6〕
テトラエチレングリコール100mLに、酢酸ニッケル(II)四水和物を0.01mol
/Lになるよう添加し、さらにヘキサクロロ白金(IV)酸(和光純薬株式会社製)を0.125g添加し、固形分が存在しなくなるまで溶解した。この溶液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該溶液を160rpmの回転速度で撹拌しつつ加熱し、反応温度を290℃の温度で1時間の還流を行って、反応を終了した。そのさい、昇温速度は10℃/min とした。得られたNi粉のX線回折パターンを図7に示した。図7に見られるようにhcp―Niに由来するピークしか観察されなかった。また、このNi粉のSEM写真を図8に示したが、数100nmの一次粒子が凝集した状態のものが観察される。
[Example 6]
To 100 mL of tetraethylene glycol, 0.01 mol of nickel (II) acetate tetrahydrate
Then, 0.125 g of hexachloroplatinic (IV) acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added and dissolved until no solid content existed. This solution is transferred to a container equipped with a reflux device and placed in an oil bath. While blowing nitrogen gas as an inert gas at a flow rate of 400 mL / min into the container, the solution is heated while being stirred at a rotation speed of 160 rpm. The reaction was terminated by refluxing for 1 hour at a reaction temperature of 290 ° C. At that time, the heating rate was set to 10 ° C./min. The X-ray diffraction pattern of the obtained Ni powder is shown in FIG. As can be seen in FIG. 7, only peaks derived from hcp-Ni were observed. Moreover, although the SEM photograph of this Ni powder was shown in FIG. 8, the thing of the state which the primary particle of several 100 nm aggregated is observed.

〔例7〕
テトラエチレングリコール100mLに、酢酸ニッケル(II)四水和物を0.005mol /Lになるよう添加し、さらにヘキサクロロ白金(IV)酸(和光純薬株式会社製)を0.125g添加し、固形分が存在しなくなるまで溶解した。この溶液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該溶液を160rpmの回転速度で撹拌しつつ加熱し、反応温度を290℃の温度で1時間の還流を行って、反応を終了した。そのさい、昇温速度は10℃/min とした。得られたNi粉のX線回折パターンを図9に示した。図9に見られるようにhcp―Niに由来するピークしか観察されなかった。また、このNi粉のSEM写真を図10に示したが、100nm程度以下の一次粒子が凝集した状態のものが観察され、例6のもの(図7)と比較すると、Ni塩の仕込み濃度を下げた本例では一次粒子がより微粒子化していることがわかる。
[Example 7]
To 100 mL of tetraethylene glycol, nickel acetate (II) tetrahydrate was added to 0.005 mol / L, and further 0.125 g of hexachloroplatinic acid (IV) (manufactured by Wako Pure Chemical Industries, Ltd.) was added. Dissolved until no more minutes were present. This solution is transferred to a container equipped with a reflux device and placed in an oil bath. While blowing nitrogen gas as an inert gas at a flow rate of 400 mL / min into the container, the solution is heated while being stirred at a rotation speed of 160 rpm. The reaction was terminated by refluxing for 1 hour at a reaction temperature of 290 ° C. At that time, the heating rate was set to 10 ° C./min. The X-ray diffraction pattern of the obtained Ni powder is shown in FIG. As can be seen in FIG. 9, only peaks derived from hcp-Ni were observed. Moreover, although the SEM photograph of this Ni powder was shown in FIG. 10, the thing of the state which the primary particle about 100 nm or less aggregated was observed, and compared with the thing of FIG. In this lowered example, it can be seen that the primary particles are made finer.

ポリオール法において種々の水酸化イオン濃度のもとで生成したNi粒子のSEM写真であり、図中の(a)、(b)、(c)、(d)は、それぞれOH-/Ni比が0、10、50、150の場合を示す。It is a SEM photograph of Ni particles produced under various hydroxide ion concentrations in the polyol method, and (a), (b), (c), and (d) in the figure are respectively OH / Ni ratios. The cases of 0, 10, 50, and 150 are shown. ポリオール法で得られたNi粉のXRDパターンであり、図中の(a)はfcc相をもつNi粉のものを, (b)はfcc相とhcp相の複相組織のNi粉のものを示している。It is an XRD pattern of Ni powder obtained by the polyol method. In the figure, (a) shows Ni powder with fcc phase, (b) shows Ni powder with multi-phase structure of fcc phase and hcp phase. Show. ポリオール法で得られた他のNi粉のXRDパターンであり、図中の(a)はfcc相をもつNi粉のものを, (b)はhcp単相のNi粉のものを示している。It is the XRD pattern of the other Ni powder obtained by the polyol method, (a) in the figure shows the Ni powder having the fcc phase, and (b) shows the hcp single-phase Ni powder. ポリオール法で得られた他のNi粉のSEM写真であり、図中の(a)はfcc相をもつNi粉を, (b)はhcp単相のNi粉を示している。It is a SEM photograph of the other Ni powder obtained by the polyol method, (a) in the figure shows Ni powder with fcc phase, (b) shows Ni powder of hcp single phase. ポリオール法で得られた他のNi粉のSEM写真である。It is a SEM photograph of other Ni powder obtained by the polyol method. ヘキサクロロ白金(IV)酸の添加の有無の両方について、反応温度を変化させたときの飽和磁化の変化を示す図である。It is a figure which shows the change of the saturation magnetization when changing reaction temperature about both the presence or absence of the addition of hexachloroplatinum (IV) acid. ヘキサクロロ白金酸(IV)添加して得られたNi粉のX線回折パターンである。It is an X-ray diffraction pattern of Ni powder obtained by adding hexachloroplatinic acid (IV). ヘキサクロロ白金酸(IV)添加して得られたNi粉のSEM写真である。It is a SEM photograph of Ni powder obtained by adding hexachloroplatinic acid (IV). ヘキサクロロ白金酸(IV)添加して得られた他のNi粉のX線回折パターンである。It is an X-ray diffraction pattern of another Ni powder obtained by adding hexachloroplatinic acid (IV). ヘキサクロロ白金酸(IV)添加して得られた他のNi粉のSEM写真である。It is a SEM photograph of other Ni powder obtained by adding hexachloroplatinic acid (IV).

Claims (1)

テトラエチレングリコール中に溶存するNiイオンをヘキサクロロ白金(IV)酸の存在下においてテトラエチレングリコールにより290℃で1時間還元して液中に金属Niの微粒子を析出させることからなるhcp構造をもつニッケル粉の製法。 Nickel having an hcp structure formed by reducing Ni ions dissolved in tetraethylene glycol with tetraethylene glycol for 1 hour at 290 ° C. in the presence of hexachloroplatinum (IV) acid to precipitate fine particles of metal Ni in the liquid. How to make powder.
JP2005067969A 2005-03-10 2005-03-10 Manufacturing method of nickel powder with hcp structure Expired - Fee Related JP5076135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005067969A JP5076135B2 (en) 2005-03-10 2005-03-10 Manufacturing method of nickel powder with hcp structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005067969A JP5076135B2 (en) 2005-03-10 2005-03-10 Manufacturing method of nickel powder with hcp structure

Publications (2)

Publication Number Publication Date
JP2006249512A JP2006249512A (en) 2006-09-21
JP5076135B2 true JP5076135B2 (en) 2012-11-21

Family

ID=37090309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005067969A Expired - Fee Related JP5076135B2 (en) 2005-03-10 2005-03-10 Manufacturing method of nickel powder with hcp structure

Country Status (1)

Country Link
JP (1) JP5076135B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079781A1 (en) * 2009-01-06 2010-07-15 国立大学法人九州大学 Fibrous nickel and method for producing the same
JP7069513B2 (en) * 2018-03-02 2022-05-18 本多電子株式会社 Method for manufacturing hollow gold nanoparticles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI243725B (en) * 2003-05-27 2005-11-21 Samsung Electronics Co Ltd Method for preparing non-magnetic nickel powders

Also Published As

Publication number Publication date
JP2006249512A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4344001B2 (en) Composition containing fine silver particles, method for producing the same, method for producing fine silver particles, and paste having fine silver particles
TWI277469B (en) Silver particle powder and its production method
JP6168837B2 (en) Copper fine particles and method for producing the same
JP2007270312A (en) Method for manufacturing silver powder, and silver powder
US20120201759A1 (en) Tunable multiscale structures comprising bristly, hollow metal/metal oxide particles, methods of making and articles incorporating the structures
KR101671049B1 (en) Nickel-cobalt nanoparticle and manufacturing method therefor
WO2006069513A1 (en) Spherical ultrafine nickel powder with high tap density and its wet processes preparing mothod
JP2017179551A (en) Nickel particle, conductive paste, internal electrode and laminate ceramic capacitor
Teichert et al. Refinement of the Microwave‐Assisted Polyol Process for the Low‐Temperature Synthesis of Intermetallic Nanoparticles
JP5176060B2 (en) Method for producing silver particle dispersion
JP4505633B2 (en) Manufacturing method of nickel powder with hcp structure
JP5076135B2 (en) Manufacturing method of nickel powder with hcp structure
JP4674376B2 (en) Method for producing silver particle powder
US8003019B2 (en) Silver particle dispersion ink
WO2006090151A1 (en) Process of forming a nanocrystalline metal alloy
JP2019178404A (en) Core shell particle and application thereof
Pal et al. Dipentaerythritol: a novel additive for the precipitation of dispersed Ni particles in polyols
JP4528959B2 (en) Magnetic material and method for producing the same
JP6608378B2 (en) Method for producing nickel particles
Gedanken et al. Sonochemistry and other novel methods developed for the synthesis of nanoparticles
Markova et al. Influence of the Support on the Morphology of Co-Sn, Ni-Sn, Co-Ni Nanoparticles Synthesized Through a Borohydride Reduction Method Applying a Template Technique
JP2021155836A (en) Method for producing metal nanoparticles
Patroi et al. Production of nanoparticles, of powders and setup of components for power equipment
JP2021066913A (en) Metal fine particle-dispersed oil, method for producing the same and device for producing the same
Mastai et al. Developed for the Synthesis of Nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110509

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5076135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees