JP4505633B2 - Manufacturing method of nickel powder with hcp structure - Google Patents

Manufacturing method of nickel powder with hcp structure Download PDF

Info

Publication number
JP4505633B2
JP4505633B2 JP2004231584A JP2004231584A JP4505633B2 JP 4505633 B2 JP4505633 B2 JP 4505633B2 JP 2004231584 A JP2004231584 A JP 2004231584A JP 2004231584 A JP2004231584 A JP 2004231584A JP 4505633 B2 JP4505633 B2 JP 4505633B2
Authority
JP
Japan
Prior art keywords
hcp
nickel powder
powder
phase
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004231584A
Other languages
Japanese (ja)
Other versions
JP2006045648A (en
Inventor
和幸 田路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Dowa Electronics Materials Co Ltd
Original Assignee
Tohoku University NUC
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Dowa Electronics Materials Co Ltd filed Critical Tohoku University NUC
Priority to JP2004231584A priority Critical patent/JP4505633B2/en
Publication of JP2006045648A publication Critical patent/JP2006045648A/en
Application granted granted Critical
Publication of JP4505633B2 publication Critical patent/JP4505633B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、hcp構造をもつニッケル粉およびその製法に関する。   The present invention relates to nickel powder having an hcp structure and a method for producing the same.

ニッケル粉はその優れた耐食性および耐熱性により導電材料や触媒材料等に広く応用さ
れているが、その結晶構造はfcc構造(面心立方構造)であった。
Nickel powder has been widely applied to conductive materials and catalyst materials due to its excellent corrosion resistance and heat resistance, but its crystal structure was an fcc structure (face-centered cubic structure).

fcc構造のニッケルは磁性を有する。したがって、従来のニッケル粉は磁性をもつものが多く、磁性をもつことが利用される面もあるが、用途に制限を受ける場合もある。例
えば積層セラミックコンデンサー用内部電極を構成するような場合には、最近の薄層化が進んだ状況下では磁性を有すると不都合が生じることがある。ニッケルの微粉を樹脂・溶
剤に分散させたペーストとし、これを該内部電極構成用に使用する場合に、ニッケル微粉が磁性を有すると、ペースト内でニッケル微粉が磁気凝集を起こし、これが電極切れや電
極層と誘電体層界面の平滑性悪化などの原因になることがある。
Nickel having an fcc structure is magnetic. Therefore, many of the conventional nickel powders have magnetism, and there are aspects in which the magnetism is used, but there are cases where the use is limited. For example, in the case where an internal electrode for a multilayer ceramic capacitor is formed, there may be inconvenience if it has magnetism under the recent progress of thinning. When a fine nickel powder is dispersed in a resin / solvent and used for the internal electrode configuration, if the nickel fine powder has magnetism, the nickel fine powder causes magnetic aggregation in the paste, This may cause deterioration of the smoothness of the interface between the electrode layer and the dielectric layer.

また、次世代の配線基板の回路形成方法として、顔料インクの代わりに、金属ナノ粒子を用いた導電性インクをインクジェットプリンターで基板に配線を描画する方法の開発が
進められているが、このインクジェット法に用いる導電性インクの金属粒子は微粒でかつ単分散状態であることが極めて重要である。しかし、磁性を有すると磁気凝集を起こすの
で強磁性体であるfcc構造のニッケル粉の使用は制限を受ける。
In addition, as a next-generation wiring board circuit formation method, a method of drawing wiring on a substrate with an ink jet printer using conductive ink using metal nanoparticles instead of pigment ink is being developed. It is very important that the metal particles of the conductive ink used in the method are fine and monodispersed. However, the use of fcc-structured nickel powder, which is a ferromagnetic material, is limited because it causes magnetic aggregation if it has magnetism.

さらに、燃料電池などの触媒の用途では、シングルナノオーダーのNi粒子が電極触媒として用いられているが、このような触媒用途ではシングルナノオーダーのNi粒子を担
体に均一に分散させることが重要であるところ、磁性を有すると磁気凝集を起こすので強
磁性体であるfcc構造のニッケル粉の使用は制限を受ける。
Furthermore, in the application of a catalyst such as a fuel cell, single nano-order Ni particles are used as an electrode catalyst. In such a catalyst application, it is important to uniformly disperse the single nano-order Ni particles on the support. There is a limit to the use of fcc-structured nickel powder, which is a ferromagnetic material, because magnetic aggregation occurs when it has magnetism.

このようにニッケル粉の用途では磁性を有することが不利となることがある。しかし、
磁性をもたないニッケル粉は知られておらず、製造もされていない。
Thus, it may be disadvantageous to have magnetism in the use of nickel powder. But,
Nickel powder without magnetism is not known or manufactured.

本発明は、磁性を有しないか、有しても僅かであるニッケル粉を得ること、さらには粒
径および結晶構造の制御可能な製法を確立することを課題としてなされたものである。
An object of the present invention is to obtain a nickel powder that has no or little magnetism, and further to establish a production method capable of controlling the grain size and crystal structure.

前記の磁性に関する課題は、hcp構造(六方最密構造)をもつNiの微粒子からなるニッケル粉によって解決できることがわかった。また、粒径および結晶構造の制御に関す
る課題は、ポリオール中に溶存するNiイオンをポリオールで還元して液中に金属Niの微粒子を析出させることからなるhcp構造をもつニッケル粉の製法によって解決できる
ことがわかった。
It has been found that the above-mentioned problems relating to magnetism can be solved by nickel powder comprising Ni fine particles having an hcp structure (hexagonal close-packed structure). In addition, the problems related to the control of the particle size and crystal structure can be solved by a method for producing nickel powder having an hcp structure, in which Ni ions dissolved in the polyol are reduced with the polyol and metal Ni fine particles are precipitated in the liquid. I understood.

したがって本発明によると、hcp構造(またはhcp構造とfcc構造)をもつNiの微粒子からなる、飽和磁化値40emu/g 以下(0emu/g を含む)のニッケル粉を提供す
る。このニッケル粉はTEM観察による平均粒径が好ましくは5μm以下である。
Therefore, according to the present invention, there is provided nickel powder having a saturation magnetization value of 40 emu / g or less (including 0 emu / g) made of Ni fine particles having an hcp structure (or hcp structure and fcc structure). The nickel powder preferably has an average particle size of 5 μm or less as observed by TEM.

本発明者は、Niイオンを溶存したポリオールを蒸発・還流条件下で処理する方法(ポリオール法)により、液中のNiイオンを該ポリオールでNiに適正に還元するとhcp
構造を含むNi微粒子が得られることを知見した。
When the present inventors appropriately reduce Ni ions in a liquid to Ni by the polyol (polyol method) by treating a polyol in which Ni ions are dissolved under evaporation / reflux conditions, hcp
It has been found that Ni fine particles including a structure can be obtained.

Ni源の出発物質として酢酸ニッケルの四水塩を使用し、これを、エチレングリコール(EG)、トリメチレングリコール(TMEG)またはテトラエチレングリコール(TE
G)に溶解したうえ、このポリオール媒体を還流器付きの容器内で蒸発・還流させるポリ
オール法の実験を行った。
Nickel acetate tetrahydrate is used as a starting material for the Ni source, which can be ethylene glycol (EG), trimethylene glycol (TMEG) or tetraethylene glycol (TE
An experiment of a polyol method in which the polyol medium was evaporated and refluxed in a container equipped with a refluxer after being dissolved in G) was conducted.

EG中に存在する水酸化イオンは反応に影響を与え、OH-イオンの導入は生成するNi粒子の形態に変化を与えることがわかった。図1に、Niイオンを溶存したエチレング
リコール溶液に共存するOH-イオン濃度(OH-/Ni比)が異なる場合に、生成する
Ni粒子がどの様に変化するかをSEM写真で示した。
It has been found that hydroxide ions present in EG affect the reaction, and introduction of OH - ions changes the morphology of the Ni particles produced. FIG. 1 is an SEM photograph showing how the generated Ni particles change when the OH ion concentration (OH / Ni ratio) coexisting in the ethylene glycol solution in which Ni ions are dissolved is different.

図1の(a)〜(d)の写真において、(a)のものはOH-/Ni比=0、(b)ではOH-/Ni比=10、(c)ではOH-/Ni比=50、(d)ではOH-/Ni比
=150である。これらの図に見られるように、水素イオン濃度が増大すると、生成する粒子の粒径が減少する。図1(a)のものではμmオーダの不規則な板状の粒子が認めら
れ、X線回折ではfcc相が認められた。(b)〜(c)では生成する粒子の形状が球状になり、粒径が数100nm程度に減少し、(d)では数10nmに減少する。XRDか
ら平均X線結晶粒径を求めたところ、OH-/Ni比が0から50に増大した場合、その平均結晶粒径は50nmから16nmに減少した。室温での飽和磁化値は55〜38emu/
g であった。飽和磁化値の低下は非磁性のhcp相の生成が寄与していると見てよい。
In photograph of FIG. 1 (a) ~ (d) , OH those of (a) - / Ni ratio = 0, in (b) OH - / Ni ratio = 10, (c) in OH - / Ni ratio = In 50, (d), the OH / Ni ratio = 150. As seen in these figures, as the hydrogen ion concentration increases, the particle size of the generated particles decreases. In FIG. 1A, irregular plate-like particles having an order of μm were observed, and an fcc phase was observed by X-ray diffraction. In (b) to (c), the shape of the generated particles is spherical, and the particle size is reduced to about several hundred nm. When the average X-ray crystal grain size was determined from XRD, when the OH / Ni ratio increased from 0 to 50, the average crystal grain size decreased from 50 nm to 16 nm. Saturation magnetization at room temperature is 55-38emu /
g. It can be considered that the decrease in the saturation magnetization value is caused by the generation of a nonmagnetic hcp phase.

EGに代えてTMEGを用いてNi粒子を生成させたところ、反応が促進され不安定なhcp構造をもつNi粒子が生成した。そのXRDパターンを図2の(b)に示した。こ
のパターンに見られるように、このNi粒子粉末にはhcp相が現れている。図2の(a)の純粋のfcc相からfccとhcpの混合相に変わったと見られるが、hcp構造の
Niは非磁性であることから、飽和磁化値は55emu/g から21emu/g に低下した。
When Ni particles were produced using TMEG instead of EG, the reaction was accelerated and Ni particles having an unstable hcp structure were produced. The XRD pattern is shown in FIG. As can be seen from this pattern, an hcp phase appears in the Ni particle powder. Although it seems that the pure fcc phase in FIG. 2A has changed to a mixed phase of fcc and hcp, the saturation magnetization value is reduced from 55 emu / g to 21 emu / g because Ni in the hcp structure is non-magnetic. did.

なお、上記の実験は, エチレングリコールまたはトリメチレングリコール100mLに酢酸ニッケルの四水塩を所定量溶解し、その溶液を還流器付きの容器に入れ、この容器を
オイルバス(マントルヒータ付き)にセットして、ゆるやかな機械的な攪拌を行いながら
所定の昇温速度で加熱するという方法で実施したものである。
In the above experiment, a predetermined amount of nickel acetate tetrahydrate was dissolved in 100 mL of ethylene glycol or trimethylene glycol, and the resulting solution was placed in a container equipped with a reflux device, and this container was set in an oil bath (with a mantle heater). Then, it is carried out by a method of heating at a predetermined temperature increase rate while performing gentle mechanical stirring.

さらに、実験を重ねた結果、TEGを用いて反応温度290℃でNi粒子を生成させたところ、hcp単相のNiナノ粒子を合成することができた。その詳細は後記の実施例に
示すが、例えばTMEGでNiイオン濃度が0.02Mでは、図3(a)のXRDパターンおよび図4(a)のSEM像に見られるように、fcc 単相が現れた。TEGで反応温
度290℃、同じNiイオン濃度0.02Mでもfcc単相であった。しかし、TEGでNiイオン濃度を低下させた場合にはfcc相とhcp相の混合したものが現れるように
なり、さらにNiイオン濃度を0.0025Mまで低下させた場合には、純粋なhcp構造のNi粒子を得ることができた。その結果を図3(b)のXRDパターンおよび図4(
b)のSEM像に示した。図3(b)はhcpだけのピークが現れており、このNi粒子粉末は純粋なhcp構造を有することがわかる。このNi粒子粉末は図4(b)のSEM
像に見られるように、1次粒子の平均粒径が約150nmであり、飽和磁化値は実測され
るような値を有しなかった。
Furthermore, as a result of repeated experiments, when Ni particles were generated at a reaction temperature of 290 ° C. using TEG, hcp single-phase Ni nanoparticles could be synthesized. The details will be shown in the examples described later. For example, at TMEG with a Ni ion concentration of 0.02 M, as shown in the XRD pattern of FIG. 3A and the SEM image of FIG. Appeared. Even when the reaction temperature was 290 ° C. with TEG and the same Ni ion concentration was 0.02 M, it was an fcc single phase. However, when the Ni ion concentration is decreased by TEG, a mixture of the fcc phase and the hcp phase appears, and when the Ni ion concentration is further decreased to 0.0025M, a pure hcp structure is obtained. Ni particles could be obtained. The result is shown in the XRD pattern of FIG.
It was shown in the SEM image of b). FIG. 3B shows a peak only for hcp, and it can be seen that this Ni particle powder has a pure hcp structure. This Ni particle powder is the SEM of FIG.
As can be seen in the image, the average particle size of the primary particles was about 150 nm, and the saturation magnetization value did not have a value as measured.

このように本発明によると、fcc 相とhcp相の複相構造の微粒子からなるニッケル粉, さらには、hcp単相の微粒子からなるニッケル粉が得られる。前者ではhcp相の
割合が増えるに従って飽和磁化値が下がり、後者では飽和磁化値は0emu/g に近くなる。したがって、本発明のニッケル粉は磁性をもたないか、有しても僅かであるという特徴を
有しており、このために、これまでの強磁性ニッケル粉のものでは適用できなかった分野への利用ができるようになり、ニッケル粉の用途の拡大ができる。そして、本発明に従う
ニッケル粉は極めて微粒子であるから、ナノテクノロジー分野での新規材料として有用で
ある。
As described above, according to the present invention, nickel powder composed of fine particles having a multi-phase structure of fcc phase and hcp phase, and further nickel powder composed of fine particles of hcp single phase can be obtained. In the former, the saturation magnetization value decreases as the ratio of the hcp phase increases, and in the latter, the saturation magnetization value approaches 0 emu / g. Therefore, the nickel powder of the present invention has a feature that it has no or little magnetism, and for this reason, to the field that could not be applied with conventional ferromagnetic nickel powders. The use of nickel powder can be expanded. And since the nickel powder according to the present invention is extremely fine, it is useful as a new material in the nanotechnology field.

以下に実施例を挙げるが、各例のX線結晶粒径(Dx)は Scherrer の式を用いて求めたものである。 Scherrer の式、D=K・λ/β COSθにおけるKとして0.94を採用し、
X線の管球はCuを用いて、D=0.94×1.5405/β COSθより算出した。回折ピークに関しては、hcp相、fcc相ともに45度付近にメインピークが観察されるのでこのメイ
ンピークを採用した。
Examples are given below, and the X-ray crystal grain size (Dx) in each example is determined using the Scherrer equation. Adopting 0.94 as K in Scherrer's equation, D = K · λ / β COSθ
The X-ray tube was calculated from D = 0.94 × 1.5405 / β COSθ using Cu. Regarding the diffraction peak, since the main peak is observed at around 45 degrees in both the hcp phase and the fcc phase, this main peak was adopted.

比較例1
エチレングリコール(沸点:197℃)100mLに、酢酸ニッケル(II)四水和物を0.01mol /Lになるよう添加し、固形分が存在しなくなるまで溶解した。この溶液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該溶液を160rpmの回転速度で撹拌しつつ加熱し、192℃の温度で1時間の還流を行って、反応を終了した。そのさい、昇温速度は10℃/min とした。
[ Comparative Example 1 ]
Nickel (II) acetate tetrahydrate was added to 100 mL of ethylene glycol (boiling point: 197 ° C.) to a concentration of 0.01 mol / L and dissolved until no solid content existed. This solution is transferred to a container equipped with a reflux device and placed in an oil bath. While blowing nitrogen gas as an inert gas at a flow rate of 400 mL / min into the container, the solution is heated while being stirred at a rotation speed of 160 rpm. The reaction was terminated by refluxing at a temperature of 192 ° C. for 1 hour. At that time, the heating rate was set to 10 ° C./min.

反応終了後の液に3倍量のメタノールを添加したうえで遠心分離器にかけ、その後、上澄み液を取り除いた。上澄み液を除いたあとの残留分(粒子粉末)に再びメタノール10
0mLを添加して超音波洗浄槽に装填し、この超音波洗浄槽で該粒子粉末を分散させた。得られた分散液を遠心分離器にかけたあと上澄み液を取り除いた。得られた残留分(粒子
粉末)に対し、前記同様のメタノールを加えて超音波洗浄槽および遠心分離器で処理する洗浄操作を、さらに2回繰り返した。最後に上澄み液を分別して得られたニッケル粉含有
物を、X線回折(XRD)、磁気測定(VSM)に供し、下記の結果を得た。なお、TE
MおよびSEM観察も行った。
Three times the amount of methanol was added to the liquid after completion of the reaction, followed by centrifugation, and then the supernatant was removed. The residue (particle powder) after removing the supernatant was again methanol 10
0 mL was added and the mixture was loaded into an ultrasonic cleaning tank, and the particle powder was dispersed in this ultrasonic cleaning tank. After the obtained dispersion was centrifuged, the supernatant was removed. The washing operation of adding the same methanol as described above to the obtained residue (particle powder) and treating the residue with an ultrasonic washing tank and a centrifuge was further repeated twice. Finally, the nickel powder-containing material obtained by separating the supernatant was subjected to X-ray diffraction (XRD) and magnetic measurement (VSM), and the following results were obtained. TE
M and SEM observations were also made.

透過電子顕微鏡(TEM)から観測された1次粒子の平均粒径は数μmであった。SEM観察から不規則な板状粒子であることが観察された。X線回折ではfcc構造に由来す
る回折ピークしか観察されなかった。VSMによる飽和磁化の測定結果は、55emu/g であった。X線結晶粒径(Dx)は50nmであった。SEM観察結果を図1の(a)に示
した。X線回折結果および飽和磁化値から本例のニッケル粉はfcc構造であると見てよ
い。
The average particle diameter of primary particles observed from a transmission electron microscope (TEM) was several μm. From SEM observation, it was observed that the particles were irregular plate-like particles. In X-ray diffraction, only diffraction peaks derived from the fcc structure were observed. The measurement result of saturation magnetization by VSM was 55 emu / g. The X-ray crystal grain size (Dx) was 50 nm. The result of SEM observation is shown in FIG. From the X-ray diffraction result and the saturation magnetization value, it can be seen that the nickel powder of this example has an fcc structure.

比較例2
水酸化イオン(OH-)の導入のために、OH-/Niのモル比が50となる量のNaOHを原料溶解時に添加した以外は比較例1を繰り返した。
[ Comparative Example 2 ]
Comparative Example 1 was repeated except that NaOH was added at the time of melting the raw material in order to introduce hydroxide ions (OH ) so that the molar ratio of OH / Ni was 50.

得られたニッケル粉含有物を例1と同様の測定に供した。透過電子顕微鏡(TEM)から観測された1次粒子の平均粒径は数100nmであった。SEM観察からは球状粒子が観察された。X線回折ではfcc構造に由来する回折ピークしか観察されなかった。しかし、VSMによる飽和磁化の測定結果は38emu/g であり、例1のものより低下し
た。X線結晶粒径(Dx)は16nmであった。SEM観察結果を図1(c)に示した。X線回折ではfcc相が現れたが、飽和磁化値から本例のニッケル粉はfcc相+hcp
相の複相であると見てよい。
The obtained nickel powder-containing material was subjected to the same measurement as in Example 1. The average particle diameter of primary particles observed from a transmission electron microscope (TEM) was several hundred nm. Spherical particles were observed from SEM observation. In X-ray diffraction, only diffraction peaks derived from the fcc structure were observed. However, the measurement result of saturation magnetization by VSM was 38 emu / g, which was lower than that of Example 1. The X-ray crystal grain size (Dx) was 16 nm. The SEM observation result is shown in FIG. X-ray diffraction revealed an fcc phase, but from the saturation magnetization value, the nickel powder of this example was fcc phase + hcp.
It can be seen that it is a double phase of phases.

比較例3
トリメチレングリコール(沸点:229.2℃)100mLに、酢酸ニッケル(II)四水和物を0.02mol /Lになるよう添加し、固形分が存在しなくなるまで溶解した。この溶液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該溶液を160rpmの回転速度で撹拌しつつ加熱し、200℃の温度で1時間の還流を行って、反応を終了した。そのさい、昇温速度は10℃/min とした。
[ Comparative Example 3 ]
To 100 mL of trimethylene glycol (boiling point: 229.2 ° C.), nickel (II) acetate tetrahydrate was added to 0.02 mol / L and dissolved until no solid content existed. This solution is transferred to a container equipped with a reflux device and placed in an oil bath. While blowing nitrogen gas as an inert gas at a flow rate of 400 mL / min into the container, the solution is heated while being stirred at a rotation speed of 160 rpm. The reaction was terminated by refluxing at a temperature of 200 ° C. for 1 hour. At that time, the heating rate was set to 10 ° C./min.

その結果、透過電子顕微鏡(TEM)から観測された1次粒子の平均粒径は100〜600nmであった。また、SEM観察から球状粒子が観察された。X線回折ではfcc構
造に由来する回折ピークしか観察されなかった。VSMによる飽和磁化の測定結果は、55emu/g であった。X線結晶粒径(Dx)は29nmであった。SEM観察結果を図4(
a)に、またX線回折パターンを図3(a)に示した。X線回折結果および飽和磁化値か
ら本例のニッケル粉はfcc構造であると見てよい。
As a result, the average particle diameter of primary particles observed from a transmission electron microscope (TEM) was 100 to 600 nm. In addition, spherical particles were observed from SEM observation. In X-ray diffraction, only diffraction peaks derived from the fcc structure were observed. The measurement result of saturation magnetization by VSM was 55 emu / g. The X-ray crystal grain size (Dx) was 29 nm. The SEM observation results are shown in FIG.
The X-ray diffraction pattern is shown in FIG. From the X-ray diffraction result and the saturation magnetization value, it can be seen that the nickel powder of this example has an fcc structure.

比較例4
酢酸ニッケル(II)四水和物を0.0025mol /Lになるように添加した以外は、比較例3を繰り返した。
[ Comparative Example 4 ]
Comparative Example 3 was repeated except that nickel (II) acetate tetrahydrate was added to 0.0025 mol / L.

得られたニッケル粉含有物を例3と同様の測定に供した。透過電子顕微鏡(TEM)から観測された1次粒子の平均粒径は60〜70nmであった。SEM観察からは球状粒子
が観察された。X線回折ではfcc構造とhcp構造に由来する回折ピークが観察された。VSMによる飽和磁化の測定結果は21emu/g であった。X線結晶粒径(Dx)は12
nmであった。SEM観察結果を図5に示した。またX線回折パターンを図2(b)に示
しが、fcc相+hcp相が共存しているのがわかる。
The obtained nickel powder-containing material was subjected to the same measurement as in Example 3. The average particle diameter of primary particles observed from a transmission electron microscope (TEM) was 60 to 70 nm. Spherical particles were observed from SEM observation. In X-ray diffraction, diffraction peaks derived from the fcc structure and the hcp structure were observed. The measurement result of saturation magnetization by VSM was 21 emu / g. X-ray crystal grain size (Dx) is 12
nm. The SEM observation results are shown in FIG. Further, the X-ray diffraction pattern is shown in FIG. 2B, and it can be seen that the fcc phase + hcp phase coexist.

実施例1
テトラエチングリコール(沸点:327.3℃)100mLに、酢酸ニッケル(II)四水和物を0.0025mol /Lになるよう添加し、固形分が存在しなくなるまで溶解した。この溶液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該溶液を160rpmの回転速度で撹拌しつつ加熱し、290℃の温度で1時間の還流を行って、反応を終了した。そのさい、昇温速度は10℃/min とした。
[ Example 1 ]
To 100 mL of tetraethine glycol (boiling point: 327.3 ° C.), nickel (II) acetate tetrahydrate was added to a concentration of 0.0025 mol / L and dissolved until no solid content existed. This solution is transferred to a container equipped with a reflux device and placed in an oil bath. While blowing nitrogen gas as an inert gas at a flow rate of 400 mL / min into the container, the solution is heated while being stirred at a rotation speed of 160 rpm. The reaction was terminated by refluxing at a temperature of 290 ° C. for 1 hour. At that time, the heating rate was set to 10 ° C./min.

その結果、透過電子顕微鏡(TEM)から観測された1次粒子の平均粒径は約150nmであった。また、SEM観察から球状粒子が観察された。X線回折ではhcp構造に由
来する回折ピークしか観察されなかった。VSMによる飽和磁化の測定結果は、ほぼ0emu/g であった。X線結晶粒径(Dx)は43nmであった。SEM観察結果を図4(b)
に、またX線回折パターンを図3(b)に示したが、hcp単相であることがわかる。
As a result, the average particle diameter of primary particles observed from a transmission electron microscope (TEM) was about 150 nm. In addition, spherical particles were observed from SEM observation. In X-ray diffraction, only diffraction peaks derived from the hcp structure were observed. The measurement result of saturation magnetization by VSM was almost 0 emu / g. The X-ray crystal grain size (Dx) was 43 nm. The SEM observation result is shown in FIG.
In addition, the X-ray diffraction pattern is shown in FIG. 3B, and it can be seen that it is an hcp single phase.

ポリオール法において種々の水酸化イオン濃度のもとで生成したNi粒子のSEM写真であり、図中の(a)、(b)、(c)、(d)は、それぞれOH-/Ni比が0、10、50、150の場合を示す。It is a SEM photograph of Ni particles produced under various hydroxide ion concentrations in the polyol method, and (a), (b), (c), and (d) in the figure are respectively OH / Ni ratios. The cases of 0, 10, 50, and 150 are shown. ポリオール法で得られたNi粉のXRDパターンであり、図中の(a)はfcc相をもつNi粉のものを, (b)はfcc相とhcp相の複相組織のNi粉のものを示している。It is an XRD pattern of Ni powder obtained by the polyol method. In the figure, (a) shows Ni powder with fcc phase, (b) shows Ni powder with multi-phase structure of fcc phase and hcp phase. Show. ポリオール法で得られた他のNi粉のXRDパターンであり、図中の(a)はfcc相をもつNi粉のものを, (b)はhcp単相のNi粉のものを示している。It is the XRD pattern of the other Ni powder obtained by the polyol method, (a) in the figure shows the Ni powder having the fcc phase, (b) shows the Ni powder of the hcp single phase. ポリオール法で得られた他のNi粉のSEM写真であり、図中の(a)はfcc相をもつNi粉を, (b)はhcp単相のNi粉を示している。It is a SEM photograph of other Ni powder obtained by the polyol method, (a) in the figure shows Ni powder with fcc phase, (b) shows Ni powder of hcp single phase. ポリオール法で得られた他のNi粉のSEM写真である。It is a SEM photograph of other Ni powder obtained by the polyol method.

Claims (2)

ポリオール中にfcc構造を経由することなく、hcp構造を有するNi微粒子を析出させるhcp構造のニッケル粉の製法であって、溶存するNiイオンを濃度0.0025mol/L以下、反応温度290℃以上でポリオールのみで還元して液中にhcp構造をもつ金属Niの微粒子を析出させるhcp構造のニッケル粉の製法。 A process for producing nickel powder having an hcp structure in which Ni fine particles having an hcp structure are deposited in a polyol without passing through an fcc structure, wherein dissolved Ni ions are concentrated at a concentration of 0.0025 mol / L or less and at a reaction temperature of 290 ° C. or more. A process for producing nickel powder having an hcp structure in which fine particles of metal Ni having an hcp structure are precipitated in a liquid by reduction only with a polyol. 前記ポリオールがテトラエチレングリコールである、請求項1に記載のhcp構造のニッケル粉の製法。   The method for producing nickel powder having an hcp structure according to claim 1, wherein the polyol is tetraethylene glycol.
JP2004231584A 2004-08-06 2004-08-06 Manufacturing method of nickel powder with hcp structure Expired - Fee Related JP4505633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004231584A JP4505633B2 (en) 2004-08-06 2004-08-06 Manufacturing method of nickel powder with hcp structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004231584A JP4505633B2 (en) 2004-08-06 2004-08-06 Manufacturing method of nickel powder with hcp structure

Publications (2)

Publication Number Publication Date
JP2006045648A JP2006045648A (en) 2006-02-16
JP4505633B2 true JP4505633B2 (en) 2010-07-21

Family

ID=36024570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004231584A Expired - Fee Related JP4505633B2 (en) 2004-08-06 2004-08-06 Manufacturing method of nickel powder with hcp structure

Country Status (1)

Country Link
JP (1) JP4505633B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266690A (en) * 2007-04-17 2008-11-06 Kyushu Univ Hydrogen storage body, hydrogen storage apparatus using the same, hydrogen sensor, nickel nano-particle and its manufacturing method
US20090032799A1 (en) 2007-06-12 2009-02-05 Siphoton, Inc Light emitting device
US7956370B2 (en) 2007-06-12 2011-06-07 Siphoton, Inc. Silicon based solid state lighting
US8283676B2 (en) 2010-01-21 2012-10-09 Siphoton Inc. Manufacturing process for solid state lighting device on a conductive substrate
US8722441B2 (en) 2010-01-21 2014-05-13 Siphoton Inc. Manufacturing process for solid state lighting device on a conductive substrate
US8674383B2 (en) 2010-01-21 2014-03-18 Siphoton Inc. Solid state lighting device on a conductive substrate
US8624292B2 (en) 2011-02-14 2014-01-07 Siphoton Inc. Non-polar semiconductor light emission devices
US8217418B1 (en) 2011-02-14 2012-07-10 Siphoton Inc. Semi-polar semiconductor light emission devices
CN113725452B (en) * 2021-08-25 2023-04-04 武汉大学苏州研究院 Hexagonal close-packed nickel and polycrystalline phase nickel heterojunction electrocatalyst, preparation method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173206A (en) * 1982-12-21 1984-10-01 ユニヴア−シテ・パリ・セテイエ−ム Method of reducing metal compound with polyol and powdery metal manufactured thereby
JP2004308014A (en) * 2003-04-09 2004-11-04 Samsung Electronics Co Ltd Nonmagnetic nickel powder, and its production method
JP2004353089A (en) * 2003-05-27 2004-12-16 Samsung Electronics Co Ltd Method for producing non-magnetic nickel powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173206A (en) * 1982-12-21 1984-10-01 ユニヴア−シテ・パリ・セテイエ−ム Method of reducing metal compound with polyol and powdery metal manufactured thereby
JP2004308014A (en) * 2003-04-09 2004-11-04 Samsung Electronics Co Ltd Nonmagnetic nickel powder, and its production method
JP2004353089A (en) * 2003-05-27 2004-12-16 Samsung Electronics Co Ltd Method for producing non-magnetic nickel powder

Also Published As

Publication number Publication date
JP2006045648A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
US8293142B2 (en) Composition containing fine silver particles, production method thereof, method for producing fine silver particles, and paste having fine silver particles
TWI277469B (en) Silver particle powder and its production method
JP5213420B2 (en) Copper powder with excellent dispersibility in liquid and corrosion resistance and method for producing the same
US20100078604A1 (en) Nickel nanoparticles
Kim et al. Preparation of fine nickel powders in aqueous solution under wet chemical process
JP2007270312A (en) Method for manufacturing silver powder, and silver powder
JP2011122248A (en) Method for manufacturing nickel nanoparticle
JP4505633B2 (en) Manufacturing method of nickel powder with hcp structure
US20120201759A1 (en) Tunable multiscale structures comprising bristly, hollow metal/metal oxide particles, methods of making and articles incorporating the structures
JP5162383B2 (en) Method for producing silver-coated copper fines
JP7042372B2 (en) Nickel powder and its manufacturing method, nickel paste
WO2006069513A1 (en) Spherical ultrafine nickel powder with high tap density and its wet processes preparing mothod
WO2023134469A1 (en) Metal particle as well as preparation method therefor and use thereof
US9309119B2 (en) Producing method of metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film
JP5176060B2 (en) Method for producing silver particle dispersion
JP2010059453A (en) Fine copper powder, dispersion liquid thereof, and method for producing fine copper powder
WO2022186226A1 (en) Soft magnetic metal powder
US8003019B2 (en) Silver particle dispersion ink
JP5076135B2 (en) Manufacturing method of nickel powder with hcp structure
JP4406738B2 (en) Manufacturing method of copper powder with small particle size distribution
Pal et al. Dipentaerythritol: a novel additive for the precipitation of dispersed Ni particles in polyols
JP2006111503A (en) Composite material containing dispersed ultrafine metal particles and manufacturing method thereof
JP4528959B2 (en) Magnetic material and method for producing the same
Haq et al. Literature Review: Synthesis Methods of NiFe2O4 Nanoparticles for Aqueous Battery Applications
Fu et al. Deposition feature of Ni nanoparticles on halloysite template and magnetic properties of the composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100408

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4505633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees