JP5024844B2 - Non-oxide particulate matter - Google Patents

Non-oxide particulate matter Download PDF

Info

Publication number
JP5024844B2
JP5024844B2 JP2004266476A JP2004266476A JP5024844B2 JP 5024844 B2 JP5024844 B2 JP 5024844B2 JP 2004266476 A JP2004266476 A JP 2004266476A JP 2004266476 A JP2004266476 A JP 2004266476A JP 5024844 B2 JP5024844 B2 JP 5024844B2
Authority
JP
Japan
Prior art keywords
powder
oxide
shape
reaction
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004266476A
Other languages
Japanese (ja)
Other versions
JP2006082987A (en
Inventor
泰正 高尾
信哉 中島
政行 朝比奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004266476A priority Critical patent/JP5024844B2/en
Publication of JP2006082987A publication Critical patent/JP2006082987A/en
Application granted granted Critical
Publication of JP5024844B2 publication Critical patent/JP5024844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、非酸化物系粒状物質の、球形度と、粉体表面の安定性とを同時に向上させた新規な材料、その製法及び製造装置に関するものであり、更に詳しくは、製造温度で正の標準生成自由エネルギーを有する、炭化水素系ガス、アンモニアの何れかのガス状物質を反応器へ添加する事を特徴とする、気相中の連続的な製法により得られる、金属、窒化物、酸窒化物から成る複合粒状物質に関するものである。また、本発明は、該粒状物質の表面部又は外層を、酸化物、酸窒化物、当該粒状物質を構成する成分、又はその固溶体よりなる、被覆層又は結合層を形成するものであり、上記ガス状物質を添加する手段、及び、ガス状物質中に粒状物質を浮遊せしめる手段に特徴を有するものである。本発明は、非酸化物系粒状物質の製造技術分野において、従来の非酸化物系粉体や気相中の連続的な粉体の製法では不可能であった、形状や構造を制御した新規な、粉体の球形度と、粉体表面の安定性とを、同時に向上させた新材料の粉体、その製法、及び製造装置を提供するものである。 The present invention relates to a novel material in which the sphericity of a non-oxide particulate material and the stability of a powder surface are improved at the same time, a manufacturing method and a manufacturing apparatus thereof, and more specifically, at a manufacturing temperature. having a standard free energy of hydrocarbon gas, it is characterized in that the addition of either a gaseous substance ammonia to the reactor obtained by continuous process in the gas phase, metal, nitride relates composite particulate material comprising an oxynitride or al. Further, the present invention is to form a coating layer or a bonding layer, which is formed of an oxide, an oxynitride, a component constituting the particulate material, or a solid solution thereof, on the surface portion or the outer layer of the particulate material, It is characterized by means for adding a gaseous substance and means for floating a particulate substance in the gaseous substance. The present invention is a novel technique in which the shape and structure are controlled in the technical field of manufacturing non-oxide granular materials, which is impossible with conventional non-oxide powders and continuous powder production methods in the gas phase. It is another object of the present invention to provide a powder of a new material in which the sphericity of the powder and the stability of the powder surface are improved at the same time, a manufacturing method thereof, and a manufacturing apparatus.

非酸化物粉体は、高熱伝導、耐食・耐薬品性、高光学特性、高機械的特性等、(酸化物に勝る)に優れた特性を有するが、電気炉中のバッチ処理を基本とした加熱(固相反応)法では、高温で長時間の熱処理が必須で、実際の焼成温度が2000℃以上に及ぶ場合も報告されている。このような焼成条件下で生成された粉体は粗大化し、その後の粉砕も容易ではない。これは、高密度成形性や易焼結性のための粉体の微粒化や球状化において問題であり、高熱伝導成形体や高強度焼結体を製造するための原料粉体の供給ルートとして、十分に満足した特性を発揮できていないという問題点があった。更に、長時間の熱処理と粉砕は、純度の点でも問題である(以上、例えば、非特許文献1参照)。   Non-oxide powder has excellent properties such as high thermal conductivity, corrosion / chemical resistance, high optical properties, and high mechanical properties (excelling oxide), but based on batch processing in an electric furnace. In the heating (solid phase reaction) method, heat treatment at a high temperature for a long time is essential, and the actual firing temperature has been reported to reach 2000 ° C. or more. The powder produced under such firing conditions is coarsened and subsequent pulverization is not easy. This is a problem in the atomization and spheroidization of powders for high density moldability and easy sinterability. As a raw material powder supply route for producing high thermal conductivity molded bodies and high strength sintered bodies. However, there was a problem that the sufficiently satisfactory characteristics could not be exhibited. Furthermore, long-time heat treatment and pulverization are also problematic in terms of purity (for example, see Non-Patent Document 1).

形状改良の方法として、球状の原料粉体を用いる製法が検討されている。シータ相等の遷移アルミナ粉体では、アルファ相の六方構造に由来する板状化の影響が小さく、比較的球形度の高い粉体が入手できる。これを還元窒化法等に適用した結果、原料粉体の形状を保持した高球形度の窒化アルミニウム粉体が製造できる(例えば、特許文献1参照)。だが、原料に必須条件が増加する点、はもちろん、比較的高価な原料が必須となる点、依然として電気炉中のバッチ処理を基本とした加熱(固相反応)法であって、工業化や生産性向上に有利な気相中の連続製法ではない点、等が問題である。   As a method for improving the shape, a production method using a spherical raw material powder has been studied. Transition alumina powders such as theta phase are less affected by plate formation derived from the hexagonal structure of the alpha phase, and powders having a relatively high sphericity can be obtained. As a result of applying this to the reduction nitriding method or the like, a high sphericity aluminum nitride powder retaining the shape of the raw material powder can be produced (for example, see Patent Document 1). However, the essential conditions for raw materials increase, of course, relatively expensive raw materials become essential, and it is still a heating (solid-phase reaction) method based on batch processing in an electric furnace. The problem is that it is not a continuous production method in the gas phase, which is advantageous for improving the properties.

発熱反応である金属粉体の直接窒化法(窒素元素との気相反応)やガス窒化法(例えば、アンモニアガスとの気相反応)を基本として、電気炉中のバッチ処理を連続処理に変えた製法が報告され、工業化が検討された事があった。しかし、次の主な2つの問題があった;(1)完全な反応のためには0.1〜0.2ミクロンの粒子径が限界で、それ以上の大粒径は製造できないこと、(2)原料である金属粉体は下から上へ送る事が、反応性向上のためには必要となること。これらの問題の理由として、問題点(1)については「工業化を考慮して1500℃前後の温度に抑えている事」が、問題点(2)については「大粒径の原料粉体はその表面からの発生成分のみを利用し、残りは燃えカスとして自然落下させる事」が、挙げられている(例えば、特許文献2参照)。だが、(1)で高コストを招く1500℃以上の電気炉加熱を抑制したにも関わらず、(2)で本質的に低生産性な「原料の上昇供給」に限定され、しかも、原料を100%利用できず、燃えカスの発生が本質的な製法であるという事は、工業的製法として限界がある。   Based on the direct nitridation method (vapor phase reaction with nitrogen element) and gas nitridation method (for example, gas phase reaction with ammonia gas) of metal powder, which is an exothermic reaction, batch processing in an electric furnace is changed to continuous processing. The production method was reported and industrialization was considered. However, there were two main problems: (1) The particle size of 0.1 to 0.2 microns was the limit for complete reaction, and larger particle sizes could not be produced; 2) It is necessary to send the metal powder as the raw material from the bottom to the top in order to improve the reactivity. The reason for these problems is that the problem (1) is “suppressed to a temperature of around 1500 ° C. in consideration of industrialization”, and the problem (2) is “ “Only the components generated from the surface are used, and the rest is allowed to fall spontaneously as burning residue” (for example, see Patent Document 2). However, despite (1) suppressing the electric furnace heating at 1500 ° C. or higher which leads to high costs, (2) is limited to “increasing supply of raw materials” which is essentially low in productivity. The fact that it is impossible to use 100% and the generation of burning residue is an essential production method has a limit as an industrial production method.

最高2100℃の加熱が可能な電気炉を使用し、「原料の下方供給」を実現し、0.4〜0.8ミクロンの粒子径を持つ非酸化物の製法が工業化された事があった。しかし、完全な反応のために、(1)生成物の粉砕処理と、(2)粉砕粉体の再熱処理と、(1)と(2)の繰返し処理が必要とされる。この理由として、「0.4〜0.8ミクロンの非酸化物粉体には、原料としても比較的大粒径が必要で、電気炉中のバッチ処理に比べて本質的に反応時間の短い気相中の連続製法では、反応性向上に限界がある事」、「原料の上昇供給では、未反応原料を燃えカスとして自然落下させる事ができず、未反応原料が生成物に混じる事」、が挙げられている(例えば、非特許文献2参照)。だが、工業設備として汎用的ではない、高コストの高温設備導入が不可避である事に加え、生成物の粉砕処理、粉砕粉体の再熱処理、それらの繰返し処理が必要である事は、電気炉中のバッチ処理を基本とした加熱(固相反応)法と本質的に変わりが無く、少なくとも工業的メリットは皆無である。   An electric furnace capable of heating up to 2100 ° C was used, and "downward feed of raw materials" was realized, and a non-oxide manufacturing method with a particle size of 0.4 to 0.8 microns was industrialized. . However, for complete reaction, (1) pulverization of the product, (2) reheat treatment of the pulverized powder, and (1) and (2) are repeated. The reason for this is that "non-oxide powder of 0.4 to 0.8 microns requires a relatively large particle size as a raw material, and essentially has a shorter reaction time than batch processing in an electric furnace. In the continuous manufacturing method in the gas phase, there is a limit in improving the reactivity. ”“ In the ascending supply of raw materials, unreacted raw materials cannot be spontaneously dropped as burning residue, and unreacted raw materials are mixed into the product. ” (For example, refer nonpatent literature 2). However, in addition to the fact that it is inevitable to introduce high-temperature equipment that is not versatile as industrial equipment, it is necessary to pulverize the product, reheat the pulverized powder, and repeat these treatments. It is essentially the same as the heating (solid phase reaction) method based on the batch processing, and at least has no industrial merit.

気相中の連続製法として、気相析出反応(CVD)法等を基本としたビルドアップ方式(ガス状物質を粒状物質に成長させる方法)がある。例えば、揮発性で自然発火性液体(常温)のトリエチルアルミニウム(Al(C)を気化し、窒化ガスとして窒素より強力なアンモニアを使用して、0.2〜0.5ミクロンの粒子径の窒化アルミニウム粉体を製造する方法が報告され、工業化されている(例えば、特許文献3参照)。だが、危険で取り扱いの難しい高揮発性の有機原料が必須で、高コストを招く(実際問題として産業界に現在普及していない)新規設備導入が不可避である事に加え、ビルドアップ方式は一般に大粒径に不向きであり、大粒径の粒状生成物製造には、生成物の歩留まりを低下する原料の高濃度化や長時間処理が必須となる、等の問題がある。 As a continuous production method in the gas phase, there is a build-up method (a method of growing a gaseous substance into a granular substance) based on a vapor deposition reaction (CVD) method or the like. For example, volatile and pyrophoric liquid (room temperature) triethylaluminum (Al (C 2 H 5 ) 3 ) is vaporized, and ammonia stronger than nitrogen is used as a nitriding gas. A method for producing an aluminum nitride powder having a particle size of 2 is reported and industrialized (see, for example, Patent Document 3). However, high-volatile organic materials that are dangerous and difficult to handle are indispensable, which leads to high costs (in fact, it is inevitable to introduce new equipment as an actual problem). In addition, the build-up method is generally used. It is unsuitable for large particle sizes, and there are problems such as high concentration of raw materials that reduce product yield and long-time treatment are essential for producing large particle size granular products.

また、非酸化物(金属や窒化物等)の気相中の連続製法として特長を有する方法に、熱プラズマ法や、蒸発―凝縮法がある。これらは、減圧状態にした真空容器中に、アルゴン等の電離し易いガス状物質を添加する手段等により、ラジカルや電子等、高活性物質を高密度に発生させたプラズマ等を反応場にするものである(例えば、特許文献4参照)。本質的に非酸化雰囲気を構成できる事から、非酸化物用の気相中の連続製法として、長く独占的な地位を占めていた。だが、安定なプラズマ状態の保持と、その最も高活性な部分への原料である粒状物質の導入とを、両立させる事は極めて難しく、プラズマ発生部の(高価な)石英管の破損等の事故を極めて起こし易い(それを防ぐには、例えば、倣い式の粒状物質供給装置等、更に新規な設備導入を必要とする)。このため、プラズマに導入する物質は、その安定状態に影響を与え難いガス状物質等とし、粒状物質はプラズマの終端部へ導入する事で、「粒状物質の被覆化装置」として使用される事が一般的で、本発明の目的には適用されていない。更に、高精度な雰囲気調整と、減圧状態が可能な真空容器が必須で、高コストを招く(実際問題として産業界に現在普及していない)新規な設備導入が不可避である事に加え、ラジカルを発生させたプラズマの保持には、例えば、膨大な冷却水(毎分数100リッター等)を必要とし、ランニングコストの突出は避けられない。このため、この方法を用いた製造現場では、非酸化物が製造可能で、非減圧状態(大気圧状態)で運転可能であり、しかも、易操作性の製法が、切望されていた。   In addition, a method having a feature as a continuous production method in the gas phase of non-oxides (metal, nitride, etc.) includes a thermal plasma method and an evaporation-condensation method. These are used as a reaction field for plasma or the like in which high-activity substances such as radicals and electrons are generated at high density by means of adding a gas substance such as argon, which is easily ionized, into a vacuum container in a reduced pressure state. (For example, refer to Patent Document 4). Since it can essentially form a non-oxidizing atmosphere, it has long occupied an exclusive position as a continuous process in the gas phase for non-oxides. However, it is extremely difficult to achieve both the maintenance of a stable plasma state and the introduction of particulate material, which is the raw material, into the most active part. Accidents such as damage to the (expensive) quartz tube in the plasma generation part (In order to prevent this, it is necessary to introduce a new facility such as a copying type granular material supply device). For this reason, the substance to be introduced into the plasma is a gaseous substance that does not easily affect its stable state, and the particulate substance is introduced into the end of the plasma, so that it can be used as a “particulate substance coating device”. Is generally not applied for the purposes of the present invention. In addition, it is essential to have a highly accurate atmosphere adjustment and vacuum container that can be decompressed, which leads to high costs (in fact, it is unavoidable to introduce new equipment). For example, a large amount of cooling water (several hundred liters per minute, etc.) is required to hold the plasma that has generated the inevitable running cost. For this reason, in the manufacturing site using this method, a non-oxide can be manufactured, it can be operated in a non-depressurized state (atmospheric pressure state), and an easy-to-operate manufacturing method has been desired.

一方、非酸化物粉体の表面は、大気中の水分や酸素等と反応し易く、粉体特性劣化や長期安定性の低さという大きな問題があった。これを比較的簡便に解決する手段として、粉体の材質や、製法の本質に関わらず、粉体の表面部又は外層を「強制的に」改質する製法が提案されている。例えば、有機物を粉体表面に吸着させる方法(例えば、非特許文献3参照)、酸窒化物層を粉体表面に形成する方法(例えば、特許文献7参照)、リン系化合物を粉体表面に形成する方法(例えば、特許文献8参照)、二つ以上の物質層の被膜を粉体表面に形成する方法(例えば、特許文献9参照)等が試みられてきた。しかし、これらの強制的な表面改質やコーティング法は、製法(粉体外部からの人為的な操作)に重点を置いた手法であった。その結果、耐水性等の粉体特性劣化や、長期安定性の低さ等の問題を未だ解決するには至らず、改善効果は不十分であった。また、リン等、熱伝導性等の非酸化物の有する粉体特性を劣化させる異種材料を必須技術要件とする場合が多かった。更に、典型的なバッチプロセス(非連続的な複数工程を必須とする製法)であり、生産性や工業化、コストの点で不利である他、現在の技術では一般化された原料が無く、対象材料によって、組成や粉体特性、調製方法を模索する必要がある、等が問題である(例えば、特許文献10参照)。   On the other hand, the surface of the non-oxide powder easily reacts with moisture, oxygen, etc. in the atmosphere, and there are major problems such as deterioration of powder characteristics and low long-term stability. As a means for solving this relatively easily, a production method has been proposed in which the surface portion or outer layer of the powder is “forcedly” modified regardless of the material of the powder and the essence of the production method. For example, a method of adsorbing an organic substance on the powder surface (for example, see Non-Patent Document 3), a method of forming an oxynitride layer on the powder surface (for example, see Patent Document 7), and a phosphorus compound on the powder surface A method of forming (for example, see Patent Document 8), a method of forming a coating of two or more substance layers on the powder surface (for example, see Patent Document 9), and the like have been tried. However, these forced surface modification and coating methods are methods that place emphasis on the manufacturing method (artificial operation from the outside of the powder). As a result, problems such as deterioration of powder characteristics such as water resistance and low long-term stability have not yet been solved, and the improvement effect has been insufficient. In addition, a dissimilar material that deteriorates the powder characteristics of non-oxides such as phosphorus, such as phosphorus, is often an essential technical requirement. In addition, this is a typical batch process (a manufacturing method that requires discontinuous multiple steps), which is disadvantageous in terms of productivity, industrialization, and cost. In addition, there are no generalized raw materials in the current technology, and the target The problem is that it is necessary to search for the composition, powder characteristics, preparation method, and the like depending on the material (for example, see Patent Document 10).

上記の製法(粉体外部からの人為的な操作)に重点を置いた手法とは別に、粉体の材質や、製法の本質に起因した、強制的な操作や工程をできるだけ低減した、個別適応的な手法も幾つか試みられている。これらの手法には、例えば、アンモニウムアルミニウム化合物による耐水効果(例えば、非特許文献4参照)、酸窒化物層(例えば、特許文献11参照)、製造過程で発生する窒素酸化物の分解で生じる活性酸素による緻密酸化薄膜(例えば、特許文献12参照)、炭化水素系ガスによる水蒸気の除去効果(例えば、特許文献13参照)、酸化雰囲気中の(比較的)低温条件下での熱処理(例えば、特許文献14参照)、その他、古くは、アンモニアガスと粉体を構成する成分との気相反応効果(例えば、特許文献15参照)や、還元窒化法の過剰炭素除去工程で生じる酸化膜層(例えば、非特許文献5参照)等によるものがある。しかし、これらの粉体材質や製法の本質に起因した個別例的手法では、(例えば、還元窒化法にみられるように)粉体表面の安定性は副産物的な位置付けであって、耐水性等の粉体特性劣化や、長期安定性の低さ等の問題を未だ解決するには至らず、改善効果は不十分であった。更に、また、工程低減の方を重視したために、非酸化物が本来有する高熱伝導、耐食・耐薬品性、高光学特性、高機械的特性等、(酸化物に勝る)優れた特性を劣化させる結果となる場合も見受けられる、等が問題である。   Independent of the above-mentioned manufacturing method (artificial operation from the outside of the powder), individual adaptation that reduces the forced operation and process as much as possible due to the material of the powder and the essence of the manufacturing method A number of other approaches have also been attempted. These methods include, for example, the water resistance effect of an ammonium aluminum compound (see, for example, Non-Patent Document 4), an oxynitride layer (see, for example, Patent Document 11), and the activity generated by decomposition of nitrogen oxides generated in the manufacturing process. Dense oxide thin film by oxygen (for example, see Patent Document 12), removal effect of water vapor by hydrocarbon gas (for example, see Patent Document 13), heat treatment under (relatively) low temperature conditions in an oxidizing atmosphere (for example, Patent In addition, in the old days, the gas phase reaction effect between ammonia gas and components constituting the powder (for example, refer to Patent Document 15), and the oxide film layer (for example, the excess carbon removal process of the reduction nitriding method (for example, And non-patent document 5). However, in the individual examples due to the essence of these powder materials and manufacturing methods, the stability of the powder surface is a by-product (as seen in, for example, the reduction nitriding method), such as water resistance. However, the problems such as deterioration of powder characteristics and low long-term stability have not yet been solved, and the improvement effect has been insufficient. In addition, because of the importance of reducing processes, non-oxides inherently have superior properties (over oxide) such as high thermal conductivity, corrosion / chemical resistance, high optical properties, and high mechanical properties. The problem is that it can be seen as a result.

即ち、既往の非酸化物粉体の形状や構造の制御に関して、材料及び製法(主たる七つの方法)の面から現状を俯瞰すると、(1)固相反応法は、粒子径は満足されるが、形状や連続生産性が不可、(2)球状原料法は、粒子径や形状は満足されるが、コストや連続生産性が不可、(3)直接窒化法を基本とした気相中の連続製法は、形状や連続生産性は満足されるが、粒子径が不可、(4)高温電気炉法は、粒子径や形状は改善されるが、コストや連続生産性が不可、(5)ビルドアップ法は、形状や連続生産性は満足されるが、粒子径やコストが不可、(6)プラズマ又は蒸発―凝縮法は、連続生産性は満足されるが、粒子径、形状、コストが不可、(7)各種表面改質法は、形状や構造の制御性が不十分、材料組成や粉体特性の汎用性、生産性や工業化、コストが不可、となる。従って、非酸化物粉体の形状や構造の制御に関して、[A]高球形度の形状、[B]粉体表面の安定性、[C]気相中の連続的な製法(高コストパフォーマンス)、の全てを同時に満たす事は、現時点では不可能であった。   In other words, regarding the control of the shape and structure of the existing non-oxide powder, the current situation from the viewpoint of materials and production methods (seven main methods), (1) the particle size of the solid-phase reaction method is satisfied. , Shape and continuous productivity are impossible, (2) spherical raw material method is satisfactory in particle size and shape, but cost and continuous productivity are not possible, (3) continuous in gas phase based on direct nitriding method The manufacturing method satisfies the shape and continuous productivity, but the particle size is not possible. (4) The high-temperature electric furnace method improves the particle size and shape, but the cost and continuous productivity are not possible. (5) Build The up method satisfies the shape and continuous productivity, but the particle size and cost are not possible. (6) The plasma or evaporation-condensation method satisfies the continuous productivity, but the particle size, shape, and cost are not. (7) Various surface modification methods have insufficient controllability of shape and structure, versatility of material composition and powder characteristics, Production of and industrialization, cost is impossible, to become. Therefore, regarding the control of the shape and structure of non-oxide powder, [A] shape with high sphericity, [B] powder surface stability, [C] continuous production method in gas phase (high cost performance) It was impossible at the present time to satisfy all of the above.

本発明者らは、上記の状況を踏まえ、種々検討を重ねる中で、ある種のガス状物質を添加した場合に、非酸化物の反応性(還元反応)が向上する現象に着目した。例えば、炭化水素系ガスとアンモニアガスの混合ガス中で、低純度(高酸素含有率)の窒化アルミニウム組成物を高純度化したり(例えば、特許文献5参照)、アルミナの還元窒化法においてその反応性を向上することが可能な事(例えば、特許文献6参照)が報告されている(但し、全て、電気炉中のバッチ処理を基本とした加熱(固相反応)法)。だが、この現象の利用は、あくまで非酸化物生成のための原料の還元(即ち、原料から酸素元素を解離する事)だけに限定され、ガス状物質の種類も限定されている。しかも、これらの技術は、粉体表面の安定性については、現時点では全く考慮されていない。これは、経験則に基づく知見の蓄積で得られた成果であったため、現象の「本質的な限定要素」が明確化されていない事が理由であって、工業技術としての限界ではない事が推定される。   Based on the above situation, the present inventors have focused on the phenomenon that non-oxide reactivity (reduction reaction) is improved when a certain gaseous substance is added. For example, in a mixed gas of hydrocarbon gas and ammonia gas, an aluminum nitride composition having a low purity (high oxygen content) is highly purified (for example, see Patent Document 5), or the reaction is performed in a reductive nitriding method of alumina. It has been reported that it is possible to improve the performance (for example, see Patent Document 6) (however, all are heating (solid-phase reaction) methods based on batch processing in an electric furnace)). However, the use of this phenomenon is limited only to the reduction of the raw material for producing a non-oxide (that is, dissociating the oxygen element from the raw material), and the types of gaseous substances are also limited. Moreover, in these techniques, the stability of the powder surface is not taken into consideration at the present time. This is a result obtained by accumulating knowledge based on empirical rules, so the “essential limiting element” of the phenomenon has not been clarified, and it is not the limit of industrial technology. Presumed.

特開平4−74705号公報JP-A-4-74705 特開平2−283605号公報JP-A-2-283605 特開平3−137009号公報Japanese Patent Laid-Open No. 3-137090 特開2000−219901号公報JP 2000-219901 A 特開平6−100305号公報JP-A-6-100305 特開平11−130411号公報Japanese Patent Laid-Open No. 11-130411 特開平6−144809号公報JP-A-6-144809 特開平7−33413号公報JP-A-7-33413 特開2002−226207号公報JP 2002-226207 A 特開2003−41600号公報JP 2003-41600 A 特開平6−144809号公報JP-A-6-144809 特開平6−115912号公報JP-A-6-115912 特開平11−21113号公報Japanese Patent Laid-Open No. 11-21113 特開平1−141811号公報Japanese Patent Laid-Open No. 1-141811 特開昭63−297206号公報JP 63-297206 A A.W.Weimer,G.A.Cochran,G.A.Eisman,J.P.Henley,B.D.Hook,L.K.Mills,T.A.Guiton,A.K.Knudsen,N.R.Nicholas,J.E.Volmering,W.G.Moore,Rapid Process for Manufacturing Aluminum Nitride Powder,J.Am.Ceram.Soc.,Vol.77,p.3−18(1994)A. W. Weimer, G .; A. Cochran, G. et al. A. Eisman, J. et al. P. Henley, B.M. D. Hook, L .; K. Mills, T.M. A. Guiton, A .; K. Knudsen, N .; R. Nicholas, J. et al. E. Volmering, W.M. G. Moore, Rapid Process for Manufacturing Aluminum Nitride Powder, J. MoI. Am. Ceram. Soc. , Vol. 77, p. 3-18 (1994) 平井伸治、村上英明、片山博、上村揚一郎、三友護、アルミナと窒化アルミニウムからの酸窒化アルミニウムスピネルの生成、日本金属学会誌、Vol.58、p.648(1994)Shinji Hirai, Hideaki Murakami, Hiroshi Katayama, Yoichiro Uemura, Mamoru Mitomo, Formation of aluminum oxynitride spinel from alumina and aluminum nitride, Journal of the Japan Institute of Metals, Vol. 58, p. 648 (1994) M.Egashira,Y.Shimizu,Y.Takao,R.Yamaguchi,Y.Ichikawa,Effect of Carboxylic Acid Adsorption on the Hydrolysis and Sintered Properties of Aluminum Nitride Powder,J.Am.Ceram.Soc.,Vol.77,p.1793−1798(1994)M.M. Egashira, Y. et al. Shimizu, Y .; Takao, R.A. Yamaguchi, Y .; Ichikawa, Effect of Carboxylic Acid Adsorption on the Hydrology and Sintered Properties of Aluminum Nitride Powder, J. MoI. Am. Ceram. Soc. , Vol. 77, p. 1793-1798 (1994) 杉山和夫、高橋秀樹、今野成夫、田中摂子、松田常雄、上西雅利、橋詰良樹、窒化アルミニウム粉体の表面状態とその耐水処理、粉体工学会誌、Vol.29,p.682−687(1992)Sugiyama Kazuo, Takahashi Hideki, Konno Naruo, Tanaka Setsuko, Matsuda Tsuneo, Kaminishi Masatoshi, Hashizume Yoshiki, Surface condition of aluminum nitride powder and its water resistance treatment, Journal of Powder Engineering, Vol. 29, p. 682-687 (1992) 倉元信行、窒化アルミニウム粉末とその現状、セラミックス、Vol.22、p.29−34(1987)Nobuyuki Kuramoto, aluminum nitride powder and its present state, ceramics, Vol. 22, p. 29-34 (1987)

このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術の有する諸問題を抜本的に解決する事を可能とする新しい技術を開発する事を目標として鋭意研究を積み重ねた結果、非酸化物が生成する条件下で正の標準生成自由エネルギーを有するガス状物質である、炭化水素系ガス、アンモニアの何れかを添加する事を特徴とする気相中の連続的な製法により、金属、窒化物、又は酸窒化から成る、非酸化物系粒状物質の表面部又は外層を、酸化物、酸窒化物、当該粒状物質を構成する成分、又はその固溶体よりなる被覆層又は結合層で形成することが可能であり、従来の非酸化物系の粉体では不可能であった、形状や構造を制御した新規な粉体の製法(特に、粉体の球形度と、粉体表面の安定性とを、同時に向上させた新材料)、その粉体、及び製造装置が提供可能である事を見出し、本発明を完成するに至った。 Under such circumstances, the present inventors have conducted intensive research with the goal of developing a new technology capable of drastically solving the problems of the conventional technology in view of the conventional technology. result of stacking a gaseous substance having a positive standard free energy under conditions that a non-oxide to produce a hydrocarbon-based gas, in the gas phase, characterized in that the addition of either ammonia By a continuous manufacturing method, a surface portion or an outer layer of a non-oxide-based particulate material made of metal, nitride, or oxynitride is made of an oxide, oxynitride, a component constituting the particulate material, or a solid solution thereof. It is possible to form a new powder with a controlled shape and structure (especially a spherical shape of the powder), which is impossible with conventional non-oxide powders. And the stability of the powder surface were improved at the same time Materials), the powder, and found that the manufacturing apparatus can be provided, and have completed the present invention.

即ち、本発明は、従来の非酸化物粉体、その製法、及びその製造装置が持つ欠点を克服した、新規な粒状物質、その製法、及びその製造装置を提供する事を目的とするものである。また、本発明は、非酸化物粉体の形状や構造の制御に関して、[A]高球形度の形状、[B]粉体表面の安定性、[C]気相中の連続的な製法(高コストパフォーマンス)、の、全てを同時に満たす事を達成した、新規な粒状物質、その製法、及びその製造装置を提供する事を目的とするものである。   That is, the present invention aims to provide a novel granular material, a method for producing the same, and a device for producing the same, overcoming the disadvantages of the conventional non-oxide powder, the method for producing the same, and the device for producing the same. is there. In addition, the present invention relates to the control of the shape and structure of the non-oxide powder, [A] the shape of high sphericity, [B] the stability of the powder surface, [C] the continuous production method in the gas phase ( It is an object of the present invention to provide a novel granular material, a method for producing the same, and a production apparatus for the same, which have achieved all the requirements of high cost performance.

上記の課題を解決するための本発明は、以下の技術的手段から構成される。
(1)製造温度で正の標準生成自由エネルギーを有するガス状物質を反応場へ添加することを含む、気相中の連続的な製法で、非酸化物系粒状物質の球形度と粒状物質の表面の安定性を同時に向上させた複合粒状物質であって、
その表面部又は外層に、当該粒状物質を構成する物質又はそれらの固溶体の何れかの物質で構成された被覆層又は結合層を有し、粒状物質の外形が、長径/短径比が0.7以上で、粒子の表面が角ばらない高球形度の形状及び高安定性の表面を有し、平均粒子径が1〜100ミクロンであり、
上記非酸化物系粒状物質が、窒化アルミニウム、酸窒化アルミニウム、純鉄、窒化鉄から選択される1種であり、上記ガス状物質が、炭化水素系ガスのアセチレン、プロパン又はアンモニアガスの何れかであることを特徴とする複合粒状物質。
(2)上記被覆層又は結合層が、粒状、棒状、膜状、多孔状、不定形の何れかの形状からなることを特徴とする上記(1)に記載の複合粒状物質。
(3)上記(1)に記載の複合粒状物質よりなることを特徴とするフィラー又は充填材。
(4)気相中の連続的な製法で、非酸化物系粒状物質の球形度と粒状表面の安定性を同時に向上させた複合粒状物質を製造する方法であって、
製造温度で正の標準生成自由エネルギーを有する、炭化水素系ガスのアセチレン、プロパン又はアンモニアガスの何れかのガス状物質を反応場へ添加する工程、ガス状物質中に非酸化物系粒状物質を浮遊させる工程、により非酸化物系粒状物質の表面部又は外層に、当該粒状物質を構成する物質、又はそれらの固溶体の何れかの物質で構成された被覆層又は結合層を形成すること、及び
上記非酸化物系粒状物質が、窒化アルミニウム、酸窒化アルミニウム、純鉄、窒化鉄から選択される1種であることを特徴とする複合粒状物質の製造方法。
(5)気相中での生成反応が、流動層法により、大気圧下で行われることを特徴とする上記(4)に記載の複合粒状物質の製造方法。
(6)上記被覆層又は結合層が、粒状、棒状、膜状、多孔状、不定形の何れかの形状からなることを特徴とする上記(4)に記載の複合粒状物質の製造方法。
(7)非酸化物系粒状物質の表面部又は外層に、当該粒状物質を構成する物質、又はそれらの固溶体の何れかの物質で構成された被覆層又は結合層を有する複合粒状物質を気相中で連続的に製造するための装置であって、
気相中で反応を遂行するための反応装置、非酸化物系粒状物質の窒化アルミニウム、酸窒化アルミニウム、純鉄、窒化鉄の何れかの原料を反応装置内へ供給するための手段、製造温度で正の標準生成自由エネルギーを有する炭化水素系ガスのアセチレン、プロパン又はアンモニアガスの何れかのガス状物質を反応装置へ供給する手段、及び反応装置及び/又はガス状物質を加熱するための加熱手段、を含むことを特徴とする複合粒状物質の製造装置。
(8)反応装置に対して、外部加熱手段を並用又は別建てで設けたことを特徴とする上記(7)に記載の複合粒状物質の製造装置。
The present invention for solving the above-described problems comprises the following technical means.
(1) A continuous process in the gas phase comprising adding a gaseous substance having a positive standard free energy of formation at the production temperature to the reaction field. A composite particulate material with improved surface stability at the same time,
On the surface portion or outer layer, has a coating layer or bonding layer is composed of any material of this particulate material constituting the substance or solid solution thereof, the outer shape of the particulate material, the major axis / minor diameter ratio 0 .7 or more, the surface of the particles has a high sphericity shape and a highly stable surface, the average particle diameter is 1 to 100 microns,
The non-oxide particulate material is one selected from aluminum nitride, aluminum oxynitride, pure iron, and iron nitride, and the gaseous material is any one of hydrocarbon gas acetylene, propane , or ammonia gas . A composite particulate material characterized by
(2) The composite granular material according to the above (1), wherein the coating layer or the bonding layer has any one of a granular shape, a rod shape, a membrane shape, a porous shape, and an amorphous shape.
(3) A filler or filler comprising the composite particulate material described in (1) above.
(4) A method for producing a composite granular material in which the sphericity of the non-oxide granular material and the stability of the granular surface are simultaneously improved by a continuous process in the gas phase,
A process of adding a gaseous substance of any of acetylene, propane , or ammonia gas , which has a positive standard free energy of production at the production temperature, to the reaction field, non-oxide particulate matter in the gaseous substance the step of suspending, by the surface portion or outer layer of the non-oxide particulate material, to form an equivalent particulate substance constituting the material, or coating layer or bonding layer is composed of any material of solid solution thereof And the non-oxide particulate material is one selected from aluminum nitride, aluminum oxynitride, pure iron, and iron nitride .
(5) The method for producing a composite granular material according to the above (4), wherein the production reaction in the gas phase is performed under atmospheric pressure by a fluidized bed method.
(6) The method for producing a composite granular material according to (4), wherein the coating layer or the bonding layer has any one of a granular shape, a rod shape, a membrane shape, a porous shape, and an amorphous shape.
(7) vapor to the surface portion or outer layer of the non-oxide particulate material, a composite particulate material having an equivalent particulate substance constituting the material, or coating layer or bonding layer is composed of any material of solid solution thereof An apparatus for continuous production in phase,
Reactor for carrying out the reaction in the gas phase, means for supplying any raw material of non-oxide particulate aluminum nitride, aluminum oxynitride, pure iron or iron nitride into the reactor, production temperature A means for supplying any gaseous substance of acetylene, propane , or ammonia gas, which is a hydrocarbon-based gas having a positive standard free energy of formation, to the reactor, and for heating the reactor and / or the gaseous substance An apparatus for producing a composite granular material, comprising heating means.
(8) The apparatus for producing a composite granular material according to (7) above, wherein external heating means are provided in parallel or separately from the reaction apparatus.

次に、本発明について更に詳細に説明する。
本発明者らは、非酸化物の反応を熱力学的に再検討した。その結果、ある種のガス状物質を添加した場合に非酸化物の反応性(還元反応)が向上する現象は、非酸化物を製造する温度で、そのガス状物質が正の標準生成自由エネルギーを持つために、非酸化物生成反応に必要な自由エネルギーを小さくできる事が原因である事を熱力学的に明らかにした。しかも、酸化物生成反応に必要な自由エネルギーは、上記の非酸化物生成反応より小さい場合が多いのが一般的であるが、非酸化物を製造する温度で正の標準生成自由エネルギーを持つガス状物質を添加した反応の自由エネルギーは、(非酸化物生成反応だけではなく)酸化物生成反応よりも小さくなる場合がある事もわかった。更に、この反応機構は、原理的に、酸化物の還元(原料から酸素元素を解離)だけに限定されるものではなく、窒化(原料と窒素元素を反応)や、大粒径の原料でも反応が可能であったり(還元や窒化反応性が向上されるため)、電気炉中のバッチ処理に比べて本質的に反応時間の短い気相中の連続的な製法でも反応を駆動し得る可能性を持つ事(上記のガス状物質による自励的な反応を利用し、熱エネルギーの効率的利用が可能な内部加熱方式で構成できるため)、に着目した。
Next, the present invention will be described in more detail.
The inventors have reviewed the non-oxide reactions thermodynamically. As a result, when a certain kind of gaseous substance is added, the non-oxide reactivity (reduction reaction) is improved at the temperature at which the non-oxide is produced. It was clarified thermodynamically that the free energy required for the non-oxide formation reaction can be reduced. In addition, the free energy required for the oxide formation reaction is generally smaller than the non-oxide generation reaction described above, but generally a gas having a positive standard formation free energy at the temperature at which the non-oxide is produced. It was also found that the free energy of the reaction with the addition of the particulate material may be smaller than that of the oxide formation reaction (not only the non-oxide formation reaction). Furthermore, this reaction mechanism is not limited in principle to the reduction of oxide (dissociation of oxygen element from the raw material), but also the reaction of nitriding (reaction of raw material and nitrogen element) and raw materials with large particle sizes. (Because reduction and nitridation reactivity are improved), and the possibility of being able to drive the reaction even in a continuous process in the gas phase, which essentially has a shorter reaction time than batch processing in an electric furnace (Because it can be configured by an internal heating system that uses the self-excited reaction by the gaseous substance and can efficiently use thermal energy).

本発明者らは、更に、非酸化物が生成する条件下で正の標準生成自由エネルギーを有する、炭化水素系ガス、アンモニアの何れかのガス状物質を添加する製法が、同時に、製法としての本質的に、酸化物、酸窒化物、当該粒状物質を構成する成分、又はその固溶体から成る粒状物質表面部又は外層を形成し易いという、重要な特徴を有している事に着目した。即ち、上記の製法が、アンモニウムアルミニウム化合物、酸窒化物層、製造過程で発生する窒素酸化物の分解で生じる活性酸素の除去、酸化雰囲気中の熱処理、アンモニアガスと粉体を構成する成分との気相反応、工程中の部分酸化等、粉体材質や製法の本質に起因した個別例的手法で試みられていた、全ての工程を包含している事、に着目した。 The present inventors have further comprises a positive standard free energy under conditions that a non-oxide to produce a hydrocarbon-based gas, process of adding any gaseous substance ammonia are simultaneously a process It was noticed that it has an important characteristic that it is easy to form an oxide, an oxynitride, a component constituting the particulate material, or a granular material surface portion or outer layer made of a solid solution thereof. That is, a component the manufacturing method described above is, aluminum ammonium compound, oxynitride layer, which constitutes the removal of active oxygen generated in the decomposition of nitrogen oxides generated in the manufacturing process, heat treatment in an oxidizing atmosphere, an ammonia gas and a powder We focused on the fact that it included all processes that were attempted by individual methods such as gas phase reaction, partial oxidation during the process, etc. due to the nature of the powder material and the manufacturing method.

本発明者らは、更に、上記の製法が、気相中の連続的な製法であるため、製法としての本質的に、(1)ガス中に粉体を浮遊せしめ、しかも、その粉体の球形度が高いため、上記の粉体表面部又は外層形成の均一性が高まる事、(2)上記粉体製造工程と、粉体の材質や製法に関わらず粉体の表面部又は外層を「強制的に」改質する製法(複合化プロセス)とも両立させ易い事、の2点に着目した。例えば、大気圧状態で運転可能な「正の標準生成自由エネルギーのガス支援型・非酸化物製造装置」に原料を投入する際、外部加熱装置を併用し、それを連続加熱方式で用いる事により、上記の製造機構は、原理的に、既往の(任意の)粉体表面の複合化プロセスを併用し得る可能性を持つ事、が例示できる。   Furthermore, since the above-mentioned production method is a continuous production method in the gas phase, the present inventors essentially (1) suspended the powder in the gas, and the powder Since the sphericity is high, the uniformity of the powder surface portion or the outer layer formation is increased. (2) The surface portion or outer layer of the powder regardless of the powder manufacturing process and the powder material or manufacturing method. We paid attention to two points, that it is easy to make compatible with a manufacturing method (composite process) that forcibly modifies. For example, when raw materials are put into a “positive standard production free energy gas-supported non-oxide production device” that can be operated at atmospheric pressure, an external heating device is used in combination with a continuous heating method. The above-described production mechanism can be exemplified by the possibility that, in principle, the existing (arbitrary) powder surface composite process can be used in combination.

本発明者らは、以上の着想を実現すべく鋭意検討した結果、具体的には、(1)気相中の連続的な製法において、(2)非酸化物が生成する条件下で正の標準生成自由エネルギーを有するガス状物質である、炭化水素系ガス、アンモニアの何れかを添加する事、(3)ガス状物質中に粒状物質を浮遊せしめる事、(4)粒状物質表面部又は外層が、粒状、棒状、膜状、多孔状、不定形の何れかの形状又は構造を有し、当該粒状物質又はその表面部に付着、被覆、結合の何れかの化学的状態で存在している事、及び、必要に応じて(5)粉体の材質や製法に関わらず粉体の表面部又は外層を「強制的に」改質する製法(複合化プロセス)と組み合わせる事、そして、以上の五点の制御を同時に、又は連続的に、又は断続的に組み合わせる事で、本発明を具現化した。 As a result of intensive investigations to achieve the above idea, the present inventors have, specifically, (1) in a continuous production method in a gas phase, and (2) a positive condition under the condition that a non-oxide is generated. a gaseous substance having a standard free energy, hydrocarbon gas, the addition of either ammonia, (3) be allowed to float particulate matter gaseous substance, (4) the granular material surface portion or The outer layer has any shape or structure of granular, rod-like, membrane-like, porous or irregular, and exists in any chemical state of adhesion, coating or bonding to the granular substance or its surface. And (5) combining with the manufacturing method (composite process) that “forcefully” reforms the surface or outer layer of the powder regardless of the material and manufacturing method of the powder, as necessary. By combining the five points of control simultaneously, continuously, or intermittently, Invention embodying the.

本発明において、非酸化物とは、金属又は窒化物又は酸窒化物が例示され、高熱伝導性が注目される窒化アルミニウム(AlN)、耐食・耐薬品性や高光学特性が注目される酸窒化アルミニウム(γ―AlON等)、高機械的特性等が注目される窒化ケイ素(Si )、純鉄(Fe)、窒化鉄(FeN)を好適とするが、特に制限されるものではない。本発明で使用される非酸化物粒状物質の粒子径は、0.01〜1000ミクロン、好ましくは1〜100ミクロンである。 In the present invention, the non-oxide, metallic or nitride or oxynitride and the like, aluminum nitride high thermal conductivity is noted (AlN), corrosion and chemical resistance and acid high optical characteristics are noted Aluminum nitride (γ-AlON, etc.), silicon nitride (Si 3 N 4 ), pure iron (Fe), and iron nitride (FeN), which are notable for high mechanical properties, are suitable, but are not particularly limited. Absent. The particle size of the non-oxide particulate material used in the present invention is 0.01 to 1000 microns, preferably 1 to 100 microns.

本発明において、例えば、窒化アルミニウム又は酸窒化アルミニウムを製造するにあたり、直接窒化法を基本とする場合には、原料として、アルミニウム金属、特に水、ガス、遠心等の各種アトマイズ法で製造された球形度の高いAl系粉体群を好適とするが、特に制限はない。また、還元窒化法を基本とする場合の、原料として、例えば、バイヤー法又は改良バイヤー法、アルコキシド法、アンモニウムドーソナイト法、気相法等で製造されたアルミナ系粉体群を好適とするが、更に、ボーキサイト等の岩石類、アルファ相、ガンマ相、シータ相、カッパ相の各種アルミナ多系(中間アルミナ)群、AlOOHやAl(OH)の化学式で表現される水酸化物前駆体、アセチルアセトナト(化学式Al(C)やアンモニウムドーソナイト(化学式NHAlCO(OH))等の炭酸塩前駆体、等が例示されるが、特に制限はない。気相法を基本とする場合には、原料として、例えば、AlCl等の塩化物、アルミニウムイソプロポキシド(化学式Al(iso−OC)等のアルコキシド原料、アルミニウムアセチルアセトナト(化学式Al(iso−C)等のβジケトン錯体、トリメチルアルミニウム(化学式Al(CH)等のアルキルメタル等、低沸点の気相合成用原料群、等が例示されるが、非酸化物を製造する反応に供する事が可能であれば良く、特に制限されるものではない。 In the present invention, for example, in producing aluminum nitride or aluminum oxynitride, when a direct nitriding method is used as a basic material, as a raw material, aluminum metal, in particular, a spherical shape produced by various atomizing methods such as water, gas, and centrifugation. A high degree of Al-based powder group is preferable, but there is no particular limitation. In addition, as a raw material in the case of using the reduction nitriding method as a basic material, for example, an alumina-based powder group manufactured by a buyer method or an improved buyer method, an alkoxide method, an ammonium dawsonite method, a gas phase method, or the like is preferable. In addition, rock precursors such as bauxite, alpha-phase, gamma-phase, theta-phase, various alumina-based (intermediate alumina) groups of kappa phase, and hydroxide precursors expressed by chemical formulas of AlOOH and Al (OH) 3 And carbonate precursors such as acetylacetonato (chemical formula Al (C 5 H 7 O 2 ) 3 ) and ammonium dosonite (chemical formula NH 4 AlCO 3 (OH) 2 ), etc. Absent. In the case of using the gas phase method as a basic material, examples of the raw material include chlorides such as AlCl 3 , alkoxide raw materials such as aluminum isopropoxide (chemical formula Al (iso-OC 3 H 5 ) 3 ), aluminum acetylacetonate ( Examples include β-diketone complexes such as the chemical formula Al (iso-C 5 H 7 O 2 ) 3 ), alkyl metals such as trimethylaluminum (chemical formula Al (CH 3 ) 3 ), and low-boiling-point raw material for gas phase synthesis. However, it is not particularly limited as long as it can be used for a reaction for producing a non-oxide.

本発明において、非酸化物を製造する温度で正の標準生成自由エネルギーを持つガス状物質としては、入手の容易さから炭化水素系ガス及びアンモニアガスを使用するが、これらは、非酸化物が生成する一般的な温度範囲である1000℃近辺での標準生成自由エネルギーが正の値となる性質を持ったガス状物質である。なお、本発明に適用することができる炭化水素系ガスとアンモニアガスを含むガス状物質の例と、それらの標準生成自由エネルギー、還元又は窒化能力を、表1に例示した。 In the present invention, as a gaseous substance having a positive standard free energy at temperatures of producing a non-oxide, Suruga using hydrocarbon gas and ammonia gas ease of entry hand, these, non-oxide is gaseous substance standard free energy with properties as a positive value of a in the vicinity of 1000 ° C. typical temperatures range for generating. Table 1 shows examples of gaseous substances containing hydrocarbon gas and ammonia gas that can be applied to the present invention, and their standard free energy of formation, reduction or nitriding ability.

本発明において、原料が粒状物質の場合、粉体の流動化又は気相分散状態の形成・利用方法については、例えば、粉体を気流で搬送・滞留化させる各種の流動層法(原料粉体より大きく、流動化し易い数100ミクロン直径の媒体メディアを同時に用い、原料粉体の凝集を防止しながら高分散化を図る媒体流動層法、粉体層に振動を印加して微粉体のチャネリングを防止する振動流動層法等)を好適とするが、例えば、更に、回転円板やガスノズルを用いて粉体を気流にのせる各種噴霧法、液体媒体中に粉体を分散させ、超音波霧化器等で液体ごと粉体を液滴化する液体噴霧法等も適用可能であり、特に制限されるものではない。また、何れの方法で調製された粒状物質も適用できる。   In the present invention, when the raw material is a granular material, for example, various fluidized bed methods (raw material powder) in which the powder is conveyed and retained by an air current are used for the fluidization of the powder or the formation / use method of the gas phase dispersion Larger, easier to fluidize media media with a diameter of several hundreds of microns at the same time, medium fluidized bed method to achieve high dispersion while preventing agglomeration of raw material powder, channeling fine powder by applying vibration to powder layer For example, various spraying methods in which the powder is put in an air stream using a rotating disk or a gas nozzle, the powder is dispersed in a liquid medium, and ultrasonic mist is used. A liquid spraying method or the like in which powder is formed into droplets together with a liquid using a vaporizer or the like can be applied, and is not particularly limited. Moreover, the granular material prepared by any method is applicable.

本発明において、1ミクロン以上の平均粒子径を持つ粒状物質の原料として、液状原料も一般的であるが、媒体としてはイオン交換水や蒸留水等の水系、エタノール等の有機非水系の他、ガソリンやトルエン、ベンゼン等の可燃性液状物質を使用し、非酸化物生成のための原料をイオン状態に溶解、又は粒状やコロイド状に分散させた溶液又はスラリーが例示されるが、特に制限されるものではない。その供給方法は、回転円板やガスノズル等の各種噴霧法、超音波霧化器等が例示される。   In the present invention, as a raw material of a granular material having an average particle diameter of 1 micron or more, a liquid raw material is also common, but as a medium, an aqueous system such as ion-exchanged water or distilled water, an organic non-aqueous system such as ethanol, Examples include, but are not limited to, solutions or slurries that use flammable liquid substances such as gasoline, toluene, and benzene, and that dissolve raw materials for non-oxide generation in an ionic state, or are dispersed in a granular or colloidal form. It is not something. Examples of the supply method include various spraying methods such as a rotating disk and a gas nozzle, and an ultrasonic atomizer.

本発明では、気相中で反応を遂行するための反応装置、非酸化物粒状物質の原料を反応装置内へ供給する手段、製造温度で正の標準生成自由エネルギーを有するガス状物質を反応装置へ供給する手段、及び反応装置及び/又はガス状物質を加熱するための加熱手段を含む複合粒状物質製造装置が使用される。本発明において、非酸化物の反応装置、又は非酸化物が生成する温度で還元又は窒化能力を持つガス状物質を生成するための装置、又はそれらに同時に、又は連続的に、又は断続的に高温付与可能な装置は、石英、アルミナ、耐熱鋼等の反応管や壁を設け、雰囲気制御や、発生熱エネルギーの効率的利用が可能な密閉構造を好適とするが、反応に問題が無ければ自由空間でも良い。また反応駆動力としては、原料の自励的な反応が経済性の点で最も望ましいが、反応促進と短時間化の目的で、気相析出反応(CVD)法で多用される外部加熱(電気炉)法や、プラズマ、アーク、火炎(但し「火炎」とは、完全燃焼であり、水蒸気(HO)と二酸化炭素(CO)に完全に分解される現象をいう)、高還元比の部分燃焼(但し「還元比」とは、水蒸気+二酸化炭素と、水素(H)+一酸化炭素(CO)との比)、等を併用する事を妨げるものではない。 In the present invention, a reaction apparatus for performing a reaction in a gas phase, a means for supplying a raw material of non-oxide particulate material into the reaction apparatus, and a gaseous substance having a positive standard free energy of formation at a production temperature. A device for producing a composite particulate material is used which comprises means for supplying to the reactor and a heating means for heating the reactor and / or the gaseous substance. In the present invention, a non-oxide reactor, or an apparatus for producing a gaseous substance having a reducing or nitriding ability at a temperature at which a non-oxide is produced, or simultaneously, continuously or intermittently thereto. Equipment that can be applied at high temperatures is equipped with a reaction tube or wall made of quartz, alumina, heat-resistant steel, etc., and it is preferable to have a sealed structure that can control the atmosphere and efficiently use the generated heat energy. It may be free space. As the reaction driving force, self-excited reaction of raw materials is most desirable in terms of economy, but external heating (electrical) frequently used in the vapor deposition reaction (CVD) method for the purpose of promoting the reaction and shortening the reaction time. Furnace) method, plasma, arc, flame (“flame” means complete combustion, which means a phenomenon that is completely decomposed into water vapor (H 2 O) and carbon dioxide (CO 2 )), high reduction ratio The partial combustion (where “reduction ratio” does not prevent the combined use of water vapor + carbon dioxide, hydrogen (H 2 ) + carbon monoxide (CO)), etc.

本発明の要件を具体化する場合に想定される装置構成の一例を、図1に整理した。図1―aは、原料の自励的な反応を利用する場合の装置構成を具現化したものに相当する。大気圧状態で運転可能な「正の標準生成自由エネルギーのガス支援型・非酸化物製造装置」に原料を投入する際、前記ガス状物質を添加する。図1―bは、還元又は窒化用ガス状物質発生装置を併用する場合の装置構成を具現化したものに相当する。図1―cは、外部加熱装置を併用し、それを同時加熱方式で用いる場合の装置構成を具現化したものに相当する。図1―dは、還元又は窒化用ガス状物質発生装置を併用し、それに更に、外部加熱装置を併用した場合の装置構成を具現化したものに相当する。図1―eは、外部加熱装置を併用し、それを同時加熱方式で用い、更に、還元又は窒化用ガス状物質発生装置を併用した場合の装置構成を具現化したものに相当する。図1―fは、外部加熱装置を併用し、それを同時加熱方式で用い、更に、還元又は窒化用ガス状物質発生装置(それにも外部加熱装置を併用)を併用した場合の装置構成を具現化したものに相当する。図1―gは、外部加熱装置を併用し、それを連続加熱方式で用いる場合の装置構成を具現化したものに相当する。図1―hは、外部加熱装置を併用し、それを連続加熱方式で用い、更に、還元又は窒化用ガス状物質発生装置を併用した場合の装置構成を具現化したものに相当する。これら以外にも、多くの装置構成が想定され、それを妨げるものではない。   An example of an apparatus configuration assumed when the requirements of the present invention are embodied is shown in FIG. FIG. 1A corresponds to an embodiment of a device configuration in which a self-excited reaction of raw materials is used. When the raw material is charged into a “positive standard production free energy gas-assisted non-oxide production apparatus” operable at atmospheric pressure, the gaseous substance is added. FIG. 1B corresponds to an embodiment of the apparatus configuration in which a reducing or nitriding gaseous substance generator is used in combination. FIG. 1C corresponds to an embodiment of an apparatus configuration in which an external heating apparatus is used in combination and used in the simultaneous heating method. FIG. 1D corresponds to an embodiment of the apparatus configuration in which a gaseous substance generator for reduction or nitridation is used in combination with an external heating apparatus. FIG. 1E corresponds to an embodiment of an apparatus configuration in which an external heating apparatus is used in combination, a simultaneous heating method is used, and a reduction or nitriding gaseous substance generation apparatus is used in combination. Fig. 1-f shows the device configuration when an external heating device is used in combination with a simultaneous heating method, and further a reduction or nitriding gaseous substance generator (also used with an external heating device) is used. Corresponds to FIG. 1-g corresponds to an embodiment of an apparatus configuration in which an external heating device is used in combination and used in a continuous heating system. FIG. 1-h corresponds to an embodiment of an apparatus configuration in which an external heating apparatus is used in combination with a continuous heating method and a reduction or nitriding gaseous substance generation apparatus is used in combination. In addition to these, many device configurations are envisaged and do not interfere with them.

本発明において、アルミニウム(Al)の直接窒化反応を基本とし、「非酸化物が生成する条件下で標準生成自由エネルギーが正の値となる性質を持ったガス状物質」として、アセチレン(C)とアンモニア(NH)を添加する例について、以下に説明する。
一般的なAlの直接窒化反応は次式による;
2Al+N→2AlN (1)
NH3によるAlの窒化反応は次式による;
2Al+2NH→2AlN+3H (2)
一方、大気圧下等で、酸素が存在する場合、金属Alは容易に次式の酸化反応が起こる;
4Al+3O→2Al (3)
(3)式の酸化反応を起こさずに、(1)式や(2)式の反応を進行させるには、非酸化雰囲気に保持し、十分な高温、水素(H)分圧を平衡分圧以下に保つ等の制御を要する。
In the present invention, acetylene (C 2) is used as a “gaseous substance having a property that the standard free energy of formation is a positive value under the conditions in which non-oxide is generated” based on the direct nitridation reaction of aluminum (Al). An example of adding H 2 ) and ammonia (NH 3 ) will be described below.
General Al direct nitridation reaction is according to the following formula:
2Al + N 2 → 2AlN (1)
The nitriding reaction of Al with NH3 is according to the following formula:
2Al + 2NH 3 → 2AlN + 3H 2 (2)
On the other hand, when oxygen is present at atmospheric pressure or the like, metal Al readily undergoes an oxidation reaction of the following formula;
4Al + 3O 2 → 2Al 2 O 3 (3)
In order to advance the reaction of the formulas (1) and (2) without causing the oxidation reaction of the formula (3), it is maintained in a non-oxidizing atmosphere, and a sufficiently high temperature and hydrogen (H 2 ) partial pressure are balanced. Control such as keeping below the pressure is required.

一方、次式;
2Al+2NH+C+O→2AlN+2CO+4H(4)
又は、
14Al+2NH+2C+11O→2AlN+4CO+5H(5)
に従う、Al−C−NH系の、窒化アルミニウム(AlN)又は酸窒化アルミニウム(ここではAlN)の生成反応の標準生成自由エネルギーは、工業化されている窒化反応で一般的な、1000K(727℃)〜1800K(1527℃)の温度範囲において、十分大きな負の値をとる。これは、反応式の左辺に位置するCとNHが、上記温度範囲で正の標準生成自由エネルギーを持っているためである。(1)式や(2)式に比べ、(4)式や(5)式の反応は、(3)式の反応を起こさずに、比較的容易な制御条件で駆動させる事が見込める。以上の反応の自由エネルギー変化と温度との関係(エリンガム線図)を図2に整理した(なお、各元素や化合物等の標準生成自由エネルギーは、JANAF熱化学表等から引用した)。また、酸窒化アルミニウムは、それを生成物として使用する他に、次式によりAlNに変換して用いる事も可能である;
AlN+9C+3N→7AlN+9CO (6)
On the other hand, the following formula:
2Al + 2NH 3 + C 2 H 2 + O 2 → 2AlN + 2CO + 4H 2 (4)
Or
14Al + 2NH 3 + 2C 2 H 2 + 11O 2 → 2Al 7 O 9 N + 4CO + 5H 2 (5)
The standard free energy of formation of Al—C 2 H 2 —NH 3 based aluminum nitride (AlN) or aluminum oxynitride (here Al 7 O 9 N) is It takes a sufficiently large negative value in a temperature range of 1000 K (727 ° C.) to 1800 K (1527 ° C.). This is because C 2 H 2 and NH 3 located on the left side of the reaction formula have positive standard formation free energy in the above temperature range. Compared with the equations (1) and (2), the reactions of the equations (4) and (5) can be expected to be driven under relatively easy control conditions without causing the reaction of the equation (3). The relationship between the free energy change of the above reaction and the temperature (Ellingham diagram) is shown in FIG. 2 (note that the standard free energy for formation of each element, compound, etc. is quoted from the JANAF thermochemical table). In addition to using it as a product, aluminum oxynitride can also be used by converting it to AlN according to the following formula:
Al 7 O 9 N + 9C + 3N 2 → 7AlN + 9CO (6)

本発明において、アルミニウム(Al)の直接窒化反応を基本とし、「非酸化物が生成する条件下で標準生成自由エネルギーが正の値となる性質を持ったガス状物質」としてプロパン(C)とアンモニア(NH)を添加する例を説明する。次式;
2Al+2NH+2C+3O→2AlN+6CO+11H (7)
又は、
14Al+2NH+2C+12O→2AlN+6CO+11H
(8)
に従う、Al−C−NH系の窒化アルミニウム(AlN)又は酸窒化アルミニウム(ここでは、AlN)の生成反応の標準生成自由エネルギーは、工業化されている窒化反応で一般的な1000K(727℃)〜1800K(1527℃)の温度範囲において、極めて大きな負の値をとる。これは、反応式の左辺に位置するCとNHが、上記温度範囲で標準生成自由エネルギーが正の値となる性質を持っているためである。なお、反応の自由エネルギー変化と温度との関係(エリンガム線図)を図3に整理した。
In the present invention, the direct nitridation reaction of aluminum (Al) is used as a basis, and propane (C 3 H is used as “a gaseous substance having a property that the standard free energy of formation is a positive value under the condition that a non-oxide is generated”. An example of adding 8 ) and ammonia (NH 3 ) will be described. The following formula:
2Al + 2NH 3 + 2C 3 H 8 + 3O 2 → 2AlN + 6CO + 11H 2 (7)
Or
14Al + 2NH 3 + 2C 3 H 8 + 12O 2 → 2Al 7 O 9 N + 6CO + 11H 2
(8)
The standard free energy of formation of Al—C 3 H 8 —NH 3 based aluminum nitride (AlN) or aluminum oxynitride (here Al 7 O 9 N) according to In a typical temperature range of 1000 K (727 ° C.) to 1800 K (1527 ° C.), a very large negative value is obtained. This is because C 3 H 8 and NH 3 located on the left side of the reaction formula have a property that the standard free energy of formation is a positive value in the above temperature range. The relationship between the change in free energy of reaction and temperature (Ellingham diagram) is shown in FIG.

本発明において、粉体表面の複合化プロセスとは、粉体表面に、粉体の形状又は構造を制御するための粒状物質、液状物質又はガス状物質が、粒状、棒状、膜状、多孔状、又は不定形に、付着、被覆又は結合する事を必要とするが、それ以外の条件、例えば、物質の相(固体、液体又は気体等)、形状や構造(粒状、棒状、膜状、多孔状、又は不定形)、材質(金属、高分子、酸化物、又は非酸化物等)、大きさ、添加量、複合構造化を図る方法等については特に制限は無く、限定されない。例えば、金、銀、銅、白金、鉄、チタン等の金属系、チタン系化合物、ホウ素系化合物、亜鉛系化合物等の各種機能付与・促進剤、エタノール、ポリエチレングリコール、ポリビニルアルコール、アラビアゴム等の各種高分子添加剤、パラフィンやグラファイト等の炭素系粉体材料、各種界面活性剤、各種バインダー、加熱により分解してガス状物質を発生する性質を有する粒状物質又は液状物質又はガス状物質(アゾ系物質等の発泡剤等)、セリサイト等の板状粉体、等が例示される。また、方法は、粉体の混合や電気炉中の加熱、粉砕、剪断応力を利用した機械的複合化法等の固相法、液体中のゼータ電位差や加水分解、錯体反応やエマルション法等を利用する液相法、ガス中の蒸発−凝縮現象、核生成、静電気力、液架橋力等を利用する気相法、等が例示されるが、特に制限はない。   In the present invention, the compounding process of the powder surface means that the granular material, liquid material or gaseous material for controlling the shape or structure of the powder is granular, rod-shaped, film-shaped, porous on the powder surface. , Or need to be attached, coated or bonded to an irregular shape, but other conditions such as material phase (solid, liquid or gas), shape or structure (granular, rod-like, membrane-like, porous) Shape or indeterminate form), material (metal, polymer, oxide, non-oxide, etc.), size, amount added, method of achieving a composite structure, and the like are not particularly limited and are not limited. For example, metal, such as gold, silver, copper, platinum, iron, titanium, various functional imparting / accelerating agents such as titanium compounds, boron compounds, zinc compounds, ethanol, polyethylene glycol, polyvinyl alcohol, gum arabic, etc. Various polymer additives, carbon powder materials such as paraffin and graphite, various surfactants, various binders, granular materials or liquid materials or gaseous materials (azo Examples thereof include foaming agents such as system substances), plate-like powders such as sericite, and the like. In addition, the methods include powder mixing, heating in an electric furnace, pulverization, solid phase methods such as mechanical compounding using shear stress, zeta potential difference and hydrolysis in liquid, complex reaction, emulsion method, etc. Examples include a liquid phase method to be used, a vaporization-condensation phenomenon in gas, a nucleation, an electrostatic force, a liquid crosslinking force, and the like, but there is no particular limitation.

本発明において、「高球形度の形状」とは、粒子の外形が、長径/短径が0.5〜1、好ましくは0.7以上であり、粒子の表面が角ばらない形状、即ち、粒子全体を巨視的(投影図的)に見た場合の長径/短径比が、0.5〜1、好ましくは0.7以上であることに加え、同時に、粒子表面を微視的(拡大図的)に見た場合に、表面突起や多角形形状による突起部等がない、平滑表面であること、として定義される。また、本発明において、「粉体表面の安定性」とは、原料粉体のハンドリング中に、粉体表面の材料組成や、粒子形態・構造等が変化しないということで、例えば、大気中の酸素と反応し、非酸化物が大量に酸化物化するようなことがない、ということを意味する。更に、粉体の球形度と、粉体表面の安定性とを同時に向上させたとは、粒子形態・構造の、巨視的球形度が高く、微視的表面粗さが平滑で、同時に、粉体表面の材料組成や、粒子形態・構造等が変化しないということを意味する。本発明において、製造された粒状物質の使用方法、及び粒状物質を利用した成形体や焼結体としては、半導体素子の保護・絶縁等を目的としたパッケージング(封止)材料を好適とするが、更に、熱伝導材料、耐食・耐薬品性材料、光学材料、高強度・高靭性材料、絶縁材料、電極・導電材料、電気粘性流体、研磨剤、化学機械研磨用スラリー、射出成形や鋳込み成形等のセラミック成形プロセス原料、基板材料、セラミック電子材料、セラミック構造材料、充填剤や嵩増剤等の各種フィラー系粉体、化粧品材料、吸入療法用経肺薬剤、錠剤用薬剤粉体、等の材料系が例示される。   In the present invention, “the shape of high sphericity” means that the outer shape of the particle has a major axis / minor axis of 0.5 to 1, preferably 0.7 or more, and the particle surface is not angular, In addition to the major axis / minor axis ratio being 0.5 to 1, preferably 0.7 or more when the entire particle is viewed macroscopically (projected), the particle surface is microscopically (enlarged). (Schematically), it is defined as a smooth surface without surface protrusions or polygonal protrusions. In the present invention, “powder surface stability” means that the material composition of the powder surface, particle morphology, structure, etc. do not change during handling of the raw material powder. It means that it does not react with oxygen and non-oxides are not oxidized in large quantities. Furthermore, the sphericity of the powder and the stability of the powder surface are improved at the same time because the macroscopic sphericity of the particle morphology and structure is high, the microscopic surface roughness is smooth, and at the same time the powder This means that the surface material composition, particle morphology, structure, etc. do not change. In the present invention, as a method for using the produced granular material, and a molded body or sintered body using the granular material, a packaging (sealing) material for the purpose of protecting and insulating a semiconductor element is suitable. In addition, heat conduction materials, corrosion and chemical resistance materials, optical materials, high strength and toughness materials, insulating materials, electrodes and conductive materials, electrorheological fluids, abrasives, slurry for chemical mechanical polishing, injection molding and casting Raw materials for ceramic molding processes such as molding, substrate materials, ceramic electronic materials, ceramic structural materials, various filler powders such as fillers and bulking agents, cosmetic materials, pulmonary drugs for inhalation therapy, pharmaceutical powders for tablets, etc. This material system is exemplified.

以上、詳述したように、(1)本発明は、従来の、非酸化物粉体、その製法、及び製造装置が持つ欠点を克服することを可能とする、(2)本発明により、非酸化物が生成する条件において正の標準生成自由エネルギーを有するガス状物質である、炭化水素系ガス、アンモニアの何れかを添加する事を特徴とする、気相中の連続的な製法で、非酸化物系粒状物質である、金属、窒化物、又は酸窒化物から成る粒状物質の表面部又は外層を、酸化物、酸窒化物、当該粒状物質を構成する成分、又はその固溶体で構成することが可能となる、(3)非酸化物粉体の形状や構造の制御に関して、[A]高球形度の形状、[B]粉体表面の安定性、[C]気相中の連続的な製法(高コストパフォーマンス)の全てを同時に満たす事を達成した、新規な粒状物質、その製法、及びその製造装置を提供する事ができる、という格別の効果が奏される。 As described above in detail, (1) the present invention makes it possible to overcome the disadvantages of the conventional non-oxide powder, its production method, and production apparatus. a gaseous substance having a positive standard free energy under conditions in which oxides are produced, hydrocarbon gas, and wherein the addition of either ammonia, in a continuous process in the gas phase, is a non-oxide particulate material, metal, construction nitrides, or surface portion or outer layer of oxynitride or we made particulate material, components constituting an oxide, oxynitride, the particulate material, or a solid solution thereof (3) Regarding control of the shape and structure of the non-oxide powder, [A] shape of high sphericity, [B] stability of powder surface, [C] continuous in gas phase New that achieves all of the traditional manufacturing methods (high cost performance) at the same time Jo materials, their preparation, and can provide a manufacturing apparatus, special effect can be attained.

次に、実施例により本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。本発明で対象とする材料系の内、代表的な非酸化物として、窒化アルミニウム(AlN)系、及び酸窒化アルミニウム(δ―Al0N)系、鉄(Fe)系を用いて、以下の実施例を展開したが、他の非酸化物についても同様の結果が得られた。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited at all by the following examples. Of the material systems targeted by the present invention, aluminum nitride (AlN), aluminum oxynitride (δ-Al0N), and iron (Fe) are used as representative non-oxides. However, similar results were obtained for other non-oxides.

図1に整理した本発明の要件を具体化する場合に想定される装置構成例より、最も基礎的な図1―aを基本とした実施例を示す。反応の種類として「アルミニウム(Al)の直接窒化反応」を基本とし、「非酸化物を製造する温度で正の標準生成自由エネルギーを持つガス状物質」としてアセチレン(C)とアンモニア(NH)を添加する、本発明の上記反応メカニズムを採用し、これを具現化する事とした。但し、NHの添加位置は、非酸化物が生成する条件を持った反応場の中央とし、非酸化物の原料やCの後から添加した。概略図を図4―cに示す。 FIG. 1 shows an embodiment based on the most basic FIG. 1-a than the example of the apparatus configuration assumed when the requirements of the present invention arranged in FIG. 1 are embodied. The reaction type is based on “direct nitridation reaction of aluminum (Al)”, and acetylene (C 2 H 2 ) and ammonia (“gaseous substance having a positive standard free energy of formation at a temperature for producing a non-oxide”). The above reaction mechanism of the present invention, in which NH 3 ) is added, was adopted and embodied. However, NH 3 was added at the center of the reaction field with conditions for generating non-oxide, and added after the non-oxide raw material and C 2 H 2 . A schematic diagram is shown in FIG.

(1)方法
反応器は、アルミナ反応管とステンレス製二重円筒管とした。ガス状物質の供給部はスパッド型とし、ガス混合の際のデッドゾーン減少を図った。ステンレス製二重円筒管の外管へC2H2を供給し、内管へ原料及び反応ガス系を搬送した。原料のAl(図4、符号11)は、工業化優位性と生産性を考慮し、液状ではなく粒状物質を用いた。そこで、凝集等による搬送や反応の不均一性低減のため、供給装置として、流動層式の気相状態の粒状物質(エアロゾル)発生装置を用いた。流動化は、媒体流動層法とし、直径150ミクロンのガラスビーズを媒体として使用した。反応管中の雰囲気制御を厳密に行い、気相反応により、粒状の生成物を得た。捕集はテフロン(登録商標)フィルターを通してポンプ引きし、有害ガス等をトラップ除去する構成を採用した。Al原料は、平均粒子径約3ミクロンのガスアトマイズ法による球状粉体を用いた。Alは、窒化原料兼用の窒素ガスにより、1分当たり3リッターで搬送した。Cは、1分当たり4リッターで供給した。また、酸素(O)を、Cとの化学量論比〜還元側で調節した。更に、NHを、上記のように反応場の中央(図4、符号12)より、又は非酸化物原料や他のガス状物質と混合して(図4、符号13)、1分当たり0〜3リッターまで調整して供給した。
(1) Method The reactor was an alumina reaction tube and a stainless steel double cylindrical tube. The supply part of the gaseous substance was a spud type to reduce the dead zone during gas mixing. C2H2 was supplied to the outer tube of the stainless steel double cylindrical tube, and the raw material and reaction gas system were conveyed to the inner tube. As the raw material Al (FIG. 4, reference numeral 11), in consideration of industrialization superiority and productivity, granular material was used instead of liquid. Therefore, in order to reduce the non-uniformity of transport and reaction due to aggregation or the like, a fluidized bed type particulate matter (aerosol) generator in a gas phase state was used as a supply device. For fluidization, a medium fluidized bed method was used, and glass beads having a diameter of 150 microns were used as a medium. The atmosphere in the reaction tube was strictly controlled, and a granular product was obtained by a gas phase reaction. The collection was pumped through a Teflon (registered trademark) filter to remove harmful gases and the like. As the Al raw material, a spherical powder by the gas atomization method having an average particle diameter of about 3 microns was used. Al was conveyed at 3 liters per minute by nitrogen gas used also as a nitriding raw material. C 2 H 2 was supplied at 4 liters per minute. In addition, oxygen (O 2 ) was adjusted on the stoichiometric ratio to the reducing side with C 2 H 2 . Further, NH 3 is mixed from the center of the reaction field (FIG. 4, reference numeral 12) as described above, or mixed with a non-oxide raw material or another gaseous substance (FIG. 4, reference numeral 13). Adjusted to -3 liters and supplied.

(2)結果
実施例1において、生成物の形状を確認するための走査型電子顕微鏡写真を示す。市販されている酸窒化アルミニウムを図4―a、市販の窒化アルミニウムを図4―bに、実施例1の酸窒化アルミニウムを図4―d、実施例1の窒化アルミニウムを図4―eに、夫々示した。既往の市販粉体は、粉砕工程を経ているにも関わらず、生成粉体が固く融着又は凝集した状態が残っている(図4―a)。また、粉砕工程を反映して、非球状性の板状粒子となっている(図4―b)。これは、電気炉中のバッチ処理で酸窒化アルミニウムを合成するには、超高温(一般に、1650℃以上〜2000℃程度)の長時間処理が必要で、融着又は凝集状態が不可避であるためである(例えば、非特許文献2参照)。
(2) Result In Example 1, the scanning electron micrograph for confirming the shape of a product is shown. The commercially available aluminum oxynitride is shown in FIG. 4-a, the commercially available aluminum nitride is shown in FIG. 4-b, the aluminum oxynitride of Example 1 is shown in FIG. 4-d, and the aluminum nitride of Example 1 is shown in FIG. 4-e. Each showed. Although the past commercial powder has undergone a pulverization process, the product powder remains in a state of being tightly fused or agglomerated (FIG. 4-a). Further, reflecting the pulverization process, non-spherical plate-like particles are formed (FIG. 4B). This is because, in order to synthesize aluminum oxynitride by batch processing in an electric furnace, it is necessary to perform processing at a very high temperature (generally, about 1650 ° C. to 2000 ° C.) for a long time, and fusion or aggregation is inevitable. (For example, see Non-Patent Document 2).

一方、本発明の非酸化物粉体(図4、符号14)は、原料Al粉体(図4、符号11)の融着又は凝集による粗大粉体化を起こさず、図4―d、及び図4―eに夫々示されたように、高分散状態が維持されている(即ち、図4に示すように、平均粒子径は変化していない)。この結果は、気相状態にある粒状物質(エアロゾル)が、高分散状態を維持して搬送されているために、反応過程の相互作用が固相法や液相法に比べて小さく、本質的に粉体の融着又は凝集による粗大粉体化を起こし難いというメカニズムが、有効に機能している事を示唆している。   On the other hand, the non-oxide powder of the present invention (FIG. 4, reference numeral 14) does not cause coarse powder formation due to fusion or aggregation of the raw material Al powder (FIG. 4, reference numeral 11). As shown in FIG. 4E, the highly dispersed state is maintained (that is, the average particle diameter does not change as shown in FIG. 4). This result shows that the particulate matter (aerosol) in the gas phase is transported while maintaining a highly dispersed state, so the interaction in the reaction process is small compared to the solid phase method and the liquid phase method. This suggests that a mechanism that hardly causes coarse powder formation due to powder fusion or aggregation is functioning effectively.

実施例1において、上記の結果は、本発明の目的の、非酸化物粉体の形状や構造の制御に関して、[A]高球形度の形状、[B]粉体表面の安定性、[C]気相中の連続的な製法(高コストパフォーマンス)、を達成する上で、極めて重要な結果である。即ち、1ミクロン以上の原料粉体を用いたにも関わらず、未反応物を作らず、所望の反応を終えたという事は、「粉体中へのガス拡散と、拡散したガスと粉体との反応」が起きている事を示すものである。この反応機構は、電気炉中のバッチ処理を基本とした直接窒化法や還元窒化法の反応駆動原理と同一であり、本発明によると、バッチ処理を気相中の連続製法に変えたにも関わらず、電気炉中のバッチ処理と同一の反応を使用できる事を意味する。この事は、大粉体化や生産性の点で非常に有利で、原理的(本質的)に、直接窒化法や還元窒化法で成功している生成物(例えば、1ミクロン以上の平均粒子径と、高球形度の形状を同時に有した窒化アルミニウム粉体等)を製造できるポテンシャルを本質的に持っている事を示している。   In Example 1, the above results indicate that [A] high sphericity shape, [B] powder surface stability, [C] It is a very important result in achieving a continuous production method (high cost performance) in the gas phase. That is, despite the fact that raw material powder of 1 micron or more was used, an unreacted product was not produced and the desired reaction was completed. This means that “gas diffusion into the powder, diffused gas and powder It shows that a “reaction with” has occurred. This reaction mechanism is the same as the reaction driving principle of the direct nitriding method and the reductive nitriding method based on batch processing in an electric furnace. According to the present invention, the batch processing is changed to a continuous manufacturing method in the gas phase. Regardless, this means that the same reaction can be used for batch processing in an electric furnace. This is very advantageous in terms of pulverization and productivity, and in principle (essential) products that have been successful in direct nitridation or reduction nitridation (for example, average particles of 1 micron or more) This shows that it has the potential to produce an aluminum nitride powder having a diameter and a high sphericity at the same time.

本発明とは対照的に、発熱反応である金属粉体の直接窒化法又はガス窒化法を、電気炉中でのバッチ処理から連続処理に変えた既往の製法では、NH添加効果が正反対になる事が報告されている(例えば、堀田憲康、福井紘一郎、吉川裕一、亀島哲、木村勇雄、金谷貢、浮上窒化反応による高純度AlN粉末の合成、J.Ceram.Soc.Japan,Vol.102,p.1032−1036(1994)参照)。即ち、既往製法の窒化反応は、NHを反応場の中央より添加した場合に最も良く進み、NH無添加の場合や、NHを他原料と先に混合して反応場に供給した場合、反応効率の低下が明らかにされている。そして、その理由として、「Al粉体表面から発生した蒸気と窒化成分ガスとの気相中での反応」を主反応としている事が、挙げられている。この事は、大粉体化や生産性の点では不利となる。即ち「Al粉体表面から発生した蒸気」を主原料とするという事は、Al粒子表面にも窒化アルミニウム層が形成される事を意味しており、未反応のAl層が内部に残存してしまう。その結果、(1)完全な反応のためには0.1〜0.2ミクロンの粒子径が限界で、それ以上の大粒径は製造できない、(2)原料である金属粉体は下から上へ送る事が、反応性向上のためには必要とされる、(3)大粒径の原料粉体はその表面からの発生成分のみを利用し、残りは燃えカスとして自然落下され、本質的に低生産性な「原料の上昇供給」に限定される、という、三つの致命的な問題が発生する(例えば、特許文献2)。原料を100%利用できず、燃えカスが本質的に発生する製法であるという事は、工業的製法として限界がある。 In contrast to the present invention, in the conventional manufacturing method in which the direct nitridation method or gas nitridation method of metal powder, which is an exothermic reaction, is changed from batch processing in an electric furnace to continuous processing, the effect of adding NH 3 is the opposite. (For example, Noritasu Hotta, Shinichiro Fukui, Yuichi Yoshikawa, Satoru Kameshima, Yasuo Kimura, Mitsugu Kanaya, Synthesis of high-purity AlN powder by levitation nitriding reaction, J. Ceram. Soc. Japan, Vol. , P.1032-1036 (1994)). That is, nitriding reaction history method is best proceeds when the NH 3 was added to the center of the reaction field, and the case of NH 3 not added, when supplied to the reaction field by mixing NH 3 to other raw materials and previously The reduction in reaction efficiency has been clarified. And the reason is that the main reaction is “reaction in the gas phase of vapor generated from the Al powder surface and nitriding component gas”. This is disadvantageous in terms of large powder and productivity. That is, using “vapor generated from the Al powder surface” as the main material means that an aluminum nitride layer is also formed on the Al particle surface, and an unreacted Al layer remains inside. End up. As a result, (1) the particle size of 0.1 to 0.2 microns is the limit for complete reaction, and larger particle sizes cannot be produced. (2) The raw metal powder is from below It is necessary to improve the reactivity. (3) The raw material powder with a large particle size uses only the components generated from the surface, and the rest is spontaneously dropped as a burning residue. Three fatal problems occur, for example, limited to “increasing supply of raw materials” with low productivity (for example, Patent Document 2). The fact that the raw material cannot be used 100% and burning residue is essentially generated has a limit as an industrial manufacturing method.

更に、実施例1において、個々の1次粒子表面に、サブミクロン径以下の超微粒子が均一に被覆された状態が得られている(図4―d、及び図4―e中の拡大写真)。また、更に、NH供給量により、平均粒子径0.1ミクロン〜10ミクロンと、粒状生成物の大きさを制御する事も可能であった。以上の結果は、本発明の窒化反応が、気相中でのAl粉体内への窒化成分の拡散(及びその気相反応)を主反応としつつ、一方、Al粉体表面から発生した蒸気と窒化成分ガスとの気相中での反応が、一部、生じている事を表している。
この結果は、本発明が目的とする、非酸化物粉体の形状や構造の制御に関して、[A]高球形度の形状、[B]粉体表面の安定性、[C]気相中の連続的な製法(高コストパフォーマンス)、を、同時に満たすに留まらず、1ミクロン「以下」の粉体合成(例えば、焼結体用原料の供給方法等)をも、実施可能な能力を有する事を示し、本発明の将来性(ポテンシャル)の高さを示唆する結果として、指摘できる。
Further, in Example 1, the surface of each primary particle is uniformly coated with ultrafine particles having a submicron diameter or less (enlarged photographs in FIGS. 4D and 4E). . Furthermore, it was also possible to control the size of the granular product with an average particle diameter of 0.1 to 10 microns by the NH 3 supply amount. The above results show that the nitriding reaction of the present invention is mainly composed of the diffusion of the nitriding component into the Al powder in the gas phase (and its gas phase reaction), while the vapor generated from the surface of the Al powder. This indicates that a part of the reaction in the gas phase with the nitriding component gas has occurred.
As a result, regarding the control of the shape and structure of the non-oxide powder targeted by the present invention, [A] the shape of high sphericity, [B] the stability of the powder surface, [C] in the gas phase It must have the ability to implement not only continuous production methods (high cost performance) but also powder synthesis of 1 micron or less (for example, a raw material supply method for sintered bodies). This can be pointed out as a result suggesting the high potential (potential) of the present invention.

図1に整理した本発明の要件を具体化する場合に想定される装置構成例より、図1―fを基本とした実施例を示す。「非酸化物が生成する条件下で標準生成自由エネルギーが正の値となる性質を持ったガス状物質」として、プロパン(C)を添加し、直径5ミクロンの鉄(Fe)粉体を用いて、以下の実施例を展開した。 FIG. 1 shows an embodiment based on FIG. 1-f from an apparatus configuration example assumed when the requirements of the present invention arranged in FIG. 1 are embodied. Propane (C 3 H 8 ) is added as a “gaseous substance having a standard generation free energy having a positive value under non-oxide generation conditions”, and iron (Fe) powder having a diameter of 5 microns is added. The following examples were developed using the body.

(1)方法
Fe粉体を、反応器(図1―f、符号10)内に設けられた加熱体長さ0.3m、加熱温度250〜500℃の石英管に供給した。この時、鉄粉体の反応器とは別に設けられた反応器(図1―f、符号20)において、アルミニウムイソプロポキシド(Al(iso−OC、略号AIP)を200℃で加熱し、予めガス化させ、Fe粉体の反応器へ供給した。Fe粉体には、1分当たり0〜3リッターのアルゴンガスを供給し、AIPガスは、1分当たり0.5〜1リッターのアルゴンガスで搬送した。
(1) Method Fe powder was supplied to a quartz tube having a heating body length of 0.3 m and a heating temperature of 250 to 500 ° C. provided in a reactor (FIG. 1-f, reference numeral 10). At this time, in a reactor (FIG. 1-f, symbol 20) provided separately from the iron powder reactor, aluminum isopropoxide (Al (iso-OC 3 H 5 ) 3 , abbreviation AIP) was changed to 200 ° C. And gasified in advance and fed to a reactor for Fe powder. Fe powder was supplied with 0 to 3 liters of argon gas per minute, and AIP gas was conveyed with 0.5 to 1 liter of argon gas per minute.

(2)結果
実施例2において、生成物の形状を確認するための走査型電子顕微鏡写真を、原料のFe粉体を図5―aに、特別の粉体操作を加えずに複合化した後のFe粉体の状態を図5―bに、夫々示した。そして、本発明が目的とする、非酸化物粉体の形状や構造の制御に関して、[A]高球形度の形状、[B]粉体表面の安定性、[C]気相中の連続的な製法(高コストパフォーマンス)の内、[C]気相中の連続的な製法=気相状態の粒状物質(エアロゾル)を利用して、複合化した後のFe粉体の状態を図5―cに示した。粉体操作を加えずに複合化した場合(図5―b)、原料Fe粉体は、融着又は凝集による粗大粉体化を起こしており、凝集構造内部への複合化を行う事ができず、[B]の粉体表面の安定性を達成できない。一方、本発明の非酸化物粉体(図5―c)は、原料Fe粉体の融着又は凝集による粗大粉体化を起こさず、高分散状態が維持されている。この結果は、気相状態にある粒状物質(エアロゾル)が、高分散状態を維持して搬送されているために、反応過程の相互作用が固相法や液相法に比べて小さく、本質的に粉体の融着又は凝集による粗大粉体化を起こし難いというメカニズムが、有効に機能している事を示唆している。
(2) Results In Example 2, the scanning electron micrograph for confirming the shape of the product was combined with the raw Fe powder in FIG. 5-a without adding any special powder operation. The state of the Fe powder is shown in FIG. And, regarding the control of the shape and structure of the non-oxide powder aimed by the present invention, [A] shape of high sphericity, [B] stability of powder surface, [C] continuous in gas phase Among the various manufacturing methods (high cost performance), [C] continuous manufacturing method in the gas phase = granular material (aerosol) in the gas phase, and the state of the Fe powder after compounding is shown in Fig. 5- It was shown in c. When compounding without adding powder operation (Fig. 5-b), the raw Fe powder has been coarsely powdered by fusion or agglomeration and can be compounded inside the agglomerated structure. Therefore, the stability of the powder surface of [B] cannot be achieved. On the other hand, the non-oxide powder of the present invention (FIG. 5-c) does not cause coarse powder formation due to fusion or aggregation of the raw material Fe powder, and maintains a highly dispersed state. This result shows that the particulate matter (aerosol) in the gas phase is transported while maintaining a highly dispersed state, so the interaction in the reaction process is small compared to the solid phase method and the liquid phase method. This suggests that a mechanism that hardly causes coarse powder formation due to powder fusion or aggregation is functioning effectively.

実施例2において、[B]粉体表面の安定性に資する、粉体表面の複合化の形状又は構造の高制御性を示す結果として、Fe粉体(図6―a)表面に、アルミナ(Al)系粒子を粒状に複合化した場合(図6―b、c)、及び膜状に複合化した場合(図6―d、e)を、夫々示した。但し、図6―a、b、dは、走査型電子顕微鏡写真、図6―c、eは、透過型電子顕微鏡写真である。製造条件は、粒状に複合化した場合は、加熱温度500℃、Fe粉体へのアルゴンガス供給量は0、AIPガスは1分当たり1リッターとした。一方、膜状に複合化した場合は、加熱温度250℃、Fe粉体へのアルゴンガス供給量は1分当たり2リッター、AIPガスは1分当たり0.5リッターとした。その結果、直径5ミクロンの個々のFe粉体を、1次粒子レベルまで均一に、数10ナノメーターのAl系粒子が複合化したり(図6―b、c)、数10ナノメーターのAl系薄膜が複合化した(図6―d、e)、多様な複合粉体を任意に作製する事ができた。この結果も、気相状態にある粒状物質(エアロゾル)が、高分散状態を維持して搬送されているために、反応過程の相互作用が固相法や液相法に比べて小さく、本質的に粉体の融着又は凝集による粗大粉体化を起こし難いというメカニズムが、有効に機能している事を示唆している。以上の結果は、本発明の目的の、[B]粉体表面の安定性、[C]気相中の連続的な製法(高コストパフォーマンス)、を達成する上で、極めて重要な結果である。 In Example 2, [B] As a result showing the high controllability of the shape or structure of the composite of the powder surface that contributes to the stability of the powder surface, the surface of the Fe powder (FIG. 6-a) was coated with alumina ( The case where the Al 2 O 3 ) -based particles are compounded in a granular form (FIGS. 6B and 6C) and the case where they are combined in a film form (FIGS. 6D and 6E) are shown. However, FIGS. 6-a, b and d are scanning electron micrographs, and FIGS. 6-c and e are transmission electron micrographs. The production conditions were as follows: when the particles were combined, the heating temperature was 500 ° C., the argon gas supply amount to the Fe powder was 0, and the AIP gas was 1 liter per minute. On the other hand, in the case where the film was combined, the heating temperature was 250 ° C., the argon gas supply amount to the Fe powder was 2 liters per minute, and the AIP gas was 0.5 liters per minute. As a result, several tens of nanometers of Al 2 O 3 -based particles are compounded uniformly into the primary particle level of individual Fe powders having a diameter of 5 microns (FIGS. 6-b and c), or several tens of nanometers. A variety of composite powders could be arbitrarily produced by combining the Al 2 O 3 -based thin films (FIGS. 6-d and e). As a result, the particulate matter (aerosol) in the gas phase is transported while maintaining a highly dispersed state, so the interaction in the reaction process is small compared to the solid phase method and the liquid phase method. This suggests that a mechanism that hardly causes coarse powder formation due to powder fusion or aggregation is functioning effectively. The above results are extremely important in achieving the objective of the present invention, [B] powder surface stability, [C] continuous production method in the gas phase (high cost performance). .

図1に整理した本発明の要件を具体化する場合に想定される装置構成例より、図1―fを基本とした実施例を示す。「非酸化物が生成する条件において標準生成自由エネルギーが正の値となる性質を持ったガス状物質」として、プロパン(C)を添加して作製した、直径5ミクロンの鉄(Fe)粉体を用いて、以下の実施例を展開した。 FIG. 1 shows an embodiment based on FIG. 1-f from an apparatus configuration example assumed when the requirements of the present invention arranged in FIG. 1 are embodied. As a “gaseous substance having a property that the standard free energy of formation is a positive value under the conditions where non-oxides are generated”, iron (Fe 3 μm) prepared by adding propane (C 3 H 8 ) is used. ) The following examples were developed using powder.

(1)方法
Fe粉体を、高周波電力量200〜300Wの反応器(図1―f、符号10)に供給した。この時、鉄粉体の反応器とは別に設けられた反応器(図1―f、符号20)において、アルミニウムイソプロポキシド(Al(iso−OC、略号AIP)を200℃で加熱し、予めガス化させ、Fe粉体反応器へ供給した。AIPガスは、1分当たり0.5リッターのアルゴンガスで搬送した。
(1) Method Fe powder was supplied to the reactor (FIG. 1-f, code | symbol 10) of high frequency electric power 200-300W. At this time, in a reactor (FIG. 1-f, symbol 20) provided separately from the iron powder reactor, aluminum isopropoxide (Al (iso-OC 3 H 5 ) 3 , abbreviation AIP) was changed to 200 ° C. And gasified in advance and fed to the Fe powder reactor. AIP gas was carried with 0.5 liters of argon gas per minute.

(2)結果
実施例3において、[B]粉体表面の安定性に資する、粉体表面の複合化の形状又は構造の高制御性を示す結果として、Fe粉体(図6―a)表面に、アルミナ(Al)系粒子を膜状に複合化した場合(図7―a〜c)、及び粒状に複合化した場合(図7―d)を、夫々示した。但し、写真は全て透過型電子顕微鏡写真であり、図7―aは判別し難いため拡大写真を併せて示した。また、複合膜AlN主相に極微量の炭素からなる組成を示すため、Fe粉体中心部(図7―eのA)、及び複合膜(図7―eのB)のエネルギー分散型X線分光(EDS)分析結果を示した。
製造条件は、膜状に複合化した場合は、高周波電力量300W、Fe粉体処理時間は、5分(図7―a)、10分(図7―b)、20分(図7―c)とした。一方、粒状に複合化した場合は、高周波電力量200W、Fe粉体処理時間は20分とした。
(2) Results As a result of showing high controllability of the shape or structure of the composite of the powder surface that contributes to the stability of the powder surface in [B] Example 3, the surface of the Fe powder (FIG. 6-a) Fig. 7 shows a case where alumina (Al 2 O 3 ) -based particles are combined into a film (Figs. 7a to 7c) and a case where they are combined into particles (Fig. 7d). However, all the photographs are transmission electron micrographs, and since FIG. 7A is difficult to distinguish, an enlarged photograph is also shown. Moreover, in order to show the composition consisting of a very small amount of carbon in the composite film AlN main phase, energy dispersive X-rays in the Fe powder center (A in FIG. 7-e) and the composite film (B in FIG. 7-e) The spectroscopic (EDS) analysis result was shown.
Manufacturing conditions are as follows: when combined into a film, the high-frequency power is 300 W, and the Fe powder processing time is 5 minutes (FIG. 7-a), 10 minutes (FIG. 7-b), 20 minutes (FIG. 7-c). ). On the other hand, in the case of compounding in a granular form, the high-frequency power amount was 200 W, and the Fe powder processing time was 20 minutes.

その結果、直径5ミクロンの個々のFe粉体を、(Fe粉体の)1次粒子レベルまで均一に、Al系、又はFeの固溶体(EDS分析結果より)を、複合化させる事に成功した。しかも、数〜数10ナノメーターの超微細なレベルで、任意に膜厚を制御(図7―a〜c)、又は数ナノメーターのAl系粒子が複合化した(図7―d)、多様な複合粉体を高制御に作製する事ができた。以上の結果も、気相状態にある粒状物質(エアロゾル)が、高分散状態を維持して搬送されているために、反応過程の相互作用が、固相法や液相法に比べて小さく、本質的に粉体の融着又は凝集による粗大粉体化を起こし難いというメカニズムが、有効に機能している事を示唆している。以上の結果は、本発明の目的の、[B]粉体表面の安定性、[C]気相中の連続的な製法(高コストパフォーマンス)、を達成する上で、極めて重要な結果である。 As a result, each Fe powder having a diameter of 5 microns is uniformly made up to the primary particle level (of the Fe powder), and an Al 2 O 3 system or a solid solution of Fe (from the EDS analysis result) is combined. succeeded in. Moreover, the film thickness is arbitrarily controlled at an ultrafine level of several to several tens of nanometers (FIGS. 7A to 7C), or several nanometers of Al 2 O 3 -based particles are complexed (FIG. 7D). ), Various composite powders could be produced with high control. The above results also show that the particulate matter (aerosol) in the gas phase is transported while maintaining a highly dispersed state, so the interaction in the reaction process is small compared to the solid phase method and the liquid phase method, This suggests that a mechanism that essentially does not easily cause coarse powder formation due to powder fusion or aggregation is functioning effectively. The above results are extremely important in achieving the objective of the present invention, [B] powder surface stability, [C] continuous production method in the gas phase (high cost performance). .

図1に整理した本発明の要件を具体化する場合に想定される装置構成例より、図1―fを基本とした実施例を示す。「1ミクロン以上の平均粒子径と、高球形度の形状」を同時に有した窒化アルミニウム(AlN)粉体を用いて、粉体表面の安定性(ここでは耐水性)について、以下の実施例を展開した。   FIG. 1 shows an embodiment based on FIG. 1-f from an apparatus configuration example assumed when the requirements of the present invention arranged in FIG. 1 are embodied. Using aluminum nitride (AlN) powder having “average particle diameter of 1 micron or more and high sphericity” at the same time, the stability of the powder surface (here, water resistance) is as follows. Expanded.

(1)方法
AlN粉体に炭酸カルシウムを添加し、窒素雰囲気中、1800℃で6時間熱処理、塩酸で残存した炭酸カルシウムを溶解除去して、目的形状を有したモデル粉体を作製した。モデル粉体への複合化方法として、実施例4では、高分子添加法を改良し、還元剤として炭素粉体を同時に湿式混合する方法を用いた。得られた試料は、1300℃で3時間熱処理後、乾燥及び解砕して、AlN主相に極く微量の炭素からなる組成、及び構造を有する複合粉体を作製した。この複合粉体を、40℃の水中で攪拌し、pHの時間変化を測定する事で、粉体表面の安定性(耐水性)を評価した。
(1) Method Calcium carbonate was added to the AlN powder, heat-treated at 1800 ° C. for 6 hours in a nitrogen atmosphere, and the calcium carbonate remaining with hydrochloric acid was dissolved and removed to prepare a model powder having the desired shape. In Example 4, as a method for compounding the model powder, a method of improving the polymer addition method and simultaneously wet-mixing carbon powder as a reducing agent was used. The obtained sample was heat-treated at 1300 ° C. for 3 hours, dried and pulverized to produce a composite powder having a composition and structure consisting of a very small amount of carbon in the AlN main phase. This composite powder was stirred in water at 40 ° C., and the change in pH with time was measured to evaluate the stability (water resistance) of the powder surface.

比較例1
上記のAlNモデル粉体を、複合化せずそのまま、実施例4と同様に、安定性(耐水性)評価を実施した。
Comparative Example 1
The above-described AlN model powder was subjected to stability (water resistance) evaluation in the same manner as in Example 4 without being combined.

(2)結果
実施例4及び比較例1の各粉体を投入した水のpHが、pH8.5及びpH9.0となるまでの時間変化を示す(表2)。但し、表中の∞は、pHが9.0となる前に、逆に減少し始めた(即ち、pH9.0にはならなかった)事を表す。その結果、実施例4において、高分子系粉体及び炭素系粉体(還元剤)を複合化した場合、格段の粉体表面の安定性(耐水性)を示す事が明らかとなった。この結果も、本発明が目的とする、非酸化物粉体の形状や構造の制御に関して、[A]高球形度の形状、[B]粉体表面の安定性、[C]気相中の連続的な製法(高コストパフォーマンス)の内、製法の本質的に、(1)ガス中に粉体を浮遊せしめ、しかもその粉体の球形度が高いため、上記の粉体表面部又は外層形成の均一性が高まる事、(2)上記粉体製造工程と、粉体の材質や製法に関わらず粉体の表面部又は外層を「強制的に」改質する製法(複合化プロセス)とも両立させ易い事、というメカニズムが、有効に機能している事を示唆している。以上の結果は、本発明の目的の、[B]粉体表面の安定性を達成する上で、極めて重要な結果である。
(2) Results The time change until the pH of the water charged with the powders of Example 4 and Comparative Example 1 reaches pH 8.5 and pH 9.0 is shown (Table 2). However, ∞ in the table indicates that the pH began to decrease before the pH reached 9.0 (that is, the pH did not reach 9.0). As a result, in Example 4, it was revealed that when the polymer powder and the carbon powder (reducing agent) were combined, the powder surface showed a remarkable stability (water resistance). This result also relates to the control of the shape and structure of the non-oxide powder, which is the object of the present invention, [A] shape of high sphericity, [B] stability of the powder surface, [C] in the gas phase. Among the continuous manufacturing methods (high cost performance), the manufacturing method is essentially (1) The above powder surface portion or outer layer is formed because the powder is suspended in the gas and the sphericity of the powder is high. (2) Both the above-mentioned powder manufacturing process and the manufacturing method (composite process) that “forcibly” reforms the surface or outer layer of the powder regardless of the material and manufacturing method of the powder. This suggests that the mechanism that it is easy to do is functioning effectively. The above results are extremely important in achieving the stability of the [B] powder surface, which is the object of the present invention.

非酸化物系粒状物質の製造装置の実施例を、本発明の要件を具体化する場合に想定される装置構成例(図1)に相関させて、説明する。図1―aは、原料の自励的な反応を利用する手段を用いた場合に相当し、非酸化物が生成する条件下で正の標準生成自由エネルギーを有する炭化水素系ガス、アンモニア、水素、窒素の何れか又は複数を添加する手段を用いて該粒状物質の表面部又は外層を製造する場合であり、最も基本的な製造装置例を示す。図1―bは、還元又は窒化用のガス状物質の供給装置を併用する手段を用いて、該粒状物質の表面部又は外層を製造する場合に相当する。図1―cは、外部加熱装置を併用し、それを同時加熱方式で用いる手段を用いて、該粒状物質の表面部又は外層を製造する場合に相当する。図1―dは、還元又は窒化用ガス状物質発生装置を併用し、更に、外部加熱装置を併用した手段を用いて、該粒状物質の表面部又は外層を製造する場合に相当する。図1―eは、外部加熱装置を併用し、それを同時加熱方式で用い、更に、還元又は窒化用ガス状物質発生装置を併用した手段を用いて、該粒状物質の表面部又は外層を製造する場合に相当する。図1―fは、外部加熱装置を併用し、それを同時加熱方式で用い、更に、還元又は窒化用ガス状物質発生装置(それにも外部加熱装置を併用)を併用した手段を用いて、該粒状物質の表面部又は外層を製造する場合に相当する。図1―gは、外部加熱装置を併用し、それを連続加熱方式で用いる手段を用いて、該粒状物質の表面部又は外層を製造する場合に相当する。図1―hは、外部加熱装置を併用し、それを連続加熱方式で用い、更に、還元又は窒化用ガス状物質発生装置を併用した手段を用いて、該粒状物質の表面部又は外層を製造する場合に相当する。   An embodiment of a non-oxide-based granular material manufacturing apparatus will be described in relation to an apparatus configuration example (FIG. 1) assumed when the requirements of the present invention are embodied. FIG. 1-a corresponds to the case of using a means that utilizes the self-excited reaction of raw materials, and includes hydrocarbon gas, ammonia, hydrogen having positive standard free energy of formation under conditions where non-oxides are generated. This is a case where the surface portion or outer layer of the granular material is produced using means for adding any one or more of nitrogen, and the most basic example of the production apparatus is shown. FIG. 1B corresponds to the case where the surface portion or the outer layer of the granular material is manufactured using a means that uses a supply device for the gaseous material for reduction or nitridation. FIG. 1C corresponds to the case where the surface portion or the outer layer of the granular material is manufactured using a means that uses an external heating device in combination and uses it in a simultaneous heating system. FIG. 1D corresponds to the case where the surface portion or the outer layer of the granular material is manufactured using a means that uses a reducing or nitriding gaseous substance generator in combination with an external heating apparatus. Fig. 1-e shows the use of an external heating device in combination with a simultaneous heating method, and further using a means that also uses a reducing or nitriding gaseous material generator to produce the surface or outer layer of the particulate material. This is equivalent to Fig. 1-f shows that the external heating device is used in combination with the simultaneous heating method, and further the reduction or nitriding gaseous substance generator (also used with the external heating device) is used together. This corresponds to the production of the surface portion or outer layer of the particulate material. FIG. 1-g corresponds to the case where the surface portion or the outer layer of the granular material is produced using a means that uses an external heating device in combination and uses it in a continuous heating system. Fig. 1-h shows the use of an external heating device in combination with a continuous heating system, and further using a means for using a reducing or nitriding gaseous material generator to produce the surface or outer layer of the granular material. This is equivalent to

本発明は、非酸化物が生成する条件において正の標準生成自由エネルギーを有する、ガス状物質である、炭化水素系ガス、アンモニアの何れかを添加する事を特徴とする、気相中の連続的な製法で得られた非酸化系物質である、金属、窒化物、又は酸窒化物から成る粒状物質の表面部又は外層を、酸化物、酸窒化物、当該粒状物質を構成する成分、又はその固溶体からなる、被覆層又は結合層として形成した非酸化物系粒状物質に係るものであり、従来の非酸化物系の粉体では不可能であった、形状や構造を制御した新規な粉体の製法(特に、粉体の球形度と、粉体表面の安定性とを、同時に向上させた新材料)、その粉体、及び製造装置の提供が可能な事を見出し、金属、窒化物、酸窒化物から成る粒状物質において、該粒状物質の表面部又は外層を、上記ガス状物質を添加する事、及びガス状物質中に粒状物質を浮遊せしめる事により、酸化物、酸窒化物、当該粒状物質を構成する成分、又はその固溶体により形成する事が可能となり、非酸化物粉体の形状や構造の制御に関して、[A]高球形度の形状、[B]粉体表面の安定性、[C]気相中の連続的な製法(高コストパフォーマンス)の全てを同時に満たす事を達成した、新規な粒状物質、その製法、及びその製造装置を提供する事ができるものである。 The present invention has a positive standard free energy at the conditions non-oxide to produce a gaseous material, hydrocarbon gas, and wherein the addition of either ammonia, in the vapor phase a non-oxide-based material obtained by the continuous process, a metal, a nitride, or a surface portion or outer layer of oxynitride or we made particulate material, constituting an oxide, oxynitride, the particulate material component Or a non-oxide particulate material formed as a coating layer or a bonding layer made of a solid solution thereof, and a novel shape and structure controlled that is impossible with conventional non-oxide powders Found that it is possible to provide a new powder manufacturing method (especially a new material with improved powder sphericity and powder surface stability), its powder, and production equipment. nitride, in the oxynitride or made particulate material, the surface portion of the particulate material The outer layer may be formed from oxides, oxynitrides, components constituting the particulate matter, or solid solutions thereof by adding the above-mentioned gaseous matter and suspending the particulate matter in the gaseous matter. With regard to the control of the shape and structure of non-oxide powder, [A] shape with high sphericity, [B] powder surface stability, [C] continuous process in the gas phase (high cost performance) It is possible to provide a novel granular material, a manufacturing method thereof, and a manufacturing apparatus thereof that achieve all of the above.

本発明の装置構成の具体例を示す。The example of the apparatus structure of this invention is shown. アルミニウムの直接窒化法を基本としたアセチレンとアンモニアを使用する製法のエリンガム線図を示す。The Ellingham diagram of the manufacturing method using acetylene and ammonia based on the direct nitriding method of aluminum is shown. アルミニウムの直接窒化法を基本としたプロパンとアンモニアを使用する製法のエリンガム線図を示す。The Ellingham diagram of the manufacturing method using propane and ammonia based on the direct nitriding method of aluminum is shown. 実施例1で作製した、窒化アルミニウム(e)、酸窒化アルミニウム(d)と、市販の窒化アルミニウム(b)、市販の酸窒化アルミニウム(a)、及び原料であるアルミニウム(c)のアトマイズ粉体の走査型電子顕微鏡写真を示す。Atomized powder of aluminum nitride (e), aluminum oxynitride (d), commercially available aluminum nitride (b), commercially available aluminum oxynitride (a), and aluminum (c) as a raw material prepared in Example 1 The scanning electron micrograph of is shown. 実施例2で作製した、鉄系複合粉体(c)、原料鉄粉体(a)、比較例(b)の走査型電子顕微鏡写真を示す。The scanning electron micrograph of the iron-based composite powder (c), the raw iron powder (a), and the comparative example (b) prepared in Example 2 is shown. 実施例2で作製した、アルミナを粒状に複合化した鉄系複合粉体(b,c)、アルミナを膜状に複合化した鉄系粉体(d,e)、原料鉄粉(a)の走査型電子顕微鏡写真、及び透過型電子顕微鏡写真を示す。The iron-based composite powder (b, c) prepared by complexing alumina into a granular form, the iron-based powder (d, e) composited with alumina in the form of a film, and the raw iron powder (a). A scanning electron micrograph and a transmission electron micrograph are shown. 実施例3で作製した、アルミナを膜状に複合化した鉄系複合粉体(a〜c)、アルミナを粒状に複合化した鉄系複合粉体(d)の透過型電子顕微鏡写真、及び鉄粉中心部と複合膜のエネルギー分散型X線分光分析結果(e)を示す。Transmission electron micrographs of iron-based composite powders (a to c) obtained by complexing alumina into a film, iron-based composite powders (d) obtained by compounding alumina into granules, and iron The energy dispersive X-ray spectroscopic analysis result (e) of the powder center and the composite film is shown.

符号の説明Explanation of symbols

(図1の符号)
10: 正の標準生成エネルギーガス支援型非酸化物製造装置
11: 非酸化物系物質の原料
12: 正の標準生成エネルギーを有するガス状物質
13: 外部加熱装置併用型(同時加熱方式)
20: 還元用、窒化用、表面被覆用等のガス状物質の発生装置
21: 外部加熱装置併用型(同時加熱方式)
30: 外部加熱装置別建て型(連続加熱方式)
31: 外部加熱装置併用型(動じ加熱方式)
(図4の符号)
11: 原料Al粉末
12: 酸素、NH、C
13: 非酸化物原料、他のガス状物質
14 非酸化物粉体生成物
(Reference in FIG. 1)
10: Positive standard generation energy gas assisted non-oxide production apparatus 11: Non-oxide material 12: Gaseous substance with positive standard generation energy 13: External heating device combined type (simultaneous heating method)
20: Gaseous substance generator 21 for reduction, nitriding, surface coating, etc .: External heating device combined type (simultaneous heating method)
30: Built-in external heating device (continuous heating method)
31: External heating device combined type (moving heating method)
(Reference in FIG. 4)
11: Raw material Al powder 12: Oxygen, NH 3 , C 2 H 2
13: Non-oxide raw material, other gaseous substances 14 Non-oxide powder product

Claims (8)

製造温度で正の標準生成自由エネルギーを有するガス状物質を反応場へ添加することを含む、気相中の連続的な製法で、非酸化物系粒状物質の球形度と粒状物質の表面の安定性を同時に向上させた複合粒状物質であって、
その表面部又は外層に、当該粒状物質を構成する物質又はそれらの固溶体の何れかの物質で構成された被覆層又は結合層を有し、粒状物質の外形が、長径/短径比が0.7以上で、粒子の表面が角ばらない高球形度の形状及び高安定性の表面を有し、平均粒子径が1〜100ミクロンであり、
上記非酸化物系粒状物質が、窒化アルミニウム、酸窒化アルミニウム、純鉄、窒化鉄から選択される1種であり、上記ガス状物質が、炭化水素系ガスのアセチレン、プロパン又はアンモニアガスの何れかであることを特徴とする複合粒状物質。
A continuous process in the gas phase, including the addition of gaseous substances with positive standard free energy of formation at the production temperature to the reaction field. A composite particulate material with improved properties at the same time,
On the surface portion or outer layer, has a coating layer or bonding layer is composed of any material of this particulate material constituting the substance or solid solution thereof, the outer shape of the particulate material, the major axis / minor diameter ratio 0 .7 or more, the surface of the particles has a high sphericity shape and a highly stable surface, the average particle diameter is 1 to 100 microns,
The non-oxide particulate material is one selected from aluminum nitride, aluminum oxynitride, pure iron, and iron nitride, and the gaseous material is any one of hydrocarbon gas acetylene, propane , or ammonia gas . A composite particulate material characterized by
上記被覆層又は結合層が、粒状、棒状、膜状、多孔状、不定形の何れかの形状からなることを特徴とする請求項1に記載の複合粒状物質。   The composite granular material according to claim 1, wherein the coating layer or the bonding layer has any one of a granular shape, a rod shape, a membrane shape, a porous shape, and an amorphous shape. 請求項1に記載の複合粒状物質よりなることを特徴とするフィラー又は充填材。   A filler or filler comprising the composite particulate material according to claim 1. 気相中の連続的な製法で、非酸化物系粒状物質の球形度と粒状表面の安定性を同時に向上させた複合粒状物質を製造する方法であって、
製造温度で正の標準生成自由エネルギーを有する、炭化水素系ガスのアセチレン、プロパン又はアンモニアガスの何れかのガス状物質を反応場へ添加する工程、ガス状物質中に非酸化物系粒状物質を浮遊させる工程、により非酸化物系粒状物質の表面部又は外層に、当該粒状物質を構成する物質、又はそれらの固溶体の何れかの物質で構成された被覆層又は結合層を形成すること、及び
上記非酸化物系粒状物質が、窒化アルミニウム、酸窒化アルミニウム、純鉄、窒化鉄から選択される1種であることを特徴とする複合粒状物質の製造方法。
A method for producing a composite granular material in which the sphericity of a non-oxide granular material and the stability of the granular surface are simultaneously improved by a continuous process in the gas phase,
A process of adding a gaseous substance of any of acetylene, propane , or ammonia gas , which has a positive standard free energy of production at the production temperature, to the reaction field, non-oxide particulate matter in the gaseous substance the step of suspending, by the surface portion or outer layer of the non-oxide particulate material, to form an equivalent particulate substance constituting the material, or coating layer or bonding layer is composed of any material of solid solution thereof And the non-oxide particulate material is one selected from aluminum nitride, aluminum oxynitride, pure iron, and iron nitride .
気相中での生成反応が、流動層法により、大気圧下で行われることを特徴とする請求項4に記載の複合粒状物質の製造方法。   The method for producing a composite granular material according to claim 4, wherein the production reaction in the gas phase is carried out under atmospheric pressure by a fluidized bed method. 上記被覆層又は結合層が、粒状、棒状、膜状、多孔状、不定形の何れかの形状からなることを特徴とする請求項4に記載の複合粒状物質の製造方法。   5. The method for producing a composite granular material according to claim 4, wherein the coating layer or the bonding layer has any one of a granular shape, a rod shape, a membrane shape, a porous shape, and an amorphous shape. 非酸化物系粒状物質の表面部又は外層に、当該粒状物質を構成する物質、又はそれらの固溶体の何れかの物質で構成された被覆層又は結合層を有する複合粒状物質を気相中で連続的に製造するための装置であって、
気相中で反応を遂行するための反応装置、非酸化物系粒状物質の窒化アルミニウム、酸窒化アルミニウム、純鉄、窒化鉄の何れかの原料を反応装置内へ供給するための手段、製造温度で正の標準生成自由エネルギーを有する炭化水素系ガスのアセチレン、プロパン又はアンモニアガスの何れかのガス状物質を反応装置へ供給する手段、及び反応装置及び/又はガス状物質を加熱するための加熱手段、を含むことを特徴とする複合粒状物質の製造装置。
The surface portion or outer layer of the non-oxide particulate material, the material constituting the skilled particulate material, or a composite particulate material having a coating layer or bonding layer is composed of any material of solid solution thereof in the gas phase An apparatus for continuous production,
Reactor for carrying out the reaction in the gas phase, means for supplying any raw material of non-oxide particulate aluminum nitride, aluminum oxynitride, pure iron or iron nitride into the reactor, production temperature A means for supplying any gaseous substance of acetylene, propane , or ammonia gas, which is a hydrocarbon-based gas having a positive standard free energy of formation, to the reactor, and for heating the reactor and / or the gaseous substance An apparatus for producing a composite granular material, comprising heating means.
反応装置に対して、外部加熱手段を並用又は別建てで設けたことを特徴とする請求項7に記載の複合粒状物質の製造装置。   8. The apparatus for producing a composite granular material according to claim 7, wherein an external heating means is provided in parallel or separately from the reaction apparatus.
JP2004266476A 2004-09-14 2004-09-14 Non-oxide particulate matter Active JP5024844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004266476A JP5024844B2 (en) 2004-09-14 2004-09-14 Non-oxide particulate matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004266476A JP5024844B2 (en) 2004-09-14 2004-09-14 Non-oxide particulate matter

Publications (2)

Publication Number Publication Date
JP2006082987A JP2006082987A (en) 2006-03-30
JP5024844B2 true JP5024844B2 (en) 2012-09-12

Family

ID=36161807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004266476A Active JP5024844B2 (en) 2004-09-14 2004-09-14 Non-oxide particulate matter

Country Status (1)

Country Link
JP (1) JP5024844B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5351426B2 (en) * 2008-03-27 2013-11-27 タマティーエルオー株式会社 Processing method of aluminum nitride powder
JP5748500B2 (en) * 2010-02-22 2015-07-15 株式会社龍森 Inert spherical aluminum nitride powder and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639363B2 (en) * 2003-06-09 2011-02-23 独立行政法人産業技術総合研究所 Method for producing non-oxide particles

Also Published As

Publication number Publication date
JP2006082987A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
US7700152B2 (en) Liquid feed flame spray modification of nanoparticles
Selvaduray et al. Aluminium nitride: review of synthesis methods
Chorley et al. Synthetic routes to high surface area non‐oxide materials
KR20090012347A (en) Method for the production of suspensions of nanoparticulate solids
KR20100074002A (en) Supported catalyst with solid sphere structure, method for preparing thereof and carbon nanotube using the same
KR101509878B1 (en) Metal­ceramic core­shell structured composite powder for multi­layered ceramic capacitor prepared by gas phase process and the preparation method thereof
US20120156494A1 (en) Method for producing dispersions having metal oxide nanoparticles and dispersions produced thereby
JP4518410B2 (en) Plasma sprayed aluminum oxide layer
KR101282142B1 (en) Apparatus and method for manufacturing composite nano particles
KR20060112546A (en) A production process of fe nano powder with silica coating by chemical vapor condensation
JP3991098B2 (en) Aluminum nitride filler powder synthesized by flame
JP5024844B2 (en) Non-oxide particulate matter
TW200800444A (en) Nickel powder manufacturing method
JP5290161B2 (en) Gas phase method for producing nanometer particles
JP5039270B2 (en) Mica-based powder with controlled shape and structure, and method for producing the same
KR100480393B1 (en) Vapor phase synthesis of high purity nano- and submicron particles with controlled size and agglomeration
JP4639363B2 (en) Method for producing non-oxide particles
Tsugeki et al. Electroconductivity of sintered bodies of α-Al 2 O 3-TiN composite prepared by CVD reaction in a fluidized bed
JP3985039B2 (en) Highly dispersed and highly spherical aluminum oxynitride powder, manufacturing method and manufacturing apparatus thereof
Trusova et al. Cryochemical synthesis of ultrasmall, highly crystalline, nanostructured metal oxides and salts
KR102265920B1 (en) Method for manufacturing gamma-aluminium oxide using spray pyrolysis
RU2327638C1 (en) Method of producing silicon carbide nano powder
WO2004108596A1 (en) Process for producing nonoxide particle
WO2020010667A1 (en) Method for preparing alumina-based solid solution ceramic powder by means of combustion synthesis water mist method
JP2003054920A (en) Aluminum nitride powder having equal to or above micrometer-ordered average particle diameter and high sphericity, method and apparatus of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120614

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5024844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250