JP4996830B2 - Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP4996830B2
JP4996830B2 JP2005115031A JP2005115031A JP4996830B2 JP 4996830 B2 JP4996830 B2 JP 4996830B2 JP 2005115031 A JP2005115031 A JP 2005115031A JP 2005115031 A JP2005115031 A JP 2005115031A JP 4996830 B2 JP4996830 B2 JP 4996830B2
Authority
JP
Japan
Prior art keywords
particles
metal
negative electrode
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005115031A
Other languages
Japanese (ja)
Other versions
JP2006294476A (en
Inventor
靖 間所
邦彦 江口
勝博 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2005115031A priority Critical patent/JP4996830B2/en
Publication of JP2006294476A publication Critical patent/JP2006294476A/en
Application granted granted Critical
Publication of JP4996830B2 publication Critical patent/JP4996830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、金属と黒鉛質材料を含有する金属−黒鉛質系粒子ならびにリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池に関する。   The present invention relates to metal-graphitic particles containing a metal and a graphite material, a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.

他の二次電池に比べて高電圧、高エネルギー密度という優れた特性を有するリチウムイオン二次電池は、電子機器の電源として広く普及している。近年、電子機器の小型化あるいは高性能化が急速に進み、リチウムイオン二次電池のさらなる高エネルギー密度化に対する要望はますます高まっている。
現在、リチウムイオン二次電池は、正極にLiCoO2 、負極に黒鉛を用いたものが一般的である。しかし、黒鉛負極は充放電の可逆性に優れるものの、その放電容量はすでに層間化合物LiC6 に相当する理論値372mAh/g に近い値まで到達しており、さらなる高エネルギー密度化を達成するためには、黒鉛より放電容量の大きい負極材料を開発する必要がある。
Lithium ion secondary batteries having excellent characteristics of high voltage and high energy density compared to other secondary batteries are widely used as power sources for electronic devices. In recent years, miniaturization or performance enhancement of electronic devices has rapidly progressed, and there is an increasing demand for higher energy density of lithium ion secondary batteries.
At present, lithium ion secondary batteries generally use LiCoO 2 for the positive electrode and graphite for the negative electrode. However, although the graphite negative electrode is excellent in reversibility of charge and discharge, its discharge capacity has already reached a value close to the theoretical value 372 mAh / g corresponding to the intercalation compound LiC 6 , in order to achieve further higher energy density. Needs to develop a negative electrode material having a larger discharge capacity than graphite.

金属リチウムは負極材料として最高の放電容量を有するが、充電時にリチウムがデンドライト状に析出して負極が劣化し、充放電サイクルが短くなるという問題がある。また、デンドライト状に析出したリチウムがセパレータを貫通して正極に達し、短絡する可能性もある。
そのため、金属リチウムに代わる負極材料として、リチウムと合金を形成する金属または金属化合物が検討されてきた。これらの合金負極は、金属リチウムには及ばないものの黒鉛を遥かにしのぐ放電容量を有する。しかし、合金化に伴う体積膨張により活物質の粉化・剥離が発生し、未だ実用レベルのサイクル特性は得られていない。
Although metallic lithium has the highest discharge capacity as a negative electrode material, there is a problem that lithium is deposited in a dendritic state during charging, the negative electrode is deteriorated, and the charge / discharge cycle is shortened. In addition, lithium deposited in a dendrite shape may penetrate the separator and reach the positive electrode, causing a short circuit.
Therefore, a metal or a metal compound that forms an alloy with lithium has been studied as a negative electrode material that replaces metallic lithium. These alloy negative electrodes have discharge capacities far surpassing that of graphite, though not as much as metallic lithium. However, active materials are pulverized and peeled off due to volume expansion accompanying alloying, and a practical level of cycle characteristics has not yet been obtained.

特許文献1には、リチウムなどのアルカリ金属と合金を形成することが可能な物質、黒鉛材料、炭素材料からなる複合材料を、電極材料として用いることが開示されている。この複合材料において該炭素材料は、金属物質と黒鉛材料を結合または被覆する役割を担う。アルゴンレーザーを用いたラマン分光法により測定した該炭素材料の表面のDバンド1360cm−1ピーク強度IDとGバンド1580cm−1ピーク強度IGの比ID/IG(R値)が0.4以上を示す。これは該炭素材料が黒鉛化されていないことを示している。しかし、金属粒子と黒鉛質粒子とは単純に混合されているだけであり、空隙については全く記載がない。この複合材料では粒子内部に金属の充電時の膨張を吸収するための充分な空隙を形成することができず、充放電を繰り返すと粒子の構造が破壊され、サイクル特性の低下を招く。 Patent Document 1 discloses that a composite material composed of a substance capable of forming an alloy with an alkali metal such as lithium, a graphite material, and a carbon material is used as an electrode material. In the composite material, the carbon material plays a role of bonding or covering the metal material and the graphite material. The ratio ID / IG (R value) of the D band 1360 cm −1 peak intensity ID and the G band 1580 cm −1 peak intensity IG on the surface of the carbon material measured by Raman spectroscopy using an argon laser is 0.4 or more. . This indicates that the carbon material is not graphitized. However, the metal particles and the graphite particles are simply mixed and there is no description of the voids. In this composite material, it is not possible to form a sufficient space for absorbing expansion during charging of the metal inside the particle, and repeated charge / discharge destroys the structure of the particle, leading to deterioration of cycle characteristics.

特許文献2には、粒子状黒鉛表面に、有機材料と金属化合物とに由来する被覆層を形成した複合炭素材料を電極として用いる技術が開示されている。この複合炭素材料において、有機材料に由来する被覆層は、黒鉛と金属の結合剤としての役割を担っている。粒子状黒鉛と金属とは単純に混合されているだけであり、空隙については記載がない。   Patent Document 2 discloses a technique in which a composite carbon material in which a coating layer derived from an organic material and a metal compound is formed on the surface of particulate graphite is used as an electrode. In this composite carbon material, the coating layer derived from the organic material plays a role as a binder of graphite and metal. The particulate graphite and the metal are simply mixed, and there is no description about the voids.

また、特許文献3には、黒鉛粒子表面に、リチウムと合金化可能な金属をメカノケミカル処理で固定化し、さらにその表面に炭素層を形成してなる3層構造の複合炭素材料を電極として用いる技術が開示されている。この複合炭素材料において、メカノケミカル処理は、黒鉛と金属の密着性を向上させる目的で実施されている。空隙については記載がない。
しかし、上記特許文献2,3いずれに記載の複合炭素材料についても、金属の周囲に空隙が存在しないため、充電時の膨張を吸収することができず、複合構造が破壊され、充放電効率やサイクル特性が低下してしまう。
特許第3369589号公報 特開平11−279785号公報 特開2004−185975号公報
In Patent Document 3, a composite carbon material having a three-layer structure in which a metal that can be alloyed with lithium is fixed to the surface of graphite particles by mechanochemical treatment and a carbon layer is formed on the surface is used as an electrode. Technology is disclosed. In this composite carbon material, mechanochemical treatment is performed for the purpose of improving the adhesion between graphite and metal. There is no description about voids.
However, even for the composite carbon materials described in Patent Documents 2 and 3, since there are no voids around the metal, the expansion during charging cannot be absorbed, the composite structure is destroyed, and the charge / discharge efficiency and Cycle characteristics will deteriorate.
Japanese Patent No. 3369589 JP-A-11-279785 JP 2004-185975 A

本発明者は、従来技術の金属−黒鉛質系粒子は、導電性を保ちながら、リチウムと合金を形成可能な金属の膨張をうまく吸収できないために、負極材料として用いた場合に、サイクル特性が悪くなるものと推測し、鋭意検討した結果、金属−黒鉛質系粒子の構成要素の一つである黒鉛質粒子の形状や大きさを規定することで合金形成時の金属の膨張を吸収でき、充放電を繰り返しても金属−黒鉛質系粒子の構造破壊を防止でき、導電性を維持できることを見出し、本発明を完成するに至った。
本発明は、前記のような知見に鑑みてなされたものであり、リチウムイオン二次電池用負極として用いたときに、放電容量が高く、優れたサイクル特性と初期充放電効率が得られる負極材料とそれを用いたリチウムイオン二次電池を提供することを目的とする。また、そのような負極材料の材料として好適な黒鉛質材料を含有する金属−黒鉛質系粒子を提供することが目的である。
The present inventor has found that the metal-graphite-based particles of the prior art cannot absorb the expansion of a metal capable of forming an alloy with lithium while maintaining conductivity, so that when used as a negative electrode material, the cycle characteristics are low. As a result of presuming that it becomes worse and earnestly examining it, it is possible to absorb the expansion of the metal at the time of alloy formation by defining the shape and size of the graphite particles that are one of the constituent elements of the metal-graphitic particles, The inventors have found that even when charging / discharging is repeated, structural destruction of the metal-graphitic particles can be prevented and the conductivity can be maintained, and the present invention has been completed.
The present invention has been made in view of the above-described knowledge, and when used as a negative electrode for a lithium ion secondary battery, a negative electrode material having a high discharge capacity and excellent cycle characteristics and initial charge / discharge efficiency. And a lithium ion secondary battery using the same. Another object of the present invention is to provide metal-graphitic particles containing a graphite material suitable as a material for such a negative electrode material.

本発明のリチウムイオン二次電池負極用金属−黒鉛系複合粒子(以下、単に「金属−黒鉛系複合粒子」ともいう。)は、リチウムと合金化可能な金属粒子、平均粒径が2〜5μm、アスペクト比が3以下である複数個の黒鉛質粒子、および炭素質材料を含有し、該金属粒子の平均粒径が該黒鉛粒子の平均粒径の1/2以下であり、前記金属粒子が前記黒鉛質粒子の表面に付着しており、空隙率(%)の値が25〜80%であり、前記金属粒子、前記黒鉛質粒子および前記炭素質材料の質量比が1〜20:40〜90:5〜50であり、前記黒鉛質粒子の表面に、前記リチウムと合金化可能な金属粒子をメカノケミカル処理して付着させた後、該メカノケミカル処理物を造粒し、該造粒物に炭素質前駆体を含浸させ、600〜1300℃以上で熱処理し、前記炭素質前駆体を前記炭素質材料として調製することにより得られることを特徴とする金属−黒鉛質系粒子である。
また、本発明の金属−黒鉛系複合粒子は、リチウムと合金化可能な金属粒子、平均粒径が2〜5μmで、アスペクト比が3以下である複数個の黒鉛質粒子、および炭素質材料を含有し、該金属粒子の平均粒径が該黒鉛質粒子の平均粒径の1/2以下であり、前記金属粒子が前記黒鉛質粒子の表面に付着しており、前記複数個の黒鉛質粒子の粒子間に空隙を有し、空隙率(%)の値が25〜80%であり、前記金属粒子、前記黒鉛質粒子および前記炭素質材料の質量比が1〜20:40〜90:5〜50であり、前記炭素質材料が前記金属粒子および前記黒鉛質粒子を覆うことを特徴とする金属−黒鉛質系粒子である。
本発明の金属−黒鉛質系粒子は、前記黒鉛質粒子がメソフェーズ小球体の黒鉛化物粒子であることが好ましい。
また、本発明の金属−黒鉛質系粒子の製造方法は、平均粒径が2〜5μm、アスペクト比が3以下である黒鉛質粒子表面に、該黒鉛質粒子の平均粒径の1/2以下である、リチウムと合金化可能な金属粒子をメカノケミカル処理して付着させた後、該メカノケミカル処理物を造粒し、該造粒物に炭素質前駆体を含浸させ、600〜1300℃以上で熱処理し、該炭素質前駆体を炭素質材料として調製することにより、前記金属粒子、前記黒鉛質粒子および前記炭素質材料の質量比が1〜20:40〜90:5〜50である金属−黒鉛質系粒子を製造することを特徴とする金属−黒鉛質系粒子の製造方法である。
また、本発明は、前記いずれかに記載の金属−黒鉛質系粒子であることを特徴とするリチウムイオン二次電池用負極材料である。
また、本発明は、前記のいずれかに記載の金属−黒鉛質系粒子を含むことを特徴とするリチウムイオン二次電池用負極である。
また、本発明は、前記記載のリチウムイオン二次電池用負極を用いることを特徴とするリチウムイオン二次電池である。
The metal-graphite composite particles for a negative electrode of a lithium ion secondary battery of the present invention (hereinafter also simply referred to as “metal-graphite composite particles”) are metal particles that can be alloyed with lithium and have an average particle size of 2 to 5 μm. A plurality of graphite particles having an aspect ratio of 3 or less, and a carbonaceous material, wherein the average particle size of the metal particles is ½ or less of the average particle size of the graphite particles, It adheres to the surface of the graphite particles, the porosity (%) value is 25 to 80%, and the mass ratio of the metal particles, the graphite particles and the carbonaceous material is 1 to 20:40 to 90: 5 to 50, and metal particles that can be alloyed with lithium are adhered to the surface of the graphite particles by mechanochemical treatment, and then the mechanochemically treated product is granulated, and the granulated product Impregnated with a carbonaceous precursor at 600-1300 ° C. or higher Processing, metal characterized in that it is obtained by preparing the carbonaceous precursor as the carbonaceous material - a graphite-based particles.
The metal-graphite composite particles of the present invention include metal particles that can be alloyed with lithium, a plurality of graphite particles having an average particle diameter of 2 to 5 μm and an aspect ratio of 3 or less, and a carbonaceous material. The average particle size of the metal particles is ½ or less of the average particle size of the graphite particles, the metal particles are attached to the surface of the graphite particles, and the plurality of graphitic particles The voids (%) have a value of 25-80%, and the mass ratio of the metal particles, the graphite particles, and the carbonaceous material is 1-20: 40-90: 5. 50 der is, metal the carbonaceous material is equal to or covering the metal particles and the graphite particles - a graphite-based particles.
In the metal-graphitic particles of the present invention, the graphitic particles are preferably mesophase small sphere graphitized particles.
Further, the method for producing metal-graphite particles of the present invention has a mean particle size of 2 to 5 μm and an aspect ratio of 3 or less on the surface of the graphite particles having an average particle size of ½ or less of the average particle size of the graphite particles. After metal particles that can be alloyed with lithium are subjected to mechanochemical treatment and adhered, the mechanochemically treated product is granulated, and the granulated product is impregnated with a carbonaceous precursor, and 600 to 1300 ° C. or higher A metal having a mass ratio of the metal particles, the graphite particles, and the carbonaceous material of 1-20: 40 to 90: 5-50 by preparing the carbonaceous precursor as a carbonaceous material. -A method for producing metal-graphite-based particles, characterized by producing graphite-based particles.
In addition, the present invention is a negative electrode material for a lithium ion secondary battery, which is any one of the above-described metal-graphitic particles.
Moreover, this invention is a negative electrode for lithium ion secondary batteries characterized by including the metal-graphite type particle | grains in any one of the above.
Moreover, this invention is a lithium ion secondary battery using the negative electrode for lithium ion secondary batteries as described above.

本発明の金属−黒鉛質系粒子を含有する負極材料を用いて作製したリチウムイオン二次電池は、高い放電容量を有し、初期充放電容量およびサイクル特性に優れる。
そのため、本発明の負極材料を用いてなるリチウムイオン二次電池は、近年の高エネルギー密度化に対する要望を満たし、搭載する機器の小型化および高性能化に有効である。
The lithium ion secondary battery produced using the negative electrode material containing the metal-graphitic particles of the present invention has a high discharge capacity and is excellent in initial charge / discharge capacity and cycle characteristics.
Therefore, the lithium ion secondary battery using the negative electrode material of the present invention satisfies the recent demand for higher energy density, and is effective for downsizing and higher performance of equipment to be mounted.

以下、本発明をより具体的に説明する。
本発明の金属−黒鉛質系粒子は、リチウムと合金化可能な金属粒子、複数個の黒鉛質粒子、および炭素質材料からなる金属−黒鉛質系粒子(以下、複合粒子ということがある。)である。
始に本発明の金属−黒鉛質系粒子(複合粒子)の全体を説明し、次に各構成成分を説明し、最後に製造方法の一例を説明する。
Hereinafter, the present invention will be described more specifically.
The metal-graphitic particles of the present invention are metal particles that can be alloyed with lithium, a plurality of graphite particles, and metal-graphitic particles composed of a carbonaceous material (hereinafter sometimes referred to as composite particles). It is.
First, the whole metal-graphitic particles (composite particles) of the present invention will be described, then each constituent component will be described, and finally an example of the production method will be described.

(金属−黒鉛質系粒子)
本発明の複合粒子は、その粒子中に複数個の黒鉛質粒子と複数個の金属粒子とを有する。黒鉛質粒子と金属粒子については後に詳述する。複数個の黒鉛質粒子と複数個の金属粒子が存在すると、その形状に由来して複合粒子内部の粒子間に空隙が形成されやすく、この空隙を利用して金属の充電時の膨張を吸収することができる。黒鉛質粒子または金属粒子の合計の数は2以上であれば限定されないが、黒鉛質粒子が3〜4個が好ましい。金属粒子の個数は目的とする容量によって異なる。
金属粒子は複数個の黒鉛質粒子の表面に付着していることが好ましい。複合粒子中で金属粒子が複数個の黒鉛質粒子の表面に付着していることは、複合粒子の断面をEDX(Energy Dispersive Xray Spectrometer)分析することにより確認できる。
複数個の黒鉛質粒子と金属粒子の外周は後に説明する炭素質材料で覆われ、複合粒子の平均粒径は、5〜30μmであり、好ましくは平均粒径10〜20μmである。複合粒子の平均粒子径はレーザー回折式粒度分布計(セイシン社製、LS−5000)を用いて測定し、累積度数が体積分率で50%となる粒子径とした。以下、特に断らない限りは本明細書に記載の平均粒径はこの方法で測定したものを言う。
複合粒子の形状は、塊状であることが好ましい。これは複合粒子をリチウムイオン二次電池の負極材料として使用した場合、複合粒子が配向しにくく、サイクル特性が優れるからである。
(Metal-graphite particles)
The composite particles of the present invention have a plurality of graphite particles and a plurality of metal particles in the particles. The graphite particles and metal particles will be described in detail later. When there are a plurality of graphite particles and a plurality of metal particles, voids are likely to be formed between the particles inside the composite particles due to their shape, and the expansion during charging of the metal is absorbed using these voids. be able to. The total number of graphite particles or metal particles is not limited as long as it is 2 or more, but 3 to 4 graphite particles are preferable. The number of metal particles varies depending on the target capacity.
The metal particles are preferably attached to the surfaces of a plurality of graphite particles. The fact that metal particles are adhered to the surface of a plurality of graphite particles in the composite particles can be confirmed by analyzing the cross section of the composite particles by EDX (Energy Dispersive Xray Spectrometer).
The peripheries of the plurality of graphite particles and metal particles are covered with a carbonaceous material described later, and the average particle size of the composite particles is 5 to 30 μm, and preferably the average particle size is 10 to 20 μm. The average particle size of the composite particles was measured using a laser diffraction particle size distribution meter (manufactured by Seishin Co., Ltd., LS-5000), and the particle size was such that the cumulative frequency was 50% in volume fraction. Hereinafter, unless otherwise specified, the average particle diameter described in the present specification refers to that measured by this method.
The shape of the composite particles is preferably massive. This is because when the composite particles are used as a negative electrode material for a lithium ion secondary battery, the composite particles are difficult to be oriented and the cycle characteristics are excellent.

複合粒子中の、リチウムと合金化可能な金属粒子、黒鉛質粒子、および炭素質材料の好ましい構成比(質量比)は、1〜20:40〜90:5〜50であり、より好ましい構成比は(質量比)5〜15:50〜80:15〜30である。
金属粒子が該範囲であれば、複合粒子の構造を制御することで膨張の吸収が可能であり、かつ充分な高容量を得ることができる。
黒鉛質粒子が該範囲であれば、充分な導電性を確保しつつ空隙を形成することが可能である。
炭素質材料が該範囲であれば、空隙による膨張吸収の効果を損うことなく、充放電効率や導電性を向上させることができる。
The preferable composition ratio (mass ratio) of the metal particles that can be alloyed with lithium, the graphite particles, and the carbonaceous material in the composite particles is 1 to 20:40 to 90: 5 to 50, and more preferably the composition ratio. Is (mass ratio) 5-15: 50-80: 15-30.
When the metal particles are in this range, the expansion can be absorbed by controlling the structure of the composite particles, and a sufficiently high capacity can be obtained.
If the graphite particles are in this range, it is possible to form voids while ensuring sufficient conductivity.
When the carbonaceous material is in this range, the charge / discharge efficiency and conductivity can be improved without impairing the effect of expansion absorption by the voids.

複合粒子の質量組成は、金属については、複合粒子を灰化したのち、発光分光法による元素分析を行って、金属としての濃度に換算した値とする。黒鉛質粒子と炭素質材料の割合は、複合粒子の断面を偏光顕微鏡を用いて倍率1000倍で撮影し、任意の粒子10個について結晶性の高低に由来する外観の相違から、被覆複合粒子内部の黒鉛質材料と炭素質材料が占める目視で測定した面積割合の平均値である。なお、黒鉛質粒子と炭素質材料が占める面積割合は、複合粒子の断面の薄片を調整して透過型電子顕微鏡を用いて観察することによって求めることもできる。黒鉛質粒子と炭素質材料の密度に大きな差異がないため、面積割合を質量割合とみなすことができる。   The mass composition of the composite particles is a value obtained by converting the concentration of the metal into a metal concentration by ashing the composite particles and performing elemental analysis by emission spectroscopy. The ratio between the graphite particles and the carbonaceous material is determined by taking a cross-section of the composite particles with a polarizing microscope at a magnification of 1000 times, and from the difference in appearance derived from the crystallinity of any 10 particles, the inside of the coated composite particles It is the average value of the area ratio measured visually by the graphite material and the carbonaceous material. In addition, the area ratio which a graphite particle and a carbonaceous material occupy can also be calculated | required by adjusting the thin piece of the cross section of a composite particle, and observing using a transmission electron microscope. Since there is no significant difference between the density of the graphite particles and the carbonaceous material, the area ratio can be regarded as the mass ratio.

複合粒子の空隙率は、粒子断面の走査型電子顕微鏡観察から二次元的に空隙領域の面積割合を算出することによって求め、50個の複合粒子の断面における計測結果の平均値を採用した。なお、複合粒子の断面は、イオンミリング法などを用いることで、空隙をつぶすことなく、面出しすることができる。   The porosity of the composite particles was obtained by calculating the area ratio of the void region two-dimensionally from observation of the particle cross section with a scanning electron microscope, and the average value of the measurement results in the cross section of 50 composite particles was adopted. Note that the cross section of the composite particles can be surfaced without crushing the voids by using an ion milling method or the like.

(黒鉛質粒子)
黒鉛質粒子の平均粒径は2〜5μm、アスペクト比は3以下でなければならない。好ましい平均粒径は、3〜5μmであり、好ましいアスペクト比は、1.2〜2.5である。平均粒径が該範囲であると、黒鉛質粒子の粒子間接点が充分に確保され、導電性が向上する。また、アスペクト比が該範囲であれば、粒子形状が塊状であるため、得られる複合粒子の形状が塊状になりやすく、負極材料として使用したときに粒子が配向しにくく、サイクル特性が向上する。
黒鉛質粒子のアスペクト比は、走査型電子顕微鏡で1000倍の写真(100個分)をとり、最長の部分の長さを長軸長さ、これに直交する方向の最短の長さを短軸長さとし、長軸長さ/短軸長さをアスペクト比とし、このアスペクト比の平均値を求めた。
(Graphite particles)
The average particle size of the graphite particles should be 2-5 μm and the aspect ratio should be 3 or less. A preferable average particle diameter is 3 to 5 μm, and a preferable aspect ratio is 1.2 to 2.5. When the average particle size is within this range, the particle indirect points of the graphite particles are sufficiently secured, and the conductivity is improved. Moreover, if the aspect ratio is within this range, the particle shape is agglomerated, so that the shape of the resulting composite particles tends to agglomerate, and the particles are difficult to be oriented when used as a negative electrode material, and the cycle characteristics are improved.
The aspect ratio of the graphite particles is taken with a scanning electron microscope at a magnification of 1000 (100 pieces), the longest part is the long axis, and the shortest length in the direction perpendicular to this is the short axis. The long axis length / short axis length was defined as the aspect ratio, and the average value of the aspect ratios was obtained.

黒鉛質粒子はリチウムイオンを吸蔵・放出できるものであればよく、特に限定されない。その一部または全部が黒鉛質で形成されているもの、例えば、夕―ル、ピッチ類を最終的に1500℃以上で熱処理(黒鉛化)して得られる人造黒鉛や天然黒鉛などである。具体的には、石油系または石炭系の夕―ルピッチ類などの易黒鉛化性炭素材料を、熱処理して重縮合させたメソフェーズ焼成体、メソフェーズ小球体、コークス類を1500℃以上、好ましくは2800〜3300℃で黒鉛化処理して得ることができ、メソフェーズ小球体の黒鉛化物が好ましい。また、液相、気相、固相における各種化学的処理、熱処理、酸化処理、物理的処理などを施したものであってもよく、粉砕処理を施したものであってもよい。   The graphite particles are not particularly limited as long as they can occlude and release lithium ions. Artificial graphite or natural graphite obtained by heat treatment (graphitization) finally at 1500 ° C. or higher, for example, a part or all of which is made of graphite. Specifically, mesophase fired bodies, mesophase spherules and cokes obtained by heat-condensation of graphitizable carbon materials such as petroleum-based or coal-based bunched pitches by heat treatment are 1500 ° C. or higher, preferably 2800 ° C. It can be obtained by graphitization at ˜3300 ° C., and graphitized mesophase spherules are preferred. Further, it may be subjected to various chemical treatments in the liquid phase, gas phase, and solid phase, heat treatment, oxidation treatment, physical treatment, etc., or may be subjected to pulverization treatment.

(リチウムと合金化可能な金属)
リチウムと合金化可能な金属は、Al、Pb、Zn、Sn、Bi、In、Mg、Ga、Cd、Ag、Si、B、Au、Pt、Pd、Sb、Ge、Niなどであり、これら金属の
2種以上の合金であってもよい。合金には、上記以外の元素をさらに含有していてもよい。また、金属の一部が酸化物、窒化物、炭化物などの化合物であってもよい。好ましい金属はSi(シリコン)およびSn(錫)であり、特に好ましいのはシリコンである。
金属の平均粒子径は黒鉛質粒子の平均粒径の1/2以下でなければならない。該範囲であれば空隙による金属の膨張吸収が可能である。
金属の形状は特に制約されない。粒状、球状、板状、鱗片状、針状、糸状などのいずれ
であってもよい。ここで、平均粒子径とはレーザー回折式粒度計で測定される累積度数が
体積分率で50%となる粒径を意味する。
また、金属は黒鉛質材料の表面に付着していることが好ましい。付着にはいかなる方法を用いてもよいが、金属粒子と黒鉛質粒子とに圧縮、剪断、衝突、摩擦などの機械的エネルギーを付与する方法、いわゆるメカノケミカル処理が好ましい。
(Metal that can be alloyed with lithium)
Metals that can be alloyed with lithium are Al, Pb, Zn, Sn, Bi, In, Mg, Ga, Cd, Ag, Si, B, Au, Pt, Pd, Sb, Ge, Ni, and the like. Two or more kinds of alloys may be used. The alloy may further contain elements other than those described above. In addition, a part of the metal may be a compound such as an oxide, nitride, or carbide. Preferred metals are Si (silicon) and Sn (tin), and particularly preferred is silicon.
The average particle size of the metal must be less than or equal to 1/2 of the average particle size of the graphite particles. If it is this range, the expansion | swelling absorption of the metal by a space | gap is possible.
The shape of the metal is not particularly limited. Any of a granular shape, a spherical shape, a plate shape, a scale shape, a needle shape, a thread shape and the like may be used. Here, the average particle diameter means a particle diameter at which the cumulative frequency measured with a laser diffraction particle size meter is 50% in volume fraction.
The metal is preferably attached to the surface of the graphite material. Any method may be used for the adhesion, but a method of applying mechanical energy such as compression, shearing, collision, friction, etc. to the metal particles and the graphite particles, so-called mechanochemical treatment is preferable.

(炭素質材料)
炭素質材料は導電性を有し、金属粒子と黒鉛質粒子とを結着するものであり、結着剤として不可欠な成分である。炭素質材料は、後述する金属粒子−黒鉛質粒子の造粒物に炭素質前駆体を含浸させた後、熱処理して得ることができる。
炭素質前駆体は、夕ールピッチ類および/または樹脂類であることが好ましい。具体的
には、石油系または石炭系の夕ールピッチ類として、コールタ―ル、タール軽油、タール
中油、タール重油、ナフタリン油、アントラセン油、コールタールピッチ、ピッチ油、メ
ソフェーズピッチ、酸素架橋石油ピッチ、ヘビーオイルなどが挙げられる。また樹脂類と
して、ポリビニルアルコールなどの熱可塑性樹脂、フェノール樹脂、フラン樹脂などが挙
げられる。
(Carbonaceous material)
The carbonaceous material has conductivity and binds metal particles and graphite particles, and is an indispensable component as a binder. The carbonaceous material can be obtained by impregnating a granulated product of metal particles-graphitic particles, which will be described later, with a carbonaceous precursor, followed by heat treatment.
The carbonaceous precursor is preferably evening pitches and / or resins. Specifically, as petroleum-based or coal-based evening pitches, coal tar, tar light oil, tar middle oil, tar heavy oil, naphthalene oil, anthracene oil, coal tar pitch, pitch oil, mesophase pitch, oxygen-crosslinked petroleum pitch, Examples include heavy oil. Examples of the resins include thermoplastic resins such as polyvinyl alcohol, phenol resins, and furan resins.

(金属−黒鉛質系粒子の製造方法)
本発明の金属−黒鉛質系粒子の製造方法は限定されないが、好ましくは、以下の工程を有する。
(1)黒鉛質粒子表面に、リチウムと合金可能な金属粒子をメカノケミカル処理して付着させる工程
(2)前記メカノケミカル処理物を樹脂などで造粒する工程および
(3)前記造粒物に炭素質前駆体を含浸させた後、熱処理する工程
以下に、工程(1)〜(3)について説明する。
(Method for producing metal-graphite particles)
Although the manufacturing method of the metal-graphite type particle | grains of this invention is not limited, Preferably, it has the following processes.
(1) A step of depositing metal particles that can be alloyed with lithium on the surface of the graphite particles by mechanochemical treatment (2) A step of granulating the mechanochemically treated product with a resin or the like, and (3) The granulated product Step of heat treatment after impregnating carbonaceous precursor Steps (1) to (3) will be described below.

<(1)黒鉛質粒子表面に、リチウムと合金可能な金属粒子をメカノケミカル処理して付着させる工程>
メカノケミカル処理は、黒鉛質粒子、金属粒子に圧縮力と剪断力を同時にかける処理を言う。剪断力や圧縮力は通常一般の攪拌力よりも大きいが、これらの機械的応力は、黒鉛質粒子の表面にかけられることが好ましく、黒鉛質粒子の粒子骨格を破壊しないことが好ましい。該骨格が破壊されると、負極材料として使用したときに、不可逆容量の増大を招く傾向がある。剪断力や圧縮力は、一般的にはメカノケミカル処理による黒鉛質粒子の平均粒子径の低下率を20%以下に抑える程度であることが好ましい。
メカノケミカル処理装置は、黒鉛質粒子と金属粒子に剪断力と圧縮力を同時にかけることができる装置であれば、装置の種類、構造は特に限定されない。例えば、加圧ニーダー、二本ロールなどの混練機、回転ボールミル、ハイブリダイゼーションシステム((株)奈良機械製作所製)などの高速衝撃式乾式複合化装置、メカノマイクロシステム((株)奈良機械製作所製)、メカノフュージョシステム(ホソカワミクロン(株))などの圧縮剪断式乾式粉体複合化装置などを使用することができる。
<(1) Step of attaching metal particles that can be alloyed with lithium to the surface of graphite particles by mechanochemical treatment>
The mechanochemical treatment is a treatment in which a compressive force and a shear force are simultaneously applied to graphite particles and metal particles. Although the shearing force and compressive force are usually larger than general stirring force, these mechanical stresses are preferably applied to the surface of the graphite particles, and preferably do not destroy the particle skeleton of the graphite particles. When the skeleton is destroyed, when used as a negative electrode material, the irreversible capacity tends to increase. In general, the shearing force and compressive force are preferably such that the reduction rate of the average particle diameter of the graphite particles by mechanochemical treatment is suppressed to 20% or less.
As long as the mechanochemical treatment apparatus is an apparatus capable of simultaneously applying a shearing force and a compressive force to graphite particles and metal particles, the type and structure of the device are not particularly limited. For example, a kneader such as a pressure kneader or two rolls, a rotating ball mill, a high-speed impact dry compounding device such as a hybridization system (manufactured by Nara Machinery Co., Ltd.), a mechano micro system (manufactured by Nara Machinery Co., Ltd.) ), A compression shear type dry powder compounding device such as Mechano-Fusion System (Hosokawa Micron Co., Ltd.) can be used.

中でも、回転速度差を利用して剪断力と圧縮力を同時にかける装置が好ましい。具体的には、回転するドラム(回転ローター)と、該ドラムと回転速度の異なる内部部材(インナーピース)と、黒鉛質粒子と金属粒子の循環機構(例:循環用ブレード)とを有する装置(メカノフュージョシステム)を用い、回転ドラムと内部部材との間に供給された黒鉛質粒子と金属粒子に遠心力を付与しながら、内部部材により回転ドラムとの速度差に起因する剪断力と圧縮力とを同時に繰返しかけることによりメカノケミカル処理することが好ましい。
また、固定ドラム(ステーター)と、高速回転する回転ローターの間に黒鉛質粒子と金属粒子を通すことで固定ドラムと回転ローターとの速度差に起因する剪断力と圧縮力を黒鉛質材料と金属粒子に同時にかける装置(ハイブリダイゼーションシステム)も好ましい。
Among them, an apparatus that applies a shearing force and a compressing force simultaneously using a rotational speed difference is preferable. Specifically, an apparatus having a rotating drum (rotating rotor), an internal member (inner piece) having a rotation speed different from that of the drum, and a circulation mechanism (eg, a blade for circulation) of graphite particles and metal particles ( Using a mechano-fusion system), while applying centrifugal force to the graphite particles and metal particles supplied between the rotating drum and the internal member, shear force and compression caused by the speed difference from the rotating drum by the internal member It is preferable to perform mechanochemical treatment by repeatedly applying force simultaneously.
In addition, by passing the graphite particles and metal particles between the fixed drum (stator) and the rotating rotor rotating at high speed, the shear force and compressive force due to the speed difference between the fixed drum and rotating rotor can be increased. An apparatus (hybridization system) that applies particles simultaneously is also preferred.

メカノケミカル処理の条件は、使用する装置によっても異なり一概に言えないが、例えば、メカノフュージョシステムの場合には、回転ドラムと内部部材との周速度差が5〜50m/s、両者間の距離が1〜100mm、処理時間が3〜90minであることが好ましい。また、ハイブリダイゼーションシステムの場合には、固定ドラムと回転ローターとの周速度差が10〜100m/s、処理時間が30s〜10minであることが好ましい。  The conditions of the mechanochemical treatment differ depending on the apparatus used, and cannot be said unconditionally. For example, in the case of a mechanofusion system, the peripheral speed difference between the rotating drum and the internal member is 5 to 50 m / s. It is preferable that the distance is 1 to 100 mm and the processing time is 3 to 90 min. In the case of a hybridization system, it is preferable that the peripheral speed difference between the fixed drum and the rotating rotor is 10 to 100 m / s, and the processing time is 30 s to 10 min.

<工程(2)前記メカノケミカル処理物を樹脂などで造粒する工程>
メカノケミカル処理物を樹脂溶液中に分散させ、該分散波をスプレードライなどにより
造粒物を製造することができる。樹脂は後述する熱処理工程で、分解や揮発するものが好
ましく、たとえばフェノール樹脂などである。樹脂の添加量は、メカノケミカル処理物に対して、5〜10質量%程度でよい。
この工程で、複合粒子中の黒鉛質粒子、金属粒子のそれぞれの量比、および合計量を所定の範囲とする。その方法は、スプレー噴出口のノズル径や、吐出圧を調整し、造粒物の粒径などを調整することにより、行う。
<Step (2) Step of granulating the mechanochemically treated product with resin>
The mechanochemically treated product can be dispersed in a resin solution, and the granulated product can be produced by spray-drying the dispersed wave. The resin is preferably one that decomposes or volatilizes in a heat treatment step to be described later, such as a phenol resin. The addition amount of the resin may be about 5 to 10% by mass with respect to the mechanochemically processed product.
In this step, the respective ratios and total amounts of the graphite particles and the metal particles in the composite particles are set within a predetermined range. The method is performed by adjusting the nozzle diameter of the spray nozzle, the discharge pressure, and adjusting the particle diameter of the granulated product.

<(3)前記造粒物に炭素質前駆体を含浸させた後、熱処理する工程>
前記造粒物に炭素質前駆体を含浸させる。炭素質前駆体は溶液や溶融状態で用いてもよい。
炭素質前駆体の残炭率は通常約30〜50質量%なので、炭素質前駆体の添加量は、残炭率を考慮して、適宜調整する。
複合粒子の炭素質材料の含有量は、炭素質前駆体の残炭率、含浸量や熱処理時の温度、圧力、処理時間などで調整する。また、複合粒子の空隙率も、炭素質前駆体の残炭率、含浸量や熱処理時の温度、圧力、処理時間などで調整する。なお、複合粒子は、造粒後や熱処理後に解砕、粉砕や分級などで粒度調整しても構わない。
<(3) Step of heat-treating the granulated product after impregnating the carbonaceous precursor>
The granulated product is impregnated with a carbonaceous precursor. The carbonaceous precursor may be used in a solution or in a molten state.
Since the remaining carbon ratio of the carbonaceous precursor is usually about 30 to 50% by mass, the addition amount of the carbonaceous precursor is appropriately adjusted in consideration of the remaining carbon ratio.
The content of the carbonaceous material in the composite particles is adjusted by the residual carbon ratio of the carbonaceous precursor, the amount of impregnation, the temperature during heat treatment, the pressure, the treatment time, and the like. Further, the porosity of the composite particles is also adjusted by the residual carbon ratio of the carbonaceous precursor, the amount of impregnation, the temperature during heat treatment, the pressure, the treatment time, and the like. Note that the particle size of the composite particles may be adjusted by crushing, pulverization, classification, or the like after granulation or heat treatment.

(負極)
本発明の負極の作製は、従来公知の負極の作製方法に拠り実施されるが、前記複合粒子と結着剤と溶媒からペースト状の負極合剤を調製し、これを集電材の片面または両面に塗布乾燥し、負極合剤層を形成する方法が好ましい。負極合剤層を形成した後、プレス加工などの圧着を行うと、負極合剤層と集電材との接着強度をさらに高めることができる。負極合剤の層厚は10〜200μm、好ましくは20〜200μmである。
(Negative electrode)
Production of the negative electrode of the present invention is carried out according to a conventionally known production method of a negative electrode, and a paste-like negative electrode mixture is prepared from the composite particles, a binder and a solvent, and this is prepared on one side or both sides of a current collector. The method of applying and drying to form a negative electrode mixture layer is preferable. When the negative electrode mixture layer is formed and then pressure bonding such as press working is performed, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased. The layer thickness of the negative electrode mixture is 10 to 200 μm, preferably 20 to 200 μm.

負極合剤ペーストの調製は公知の攪拌機、混合機、混練機、ニーダーなどを用いて実施される。具体的には、本発明の金属−黒鉛質系粒子と、他に加えてもよい黒鉛質材料、結着剤および/または溶媒を、混合機を用いて混合して調製することができる。   The negative electrode mixture paste is prepared using a known stirrer, mixer, kneader, kneader or the like. Specifically, it can be prepared by mixing the metal-graphitic particles of the present invention and a graphite material, a binder and / or a solvent which may be added to others using a mixer.

結着剤としては、電解質に対して化学的安定性、電気化学的安定性を有するものが好ましく、有機溶媒に溶解および/または分散させる有機系結着剤はもちろんのこと、水系溶媒に溶解および/または分散する水系結着剤が広く挙げられる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレン、ポリビニルアルコールなどの樹脂、さらにはカルボキシメチルセルロース、スチレンブタジエンゴムなどのゴムなどが用いられるが、カルボキシメチルセルロース、ポリビニルアルコール、スチレンブタジエンゴムなどの水系結着剤を用いることが特に好ましい。これらを併用することもできる。結着剤は、通常、負極合剤の全量中0.5〜20質量%の割合で使用されるのが好ましい。
溶媒としては、負極合剤の調製に使用される通常の溶媒が使用されるが、溶媒自体が結着剤として使用するものが好ましく使用される。具体的には、Nーメチルピロリドン、ジメチルホルムアミド、水、アルコールなどが挙げられるが、水系溶媒の使用が環境汚染、安全性の点から好ましい。
As the binder, those having chemical stability and electrochemical stability with respect to the electrolyte are preferable. In addition to the organic binder that is dissolved and / or dispersed in the organic solvent, the binder is dissolved in the aqueous solvent. A wide range of water-based binders are / are dispersed. For example, fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, resins such as polyethylene and polyvinyl alcohol, and rubbers such as carboxymethyl cellulose and styrene butadiene rubber are used, but carboxymethyl cellulose, polyvinyl alcohol and styrene butadiene rubber are used. It is particularly preferable to use an aqueous binder such as These can also be used together. In general, the binder is preferably used at a ratio of 0.5 to 20% by mass in the total amount of the negative electrode mixture.
As the solvent, a normal solvent used for the preparation of the negative electrode mixture is used, but the solvent itself is preferably used as the binder. Specific examples include N-methylpyrrolidone, dimethylformamide, water, alcohol and the like. Use of an aqueous solvent is preferable from the viewpoint of environmental pollution and safety.

負極に用いる集電材の形状は特に限定されないが、箔状、またはメッシュ、エキスパンドメタルなどの網状のものなどが用いられる。集電材の材質としては、銅、ステンレス、ニッケルなどが挙げられる。集電材の厚さは、箔状の場合は、5〜20μmであることが好ましい。   The shape of the current collector used for the negative electrode is not particularly limited, but a foil or a net-like material such as a mesh or expanded metal is used. Examples of the material for the current collector include copper, stainless steel, and nickel. In the case of a foil, the thickness of the current collector is preferably 5 to 20 μm.

また、本発明の金属−黒鉛質系粒子とポリエチレン、ポリビニルアルコールなどの樹脂粉末を、必要ならば、他の黒鉛質材料とともに乾式混合し、通常の成形方法に準じて負極を成形することができる。例えば、金型内で該混合物をホットプレス成形して負極を成形することができる。   In addition, if necessary, the metal-graphitic particles of the present invention and resin powders such as polyethylene and polyvinyl alcohol can be dry-mixed together with other graphite materials to form a negative electrode according to a normal molding method. . For example, the negative electrode can be formed by hot press molding the mixture in a mold.

本発明の金属−黒鉛質系粒子を用いて負極材料・負極を作製する際に、負極材料の作製に通常使用される導電材、改質材、添加剤などを共存させてもよい。例えば、天然黒鉛、人造黒鉛、カーボンブラック、気相成長炭素繊維、低結晶性炭素粒子またはこれらの黒鉛化物などを添加してもよい。これらの添加量は、一概に言えないが、総量として0.1〜50質量%である。   When producing a negative electrode material / negative electrode using the metal-graphitic particles of the present invention, conductive materials, modifiers, additives, and the like that are commonly used in the production of negative electrode materials may coexist. For example, natural graphite, artificial graphite, carbon black, vapor grown carbon fiber, low crystalline carbon particles, or a graphitized product thereof may be added. Although these addition amounts cannot be generally stated, the total amount is 0.1 to 50% by mass.

(リチウムイオン二次電池)
リチウムイオン二次電池は、通常、負極、正極および非水電解質を主たる電池構成要素として、正極および負極はそれぞれリチウムイオンの担持体であり、充電時にはリチウムイオンが負極に吸蔵され、放電時に負極から離脱する電池機構に拠っている。
本発明のリチウムイオン二次電池の構成要素は、負極材料として本発明の金属−黒鉛質系粒子を用いる以外は特に限定されない。正極、電解質、セパレータなどの他の電池構成要素については一般的なリチウムイオン二次電池の構成要素に準じる。
(Lithium ion secondary battery)
A lithium ion secondary battery usually has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main battery components. Each of the positive electrode and the negative electrode is a lithium ion carrier. Lithium ions are occluded in the negative electrode during charging and from the negative electrode during discharging. It depends on the battery mechanism to be detached.
The constituent elements of the lithium ion secondary battery of the present invention are not particularly limited except that the metal-graphitic particles of the present invention are used as the negative electrode material. Other battery components such as a positive electrode, an electrolyte, and a separator conform to the components of a general lithium ion secondary battery.

(正極)
正極は、例えば正極材料と結着剤と導電剤よりなる正極合剤を集電体の表面に塗布することにより形成される。正極材料(正極活物質)は、十分量のリチウムを吸蔵/離脱し得るものを選択することが好ましい。正極活物質としては、リチウム含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物(V25、V613、V24、V38など)およびそのリチウム化合物などのリチウム含有化合物、一般式MxMo68−y(式中Mは少なくとも一種の遷移金属元素であり、Xは0≦X≦4、Yは0≦Y≦1の範囲の数である)で表されるシェブレル相化合物、活性炭、活性炭素繊維などを用いることができる。該リチウム含有遷移金属酸化物はリチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶したものであってもよい。
(Positive electrode)
The positive electrode is formed, for example, by applying a positive electrode mixture composed of a positive electrode material, a binder, and a conductive agent to the surface of the current collector. It is preferable to select a positive electrode material (positive electrode active material) that can occlude / release a sufficient amount of lithium. Examples of positive electrode active materials include lithium-containing transition metal oxides, transition metal chalcogenides, vanadium oxides (V 2 O 5 , V 6 O 13 , V 2 O 4 , V 3 O 8, etc.) and lithium compounds such as lithium compounds thereof. containing compound, the general formula M x Mo 6 S 8-y (M in the formula is a transition metal element of at least one, X is 0 ≦ X ≦ 4, Y is a number in the range of 0 ≦ Y ≦ 1) The chevrel phase compound, activated carbon, activated carbon fiber, etc. which are represented can be used. The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals.

該リチウム含有遷移金属酸化物は、具体的には、LiM1 1−p2 p O2(式中M1およびM2は少なくとも一種の遷移金属元素であり、pは0≦p≦1の範囲の数である)、またはLiM1 1−q2 qO4(式中M1およびM2は少なくとも一種の遷移金属元素であり、qは0≦q≦1の範囲の数である)で示される。
M、M1およびM2で示される遷移金属は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどであり、好ましいのはCo、Fe、Mn、Cr、Ti、V、Alなどである。好ましい具体例はLiCoO2、LiNiO2、LiMnO2、LiNi0.9Co0.1、LiNi0.5Mn0.52などである。
該リチウム含有遷移金属酸化物は、例えば、リチウムと、遷移金属の酸化物または塩類を出発原料として、これら出発原料を所望の金属酸化物の組成に応じて混合し、酸素雰囲気下、600〜1000℃の温度で焼成することにより得ることができる。出発原料は酸化物または塩類に限定されず、水酸化物などでもよい。
Specifically, the lithium-containing transition metal oxide is LiM 1 1-p M 2 p O 2 (wherein M 1 and M 2 are at least one transition metal element, and p is 0 ≦ p ≦ 1). LiM 1 1−q M 2 q O 4 (wherein M 1 and M 2 are at least one transition metal element, and q is a number in the range of 0 ≦ q ≦ 1). Indicated by
Transition metals represented by M, M 1 and M 2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, etc., preferably Co, Fe, Mn, Cr, Ti, V, Al and the like. Preferred examples are LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Mn 0.5 O 2 and the like.
The lithium-containing transition metal oxide is prepared by mixing lithium and a transition metal oxide or salt as starting materials, for example, and mixing these starting materials according to the composition of the desired metal oxide, and in an oxygen atmosphere, 600 to 1000 It can be obtained by firing at a temperature of ° C. The starting material is not limited to oxides or salts, but may be hydroxides.

本発明では、正極活物質は、前記化合物を単独で使用しても、2種類以上併用してもよい。例えば、正極材料に炭酸リチウムなどの炭酸アルカリ塩を添加することもできる。
このような正極材料によって正極を形成するには、例えば、正極材料と結着材および電極に導電性を付与するための導電剤よりなる正極合剤を集電材の両面に塗布することで正極合剤層を形成する。結着剤としては、例えば、炭素材料、黒鉛やカーボンブラックが用いられる。
In the present invention, the positive electrode active material may be used alone or in combination of two or more. For example, an alkali carbonate such as lithium carbonate can be added to the positive electrode material.
In order to form a positive electrode using such a positive electrode material, for example, a positive electrode mixture comprising a positive electrode material, a binder, and a conductive agent for imparting conductivity to the electrode is applied to both surfaces of the current collector. An agent layer is formed. As the binder, for example, a carbon material, graphite or carbon black is used.

正極に用いる集電材の形状は特に限定されないが、箔状、またはメッシュ、エキスパンドメタルなどの網状のものなどが用いられる。集電材の材質としては、アルミニウム、銅、ステンレス、ニッケルなどが挙げられる。集電材の厚さは、箔状の場合は、10〜40μmであることが好ましい。
正極の場合も負極の場合と同様に、正極合剤を溶剤中に分散させることでペースト状にし、このペースト状正極合剤を集電材に塗布し乾燥することによって正極合剤層を形成してよく、正極合剤層を形成した後、さらにプレス加圧などの圧着を行っても構わない。これにより、正極合剤層が均一かつ強固に集電材に接着される。
The shape of the current collector used for the positive electrode is not particularly limited, but a foil or a net-like material such as a mesh or expanded metal is used. Examples of the material for the current collector include aluminum, copper, stainless steel, and nickel. In the case of a foil, the thickness of the current collector is preferably 10 to 40 μm.
In the case of the positive electrode, as in the case of the negative electrode, the positive electrode mixture is dispersed in a solvent to form a paste, and the paste-like positive electrode mixture is applied to a current collector and dried to form a positive electrode mixture layer. In addition, after forming the positive electrode mixture layer, pressure bonding such as press pressing may be further performed. Thereby, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.

(非水電解質)
本発明のリチウムイオン二次電池は、非水電解質として液系の電解質のほかに、固体電解質またはゲル電解質などの高分子電解質を使用することができる。
本発明のリチウムイオン二次電池に使用される非水電解質は、通常の非水電解液に使用される電解質塩であり、具体的には、LiPF6、LiBF4、LiAsF6、LiClO4、LiB(C65)、LiCl、LiBr、LiCF3SO3、LiCH3SO3、LiN(CF3SO22、LiC(CF3SO23、LIN(CF3CH2OSO22、LIN(CF3CF3OSO22、LIN(HCF2CF2CH2OSO22、LIN[(CF32CHOSO22]、LIB[(C63)(CF324、LiAlCl4、LiSiF6などのリチウム塩が挙げられる。特にLiPF6とLiBF4が酸化安定性の点から好ましい。
(Nonaqueous electrolyte)
In the lithium ion secondary battery of the present invention, a polymer electrolyte such as a solid electrolyte or a gel electrolyte can be used as a nonaqueous electrolyte in addition to a liquid electrolyte.
Non-aqueous electrolyte used in the lithium ion secondary battery of the present invention is an electrolyte salt used in the conventional non-aqueous electrolyte, specifically, LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiB (C 6 H 5), LiCl , LiBr, LiCF 3 SO 3, LiCH 3 SO 3, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) 3, LIN (CF 3 CH 2 OSO 2) 2, LIN (CF 3 CF 3 OSO 2 ) 2 , LIN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , LIN [(CF 3 ) 2 CHOSO 2 ) 2 ], LIB [(C 6 H 3 ) (CF 3 ) 2 ] 4, LiAlCl 4, include lithium salts such as LiSiF 6. In particular, LiPF 6 and LiBF 4 are preferable from the viewpoint of oxidation stability.

非水電解質液とするための溶媒としては、通常の非水電解液の溶媒として使用されるものが挙げられる。具体的には、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート、1,1−または1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γーブトロラクトン、1.3−ジオキソフラン、4−メチル−1,3−ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、サルファイト、ジメチルサルファイトなどの非プロトン性有機溶媒を用いることができる。電解液中の電解質塩の濃度は0.1〜5mol/dm3(0.1〜5mol/l)であることが好ましく、0.5〜3mol/dm3(0.5〜3mol/l)であることがより好ましい。 Examples of the solvent for making the non-aqueous electrolyte include those used as a solvent for ordinary non-aqueous electrolytes. Specifically, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butrolactone, 1. Ethers such as 3-dioxofuran, 4-methyl-1,3-dioxolane, anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, nitriles such as acetonitrile, chloronitrile and propionitrile, trimethyl borate and silicic acid Tetramethyl, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethylorthoformate, nitrobenzene, benzoyl chloride, benzoyl bromide, tetrahydro Thiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, may be used an aprotic organic solvent such as sulfite, dimethyl sulfite. Preferably the concentration of the electrolyte salt in the electrolytic solution is 0.1~5mol / dm 3 (0.1~5mol / l ), at 0.5~3mol / dm 3 (0.5~3mol / l ) More preferably.

高分子電解質の製造方法は特に制限されないが、例えば、マトリックスを構成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して高分子化合物を溶融・溶解する方法、混合用有機溶媒に、高分子化合物、リチウム化合物および非水溶媒を溶解させた後、混合用有機溶媒を蒸発させる方法、重合性モノマー、リチウム塩および非水溶媒を混合し、混合物に紫外線、電子線または分子線などを照射して重合させる方法などを挙げることができる。高分子電解質中の非水溶媒の割合は10〜90質量%が好ましく、30〜80質量%がより好ましい。10質量%未満であると導電率が低くなり、90質量%を越えると機械的強度が弱くなり、製膜しにくくなる。   The method for producing the polymer electrolyte is not particularly limited. For example, the polymer compound, lithium salt and non-aqueous solvent (plasticizer) constituting the matrix are mixed and heated to melt and dissolve the polymer compound. A method in which a polymer compound, a lithium compound, and a non-aqueous solvent are dissolved in an organic solvent for use, and then the organic solvent for mixing is evaporated. A polymerizable monomer, a lithium salt, and a non-aqueous solvent are mixed. Or the method of irradiating with a molecular beam etc. and polymerizing can be mentioned. The ratio of the nonaqueous solvent in the polymer electrolyte is preferably 10 to 90% by mass, and more preferably 30 to 80% by mass. If it is less than 10% by mass, the electrical conductivity will be low, and if it exceeds 90% by mass, the mechanical strength will be weak and film formation will be difficult.

該高分子電解質としては、ポリエチレンオキサイドやその架橋体などのエーテル系重合体、ポリメタクリレート系重合体、ポリアクリレート系重合体、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系樹脂などを単独または混合して用いることができる。これらの中では、酸化還元安定性などの観点から、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系樹脂などを用いることが好ましい。高分子ゲル電解質の場合、可塑剤である電解液中の電解質塩濃度は0.1〜5mol/dm3(0.1〜5mol/l)であることが好ましく、0.5〜2mol/dm3(0.5〜2mol/l)であることがより好ましい。 Examples of the polymer electrolyte include ether polymers such as polyethylene oxide and cross-linked polymers thereof, polymethacrylate polymers, polyacrylate polymers, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene copolymers. These resins can be used alone or in combination. In these, it is preferable to use fluorine-type resins, such as a polyvinylidene fluoride and a vinylidene fluoride-hexafluoropropylene copolymer, from viewpoints, such as oxidation-reduction stability. In the case of a polymer gel electrolyte, the concentration of the electrolyte salt in the electrolyte solution that is a plasticizer is preferably 0.1 to 5 mol / dm 3 (0.1 to 5 mol / l), preferably 0.5 to 2 mol / dm 3. (0.5 to 2 mol / l) is more preferable.

本発明のリチウムイオン二次電池は、前記金属−黒鉛質系粒子を用いることから、ゲル電解質を用いることができる。
ゲル電解質を用いたリチウムイオン二次電池は、前記金属−黒鉛質系粒子を含有する負極と、正極およびゲル電解質から構成される。例えば、負極、ゲル電解質、正極の順で積層し、電池の外装材内に収容することで構成される。なお、これに加えて、さらに負極と正極の外側にゲル電解質を配するようにしてもよい。本発明の負極材料を用いるゲル電解質のリチウムイオン二次電池では、ゲル電解質にプロピレンカーボネートを含有させることができる。一般にプロピレンカーボネートは黒鉛質材料に対して電気的分解反応が激しいが、本発明の負極材料に対しては分解反応性が低いので、第1サイクルにおける不可逆的な容量を小さく抑えることができる。
Since the lithium ion secondary battery of the present invention uses the metal-graphite-based particles, a gel electrolyte can be used.
A lithium ion secondary battery using a gel electrolyte is composed of a negative electrode containing the metal-graphitic particles, a positive electrode, and a gel electrolyte. For example, the negative electrode, the gel electrolyte, and the positive electrode are stacked in this order and accommodated in the battery outer packaging material. In addition to this, a gel electrolyte may be further arranged outside the negative electrode and the positive electrode. In the gel electrolyte lithium ion secondary battery using the negative electrode material of the present invention, the gel electrolyte can contain propylene carbonate. In general, propylene carbonate has a strong electrolysis reaction with respect to the graphite material, but since the decomposition reactivity with the negative electrode material of the present invention is low, the irreversible capacity in the first cycle can be kept small.

(セパレータ)
本発明のリチウムイオン二次電池においては、セパレータを使用することもできる。セパレータは特に限定されるものではないが、例えば、織布、不織布、合成樹脂製微多孔膜などが挙げられる。合成樹脂製微多孔膜が好ましいが、なかでもポリオレフィン系製微多孔膜が厚さ、膜強度、膜抵抗などの点から好ましい。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜などである。
(Separator)
In the lithium ion secondary battery of the present invention, a separator can also be used. Although a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. are mentioned. A microporous membrane made of synthetic resin is preferred, and among these, a microporous membrane made of polyolefin is preferred from the viewpoint of thickness, membrane strength, membrane resistance, and the like. Specifically, it is a microporous film made of polyethylene and polypropylene, or a microporous film in which these are combined.

本発明のリチウムイオン二次電池の構造は任意であり、その形状、形態について特に限定されるものではなく、用途、搭載機器、要求される充放電容量などに応じて、円筒型、角型、コイン型、ボタン型などの中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものであることが好ましい。高分子固体電解質や高分子ゲル電解質電池の場合には、アルミラミネートフィルムに封入した構造とすることもできる。   The structure of the lithium ion secondary battery of the present invention is arbitrary, and is not particularly limited with respect to its shape and form, and may be cylindrical, rectangular, depending on the application, mounted equipment, required charge / discharge capacity, etc. A coin type, a button type, or the like can be arbitrarily selected. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to include a means for detecting an increase in the internal pressure of the battery and shutting off the current when there is an abnormality such as overcharging. In the case of a polymer solid electrolyte or a polymer gel electrolyte battery, it can also have a structure enclosed in an aluminum laminate film.

本発明を実施例および比較例により具体的に説明するが、本発明はこれらに限定されるものではない。また、実施例および比較例では、図1に示す構成の評価用のボタン型二次電池を作製して評価した。実電池は、本発明の趣旨に基づき、公知の方法に準じて作製することができる。該評価用電池においては、作用電極を負極、対極を正極と表現した。
なお、実施例および比較例において、金属粒子、黒鉛質粒子、金属−黒鉛質系粒子の平均粒径(粒度)はレーザー回折式粒度計を用いて測定した累積度数が体積百分率で50%となる粒子径である。
The present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these. In Examples and Comparative Examples, button-type secondary batteries for evaluation having the configuration shown in FIG. 1 were produced and evaluated. An actual battery can be manufactured according to a well-known method based on the meaning of this invention. In the evaluation battery, the working electrode was expressed as a negative electrode, and the counter electrode was expressed as a positive electrode.
In Examples and Comparative Examples, the average particle size (particle size) of metal particles, graphite particles, and metal-graphitic particles is 50% in terms of volume percentage measured using a laser diffraction particle size meter. The particle size.

(実施例1)
Si粉末(平均粒径1.0μm)とメソフェーズ小球体の黒鉛化物(粉砕品)(平均粒径:3.0μm、アスペクト比:1.5)とをメカノケミカル処理を行い、メソフェーズ小球体の黒鉛化物の表面にSi粉末が付着したものを作成した。なお、Si粒子とメソフェーズ小球体の黒鉛化物の割合は、金属−黒鉛質系粒子の状態で表1に示す割合となるように調整した。なお、正確な組成は、得られた金属−黒鉛質粒子を、前述した発光分光法分析と偏光顕微鏡観察から求めた。
次に、該メカノケミカル処理物をフェノール樹脂溶液に分散し、該分散液を約60℃の雰囲気へ噴霧し、造粒物を得た。造粒物に含まれるメソフェーズ小球体の黒鉛化物の個数は平均3.4個であった。(測定方法は、造粒物粒子断面の走査型電子顕微鏡観察から二次元的に個数を算出することによって求め、50個の造粒物粒子の断面における計測結果の平均値を採用した。)
該造粒物をコールタールピッチ溶液(溶媒:タール中油)に含浸し、1000℃で熱処理して、金属−黒鉛質系粒子を得た。炭素質材料の割合は、原料コールタールピッチの残炭率から計算し、前述した偏光顕微鏡観察から求めた。
Example 1
Mesophase spherule graphite is obtained by mechanochemical treatment of Si powder (average particle size 1.0 μm) and mesophase spherulite graphitized product (ground product) (average particle size: 3.0 μm, aspect ratio: 1.5). A material having Si powder adhered to the surface of the chemical was prepared. In addition, the ratio of the graphitized material of Si particle | grains and a mesophase microsphere was adjusted so that it might become a ratio shown in Table 1 in the state of a metal-graphite type particle | grain. In addition, the exact composition was calculated | required from the emission spectroscopy analysis and polarization microscope observation which were obtained for the obtained metal-graphite particle.
Next, the mechanochemically treated product was dispersed in a phenol resin solution, and the dispersion was sprayed into an atmosphere of about 60 ° C. to obtain a granulated product. The average number of graphitized mesophase spherules contained in the granulated product was 3.4. (The measurement method was determined by two-dimensionally calculating the number of particles from the cross section of the granulated particles by scanning electron microscope observation, and the average value of the measurement results in the cross section of 50 granulated particles was adopted.)
The granulated product was impregnated with a coal tar pitch solution (solvent: oil in tar) and heat-treated at 1000 ° C. to obtain metal-graphitic particles. The proportion of the carbonaceous material was calculated from the residual coal rate of the raw material coal tar pitch and obtained from the above-mentioned observation with a polarizing microscope.

(負極合剤ペーストの作製)
前記金属−黒鉛質系粒子90質量%と、ポリフッ化ビニリデン10質量%を、N−メチルピロリドン溶媒に入れ、ホモミキサーを用いて、2000rpmで3min間攪拌混合し、有機溶媒系負極合剤ペーストを調製した。
(Preparation of negative electrode mixture paste)
90% by mass of the metal-graphitic particles and 10% by mass of polyvinylidene fluoride are placed in an N-methylpyrrolidone solvent, and are stirred and mixed at 2000 rpm for 3 minutes using a homomixer to prepare an organic solvent-based negative electrode mixture paste. Prepared.

(作用電極の作製)
前記負極合剤ペーストを、銅箔上に均一な厚さで塗布し、真空中90℃で溶媒N−メチルピロリドンを揮発させ、乾燥した。得られた負極合剤層をハンドプレスによって加圧した。集電材銅箔と負極合剤層を直径15.5mmの円柱状に打抜いて、銅箔(厚み16μm)と該銅箔に密着した負極合剤(厚み50μm)からなる作用電極を作製した。
(Production of working electrode)
The negative electrode mixture paste was applied to a copper foil with a uniform thickness, and the solvent N-methylpyrrolidone was volatilized at 90 ° C. in a vacuum and dried. The obtained negative electrode mixture layer was pressurized by a hand press. The current collector copper foil and the negative electrode mixture layer were punched into a cylindrical shape having a diameter of 15.5 mm, and a working electrode composed of a copper foil (thickness 16 μm) and a negative electrode mixture (thickness 50 μm) adhered to the copper foil was produced.

(対極の作製)
リチウム箔を集電材ニッケルネットに押付け、直径15.5mmの円柱状に打抜いて、ニッケルネットに密着したリチウム箔(厚み0.5μm)からなる対極を作製した。
(Production of counter electrode)
The lithium foil was pressed against the current collector nickel net and punched into a cylindrical shape with a diameter of 15.5 mm to produce a counter electrode made of lithium foil (thickness 0.5 μm) in close contact with the nickel net.

(電解液・セパレータ)
エチレンカーボネート33vol%−メチルエチルカーボネート67vol%を混合してなる混合溶媒に、LiPF6を1mol/dm(1mol/l)となる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をポリプロピレン多孔質シート(厚み20μm)に含浸させ、電解液が含浸したセパレータを作製した。
(Electrolyte / Separator)
LiPF 6 was dissolved at a concentration of 1 mol / dm 3 (1 mol / l) in a mixed solvent obtained by mixing 33 vol% of ethylene carbonate-67 vol% of methyl ethyl carbonate to prepare a nonaqueous electrolytic solution. The obtained nonaqueous electrolytic solution was impregnated into a polypropylene porous sheet (thickness: 20 μm) to produce a separator impregnated with the electrolytic solution.

(評価電池の作製)
評価電池として、図1に示すボタン型二次電池を次の手順により作製した。
集電材7bに密着した作用電極2と集電材7aに密着した対極4との間に、電解液を含浸させたセパレータ5を挟んで、積層した。その後、作用電極2の集電材7b側が外装カップ1内に、対極4の集電材7a側から外装缶3内に収容されるように、外装カップ1と外装カップ3とを合わせた。その際、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密着した。
(Production of evaluation battery)
As an evaluation battery, a button-type secondary battery shown in FIG. 1 was produced by the following procedure.
The separator 5 impregnated with an electrolytic solution was sandwiched between the working electrode 2 in close contact with the current collector 7b and the counter electrode 4 in close contact with the current collector 7a. Then, the exterior cup 1 and the exterior cup 3 were match | combined so that the collector 7b side of the working electrode 2 might be accommodated in the exterior cup 1 and the exterior can 3 from the collector 7a side of the counter electrode 4. FIG. In that case, the insulating gasket 6 was interposed in the peripheral part of the exterior cup 1 and the exterior can 3, and the both peripheral parts were crimped | contacted and adhered.

該評価電池について、温度25℃で下記のような放電試験を行い、放電容量、初期充放電効率、サイクル特性を計算した。充放電特性(放電容量、初期充放電効率およびサイクル特性)を表2に示した。
(放電容量・初期充放電効率)
0.9mAの電流値で回路電圧が0mVになるまで定電流充電を行い、回路電圧が0mV
に達した時点で定電圧充電に切換え、さらに電流値が20μAになるまで。充電を続けた。その間の通電量から充電容量を求めた。その後、120間休止した。次に、0.9mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。次式から、初期充放電効率を計算した。なお、この試験では、リチウムを黒鉛質粒子へ吸蔵する過程を充電、離脱する過程を放電とした。
初期充放電効率(%)=(第1サイクルの放電容量/第1サイクルの充電容量)
×100
The evaluation battery was subjected to the following discharge test at a temperature of 25 ° C., and the discharge capacity, initial charge / discharge efficiency, and cycle characteristics were calculated. The charge / discharge characteristics (discharge capacity, initial charge / discharge efficiency, and cycle characteristics) are shown in Table 2.
(Discharge capacity and initial charge / discharge efficiency)
Constant current charging is performed until the circuit voltage reaches 0 mV at a current value of 0.9 mA, and the circuit voltage is 0 mV.
Switch to constant voltage charging until the current value reaches 20μA. Continued charging. The charging capacity was determined from the amount of electricity applied during that time. After that, it rested for 120 hours. Next, constant current discharge was performed at a current value of 0.9 mA until the circuit voltage reached 1.5 V, and the discharge capacity was obtained from the energization amount during this period. The initial charge / discharge efficiency was calculated from the following equation. In this test, the process of occluding lithium into the graphite particles was charged and the process of detaching was defined as discharge.
Initial charge / discharge efficiency (%) = (first cycle discharge capacity / first cycle charge capacity)
× 100

(サイクル特性)
また、これらの評価試験とは別に、回路電圧が0mVに達するまで4.0mAの電流値で定電流充電を行った後、定電圧充電に切換え、電流値が20μmになるまで充電を続けた後、120min間休止した。つぎに、4.0mAの電流値で回路電圧が1.5Vに達するまで定電流放電を行った。この充放電を20サイクル繰返した。1サイクル目と20サイクル目における放電容量を求め、次式からサイクル特性を計算した。
サイクル特性(%)=(第20サイクルの放電容量/第1サイクルの放電容量)
×100
(Cycle characteristics)
In addition to these evaluation tests, after performing constant current charging at a current value of 4.0 mA until the circuit voltage reaches 0 mV, switching to constant voltage charging and continuing charging until the current value reaches 20 μm. For 120 minutes. Next, constant current discharge was performed at a current value of 4.0 mA until the circuit voltage reached 1.5V. This charging / discharging was repeated 20 cycles. The discharge capacities at the 1st and 20th cycles were determined, and the cycle characteristics were calculated from the following equation.
Cycle characteristics (%) = (discharge capacity of 20th cycle / discharge capacity of 1st cycle)
× 100

(実施例2、比較例1、2)
表1に示す黒鉛質粒子を用いた以外は、実施例1と同様にして、金属−黒鉛質粒子を製造し、実施例1と同様にしてリチウムイオン二次電池を作成し、評価を行った。結果を表1、2に示す。
(Example 2, Comparative Examples 1 and 2)
Except for using the graphite particles shown in Table 1, metal-graphite particles were produced in the same manner as in Example 1, and lithium ion secondary batteries were prepared and evaluated in the same manner as in Example 1. . The results are shown in Tables 1 and 2.

Figure 0004996830
Figure 0004996830

Figure 0004996830
Figure 0004996830

本発明の負極材料の充放電特性を評価するために使用するボタン型評価電池の構造を示す模式断面図。The schematic cross section which shows the structure of the button type evaluation battery used in order to evaluate the charging / discharging characteristic of the negative electrode material of this invention.

符号の説明Explanation of symbols

1 外装カップ
2 作用電極
3 外装缶
4 対極
5 セパレータ
6 絶縁ガスケット
7a、7b 集電材
DESCRIPTION OF SYMBOLS 1 Exterior cup 2 Working electrode 3 Exterior can 4 Counter electrode 5 Separator 6 Insulation gasket 7a, 7b Current collector

Claims (7)

リチウムと合金化可能な金属粒子、
平均粒径が2〜5μmで、アスペクト比が3以下である複数個の黒鉛質粒子、および
炭素質材料を含有し、
前記金属粒子の平均粒径が前記黒鉛質粒子の平均粒径の1/2以下であり、
前記金属粒子が前記黒鉛質粒子の表面に付着しており、
空隙率(%)の値が25〜80%であり、
前記金属粒子、前記黒鉛質粒子および前記炭素質材料の質量比が1〜20:40〜90:5〜50であり、
前記黒鉛質粒子の表面に、前記リチウムと合金化可能な金属粒子をメカノケミカル処理して付着させた後、該メカノケミカル処理物を造粒し、該造粒物に炭素質前駆体を含浸させ、600〜1300℃以上で熱処理し、前記炭素質前駆体を前記炭素質材料として調製することにより得られることを特徴とするリチウムイオン二次電池負極用金属−黒鉛質系粒子。
Metal particles that can be alloyed with lithium,
A plurality of graphite particles having an average particle diameter of 2 to 5 μm and an aspect ratio of 3 or less, and a carbonaceous material;
The average particle size of the metal particles is ½ or less of the average particle size of the graphite particles,
The metal particles are attached to the surface of the graphite particles;
The porosity (%) value is 25-80%,
The mass ratio of the metal particles, the graphite particles and the carbonaceous material is 1-20: 40-90: 5-50,
After the metal particles that can be alloyed with lithium are attached to the surface of the graphite particles by mechanochemical treatment, the mechanochemical treatment product is granulated, and the granulated product is impregnated with a carbonaceous precursor. A metal-graphitic particle for a negative electrode of a lithium ion secondary battery, obtained by heat-treating at 600 to 1300 ° C. or higher and preparing the carbonaceous precursor as the carbonaceous material .
リチウムと合金化可能な金属粒子、
平均粒径が2〜5μmで、アスペクト比が3以下である複数個の黒鉛質粒子、および
炭素質材料を含有し、
前記金属粒子の平均粒径が前記黒鉛質粒子の平均粒径の1/2以下であり、
前記金属粒子が前記黒鉛質粒子の表面に付着しており、
前記複数個の黒鉛質粒子の粒子間に空隙を有し、
空隙率(%)の値が25〜80%であり、
前記金属粒子、前記黒鉛質粒子および前記炭素質材料の質量比が1〜20:40〜90:5〜50であり、
前記炭素質材料が前記金属粒子および前記黒鉛質粒子を覆うことを特徴とするリチウムイオン二次電池負極用金属−黒鉛質系粒子。
Metal particles that can be alloyed with lithium,
A plurality of graphite particles having an average particle diameter of 2 to 5 μm and an aspect ratio of 3 or less, and a carbonaceous material;
The average particle size of the metal particles is ½ or less of the average particle size of the graphite particles,
The metal particles are attached to the surface of the graphite particles;
Having voids between the plurality of graphite particles,
The porosity (%) value is 25-80%,
Wherein the metal particles, the mass ratio of the graphite particles and the carbonaceous material is 1 to 20: 40 to 90: Ri 5-50 der,
The metal-graphitic particles for a negative electrode of a lithium ion secondary battery, wherein the carbonaceous material covers the metal particles and the graphite particles.
前記黒鉛質粒子がメソフェーズ小球体の黒鉛化物粒子である請求項1または2に記載のリチウムイオン二次電池負極用金属−黒鉛質系粒子。   The metal-graphitic particles for a lithium ion secondary battery negative electrode according to claim 1 or 2, wherein the graphite particles are graphitized particles of mesophase small spheres. 平均粒径が2〜5μmで、アスペクト比が3以下である黒鉛質粒子表面に、該黒鉛質粒子の平均粒径の1/2以下の平均粒径である、リチウムと合金化可能な金属粒子をメカノケミカル処理して付着させた後、
該メカノケミカル処理物を造粒し、
該造粒物に炭素質前駆体を含浸させ、600〜1300℃以上で熱処理し、該炭素質前駆体を炭素質材料として調製することにより、
前記金属粒子、前記黒鉛質粒子および前記炭素質材料の質量比が1〜20:40〜90:5〜50である金属−黒鉛質系粒子を製造するリチウムイオン二次電池負極用金属−黒鉛質系粒子の製造方法。
Metal particles that can be alloyed with lithium and have an average particle diameter of 1/2 or less of the average particle diameter of the graphite particles on the surface of the graphite particles having an average particle diameter of 2 to 5 μm and an aspect ratio of 3 or less After mechanochemical treatment and adhesion,
Granulating the mechanochemically treated product,
By impregnating the granulated product with a carbonaceous precursor, heat-treating at 600-1300 ° C. or higher, and preparing the carbonaceous precursor as a carbonaceous material,
Metal-graphite for a lithium ion secondary battery negative electrode for producing metal-graphitic particles having a mass ratio of the metal particles, the graphite particles and the carbonaceous material of 1 to 20:40 to 90: 5 to 50 Method for producing system particles.
請求項1〜3のいずれかに記載のリチウムイオン二次電池負極用金属−黒鉛質系粒子であるリチウムイオン二次電池用負極材料。   The negative electrode material for lithium ion secondary batteries which is a metal-graphite type particle | grain for lithium ion secondary battery negative electrodes in any one of Claims 1-3. 請求項1〜3のいずれかに記載のリチウムイオン二次電池負極用金属−黒鉛質系粒子を含むことを特徴とするリチウムイオン二次電池用負極。   A negative electrode for a lithium ion secondary battery comprising the metal-graphitic particles for a negative electrode of a lithium ion secondary battery according to any one of claims 1 to 3. 請求項6に記載のリチウムイオン二次電池用負極を用いることを特徴とするリチウムイ
オン二次電池。
A lithium ion secondary battery using the negative electrode for a lithium ion secondary battery according to claim 6.
JP2005115031A 2005-04-12 2005-04-12 Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery Active JP4996830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005115031A JP4996830B2 (en) 2005-04-12 2005-04-12 Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005115031A JP4996830B2 (en) 2005-04-12 2005-04-12 Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2006294476A JP2006294476A (en) 2006-10-26
JP4996830B2 true JP4996830B2 (en) 2012-08-08

Family

ID=37414803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115031A Active JP4996830B2 (en) 2005-04-12 2005-04-12 Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4996830B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206631A1 (en) * 2007-02-27 2008-08-28 3M Innovative Properties Company Electrolytes, electrode compositions and electrochemical cells made therefrom
US20080206641A1 (en) * 2007-02-27 2008-08-28 3M Innovative Properties Company Electrode compositions and electrodes made therefrom
JP2008277231A (en) * 2007-04-06 2008-11-13 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2008311211A (en) * 2007-05-16 2008-12-25 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP5623686B2 (en) 2007-06-01 2014-11-12 パナソニック株式会社 Composite negative electrode active material and non-aqueous electrolyte secondary battery
KR101375328B1 (en) * 2007-07-27 2014-03-19 삼성에스디아이 주식회사 Si/C composite, anode materials and lithium battery using the same
JP5473886B2 (en) * 2010-12-21 2014-04-16 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5993337B2 (en) 2012-07-03 2016-09-14 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JP5957353B2 (en) * 2012-10-01 2016-07-27 昭和電工株式会社 Method for producing composite material, and composite material
JP6274390B2 (en) * 2012-10-24 2018-02-07 東海カーボン株式会社 Method for producing graphite powder for negative electrode material of lithium secondary battery
WO2015162848A1 (en) * 2014-04-21 2015-10-29 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery, process for producing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6401117B2 (en) * 2014-06-25 2018-10-03 Jfeケミカル株式会社 Method for producing negative electrode material for lithium ion secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259475A (en) * 2003-02-24 2004-09-16 Osaka Gas Co Ltd Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same

Also Published As

Publication number Publication date
JP2006294476A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4809617B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4996830B2 (en) Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5348878B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP3995050B2 (en) Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
TWI528620B (en) Negative electrode material for lithium-ion secondary battery and method of producing the same, negative electrode for lithium-ion secondary battery using negative electrode material for lithium-ion secondary battery, and lithium-ion secondary battery
JP6240586B2 (en) Graphite particles for negative electrode material of lithium ion secondary battery, negative electrode of lithium ion secondary battery and lithium ion secondary battery
KR101661050B1 (en) Composite graphite material, method for producing same, negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP5941437B2 (en) Composite particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4927384B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6316466B2 (en) Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2005031898A1 (en) Composite particle and, utilizing the same, negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP6285350B2 (en) Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery
JP4839180B2 (en) Carbon powder and manufacturing method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4672958B2 (en) Graphite particles, lithium ion secondary battery, negative electrode material therefor and negative electrode
JP5394721B2 (en) Lithium ion secondary battery, negative electrode material and negative electrode therefor
JP6278870B2 (en) Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same
JP2006252779A (en) Anode material for lithium-ion secondary battery, its manufacturing method, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP4050072B2 (en) Method for producing graphitic particles and negative electrode material for lithium ion secondary battery
JP4996827B2 (en) Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5156195B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4870419B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP6322525B2 (en) Method for producing carbon-coated graphite particles
JP7189109B2 (en) Method for producing carbonaceous-coated graphite particles
JP6085259B2 (en) Method for producing carbon-coated graphite particles for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4996830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150