JP2004259475A - Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same - Google Patents

Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same Download PDF

Info

Publication number
JP2004259475A
JP2004259475A JP2003045986A JP2003045986A JP2004259475A JP 2004259475 A JP2004259475 A JP 2004259475A JP 2003045986 A JP2003045986 A JP 2003045986A JP 2003045986 A JP2003045986 A JP 2003045986A JP 2004259475 A JP2004259475 A JP 2004259475A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium secondary
electrode material
silicon particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003045986A
Other languages
Japanese (ja)
Inventor
Akihiro Mabuchi
昭弘 馬淵
Hiroyuki Fujimoto
宏之 藤本
Chinnasamy Natarajan
ナタラジャン・チンナサミィ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003045986A priority Critical patent/JP2004259475A/en
Publication of JP2004259475A publication Critical patent/JP2004259475A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery negative electrode and its manufacturing method with excellent charge/discharge capacity and a cycle property, and to provide a lithium secondary battery using the same. <P>SOLUTION: The negative electrode material is obtained by covering the surface of silicon particles with a coating layer (especially, with a plurality of coating layers) made of a non-graphite carbon material. A peak strength ratio of silicon to carbonthe negative electrode material against carbon at an X-ray photoelectron analysis may be in a level of 0 to 0.2. The negative electrode material can be obtained by repeating a cycle at least twice consisting of a coating process of covering the surface of the silicon particles by a carbon precursor, and a sintering process of sintering the covered substance. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、サイクル特性に優れたリチウム二次電池用負極材とその製造方法、前記負極材を用いたリチウム二次電池用負極及びリチウム二次電池に関する。
【0002】
【従来の技術】
電子機器の小型化、薄型化、軽量化が進む中で、電子機器の電源用の電池として、また電子機器のバックアップ用電池として、高エネルギー密度で充電でき、高効率で放電できるリチウム二次電池が注目を集めている。また、リチウムは、環境に与える影響が少なく、安全性が高いことから、リチウム二次電池は、電気自動車の動力源として、さらに分散型の電力貯蔵用電池としての開発も行われている。
【0003】
従来の典型的なリチウム二次電池は、負極活物質として炭素質又は黒鉛質材料を用い、電池の充電時にはリチウムをイオン状態で前記炭素質又は黒鉛質材料中に吸蔵(インターカレーション)し、放電時にはイオンとして放出(デインターカレーション)させるという“ロッキングチェアー型”の電池構成を採用している。しかし、この電池構成では、炭素材に対するリチウムイオンの挿入量を高めることは困難であり、二次電池としての充放電容量を高めることができないという問題がある。例えば、負極活物質として黒鉛を用いる場合、黒鉛層間化合物(組成:LiC)の理論充放電容量は、372Ah/kgである。しかし、この負極の充放電容量は、リチウム金属単体の理論充放電容量(3860Ah/kg)の1/10程度以下と低くなるだけでなく、充放電の繰り返し(充放電サイクル)に伴って黒鉛結晶構造が劣化(例えば、黒鉛層間距離の増大など)し、充放電容量が低下する。
【0004】
一方、電池を装着する電子機器側からは、充放電容量をより一層向上させるとともに、従来の炭素負極と同等以上のサイクル性能を維持することができるリチウム二次電池用負極材が要求されている。
【0005】
特開平11−97014号公報には、メソフェーズピッチに気相合成法で得られたシリコン粒子を分散し、炭素で覆われたシリコン微粒子からなるリチウム二次電池用負極材が提案されている。この負極材を用いたリチウム二次電池は、シリコンの大きな充放電容量と黒鉛の優れたサイクル特性を兼ね備えさせるものである。しかし、シリコンは電気容量が大きいため、充放電サイクルごとに熱履歴を受け、炭素で覆われていたシリコン微粒子が負極材の表面に露出(析出)し、シリコンが粉化し、負電極から脱離しやすくなる。脱離したシリコンは電子導電性がなくなるため、負極の電気容量の低下やサイクル特性の劣化を招く。また、シリコン粒子と炭素前駆体との混合物を高温(例えば、2000℃)で焼成して製造すると、不活性な炭化ケイ素(SiC)を生成するため、負極材に吸蔵できるリチウムイオンの量が減少し、充放電容量が低下しやすい。従って、この負極材では実用化に耐えるリチウム二次電池を作製できないという問題があった。
【0006】
【発明が解決しようとする課題】
従って、本発明の目的は、シリコン粒子を含むにも拘わらず、充放電容量が高く、サイクル特性が改善されたリチウム二次電池用負極材及びその製造方法、それを用いたリチウム二次電池用負極およびリチウム二次電池を提供することにある。
【0007】
本発明の他の目的は、前記特性を有するリチウム二次電池用負極材を製造する方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、前記課題を解決するため鋭意研究を重ねた結果、シリコン粒子の表面が露出せず、非黒鉛質炭素材で被覆された負極材を調製すると、充放電容量が高く、サイクル特性を改善できることを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明のリチウム二次電池用負極材は、シリコン粒子と炭素前駆体とで構成されており、シリコン粒子の表面に、非黒鉛質炭素材で構成された被覆層が形成されている。前記被覆層は、複数の層(例えば、2〜10層程度の被覆層)で形成されていてもよく、また、負極材のX線光電子分析(ESCA)において炭素に対するケイ素のピーク強度比が0〜0.2であってもよい。前記シリコン粒子と非黒鉛質炭素材の割合は、前者/後者(重量比)=1/99〜95/5(例えば、5/95〜85/15)程度であってもよい。また、本発明の負極材は、さらに黒鉛粒子を含んでいてもよい。シリコン粒子と、黒鉛粒子及び非黒鉛質炭素材の総量との割合(重量比)は、前者/後者=0.1/99.9〜95/5程度であってもよい。
【0010】
本発明は、シリコン粒子の表面を炭素前駆体で被覆する被覆工程と、この被覆工程で得られた被覆物を焼成する焼成工程とで構成されたサイクルを経てリチウム二次電池用負極材を製造する方法であって、前記サイクルを少なくとも2回繰り返す製造方法を包含する。この方法において、焼成温度は800〜1200℃程度であってもよい。
【0011】
本発明では、リチウム二次電池の充放電容量だけでなく、サイクル特性を改善できる。そのため、本発明は、シリコン粒子の表面が非黒鉛質炭素材で被覆されたリチウム二次電池用負極材を用いることにより、リチウム二次電池のサイクル特性を改善する方法も含む。
【0012】
さらに本発明は、シリコン粒子の表面が非黒鉛質炭素材で被覆されたリチウム二次電池用負極材を用いることにより、リチウム二次電池のサイクル特性を改善する方法も含む。前記リチウム二次電池用負極材及び結着剤で構成された組成物が、負極集電体表面に塗着又は圧着されているリチウム二次電池用負極、及びこの負極を備えているリチウム二次電池も包含する。
【0013】
【発明の実施の形態】
本発明のリチウム二次電池用負極材は、シリコン粒子と炭素前駆体とで構成されており、シリコン粒子の表面が露出することなく、シリコン粒子の表面に非黒鉛質炭素材で構成された被覆層が形成されている。
【0014】
シリコン粒子の種類は、特に限定されず、リチウム二次電池の充放電容量を増大可能な焼成物(ケイ素化合物など)を生成すればよく、例えば、シリコン単体(Si)、酸化シリコン(SiO、SiO)、ケイ化物(窒化ケイ素、ホウ化ケイ素、TiSi、ZrSi、VSi、CrSi、MoSi、WSi、CoSiなど)などが例示できる。これらのシリコン粒子は、単独で又は二種以上組み合わせて使用できる。好ましいシリコン粒子は、シリコン単体や酸化ケイ素、特にシリコン単体である。シリコン粒子は結晶(単結晶、多結晶を含む)であってもよく、非晶質(アモルファス)であってもよい。
【0015】
シリコン粒子の平均粒径は、例えば、0.01μm(10nm)〜10μm、好ましくは0.01〜5μm、さらに好ましくは0.01〜2μm(例えば、0.05〜1μm)程度である。
【0016】
なお、上記シリコン粒子は、化学合成法により調製してもよく、粗大シリコン粒子(例えば、10〜100μm程度のシリコン)を粉砕することにより得ることもできる。粉砕は、慣用の方法、例えば、ボールミル、ハンマーミルなどの慣用の粉砕機又は微粉砕化手段が利用できる。
【0017】
非黒鉛質炭素材で構成された被覆層を形成するための炭素前駆体は、炭素化(炭化)可能な材料であれば特に制限されず、例えば、樹脂類(フェノール樹脂、フラン樹脂、アクリロニトリル系樹脂など)、瀝青質物質(タール、ピッチなど)などが例示できる。瀝青質物質は石油又は石炭に由来してもよく、等方性又は異方性(例えば、等方性ピッチ、異方性ピッチなど)であってもよい。また、炭素前駆体の軽質分は予め除去されていてもよい。これらの炭素前駆体は、単独で又は二種以上組み合わせて使用できる。これらの炭素前駆体のうち、通常、ピッチ、タールが使用される。
【0018】
被覆層は、シリコン粒子表面の露出を防止できる限り、単層構造であってもよいが、通常、シリコン粒子の表面には複数の被覆層が形成されている。被覆層は、通常、2以上(例えば、2〜10)、好ましくは2〜5、さらに好ましくは2〜4(例えば、2)程度の非黒鉛質炭素材層で構成できる。複数の被覆層を形成すると、シリコン粒子の被覆層からの脱離を防止でき、充放電容量を低下させることなく、サイクル特性を維持又は向上できる。
【0019】
シリコン粒子と非黒鉛質炭素材との割合は、シリコン粒子の表面が露出することなく、シリコン粒子の表面に非黒鉛質炭素材で構成された被覆層が形成される限り特に限定されず、シリコン粒子と非黒鉛質炭素材との割合は、例えば、前者/後者(重量比)=1/99〜95/5(例えば、50/50〜95/5)、好ましくは1/99〜90/10(例えば、55/45〜90/10)、さらに好ましくは5/95〜85/15(例えば、70/30〜85/15)程度であり、70/30〜90/10程度であってもよい。非黒鉛質炭素材の割合が小さすぎると、非黒鉛質炭素材でシリコン粒子の表面を被覆できなくなり、リチウム二次電池のサイクル特性の低下を招く可能性があり、非黒鉛質炭素材の割合が大きすぎると、シリコン粒子の割合が相対的に低下し、充放電容量を向上できない。
【0020】
非黒鉛質炭素材によるシリコン粒子表面の被覆状態は負極材の表面分析で評価できる。例えば、本発明は、負極材をX線光電子分析(ESCA)に供すると、炭素に対するケイ素のピーク強度比が小さいという特色がある。X線光電子分析(ESCA)において、炭素に対するケイ素のピーク強度比は、例えば、0〜0.3、好ましくは0〜0.2、さらに好ましくは0〜0.18(例えば、0〜0.15)程度であり、通常、0〜0.1程度である。上記ピーク強度比は表面及びその近傍(約5nm程度の深さ)で成分割合の指標となり、前記ピーク強度比が小さくなる程、シリコン表面が炭素材で被覆されていることを示す。
【0021】
本発明の負極材は、シリコン粒子及び炭素前駆体に加えて、必要に応じて、黒鉛粒子を含んでいてもよい。黒鉛粒子としては、メソフェーズ小球体の黒鉛化物を含め、人造黒鉛及び天然黒鉛が使用できる。これらの黒鉛は単独で又は二種以上組み合わせて使用できる。黒鉛の結晶構造はリチウムイオンの授受が可能である限り特に限定されず、例えば、面間隔d(002)は、0.3354〜0.34nm、好ましくは0.3354〜0.337nm程度である。c軸方向の長さLcは、30〜200nm、好ましくは50〜150nm程度である。a軸方向の長さLaは、50〜300nm、好ましくは70〜200nm程度である。
【0022】
黒鉛粒子の形態は特に制限されず、不定形状、平板状(又は扁平状)、薄片状、粉粒状などであってもよい。黒鉛粒子の平均粒子径は特に制限されず、例えば、0.1〜100μm程度の広い範囲から選択でき、通常0.1〜40μm、好ましくは0.1〜20μm程度であってもよく、0.1〜10μm(例えば、0.5〜10μm)程度であってもよい。
【0023】
黒鉛粒子の比表面積は、例えば、0.5〜30m/g、好ましくは0.8〜10m/g、さらに好ましくは0.8〜5m/gであり、嵩密度は、例えば、0.1〜1.5g/ml、好ましくは0.8〜1.5g/ml、さらに好ましくは1〜1.5g/ml程度である。
【0024】
なお、シリコン粒子と黒鉛粒子の割合は、前者/後者(重量比)=100/0〜0.5/99.5、好ましくは100/0〜1/99程度の範囲から選択でき、シリコン粒子の割合が大きくなるにつれて充放電容量が大きくなる。
【0025】
シリコン粒子と、黒鉛粒子及び非黒鉛質炭素材の総量(炭素質材の量)の割合は、通常、前者/後者(重量比)=0.1/99.9〜95/5(例えば、0.1/99.9〜90/10)、好ましくは0.5/99.5〜90/10(例えば、0.5/99.5〜85/15)、さらに好ましくは1/99〜85/15(例えば、1/99〜80/20)程度であり、5/95〜75/25(例えば、10/90〜70/30)程度であってもよい。シリコン粒子の割合が小さすぎると、充放電容量が低下し、シリコン粒子の割合が大きすぎると、シリコン粒子表面に非黒鉛質炭素材を担持して十分に被覆できなくなる。
【0026】
本発明の負極材は、シリコン粒子の表面を炭素前駆体で被覆する被覆工程と、この被覆工程で得られた被覆物を焼成する焼成工程とで構成されたサイクルを経ることにより製造できる。特に、前記サイクルを少なくとも2回繰り返すことにより製造される。
【0027】
被覆工程では、シリコン粒子の表面を炭素前駆体で被覆できれば特に限定されず、負極材を構成する各成分(シリコン粒子と炭素前駆体と必要により黒鉛粒子)を混合(攪拌)して被覆してもよく、炭素前駆体にシリコン粒子を浸漬して被覆してもよく、コーティングによりシリコン粒子の表面を炭素前駆体で被覆又は表面処理してもよい。
【0028】
前記混合(攪拌)や浸漬には、慣用の混合機や容器を用いて行うことができる。前記粉砕機で粗大シリコン粒子を粉砕する場合には、この粉砕機内で各成分(シリコン粒子、炭素前駆体および必要により黒鉛粒子)を混合してもよく、必要であれば、各成分を粉砕しながら混合してもよい。さらに、必要により溶媒(例えば、アルコール類、炭化水素類、エステル類、ケトン類、エーテル類など)を用い、混合又は浸漬してもよい。前記コーティング又は表面処理方法としては、例えば、粉粒体(例えば、シリコン粒子および必要により黒鉛粒子)の流動層に炭素前駆体(又はその溶液)を噴霧して粒子表面に炭素前駆体を付着又は被覆する流動層コーティング、転動流動コーティングなどの慣用の方法を用いてもよい。なお、黒鉛粒子を用いる場合、シリコン粒子と別に炭素前駆体で被覆してもよいが、通常、シリコン粒子とともに炭素前駆体で被覆される。被覆工程は、必要に応じて、非加熱下、又は加熱下(例えば、50〜200℃程度の温度)で行ってもよく、常圧、減圧下又は加圧下で行ってもよい。
【0029】
また、被覆工程でシリコン粒子(又はシリコン粒子と黒鉛粒子)の表面を炭素前駆体で被覆した後、必要に応じて、精製工程に供してもよい。精製により、シリコン粒子の表面に非黒鉛質炭素材で構成された被覆層を強固に形成できるとともに均質で緻密な被覆層を形成できる。精製工程では、過剰の炭素前駆体を除去可能な種々の方法、例えば、遠心分離、溶媒による洗浄、溶媒による抽出、濾過、これらの組合せなどの方法で行うことができる。溶媒としては、前記と同様の溶媒(特に、炭素前駆体を可溶化可能な溶媒)を使用できる。例えば、各成分(例えば、シリコン粒子、黒鉛粒子、炭素前駆体、溶媒など)を均一に混合(攪拌)した後、必要に応じて加温又は加熱下、炭化水素類などの溶媒で洗浄し、乾燥し、過剰な炭素前駆体を除去してもよい。
【0030】
被覆物を焼成工程で焼成し、シリコン粒子の表面に非黒鉛質炭素材を生成させる。焼成温度は、炭素前駆体から非黒鉛質炭素を生成できれば、特に限定されず、700〜1200℃(例えば、800〜1200℃)程度の範囲から選択でき、通常、900〜1200℃、好ましくは900〜1150℃、さらに好ましくは950〜1150℃(例えば、1000〜1100℃)程度である。焼成時間は、例えば、15分〜10時間、好ましくは30分〜5時間、さらに好ましくは30分〜3時間(例えば、1〜3時間)程度であってもよい。焼成は、通常、不活性雰囲気(例えば、窒素、ヘリウム、アルゴンなど)中、真空中などで行うことができる。
【0031】
また、必要により、この焼結体の粒度を調整してもよく、例えば、慣用の粉砕機で粉砕後、篩い分けをしてもよい。このようにして得られた焼結体は、通常、シリコン粒子の表面が非黒鉛質炭素材で被覆されている。
【0032】
本発明では、この焼結体に対して、炭素前駆体で被覆する被覆工程と、この被覆工程で得られた被覆物を焼成する焼成工程とで構成されたサイクルが少なくとも1回繰り返される。すなわち、本発明では、被覆工程と焼成工程とで構成されたサイクルが全体として少なくとも2回繰り返される。このサイクルの繰り返し数は少なくとも2回(例えば、2〜10回)、好ましくは2〜5回、さらに好ましくは2〜4回(例えば、2〜3回)程度であり、前記焼結体の表面にさらに非黒鉛質炭素材で構成された被覆層が形成される。このようなサイクルにより、表面が非黒鉛質炭素材で完全に被覆されていないシリコン粒子であっても、シリコン粒子の表面を非黒鉛質炭素材で完全に被覆された焼成物(負極材)が得られる。そのため、充放電サイクルを繰り返してもシリコン粒子の表面が露出することなく、充放電容量及びサイクル特性が向上する。
【0033】
前記サイクルの被覆工程、精製工程および焼成工程は、前記被覆工程、精製工程および焼成工程と同様にして行うことができる。なお、各サイクルにおいて、精製工程は必ずしも必要ではないが、各サイクルで精製工程を経て焼成してもよく、一部のサイクルで精製工程を経ることなく焼成してもよい。
【0034】
炭素前駆体の使用量(又は被覆量)は、炭素前駆体の種類に応じて、残炭率(焼成により残存する炭素成分の割合)を考慮して選択できる。シリコン粒子と炭素前駆体の被覆総量との割合は、例えば、前者/後者(重量比)=0.1/99.9〜95/5(例えば、40/60〜95/5)、好ましくは0.5/99.5〜90/10(例えば、45/55〜90/10)、さらに好ましくは1/99〜85/15(例えば、55/45〜80/20)程度であり、60/40〜75/25程度であってもよい。黒鉛粒子を用いる場合には、シリコン粒子と黒鉛粒子の総量と炭素前駆体の被覆量の割合は、例えば、前者/後者(重量比)=0.1/99.9〜95/5(例えば、40/60〜95/5)、好ましくは0.5/99.5〜90/10(例えば、45/55〜90/10)、さらに好ましくは1/99〜85/15(例えば、55/45〜80/20)程度であり、60/40〜75/25程度であってもよい。また、シリコン粒子と、炭素前駆体の被覆量と黒鉛粒子との総量の割合は、例えば、前者/後者(重量比)=0.1/99.9〜95/5(例えば、0.1/99.9〜90/10)、好ましくは0.5/99.5〜90/10(例えば、0.5/99.5〜80/20)、さらに好ましくは1/99〜85/15(例えば、1/99〜70/30)程度であり、5/95〜60/40(例えば、10/90〜70/30)程度であってもよい。
【0035】
また、炭素前駆体の使用量(被覆量)は各サイクルで同一であってもよく異なっていてもよい。例えば、被覆方法(例えば、混合、噴霧、溶媒の使用の有無など)や被覆条件(温度や圧力など)を調整することにより、サイクルを繰り返すごとに、先行するサイクルよりも後続するサイクルでの炭素前駆体の被覆量を減少させてもよく増大させてもよい。すなわち、被覆層において被覆量の異なる複数の被覆層で構成してもよい。先行するサイクルでの被覆量と後続するサイクルでの被覆量の割合は、例えば、前者/後者(重量比)=10/90〜90/10程度の範囲で選択してもよく、通常、20/80〜80/20、好ましくは30/70〜70/30程度であってもよい。
【0036】
さらに、焼成条件(例えば、温度、時間など)は、各サイクルで同一であってもよく異なっていてもよい。例えば、先行するサイクルよりも後続するサイクルでの焼成を高温で行ってもよく、低温で行ってもよく、焼成時間を長くしてもよく短くしてもよい。すなわち、被覆層において炭素化度の異なる複数の被覆層で構成してもよい。先行するサイクルでの焼成温度と後続するサイクルでの焼成温度との差は、例えば、0〜500℃程度の範囲で選択してもよく、通常、0〜300℃、好ましくは0〜200℃、さらに好ましくは0〜100℃程度であってもよい。また、先行するサイクルでの焼成時間と後続するサイクルでの焼成時間との差は、例えば、0〜9時間程度の範囲から選択でき、通常、0〜5時間、好ましくは0〜3時間(例えば、0〜1時間)程度であってもよい。
【0037】
このようにして得られた焼成物は、シリコン粒子の表面が完全に非黒鉛質炭素材で被覆されているため、この焼成物を用いると、充放電容量が高く、サイクル特性に優れた負極材が得られる。
【0038】
前記焼成物は、そのまま負極材として使用してもよく、通常、粉砕、解砕などにより、粉粒体(粉粒状炭素材)として使用される。粉粒状炭素材の平均粒径は、通常、1〜40μm、好ましくは1〜20μm、さらに好ましくは5〜15μm程度であってもよい。粉粒状炭素材のアスペクト比(粒子の短径に対する長径の比)は、1〜10、好ましくは1〜6(例えば、1〜3)程度である。
【0039】
このような焼成物(負極材)は、シリコン粒子表面が前記被覆層で被覆された構造を有しており、炭素質(炭素質マトリックス)中に、シリコン粒子が分散又は点在した分散構造を有していてもよく、不活性な炭化ケイ素を生成することなく、シリコン粒子と炭素質マトリックスとが複合化している。そのため、リチウム二次電池用負極材の充放電容量及びサイクル特性を改善できる。すなわち、炭素質マトリックスとシリコン粒子との複合化により、炭素質だけを使用した負極材に比べて充放電容量を向上できるとともに、シリコン粒子の表面が非黒鉛質炭素で被覆されているため、充放電を繰り返しても、シリコン粒子が負極材の表面に露出するのを抑制でき、サイクル特性を改善することができる。
【0040】
本発明の負極材は、常法により、リチウム二次電池用負極の構成材料として使用できる。例えば、負極材、結着剤などを含む組成物(混合物)を成形する方法;負極材、有機溶媒、結着剤などを含むペーストを負極集電体に塗布手段(ドクターブレードなど)を用いて塗着又は圧着する方法などにより、任意の形状のリチウム二次電池用負極とすることができる。負極の形成においては、必要に応じて、端子と組み合わせてもよい。
【0041】
負極集電体は、特に制限されず、公知の集電体、例えば、銅などの導電体(導電芯体)を使用することができる。有機溶媒としては、通常、結着剤を溶解又は分解可能な溶媒が使用され、例えば、N−メチルピロリドン、N,N−ジメチルホルムアミドなどの有機溶媒を例示することができる。有機溶媒の使用量は、ペースト状となる限り特に制限されず、例えば、負極材100重量部に対して、通常、60〜150重量部程度、好ましくは60〜100重量部程度である。
【0042】
結着剤としては、例えば、フッ素含有樹脂(ポリフッ化ビニリデン、ポリテトラフルオロエチレンなど)、スチレンブタジエンゴムなどが例示できる。結着剤の使用量(分散液の場合には、固形分換算の使用量)は、特に限定されず、その下限値は、負極材100重量部に対して、通常、3重量部以上程度、好ましくは5重量部以上程度である。結着剤の使用量の上限は、負極材100重量部に対して、通常、20重量部以下(例えば、15重量部以下)、好ましくは10重量部以下程度である。より具体的には、結着剤の使用量は、固形分換算で、例えば、負極材100重量部に対して、3〜20重量部、好ましくは5〜15重量部(例えば、5〜10重量部)程度である。ペーストの調製方法は、特に制限されず、例えば、結着剤と有機溶媒との混合液(又は分散液)と負極材とを混合する方法などを例示することができる。
【0043】
なお、本発明の方法で得られた負極材と導電材(又は炭素質材料、導電性炭素材)とを併用して、負極を製造してもよい。導電材の使用割合は特に制限されないが、本発明の方法により得られた負極材と導電材の総量に対して、通常、1〜10重量%程度、好ましくは1〜5重量%程度である。導電材を併用することにより、電極としての導電性を向上させることができる。このような導電材として、例えば、天然黒鉛、人造黒鉛、カーボンブラック(例えば、アセチレンブラック、サーマルブラック、ファーネスブラック)などが例示できる。導電材(又は炭素質材料、導電性炭素材)は、単独で又は2種以上組み合わせて使用できる。なお、導電材は、例えば、負極材と溶媒とを含むペーストに混合し、このペーストを負極集電体に塗布する方法などにより、負極材とともに有効に利用できる。
【0044】
前記ペーストの負極集電体への塗布量は特に制限されず、通常、5〜15mg/cm程度、好ましくは7〜13mg/cm程度である。なお、塗布後、負極集電体には、乾燥処理(例えば、真空乾燥など)を施してもよい。
【0045】
本発明の負極材で構成されたリチウム二次電池用負極を用いることにより、放電容量が大きく、サイクル特性が優れたリチウム二次電池を製造できる。なお、リチウム二次電池は、前記負極(前記負極材を含む負極)、リチウムを吸蔵・放出可能な正極と、非水電解質とで構成でき、上記負極、正極、電解質、セパレータなどを用いて、常法によりリチウム二次電池を製造することができる。
【0046】
正極は、特に制限されず、公知の正極が使用でき、正極は、例えば、正極集電体、正極活物質、導電剤などで構成できる。正極集電体として、例えば、アルミニウムなどを例示することができる。正極活物質として、例えば、リチウム複合酸化物(LiCoO、LiNiO、LiMn、LiMnO、LiCo0.33Ni0.33Mn0.33など)などを例示できる。導電剤として、例えば、天然黒鉛、人造黒鉛、導電性カーボンブラック(アセチレンブラックなど)などを例示できる。
【0047】
電解液は、特に制限されず、公知のものを用いることができる。例えば、電解液として、有機溶媒に電解質を溶解させた溶液を用いることにより、非水系リチウム二次電池を製造することができる。電解質としては、例えば、LiPF、LiClO、LiBF、LiClF、LiAsF、LiSbF、LiAlO、LiAlCl、LiN(CFSO、LiN(CSO、LiC(CFSO、LiCl、LiIなどの溶媒和しにくいアニオンを生成するリチウム塩を例示することができる。有機溶媒としては、例えば、カーボネート類(プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネートなど)、ラクトン類(γ−ブチロラクトンなど)、鎖状エーテル類(1,2−ジメトキシエタン、ジメチルエーテル、ジエチルエーテルなど)、環状エーテル類(テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、4−メチルジオキソランなど)、スルホラン類(スルホランなど)、スルホキシド類(ジメチルスルホキシドなど)、ニトリル類(アセトニトリル、プロピオニトリル、ベンゾニトリルなど)、アミド類(N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなど)、ポリオキシアルキレングリコール類(ジエチレングリコールなど)などの非プロトン性溶媒を例示することができる。有機溶媒は、単独で用いてもよく二種以上の混合溶媒として用いてもよい。
【0048】
電解質濃度は、例えば、電解液1Lに対して、電解質0.3〜5モル、好ましくは0.5〜3モル、さらに好ましくは0.8〜1.5モル程度である。
【0049】
セパレータは、特に制限されず公知のセパレータ、例えば、多孔質ポリプロピレン製不織布、多孔質ポリエチレン製不織布などのポリオレフィン系の多孔質膜などが例示できる。
【0050】
リチウム二次電池は、本発明の負極材を含む負極、正極および電解液の他に、例えば、通常当該分野において使用されるガスケット、封口板、ケースなどをさらに備えていてもよい。
【0051】
リチウム二次電池の形状は、円筒型、角型、ボタン型など任意の形態とすることができる。本発明のリチウム二次電池は、分散型、可搬性電池として、電子機器、電気機器、自動車、電力貯蔵などの電源や補助電源として利用できる。
【0052】
【発明の効果】
本発明では、シリコン粒子の表面に、非黒鉛質炭素材で構成された被覆層が形成されているため、リチウム二次電池用負極材の充放電容量を高めつつ、サイクル特性を向上できる。また、被覆工程及び焼成工程の繰り返しという簡便な方法により、前記のような特性を有する負極材を得ることができる。
【0053】
【実施例】
以下に、実施例及び比較例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0054】
実施例1
[負極材の調製]
シリコン粒子(アルドリッチ製)を、遊星式ボールミルにより、200rpm、5時間の条件で粉砕し、平均粒子径約1μmの微粉末を得た。この粉砕物1gと平均粒子径約7μmの人造黒鉛(Timcal AG製「SFG−15」)99gとを混合した。500mlセパラブルフラスコにこの混合物100gを入れ、次いで予め一次QI(キノリン不溶分)を除去した軟化点80℃のコールタールピッチ(キノリン不溶分トレース、トルエン不溶分30%)200gを投入し、200℃、常圧で2時間攪拌混合し、被覆物(粗製)を得た。得られた被覆物(粗製)1重量部にトルエン1重量部を加え、80℃で1時間攪拌しながら洗浄し、濾過して、乾燥し、精製被覆物を得た。この精製被覆物を、窒素雰囲気中、1100℃で1時間焼成し、焼結体(A)を得た。この焼結体(A)100gに対して、上記コールタールピッチを200g加え、上記と同様にして混合、洗浄、濾過、乾燥、焼成を行って焼成物(B)を得て、解砕して負極材を得た。なお、焼成による炭素前駆体の残炭率は、約60重量%であった。
【0055】
[負極材のX線光電子分析(ESCA)]
得られた負極材のX線光電子分析を行い、炭素に対するケイ素のピーク強度比を求めた。
【0056】
[負極体の作製]
得られた負極材92重量部と、結着剤(ポリフッ化ビニリデン)8重量部とを、適量のN−メチルピロリドンに溶解させ攪拌した後、スラリー状のペーストを得た。得られたペーストを、電解銅箔上にドクターブレードを用いて8mg/cmの塗布量で塗布し、110℃で30分間乾燥させ、ロールプレス機によりプレスして電極とした。さらに、この電極の塗布部を円形(サイズ:1cm)に打ち抜いて、200℃で6時間の真空乾燥を行い、負極体を作製した。
【0057】
[リチウム二次電池の作製]
前記負極体、対極として金属リチウム、電解液として過塩素酸リチウムを1モル/Lの濃度で溶解させた混合溶媒[エチレンカーボネート/ジエチレンカーボネート(体積比)=1/1]、およびセパレータとしてポリプロピレン不織布を用い、リチウム二次電池(二極式密閉セル)を作製した。
【0058】
[電極特性の評価]
対極(リチウム極)に対し、0.3Cに相当する電流で0Vまで充電した。放電はリチウム極に対して0.3Cに相当する電流で2.0Vまで行い、初期(初回)放電容量を測定した。放電容量は、カット電圧が1.3Vの時の容量とした。また、この充放電サイクルを10回繰り返し、充放電容量に対する10サイクル目の放電容量の比率を、容量維持率(%)として算出した。
【0059】
実施例2〜5
シリコン粒子と黒鉛粒子とを表1に示す割合で用いる以外は、実施例1と同様にして負極材及びリチウム二次電池を作製し、前記特性を評価した。
【0060】
比較例1
得られた焼結体(A)をそのまま解砕して負極材として用いる以外は、実施例1と同様にして、負極材及びリチウム二次電池を作製し、前記特性を評価した。
【0061】
比較例2〜5
シリコン粒子と黒鉛粒子とを表1に示す割合で用い、かつ、得られた焼結体(A)をそのまま解砕して負極材として用いる以外は、実施例1と同様にして、負極材及びリチウム二次電池を作製し、前記特性を評価した。
【0062】
実施例及び比較例で得られた負極材及びリチウム二次電池の特性を表2に示す。なお、表1には、最終焼成体におけるシリコン粒子(Si)と、黒鉛粒子及び非黒鉛質炭素材の総量との割合も併せて記載した。
【0063】
【表1】

Figure 2004259475
【0064】
【表2】
Figure 2004259475
【0065】
表2に示す結果から明らかなように、実施例の負極材を用いると、充放電容量が大きく、サイクル特性に優れたリチウム二次電池を得ることができる。特に、シリコン粒子の割合(重量比)が高く、初期放電容量が大きいリチウム二次電池でも、サイクル特性を低下させることなく、充放電容量の大きなリチウム二次電池を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative electrode material for a lithium secondary battery having excellent cycle characteristics, a method for producing the same, a negative electrode for a lithium secondary battery using the negative electrode material, and a lithium secondary battery.
[0002]
[Prior art]
As electronic devices become smaller, thinner and lighter, lithium secondary batteries can be charged at a high energy density and discharged with high efficiency as batteries for power supplies of electronic devices and as backup batteries for electronic devices. Is attracting attention. In addition, since lithium has little effect on the environment and high safety, lithium secondary batteries are being developed as power sources for electric vehicles and as distributed power storage batteries.
[0003]
Conventional typical lithium secondary batteries use a carbonaceous or graphitic material as a negative electrode active material, and occlude (intercalate) lithium in an ionic state into the carbonaceous or graphite material during charging of the battery. It adopts a "rocking chair type" battery configuration in which ions are released (deintercalated) during discharge. However, in this battery configuration, it is difficult to increase the amount of lithium ions inserted into the carbon material, and there is a problem that the charge / discharge capacity of the secondary battery cannot be increased. For example, when graphite is used as the negative electrode active material, a graphite interlayer compound (composition: LiC 6 ) Has a theoretical charge / discharge capacity of 372 Ah / kg. However, the charge / discharge capacity of this negative electrode is not only lower than about 1/10 of the theoretical charge / discharge capacity of lithium metal alone (3860 Ah / kg), but also the graphite crystal is charged with repeated charge / discharge (charge / discharge cycle). The structure is deteriorated (for example, the distance between graphite layers is increased), and the charge / discharge capacity is reduced.
[0004]
On the other hand, from the side of the electronic device on which the battery is mounted, there is a demand for a negative electrode material for a lithium secondary battery that can further improve the charge / discharge capacity and maintain a cycle performance equal to or higher than that of a conventional carbon negative electrode. .
[0005]
Japanese Patent Application Laid-Open No. H11-97014 proposes a negative electrode material for a lithium secondary battery in which silicon particles obtained by a gas phase synthesis method are dispersed in a mesophase pitch and silicon particles are covered with carbon. A lithium secondary battery using this negative electrode material has both large charge / discharge capacity of silicon and excellent cycle characteristics of graphite. However, since silicon has a large electric capacity, it receives a thermal history every charge and discharge cycle, and silicon particles covered with carbon are exposed (precipitated) on the surface of the negative electrode material, and silicon is powdered and detached from the negative electrode. It will be easier. Since the desorbed silicon loses electron conductivity, it causes a decrease in the electric capacity of the negative electrode and a deterioration in cycle characteristics. In addition, if a mixture of silicon particles and a carbon precursor is manufactured by firing at a high temperature (for example, 2000 ° C.), inert silicon carbide (SiC) is generated, so that the amount of lithium ions that can be occluded in the negative electrode material decreases. In addition, the charge / discharge capacity tends to decrease. Therefore, there has been a problem that a lithium secondary battery that can withstand practical use cannot be manufactured using this negative electrode material.
[0006]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a negative electrode material for a lithium secondary battery having high charge / discharge capacity and improved cycle characteristics despite containing silicon particles, a method for producing the same, and a lithium secondary battery using the same. An object of the present invention is to provide a negative electrode and a lithium secondary battery.
[0007]
Another object of the present invention is to provide a method for producing a negative electrode material for a lithium secondary battery having the above characteristics.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, when preparing a negative electrode material coated with a non-graphitic carbon material without exposing the surface of the silicon particles, the charge and discharge capacity was high, and the cycle was high. The inventors have found that the characteristics can be improved, and have completed the present invention.
[0009]
That is, the negative electrode material for a lithium secondary battery of the present invention is composed of silicon particles and a carbon precursor, and a coating layer composed of a non-graphitic carbon material is formed on the surface of the silicon particles. The coating layer may be formed of a plurality of layers (for example, about 2 to 10 coating layers), and the peak intensity ratio of silicon to carbon is 0 in X-ray photoelectron analysis (ESCA) of the negative electrode material. ~ 0.2. The ratio between the silicon particles and the non-graphitic carbon material may be about the former / the latter (weight ratio) = 1/99 to 95/5 (for example, 5/95 to 85/15). Further, the negative electrode material of the present invention may further contain graphite particles. The ratio (weight ratio) between the silicon particles and the total amount of the graphite particles and the non-graphitic carbon material may be about 0.1 / 99.9 to about 95/5.
[0010]
The present invention manufactures a negative electrode material for a lithium secondary battery through a cycle including a coating step of coating the surface of silicon particles with a carbon precursor and a firing step of firing the coating obtained in the coating step. And a manufacturing method in which the cycle is repeated at least twice. In this method, the firing temperature may be about 800-1200 ° C.
[0011]
According to the present invention, not only the charge / discharge capacity of the lithium secondary battery but also the cycle characteristics can be improved. Therefore, the present invention also includes a method for improving the cycle characteristics of a lithium secondary battery by using a negative electrode material for a lithium secondary battery in which the surface of silicon particles is coated with a non-graphitic carbon material.
[0012]
Furthermore, the present invention includes a method for improving the cycle characteristics of a lithium secondary battery by using a negative electrode material for a lithium secondary battery in which the surface of silicon particles is coated with a non-graphitic carbon material. A composition comprising the negative electrode material for a lithium secondary battery and a binder is applied or pressed on the surface of a negative electrode current collector, and a negative electrode for a lithium secondary battery including the negative electrode. Also includes batteries.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The negative electrode material for a lithium secondary battery of the present invention is composed of silicon particles and a carbon precursor, without exposing the surface of the silicon particles, and coating the surface of the silicon particles with a non-graphitic carbon material. A layer is formed.
[0014]
The type of the silicon particles is not particularly limited as long as a fired product (silicon compound or the like) capable of increasing the charge / discharge capacity of the lithium secondary battery can be generated. For example, simple silicon (Si), silicon oxide (SiO, SiO 2 ), Silicides (silicon nitride, silicon boride, TiSi 2 , ZrSi 2 , VSi 2 , CrSi 2 , MoSi 2 , WSi 2 , CoSi, etc.). These silicon particles can be used alone or in combination of two or more. Preferred silicon particles are simple silicon or silicon oxide, particularly simple silicon. The silicon particles may be crystalline (including single crystal and polycrystal) or may be amorphous.
[0015]
The average particle size of the silicon particles is, for example, about 0.01 μm (10 nm) to 10 μm, preferably about 0.01 to 5 μm, and more preferably about 0.01 to 2 μm (for example, about 0.05 to 1 μm).
[0016]
The silicon particles may be prepared by a chemical synthesis method, or may be obtained by crushing coarse silicon particles (for example, silicon having a size of about 10 to 100 μm). For the pulverization, a conventional method, for example, a conventional pulverizer such as a ball mill or a hammer mill or a pulverizing means can be used.
[0017]
The carbon precursor for forming the coating layer composed of the non-graphitic carbon material is not particularly limited as long as it is a material that can be carbonized (carbonized), and examples thereof include resins (phenol resin, furan resin, acrylonitrile-based resin). Resin, etc.) and bituminous substances (tar, pitch, etc.). The bituminous material may be derived from petroleum or coal and may be isotropic or anisotropic (eg, isotropic pitch, anisotropic pitch, etc.). Further, the light components of the carbon precursor may be removed in advance. These carbon precursors can be used alone or in combination of two or more. Of these carbon precursors, pitch and tar are usually used.
[0018]
The coating layer may have a single-layer structure as long as exposure of the silicon particle surface can be prevented, but usually, a plurality of coating layers are formed on the surface of the silicon particle. The coating layer can be generally composed of about 2 or more (for example, 2 to 10), preferably about 2 to 5, and more preferably about 2 to 4 (for example, 2) non-graphitic carbon material layers. When a plurality of coating layers are formed, desorption of silicon particles from the coating layer can be prevented, and cycle characteristics can be maintained or improved without lowering the charge / discharge capacity.
[0019]
The ratio between the silicon particles and the non-graphitic carbon material is not particularly limited as long as the surface of the silicon particles is not exposed and a coating layer composed of the non-graphitic carbon material is formed on the surface of the silicon particles. The ratio of the particles to the non-graphitic carbon material is, for example, the former / the latter (weight ratio) = 1/99 to 95/5 (for example, 50/50 to 95/5), preferably 1/99 to 90/10. (For example, 55/45 to 90/10), more preferably about 5/95 to 85/15 (for example, 70/30 to 85/15), and may be about 70/30 to 90/10. . If the ratio of the non-graphitic carbon material is too small, the surface of the silicon particles cannot be coated with the non-graphitic carbon material, which may cause a decrease in the cycle characteristics of the lithium secondary battery. Is too large, the proportion of silicon particles relatively decreases, and the charge / discharge capacity cannot be improved.
[0020]
The coating state of the silicon particle surface with the non-graphitic carbon material can be evaluated by surface analysis of the negative electrode material. For example, the present invention has a feature that when the negative electrode material is subjected to X-ray photoelectron analysis (ESCA), the peak intensity ratio of silicon to carbon is small. In X-ray photoelectron analysis (ESCA), the peak intensity ratio of silicon to carbon is, for example, 0 to 0.3, preferably 0 to 0.2, and more preferably 0 to 0.18 (for example, 0 to 0.15). ), Usually about 0 to 0.1. The peak intensity ratio is an index of the component ratio at the surface and in the vicinity thereof (at a depth of about 5 nm), and the smaller the peak intensity ratio, the more the silicon surface is covered with the carbon material.
[0021]
The negative electrode material of the present invention may contain graphite particles, if necessary, in addition to the silicon particles and the carbon precursor. As the graphite particles, artificial graphite and natural graphite can be used, including graphitized mesophase spheres. These graphites can be used alone or in combination of two or more. The crystal structure of graphite is not particularly limited as long as lithium ions can be transferred. For example, the interplanar spacing d (002) is about 0.3354 to 0.34 nm, preferably about 0.3354 to 0.337 nm. The length Lc in the c-axis direction is 30 to 200 nm, preferably about 50 to 150 nm. The length La in the a-axis direction is about 50 to 300 nm, preferably about 70 to 200 nm.
[0022]
The form of the graphite particles is not particularly limited, and may be irregular, flat (or flat), flaky, granular, or the like. The average particle size of the graphite particles is not particularly limited and can be selected, for example, from a wide range of about 0.1 to 100 μm, and may be generally 0.1 to 40 μm, preferably about 0.1 to 20 μm. It may be about 1 to 10 μm (for example, 0.5 to 10 μm).
[0023]
The specific surface area of the graphite particles is, for example, 0.5 to 30 m. 2 / G, preferably 0.8 to 10 m 2 / G, more preferably 0.8 to 5 m 2 / G, and the bulk density is, for example, about 0.1 to 1.5 g / ml, preferably about 0.8 to 1.5 g / ml, and more preferably about 1 to 1.5 g / ml.
[0024]
The ratio of the silicon particles to the graphite particles can be selected from the range of former / latter (weight ratio) = 100/0 to 0.5 / 99.5, preferably about 100/0 to 1/99. As the ratio increases, the charge / discharge capacity increases.
[0025]
The ratio of silicon particles to the total amount of graphite particles and non-graphitic carbon material (the amount of carbonaceous material) is usually the former / the latter (weight ratio) = 0.1 / 99.9 to 95/5 (for example, 0%). .1 / 99.9 to 90/10), preferably 0.5 / 99.5 to 90/10 (for example, 0.5 / 99.5 to 85/15), more preferably 1/99 to 85 /. 15 (for example, about 1/99 to 80/20), and may be about 5/95 to 75/25 (for example, 10/90 to 70/30). If the ratio of the silicon particles is too small, the charge / discharge capacity decreases, and if the ratio of the silicon particles is too large, the surface of the silicon particles carries a non-graphitic carbon material and cannot be sufficiently coated.
[0026]
The negative electrode material of the present invention can be manufactured through a cycle composed of a coating step of coating the surface of silicon particles with a carbon precursor and a firing step of firing the coating obtained in the coating step. In particular, it is produced by repeating the cycle at least twice.
[0027]
In the coating step, there is no particular limitation as long as the surface of the silicon particles can be coated with the carbon precursor, and the components (the silicon particles, the carbon precursor and, if necessary, the graphite particles) constituting the negative electrode material are mixed (stirred) and coated. Alternatively, the carbon particles may be coated by immersing silicon particles in the carbon precursor, or the surface of the silicon particles may be coated or surface-treated with the carbon precursor by coating.
[0028]
The mixing (stirring) and immersion can be performed using a conventional mixer or container. When the coarse silicon particles are pulverized by the pulverizer, the respective components (silicon particles, carbon precursor and, if necessary, graphite particles) may be mixed in the pulverizer. You may mix while mixing. Further, if necessary, a solvent (eg, alcohols, hydrocarbons, esters, ketones, ethers, etc.) may be used for mixing or immersion. As the coating or surface treatment method, for example, a carbon precursor (or a solution thereof) is sprayed on a fluidized bed of powders (eg, silicon particles and, if necessary, graphite particles) to adhere the carbon precursor to the particle surface or Conventional methods such as fluidized bed coating and tumbling fluidized coating may be used. When graphite particles are used, they may be coated with a carbon precursor separately from the silicon particles, but are usually coated with the carbon precursor together with the silicon particles. The coating step may be performed under non-heating or under heating (for example, at a temperature of about 50 to 200 ° C.) as necessary, or may be performed under normal pressure, reduced pressure, or increased pressure.
[0029]
After the surface of the silicon particles (or the silicon particles and the graphite particles) is coated with the carbon precursor in the coating step, it may be subjected to a purification step, if necessary. By the purification, a coating layer composed of a non-graphitic carbon material can be firmly formed on the surface of the silicon particles, and a uniform and dense coating layer can be formed. The purification step can be performed by various methods capable of removing the excess carbon precursor, for example, centrifugation, washing with a solvent, extraction with a solvent, filtration, or a combination thereof. As the solvent, the same solvent as described above (particularly, a solvent capable of solubilizing the carbon precursor) can be used. For example, after each component (for example, silicon particles, graphite particles, a carbon precursor, a solvent, etc.) is uniformly mixed (stirred), if necessary, with heating or heating, washing with a solvent such as hydrocarbons, It may be dried to remove excess carbon precursor.
[0030]
The coating is fired in a firing step to produce a non-graphitic carbon material on the surface of the silicon particles. The firing temperature is not particularly limited as long as non-graphitic carbon can be generated from the carbon precursor, and can be selected from a range of about 700 to 1200 ° C (for example, 800 to 1200 ° C), and usually 900 to 1200 ° C, preferably 900 to 1200 ° C. To 1150 ° C, more preferably about 950 to 1150 ° C (for example, 1000 to 1100 ° C). The firing time may be, for example, about 15 minutes to 10 hours, preferably about 30 minutes to 5 hours, and more preferably about 30 minutes to 3 hours (for example, about 1 to 3 hours). The firing can be usually performed in an inert atmosphere (for example, nitrogen, helium, argon, or the like), in a vacuum, or the like.
[0031]
If necessary, the particle size of the sintered body may be adjusted. For example, the sintered body may be pulverized by a conventional pulverizer and then sieved. In the sintered body thus obtained, the surface of silicon particles is usually coated with a non-graphitic carbon material.
[0032]
In the present invention, a cycle including a coating step of coating the sintered body with the carbon precursor and a firing step of firing the coating obtained in the coating step is repeated at least once. That is, in the present invention, the cycle composed of the coating step and the firing step is repeated at least twice as a whole. The number of repetitions of this cycle is at least twice (for example, 2 to 10 times), preferably about 2 to 5 times, and more preferably about 2 to 4 times (for example, 2 to 3 times). Further, a coating layer made of a non-graphitic carbon material is formed. With such a cycle, even if the surface of the silicon particles is not completely covered with the non-graphitic carbon material, the fired product (negative electrode material) in which the surface of the silicon particles is completely covered with the non-graphitic carbon material is obtained. can get. Therefore, even if the charge / discharge cycle is repeated, the surface of the silicon particles is not exposed, and the charge / discharge capacity and cycle characteristics are improved.
[0033]
The coating step, the purification step, and the firing step in the cycle can be performed in the same manner as the coating step, the purification step, and the firing step. In each cycle, a purification step is not always necessary, but firing may be performed after the purification step in each cycle, or firing may be performed in some cycles without passing through the purification step.
[0034]
The use amount (or coating amount) of the carbon precursor can be selected in consideration of the residual carbon ratio (the ratio of the carbon component remaining after firing) according to the type of the carbon precursor. The ratio between the silicon particles and the total coating amount of the carbon precursor is, for example, the former / the latter (weight ratio) = 0.1 / 99.9 to 95/5 (for example, 40/60 to 95/5), preferably 0. 0.5 / 99.5 to 90/10 (for example, 45/55 to 90/10), more preferably about 1/99 to 85/15 (for example, 55/45 to 80/20), and 60/40. It may be about 75/25. When graphite particles are used, the ratio of the total amount of silicon particles and graphite particles to the coating amount of the carbon precursor is, for example, the former / the latter (weight ratio) = 0.1 / 99.9 to 95/5 (for example, 40/60 to 95/5), preferably 0.5 / 99.5 to 90/10 (for example, 45/55 to 90/10), and more preferably 1/99 to 85/15 (for example, 55/45). 8080/20), and may be about 60/40 to 75/25. The ratio of the silicon particles, the coating amount of the carbon precursor and the total amount of the graphite particles is, for example, the former / the latter (weight ratio) = 0.1 / 99.9 to 95/5 (for example, 0.1 / 99.9 to 90/10), preferably 0.5 / 99.5 to 90/10 (for example, 0.5 / 99.5 to 80/20), and more preferably 1/99 to 85/15 (for example, , About 1/99 to 70/30), and may be about 5/95 to 60/40 (for example, 10/90 to 70/30).
[0035]
Further, the usage amount (coating amount) of the carbon precursor may be the same or different in each cycle. For example, by adjusting the coating method (eg, mixing, spraying, use of solvent, etc.) and coating conditions (temperature, pressure, etc.), each time a cycle is repeated, Precursor coverage may be reduced or increased. That is, the coating layer may be composed of a plurality of coating layers having different coating amounts. The ratio between the coating amount in the preceding cycle and the coating amount in the subsequent cycle may be selected, for example, in the range of about former / latter (weight ratio) = 10/90 to 90/10, and is usually 20/90. It may be about 80 to 80/20, preferably about 30/70 to 70/30.
[0036]
Further, firing conditions (for example, temperature, time, etc.) may be the same or different in each cycle. For example, firing in a cycle subsequent to the preceding cycle may be performed at a high temperature, may be performed at a low temperature, and the firing time may be longer or shorter. That is, the coating layer may be composed of a plurality of coating layers having different degrees of carbonization. The difference between the firing temperature in the preceding cycle and the firing temperature in the subsequent cycle may be selected, for example, in the range of about 0 to 500 ° C, usually 0 to 300 ° C, preferably 0 to 200 ° C, More preferably, it may be about 0 to 100 ° C. The difference between the firing time in the preceding cycle and the firing time in the subsequent cycle can be selected, for example, from a range of about 0 to 9 hours, and is usually 0 to 5 hours, preferably 0 to 3 hours (for example, , 0 to 1 hour).
[0037]
Since the surface of the silicon particles is completely covered with the non-graphitic carbon material in the fired material thus obtained, a negative electrode material having a high charge / discharge capacity and excellent cycle characteristics can be obtained by using this fired material. Is obtained.
[0038]
The fired product may be used as it is as a negative electrode material, and is usually used as a powder (pulverized carbon material) by pulverization, crushing, or the like. The average particle size of the powdery carbon material may be generally 1 to 40 μm, preferably 1 to 20 μm, and more preferably about 5 to 15 μm. The aspect ratio (the ratio of the major axis to the minor axis of the particles) of the particulate carbon material is about 1 to 10, preferably about 1 to 6 (for example, 1 to 3).
[0039]
Such a fired product (negative electrode material) has a structure in which the surface of silicon particles is covered with the coating layer, and has a dispersed structure in which silicon particles are dispersed or interspersed in carbonaceous material (carbonaceous matrix). The silicon particles and the carbonaceous matrix are complexed without generating inert silicon carbide. Therefore, the charge / discharge capacity and cycle characteristics of the negative electrode material for a lithium secondary battery can be improved. In other words, by combining the carbonaceous matrix with the silicon particles, the charge / discharge capacity can be improved as compared with the negative electrode material using only carbonaceous material, and the surface of the silicon particles is coated with non-graphitic carbon. Even if discharge is repeated, exposure of silicon particles to the surface of the negative electrode material can be suppressed, and cycle characteristics can be improved.
[0040]
The negative electrode material of the present invention can be used as a constituent material of a negative electrode for a lithium secondary battery by an ordinary method. For example, a method of molding a composition (mixture) containing a negative electrode material, a binder, and the like; a method of applying a paste containing the negative electrode material, an organic solvent, a binder, and the like to a negative electrode current collector by using a means (eg, a doctor blade). A negative electrode for a lithium secondary battery having an arbitrary shape can be obtained by a method such as coating or pressure bonding. In forming the negative electrode, the negative electrode may be combined with a terminal as necessary.
[0041]
The negative electrode current collector is not particularly limited, and a known current collector, for example, a conductor (conductive core) such as copper can be used. As the organic solvent, a solvent capable of dissolving or decomposing the binder is usually used, and examples thereof include organic solvents such as N-methylpyrrolidone and N, N-dimethylformamide. The amount of the organic solvent used is not particularly limited as long as it becomes a paste. For example, it is generally about 60 to 150 parts by weight, preferably about 60 to 100 parts by weight, based on 100 parts by weight of the negative electrode material.
[0042]
Examples of the binder include a fluorine-containing resin (such as polyvinylidene fluoride and polytetrafluoroethylene) and styrene-butadiene rubber. The amount of the binder used (in the case of a dispersion, the amount used in terms of solid content) is not particularly limited, and its lower limit is usually about 3 parts by weight or more based on 100 parts by weight of the negative electrode material. It is preferably about 5 parts by weight or more. The upper limit of the amount of the binder used is usually 20 parts by weight or less (for example, 15 parts by weight or less), and preferably about 10 parts by weight or less based on 100 parts by weight of the negative electrode material. More specifically, the amount of the binder used is, for example, 3 to 20 parts by weight, preferably 5 to 15 parts by weight (for example, 5 to 10 parts by weight) based on 100 parts by weight of the negative electrode material in terms of solid content. Part) degree. The method for preparing the paste is not particularly limited, and examples thereof include a method of mixing a mixture (or dispersion) of a binder and an organic solvent with a negative electrode material.
[0043]
Note that a negative electrode may be manufactured using the negative electrode material obtained by the method of the present invention and a conductive material (or a carbonaceous material or a conductive carbon material) in combination. Although the use ratio of the conductive material is not particularly limited, it is generally about 1 to 10% by weight, preferably about 1 to 5% by weight, based on the total amount of the negative electrode material and the conductive material obtained by the method of the present invention. By using a conductive material together, the conductivity as an electrode can be improved. Examples of such a conductive material include natural graphite, artificial graphite, and carbon black (for example, acetylene black, thermal black, and furnace black). The conductive material (or carbonaceous material, conductive carbon material) can be used alone or in combination of two or more. The conductive material can be effectively used together with the negative electrode material by, for example, mixing a paste containing the negative electrode material and a solvent and applying the paste to the negative electrode current collector.
[0044]
The amount of the paste applied to the negative electrode current collector is not particularly limited, and is usually 5 to 15 mg / cm. 2 Degree, preferably 7 to 13 mg / cm 2 It is about. After the application, the negative electrode current collector may be subjected to a drying treatment (for example, vacuum drying).
[0045]
By using the negative electrode for a lithium secondary battery composed of the negative electrode material of the present invention, a lithium secondary battery having a large discharge capacity and excellent cycle characteristics can be manufactured. Note that a lithium secondary battery can be composed of the negative electrode (a negative electrode containing the negative electrode material), a positive electrode capable of occluding and releasing lithium, and a nonaqueous electrolyte, and using the negative electrode, the positive electrode, an electrolyte, a separator, and the like, A lithium secondary battery can be manufactured by an ordinary method.
[0046]
The positive electrode is not particularly limited, and a known positive electrode can be used. The positive electrode can be composed of, for example, a positive electrode current collector, a positive electrode active material, a conductive agent, and the like. Examples of the positive electrode current collector include aluminum and the like. As the positive electrode active material, for example, a lithium composite oxide (LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiCo 0.33 Ni 0.33 Mn 0.33 O 2 Etc.) can be exemplified. Examples of the conductive agent include natural graphite, artificial graphite, and conductive carbon black (such as acetylene black).
[0047]
The electrolyte is not particularly limited, and a known electrolyte can be used. For example, a non-aqueous lithium secondary battery can be manufactured by using a solution in which an electrolyte is dissolved in an organic solvent as an electrolyte. As the electrolyte, for example, LiPF 6 , LiClO 4 , LiBF 4 , LiClF 4 , LiAsF 6 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiCl, LiI, and other lithium salts that produce anions that are difficult to solvate. Examples of the organic solvent include carbonates (propylene carbonate, ethylene carbonate, diethyl carbonate, etc.), lactones (γ-butyrolactone, etc.), chain ethers (1,2-dimethoxyethane, dimethyl ether, diethyl ether, etc.), cyclic Ethers (tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, 4-methyldioxolan, etc.), sulfolane (sulfolane, etc.), sulfoxides (dimethylsulfoxide, etc.), nitriles (acetonitrile, propionitrile, benzonitrile, etc.), amides Examples of aprotic solvents such as (N, N-dimethylformamide, N, N-dimethylacetamide) and polyoxyalkylene glycols (such as diethylene glycol). Kill. The organic solvent may be used alone or as a mixed solvent of two or more.
[0048]
The electrolyte concentration is, for example, about 0.3 to 5 mol, preferably about 0.5 to 3 mol, and more preferably about 0.8 to 1.5 mol per 1 L of the electrolytic solution.
[0049]
The separator is not particularly limited, and may be a known separator, for example, a polyolefin-based porous membrane such as a porous polypropylene nonwoven fabric and a porous polyethylene nonwoven fabric.
[0050]
The lithium secondary battery may further include, for example, a gasket, a sealing plate, a case, and the like generally used in the art, in addition to the negative electrode, the positive electrode, and the electrolyte including the negative electrode material of the present invention.
[0051]
The shape of the lithium secondary battery can be any shape such as a cylindrical shape, a square shape, and a button shape. INDUSTRIAL APPLICABILITY The lithium secondary battery of the present invention can be used as a dispersed or portable battery as a power source or an auxiliary power source for electronic devices, electric devices, automobiles, power storage, and the like.
[0052]
【The invention's effect】
In the present invention, since the coating layer composed of the non-graphitic carbon material is formed on the surface of the silicon particles, the cycle characteristics can be improved while increasing the charge / discharge capacity of the negative electrode material for a lithium secondary battery. In addition, a negative electrode material having the above characteristics can be obtained by a simple method of repeating the coating step and the firing step.
[0053]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0054]
Example 1
[Preparation of negative electrode material]
Silicon particles (manufactured by Aldrich) were pulverized by a planetary ball mill at 200 rpm for 5 hours to obtain fine powder having an average particle diameter of about 1 μm. 1 g of this pulverized material and 99 g of artificial graphite (“SFG-15” manufactured by Timcal AG) having an average particle diameter of about 7 μm were mixed. 100 g of this mixture is put into a 500 ml separable flask, and then 200 g of coal tar pitch (quinoline insoluble trace, toluene insoluble 30%) having a softening point of 80 ° C. from which primary QI (quinoline insolubles) has been removed in advance is added. The mixture was stirred and mixed at normal pressure for 2 hours to obtain a coating (crude). 1 part by weight of toluene was added to 1 part by weight of the obtained coating (crude), washed with stirring at 80 ° C. for 1 hour, filtered and dried to obtain a purified coating. The purified coating was fired at 1100 ° C. for 1 hour in a nitrogen atmosphere to obtain a sintered body (A). 200 g of the coal tar pitch was added to 100 g of the sintered body (A), and the mixture was mixed, washed, filtered, dried and fired in the same manner as above to obtain a fired product (B), which was then crushed. A negative electrode material was obtained. The residual carbon ratio of the carbon precursor after firing was about 60% by weight.
[0055]
[X-ray photoelectron analysis of negative electrode material (ESCA)]
X-ray photoelectron analysis of the obtained negative electrode material was performed to determine a peak intensity ratio of silicon to carbon.
[0056]
[Production of negative electrode body]
After 92 parts by weight of the obtained negative electrode material and 8 parts by weight of a binder (polyvinylidene fluoride) were dissolved in an appropriate amount of N-methylpyrrolidone and stirred, a slurry paste was obtained. The obtained paste was coated on an electrolytic copper foil with a doctor blade at 8 mg / cm. 2 , Dried at 110 ° C. for 30 minutes, and pressed by a roll press to form an electrode. Further, the coated portion of this electrode is circular (size: 1 cm 2 ), And vacuum-dried at 200 ° C. for 6 hours to produce a negative electrode body.
[0057]
[Production of lithium secondary battery]
The negative electrode body, a metal lithium as a counter electrode, a mixed solvent in which lithium perchlorate is dissolved at a concentration of 1 mol / L [ethylene carbonate / diethylene carbonate (volume ratio) = 1/1] as an electrolytic solution, and a polypropylene nonwoven fabric as a separator Was used to produce a lithium secondary battery (bipolar closed cell).
[0058]
[Evaluation of electrode characteristics]
The counter electrode (lithium electrode) was charged to 0 V at a current corresponding to 0.3 C. Discharge was performed up to 2.0 V at a current corresponding to 0.3 C with respect to the lithium electrode, and the initial (initial) discharge capacity was measured. The discharge capacity was a capacity when the cut voltage was 1.3 V. This charge / discharge cycle was repeated 10 times, and the ratio of the discharge capacity at the 10th cycle to the charge / discharge capacity was calculated as a capacity retention ratio (%).
[0059]
Examples 2 to 5
A negative electrode material and a lithium secondary battery were prepared in the same manner as in Example 1 except that silicon particles and graphite particles were used in the proportions shown in Table 1, and the characteristics were evaluated.
[0060]
Comparative Example 1
A negative electrode material and a lithium secondary battery were prepared in the same manner as in Example 1 except that the obtained sintered body (A) was crushed as it was and used as a negative electrode material, and the above characteristics were evaluated.
[0061]
Comparative Examples 2 to 5
Except that silicon particles and graphite particles were used in the proportions shown in Table 1, and the obtained sintered body (A) was crushed as it was and used as a negative electrode material, a negative electrode material and a A lithium secondary battery was manufactured and the above characteristics were evaluated.
[0062]
Table 2 shows the characteristics of the negative electrode materials and lithium secondary batteries obtained in the examples and comparative examples. Table 1 also shows the ratio of the silicon particles (Si) in the final fired body to the total amount of the graphite particles and the non-graphitic carbon material.
[0063]
[Table 1]
Figure 2004259475
[0064]
[Table 2]
Figure 2004259475
[0065]
As is clear from the results shown in Table 2, the use of the negative electrode materials of Examples enables a lithium secondary battery having a large charge / discharge capacity and excellent cycle characteristics to be obtained. In particular, even with a lithium secondary battery having a high silicon particle ratio (weight ratio) and a large initial discharge capacity, a lithium secondary battery having a large charge / discharge capacity can be obtained without lowering the cycle characteristics.

Claims (12)

シリコン粒子と炭素前駆体とで構成されたリチウム二次電池用負極材であって、前記シリコン粒子の表面に非黒鉛質炭素材で構成された被覆層が形成されているリチウム二次電池用負極材。A negative electrode material for a lithium secondary battery composed of silicon particles and a carbon precursor, wherein the coating layer composed of a non-graphitic carbon material is formed on the surface of the silicon particles. Wood. シリコン粒子の表面に、非黒鉛質炭素材で構成された複数の被覆層が形成されている請求項1記載の負極材。The negative electrode material according to claim 1, wherein a plurality of coating layers made of a non-graphitic carbon material are formed on the surface of the silicon particles. X線光電子分析(ESCA)において炭素に対するケイ素のピーク強度比が0〜0.2である請求項1記載の負極材。The negative electrode material according to claim 1, wherein a peak intensity ratio of silicon to carbon in X-ray photoelectron analysis (ESCA) is 0 to 0.2. シリコン粒子と非黒鉛質炭素材との割合(重量比)が、シリコン粒子/非黒鉛質炭素材=1/99〜95/5である請求項1記載の負極材。The negative electrode material according to claim 1, wherein the ratio (weight ratio) of the silicon particles to the non-graphitic carbon material is silicon particles / non-graphitic carbon material = 1/99 to 95/5. シリコン粒子の表面が2〜10層の被覆層で被覆されており、シリコン粒子と非黒鉛質炭素材の割合(重量比)が、シリコン粒子/非黒鉛質炭素材=1/99〜95/5である請求項1記載の負極材。The surface of the silicon particles is covered with 2 to 10 coating layers, and the ratio (weight ratio) of the silicon particles to the non-graphitic carbon material is silicon particle / non-graphitic carbon material = 1/99 to 95/5. The negative electrode material according to claim 1, which is: さらに、黒鉛粒子を含む請求項1記載の負極材。The negative electrode material according to claim 1, further comprising graphite particles. シリコン粒子と、黒鉛粒子及び非黒鉛質炭素材の総量との割合(重量比)が、前者/後者=0.1/99.9〜95/5である請求項6記載の負極材。The negative electrode material according to claim 6, wherein the ratio (weight ratio) of the silicon particles to the total amount of the graphite particles and the non-graphitic carbon material is 0.1 / 99.9 to 95/5. シリコン粒子の表面を炭素前駆体で被覆する被覆工程と、この被覆工程で得られた被覆物を焼成する焼成工程とで構成されたサイクルを経てリチウム二次電池用負極材を製造する方法であって、前記サイクルを少なくとも2回繰り返す製造方法。A method for producing a negative electrode material for a lithium secondary battery through a cycle consisting of a coating step of coating the surface of silicon particles with a carbon precursor and a firing step of firing the coating obtained in the coating step. And repeating the cycle at least twice. 焼成温度が800〜1200℃の範囲である請求項8の製造方法。The method according to claim 8, wherein the firing temperature is in a range of 800 to 1200C. シリコン粒子の表面が非黒鉛質炭素材で被覆されたリチウム二次電池用負極材を用いることにより、リチウム二次電池のサイクル特性を改善する方法。A method for improving the cycle characteristics of a lithium secondary battery by using a negative electrode material for a lithium secondary battery in which the surface of silicon particles is coated with a non-graphitic carbon material. 請求項1記載のリチウム二次電池用負極材及び結着剤で構成された組成物が、負極集電体表面に塗着又は圧着されているリチウム二次電池用負極。A negative electrode for a lithium secondary battery, wherein the composition comprising the negative electrode material for a lithium secondary battery according to claim 1 and a binder is applied or pressed on the surface of the negative electrode current collector. 請求項11記載のリチウム二次電池用負極を備えているリチウム二次電池。A lithium secondary battery comprising the negative electrode for a lithium secondary battery according to claim 11.
JP2003045986A 2003-02-24 2003-02-24 Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same Pending JP2004259475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003045986A JP2004259475A (en) 2003-02-24 2003-02-24 Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003045986A JP2004259475A (en) 2003-02-24 2003-02-24 Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2004259475A true JP2004259475A (en) 2004-09-16

Family

ID=33112654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045986A Pending JP2004259475A (en) 2003-02-24 2003-02-24 Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2004259475A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294476A (en) * 2005-04-12 2006-10-26 Jfe Chemical Corp Metal-graphite based particle, its manufacturing method, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2007165061A (en) * 2004-12-10 2007-06-28 Canon Inc Electrode structure for lithium secondary battery and secondary battery having such electrode structure
JP2007164996A (en) * 2005-12-09 2007-06-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
KR100738054B1 (en) 2004-12-18 2007-07-12 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
US20070264574A1 (en) * 2006-05-09 2007-11-15 Kim Han-Su Negative active material including metal nanocrystal composite, method of preparing the same, and anode and lithium battery including the negative active material
JP2008235247A (en) * 2007-02-21 2008-10-02 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery and its manufacturing method, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery
JP2009181767A (en) * 2008-01-30 2009-08-13 Tokai Carbon Co Ltd Composite carbon material for negative electrode material of lithium secondary battery and its manufacturing method
JP2010501970A (en) * 2006-08-22 2010-01-21 ビーティーアール・ニュー・エナジー・マテリアルズ・インク Silicon / carbon composite cathode material for lithium ion battery and method for producing the same
WO2010074243A1 (en) 2008-12-26 2010-07-01 積水化学工業株式会社 Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
US7780758B2 (en) 2006-05-08 2010-08-24 Samsung Sdi Co., Ltd. Method of preparing metal nanocrystal
JP2011057541A (en) * 2009-08-11 2011-03-24 Sekisui Chem Co Ltd Carbon material, electrode material, and negative-electrode material for lithium-ion secondary battery
EP2503627A2 (en) * 2009-11-18 2012-09-26 LG Chem, Ltd. Cathode mixture for lithium secondary battery and lithium secondary battery using same
JP2013191529A (en) * 2012-02-16 2013-09-26 Hitachi Chemical Co Ltd Composite material, method for manufacturing composite material, electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US8778541B2 (en) 2009-04-28 2014-07-15 Denso Corporation Negative electrode for nonaqueous electrolyte solution battery and nonaqueous electrolyte solution battery having the same
US8852802B2 (en) 2007-10-31 2014-10-07 Sony Corporation Anode active material, anode, and battery
JP2015213085A (en) * 2011-08-19 2015-11-26 株式会社半導体エネルギー研究所 Secondary battery
JP2016021393A (en) * 2014-07-11 2016-02-04 オーシーアイ カンパニー リミテッドOCI Company Ltd. Negative electrode active material for secondary batteries, and method for manufacturing the same
KR101607232B1 (en) * 2009-04-09 2016-03-29 삼성전자주식회사 Process for preparing anode active composite material
KR20160126017A (en) 2014-04-16 2016-11-01 쇼와 덴코 가부시키가이샤 Negative electrode material for lithium-ion battery, and use therefor
KR20170078203A (en) 2015-12-29 2017-07-07 한국과학기술연구원 Silicon type active material for lithium secondary battery and manufacturing method therof
JP2017168406A (en) * 2016-03-18 2017-09-21 信越化学工業株式会社 Methods for manufacturing nonaqueous electrolyte secondary battery negative electrode active material, negative electrode, and battery
KR20170121160A (en) * 2014-12-23 2017-11-01 유미코아 Composite powder for use in an anode of a lithium ion battery, method for producing the composite powder, and method for analyzing the composite powder
JPWO2016208314A1 (en) * 2015-06-22 2018-04-05 株式会社日立製作所 Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery
DE102016221782A1 (en) 2016-11-07 2018-05-09 Wacker Chemie Ag Carbon coated silicon particles for lithium ion batteries
WO2019031597A1 (en) 2017-08-10 2019-02-14 昭和電工株式会社 Lithium ion secondary battery negative electrode material and lithium ion secondary battery
JP2020129556A (en) * 2015-11-06 2020-08-27 国立大学法人 新潟大学 Method for manufacturing nonaqueous electrolyte secondary battery negative electrode
WO2021185435A1 (en) 2020-03-18 2021-09-23 Wacker Chemie Ag Method for producing carbon-coated silicon particles
WO2022002404A1 (en) 2020-07-02 2022-01-06 Wacker Chemie Ag Method for producing carbon-coated silicon particles for lithium-ion batteries
JP2022522704A (en) * 2019-11-04 2022-04-20 コリア メタル シリコン カンパニー, リミテッド Method for manufacturing silicon complex
WO2023008866A1 (en) * 2021-07-28 2023-02-02 주식회사 그랩실 Multi-layered anode active material, method for manufacturing same, and lithium secondary battery comprising same
JP7451615B2 (en) 2014-12-23 2024-03-18 ユミコア powders, electrodes and batteries containing such powders

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321226A (en) * 1997-05-21 1998-12-04 Asahi Chem Ind Co Ltd Secondary battery
JP2000215887A (en) * 1999-01-26 2000-08-04 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, lithium secondary battery and charging method for lithium secondary battery
JP2000268824A (en) * 1999-01-14 2000-09-29 Hitachi Ltd Lithium battery and its manufacture
JP2001160392A (en) * 1999-12-01 2001-06-12 Kao Corp Nonaqueous secondary battery
JP2002216751A (en) * 2000-11-14 2002-08-02 Mitsui Mining Co Ltd Composite material for lithium secondary battery negative electrode and lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321226A (en) * 1997-05-21 1998-12-04 Asahi Chem Ind Co Ltd Secondary battery
JP2000268824A (en) * 1999-01-14 2000-09-29 Hitachi Ltd Lithium battery and its manufacture
JP2000215887A (en) * 1999-01-26 2000-08-04 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, lithium secondary battery and charging method for lithium secondary battery
JP2001160392A (en) * 1999-12-01 2001-06-12 Kao Corp Nonaqueous secondary battery
JP2002216751A (en) * 2000-11-14 2002-08-02 Mitsui Mining Co Ltd Composite material for lithium secondary battery negative electrode and lithium secondary battery

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165061A (en) * 2004-12-10 2007-06-28 Canon Inc Electrode structure for lithium secondary battery and secondary battery having such electrode structure
KR100738054B1 (en) 2004-12-18 2007-07-12 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
JP2006294476A (en) * 2005-04-12 2006-10-26 Jfe Chemical Corp Metal-graphite based particle, its manufacturing method, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2007164996A (en) * 2005-12-09 2007-06-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
US7780758B2 (en) 2006-05-08 2010-08-24 Samsung Sdi Co., Ltd. Method of preparing metal nanocrystal
US20070264574A1 (en) * 2006-05-09 2007-11-15 Kim Han-Su Negative active material including metal nanocrystal composite, method of preparing the same, and anode and lithium battery including the negative active material
JP2007305569A (en) * 2006-05-09 2007-11-22 Samsung Sdi Co Ltd Negative electrode material containing metal nanocrystal composite, method of manufacturing the same, and anode and lithium battery containing the negative electrode active material
KR101483123B1 (en) * 2006-05-09 2015-01-16 삼성에스디아이 주식회사 Anode active material comprising metal nanocrystal composite, method of preparing the same, and anode and lithium battery having the material
JP2010501970A (en) * 2006-08-22 2010-01-21 ビーティーアール・ニュー・エナジー・マテリアルズ・インク Silicon / carbon composite cathode material for lithium ion battery and method for producing the same
JP2008235247A (en) * 2007-02-21 2008-10-02 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery and its manufacturing method, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery
US8852802B2 (en) 2007-10-31 2014-10-07 Sony Corporation Anode active material, anode, and battery
JP2009181767A (en) * 2008-01-30 2009-08-13 Tokai Carbon Co Ltd Composite carbon material for negative electrode material of lithium secondary battery and its manufacturing method
WO2010074243A1 (en) 2008-12-26 2010-07-01 積水化学工業株式会社 Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
US8940192B2 (en) 2008-12-26 2015-01-27 Sekisui Chemical Co., Ltd. Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
KR101607232B1 (en) * 2009-04-09 2016-03-29 삼성전자주식회사 Process for preparing anode active composite material
US8778541B2 (en) 2009-04-28 2014-07-15 Denso Corporation Negative electrode for nonaqueous electrolyte solution battery and nonaqueous electrolyte solution battery having the same
JP2011057541A (en) * 2009-08-11 2011-03-24 Sekisui Chem Co Ltd Carbon material, electrode material, and negative-electrode material for lithium-ion secondary battery
EP2503627A4 (en) * 2009-11-18 2014-07-02 Lg Chemical Ltd Cathode mixture for lithium secondary battery and lithium secondary battery using same
JP2012524971A (en) * 2009-11-18 2012-10-18 エルジー・ケム・リミテッド Negative electrode mixture for lithium secondary battery and lithium secondary battery using the same
EP2503627A2 (en) * 2009-11-18 2012-09-26 LG Chem, Ltd. Cathode mixture for lithium secondary battery and lithium secondary battery using same
JP2015213085A (en) * 2011-08-19 2015-11-26 株式会社半導体エネルギー研究所 Secondary battery
US10050273B2 (en) 2011-08-19 2018-08-14 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device and power storage device
JP2013191529A (en) * 2012-02-16 2013-09-26 Hitachi Chemical Co Ltd Composite material, method for manufacturing composite material, electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20160126017A (en) 2014-04-16 2016-11-01 쇼와 덴코 가부시키가이샤 Negative electrode material for lithium-ion battery, and use therefor
US10164257B2 (en) 2014-04-16 2018-12-25 Showa Denko K.K. Negative electrode material for lithium-ion battery, and use therefor
JP2016021393A (en) * 2014-07-11 2016-02-04 オーシーアイ カンパニー リミテッドOCI Company Ltd. Negative electrode active material for secondary batteries, and method for manufacturing the same
JP7451615B2 (en) 2014-12-23 2024-03-18 ユミコア powders, electrodes and batteries containing such powders
KR20170121160A (en) * 2014-12-23 2017-11-01 유미코아 Composite powder for use in an anode of a lithium ion battery, method for producing the composite powder, and method for analyzing the composite powder
KR101944207B1 (en) * 2014-12-23 2019-01-30 유미코아 Composite powder for use in an anode of a lithium ion battery, method for producing the composite powder, and method for analyzing the composite powder
JPWO2016208314A1 (en) * 2015-06-22 2018-04-05 株式会社日立製作所 Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2020129556A (en) * 2015-11-06 2020-08-27 国立大学法人 新潟大学 Method for manufacturing nonaqueous electrolyte secondary battery negative electrode
KR20170078203A (en) 2015-12-29 2017-07-07 한국과학기술연구원 Silicon type active material for lithium secondary battery and manufacturing method therof
JP2017168406A (en) * 2016-03-18 2017-09-21 信越化学工業株式会社 Methods for manufacturing nonaqueous electrolyte secondary battery negative electrode active material, negative electrode, and battery
US10978733B2 (en) 2016-11-07 2021-04-13 Wacker Chemie Ag Carbon-coated silicon particles for lithium ion batteries
CN109923703A (en) * 2016-11-07 2019-06-21 瓦克化学股份公司 The silicon particle that carbon for lithium ion battery coats
WO2018082880A1 (en) 2016-11-07 2018-05-11 Wacker Chemie Ag Carbon-coated silicon particles for lithium ion batteries
JP2019534537A (en) * 2016-11-07 2019-11-28 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Carbon-coated silicon particles for lithium-ion batteries
DE102016221782A1 (en) 2016-11-07 2018-05-09 Wacker Chemie Ag Carbon coated silicon particles for lithium ion batteries
KR20190132545A (en) 2017-08-10 2019-11-27 쇼와 덴코 가부시키가이샤 Negative electrode material and lithium ion secondary battery for lithium ion secondary battery
WO2019031597A1 (en) 2017-08-10 2019-02-14 昭和電工株式会社 Lithium ion secondary battery negative electrode material and lithium ion secondary battery
JP2022522704A (en) * 2019-11-04 2022-04-20 コリア メタル シリコン カンパニー, リミテッド Method for manufacturing silicon complex
JP7345556B2 (en) 2019-11-04 2023-09-15 コリア メタル シリコン カンパニー, リミテッド Method for manufacturing silicone composites
WO2021185435A1 (en) 2020-03-18 2021-09-23 Wacker Chemie Ag Method for producing carbon-coated silicon particles
WO2022002404A1 (en) 2020-07-02 2022-01-06 Wacker Chemie Ag Method for producing carbon-coated silicon particles for lithium-ion batteries
WO2023008866A1 (en) * 2021-07-28 2023-02-02 주식회사 그랩실 Multi-layered anode active material, method for manufacturing same, and lithium secondary battery comprising same

Similar Documents

Publication Publication Date Title
JP2004259475A (en) Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
KR101361567B1 (en) Composite graphite particles and use of same
JP4046601B2 (en) Negative electrode material for lithium secondary battery and lithium secondary battery using the same
JP5348878B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6511726B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2008112710A (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery
JP2014232728A (en) Negative electrode active material for lithium secondary battery, process of manufacturing the same, and lithium secondary battery containing the same
KR20130094853A (en) Anode material for lithium ion rechargeable battery, anode for lithium ion rechargeable battery, and lithium ion rechargeable battery
JP2008277231A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2009117334A (en) Carbon-covered graphite anode material for lithium-ion secondary battery, its manufacturing method, and anode for lithium-ion secondary battery and lithium-ion secondary battery using the anode
JP2003223892A (en) Lithium secondary battery and method for manufacturing negative electrode material therefor
JP5505480B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP5505479B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP5725075B2 (en) Secondary battery negative electrode binder, secondary battery negative electrode, and lithium ion secondary battery
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6584975B2 (en) Carbon material for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and method for producing lithium ion secondary battery
JP3875048B2 (en) Method for producing negative electrode active material
JP2004234977A (en) Positive electrode material for lithium secondary battery, manufacturing method of same, and lithium secondary battery using same
JP2003187798A (en) Lithium secondary battery
JP4996827B2 (en) Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2004059386A (en) Production method for carbon-coated graphite particle, carbon-coated graphite particle, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JPH11191408A (en) Negative active material for lithium ion secondary battery, and negative electrode plate and lithium ion secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104