JP4996827B2 - Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP4996827B2
JP4996827B2 JP2005081657A JP2005081657A JP4996827B2 JP 4996827 B2 JP4996827 B2 JP 4996827B2 JP 2005081657 A JP2005081657 A JP 2005081657A JP 2005081657 A JP2005081657 A JP 2005081657A JP 4996827 B2 JP4996827 B2 JP 4996827B2
Authority
JP
Japan
Prior art keywords
metal
graphite
negative electrode
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005081657A
Other languages
Japanese (ja)
Other versions
JP2006269110A (en
Inventor
靖 間所
邦彦 江口
勝博 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2005081657A priority Critical patent/JP4996827B2/en
Publication of JP2006269110A publication Critical patent/JP2006269110A/en
Application granted granted Critical
Publication of JP4996827B2 publication Critical patent/JP4996827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムと合金化可能な金属と黒鉛質材料を含有する複合粒子、それを用いたリチウムイオン二次電池用負極材料および負極、ならびにそれを用いたリチウムイオン二次電池に関する。   The present invention relates to composite particles containing a metal that can be alloyed with lithium and a graphite material, a negative electrode material and a negative electrode for a lithium ion secondary battery using the same, and a lithium ion secondary battery using the same.

他の二次電池に比べて高電圧、高エネルギー密度という優れた特性を有するリチウムイオン二次電池は、電子機器の電源として広く普及している。近年、電子機器の小型化あるいは高性能化が急速に進み、リチウムイオン二次電池のさらなる高エネルギー密度化に対する要望はますます高まっている。
現在、リチウムイオン二次電池は、正極にLiCoO2 、負極に黒鉛を用いたものが一般的である。しかし、黒鉛負極は充放電の可逆性に優れるものの、その放電容量はすでに層間化合物LiC6 に相当する理論値372mAh/g に近い値まで到達しており、さらなる高エネルギー密度化を達成するためには、黒鉛より放電容量の大きい負極材料を開発する必要がある。
Lithium ion secondary batteries having excellent characteristics of high voltage and high energy density compared to other secondary batteries are widely used as power sources for electronic devices. In recent years, miniaturization or performance enhancement of electronic devices has rapidly progressed, and there is an increasing demand for higher energy density of lithium ion secondary batteries.
At present, lithium ion secondary batteries generally use LiCoO 2 for the positive electrode and graphite for the negative electrode. However, although the graphite negative electrode is excellent in reversibility of charge and discharge, its discharge capacity has already reached a value close to the theoretical value 372 mAh / g corresponding to the intercalation compound LiC 6 , in order to achieve further higher energy density. Needs to develop a negative electrode material having a larger discharge capacity than graphite.

金属リチウムは負極材料として最高の放電容量を有するが、充電時にリチウムがデンドライト状に析出して負極が劣化し、充放電サイクルが短くなるという問題がある。また、デンドライト状に析出したリチウムがセパレータを貫通して正極に達し、短絡する可能性もある。
そのため、金属リチウムに代わる負極材料として、リチウムと合金を形成する金属または金属化合物が検討されてきた。これらの合金負極は、金属リチウムには及ばないものの黒鉛を遥かにしのぐ放電容量を有する。しかし、合金化に伴う体積膨張により活物質の粉化・剥離が発生し、未だ実用レベルのサイクル特性は得られていない。
Although metallic lithium has the highest discharge capacity as a negative electrode material, there is a problem that lithium is deposited in a dendritic state during charging, the negative electrode is deteriorated, and the charge / discharge cycle is shortened. In addition, lithium deposited in a dendrite shape may penetrate the separator and reach the positive electrode, causing a short circuit.
Therefore, a metal or a metal compound that forms an alloy with lithium has been studied as a negative electrode material that replaces metallic lithium. These alloy negative electrodes have discharge capacities far surpassing that of graphite, though not as much as metallic lithium. However, active materials are pulverized and peeled off due to volume expansion accompanying alloying, and a practical level of cycle characteristics has not yet been obtained.

前述のような合金負極の欠点を解決するため、金属または金属化合物と黒鉛質物または炭素質物のどちらか一方または両方との複合化が検討されている。
特許文献1には、金属または金属材料と、黒鉛材料および炭素材料からなる複合材料を電極材料として用いることが開示されている。この複合材料において、該炭素材料は、金属物質と黒鉛材料を結合または被覆する役割を担う。また、これは、アルゴンレーザーを用いたラマン分光法により測定した該炭素材料の表面のDバンド1360cm-1ピーク強度IDと、Gバンド1580cm-1ピーク強度IGの比ID/IG(=R値)は0.4以上、つまり該炭素材料が黒鉛化されていないことを示すことが開示されている。しかし、炭素材料が複合材料の内部に浸透している場合、該金属または金属化合物の周囲に膨張を緩衝する空隙を確保することができず、複合粒子構造の破壊によるサイクル特性の低下を招く場合がある。
In order to solve the drawbacks of the alloy negative electrode as described above, a composite of a metal or a metal compound and one or both of a graphite material and a carbonaceous material has been studied.
Patent Document 1 discloses that a metal or a metal material and a composite material made of a graphite material and a carbon material are used as an electrode material. In this composite material, the carbon material plays a role of bonding or covering a metal substance and a graphite material. This is also the ratio ID / IG (= R value) of the D band 1360 cm −1 peak intensity ID of the surface of the carbon material measured by Raman spectroscopy using an argon laser and the G band 1580 cm −1 peak intensity IG. Is disclosed to be 0.4 or more, which indicates that the carbon material is not graphitized. However, when the carbon material penetrates into the inside of the composite material, it is not possible to secure voids for buffering the expansion around the metal or metal compound, resulting in deterioration of cycle characteristics due to destruction of the composite particle structure There is.

特許文献2には、シリコン含有粒子と炭素含有粒子とからなる多孔性粒子を炭素で被覆した負極材料が開示されている。なお、該炭素含有粒子は一種の黒鉛材料に相当する。この技術の例では、負極材料を積極的に多孔質化したにもかかわらず、シリコンとリチウムが合金化する際の体積膨張により、負極材料の破壊が起こり、やはり満足できるサイクル特性は得られない。さらに、炭素含有粒子(黒鉛材料)が1μm以下と小さく、電解液の分解反応を生じやすいため、電解液の分解反応に由来する初期充放電効率の低下が顕在化する場合がある。   Patent Document 2 discloses a negative electrode material in which porous particles composed of silicon-containing particles and carbon-containing particles are coated with carbon. The carbon-containing particles correspond to a kind of graphite material. In this example of technology, the anode material is destroyed due to volume expansion when silicon and lithium are alloyed even though the anode material is positively made porous, and satisfactory cycle characteristics cannot be obtained. . Furthermore, since the carbon-containing particles (graphite material) are as small as 1 μm or less and easily cause a decomposition reaction of the electrolytic solution, a decrease in the initial charge / discharge efficiency resulting from the decomposition reaction of the electrolytic solution may become apparent.

特許文献3には、リチウムと合金化可能な元素を含む材料と、導電性材料とを含む複合粒子からなる電極材料が開示されている。該電極材料は、リチウムと合金化可能な元素を含む材料の充電時の膨張を吸収できるように、複合粒子内部に特定な割合の空隙を有しているが、リチウムと合金化可能な元素を含む材料の複合粒子に対する割合が30〜80質量%と多いため、該割合の空隙では該膨張を吸収しきれず、サイクル特性が低下する場合がある。
また、特許文献3には、好適な導電性材料として繊維状またはコイル状の炭素材料が開示されているが、該炭素材料はその形状に由来して、表面積が大きく、添加量が多くなると、電解液の分解反応に伴う充放電効率の低下が顕在化する場合がある。
特許第3369589号公報 特許第3466576号公報 特開2003−303588号公報
Patent Document 3 discloses an electrode material composed of composite particles containing a material containing an element that can be alloyed with lithium and a conductive material. The electrode material has a specific proportion of voids inside the composite particles so as to absorb expansion during charging of a material containing an element that can be alloyed with lithium. Since the ratio of the contained material to the composite particles is as large as 30 to 80% by mass, the expansion cannot be absorbed by the voids at the ratio, and the cycle characteristics may be deteriorated.
Further, Patent Document 3 discloses a fibrous or coil-like carbon material as a suitable conductive material, but the carbon material has a large surface area due to its shape, and when the addition amount increases, In some cases, a decrease in charge / discharge efficiency due to the decomposition reaction of the electrolytic solution becomes obvious.
Japanese Patent No. 3369589 Japanese Patent No. 3466576 JP 2003-303588 A

本発明者は、従来技術の複合粒子は、負極材料として用いた場合に、リチウムと合金を形成可能な金属の導電性を保ちながら、同時に金属の膨張をうまく吸収できないために、サイクル特性が悪くなるものと推測し、鋭意検討した結果、複合粒子を構成する金属、黒鉛質材料および炭素質材料の構成比を特定範囲に規定し、かつ黒鉛質材料として繊維状黒鉛質材料と非繊維状黒鉛質材料を特定の割合で共存させ、さらに適度な割合の空隙を形成することにより、合金形成時の金属の膨張を吸収でき、充放電を繰り返しても、複合粒子の粉化や剥離などの構造破壊を防止でき、導電性を維持できることを見出し、本発明を完成するに至った。   The inventor of the present invention, when used as a negative electrode material, has poor cycle characteristics because it does not absorb metal expansion well while maintaining the conductivity of the metal capable of forming an alloy with lithium. As a result of presuming that it will be, the composition ratio of the metal, the graphite material and the carbonaceous material constituting the composite particles is defined within a specific range, and the fibrous graphite material and the non-fibrous graphite as the graphite material By coexisting a certain amount of material and forming a moderate proportion of voids, it is possible to absorb the expansion of the metal during the formation of the alloy. The inventors have found that the breakdown can be prevented and the conductivity can be maintained, and the present invention has been completed.

本発明は、前記のような知見に鑑みてなされたものであり、リチウムイオン二次電池用負極として用いたときに、放電容量が高く、優れたサイクル特性と初期充放電効率が得られる負極材料と該負極材料からなる負極、該負極を用いたリチウムイオン二次電池を提供することを目的とする。また、そのような負極材料の材料として好適な黒鉛質材料を含有する金属−黒鉛系複合粒子を提供することを目的とする。   The present invention has been made in view of the above-described knowledge, and when used as a negative electrode for a lithium ion secondary battery, a negative electrode material having a high discharge capacity and excellent cycle characteristics and initial charge / discharge efficiency. And a negative electrode made of the negative electrode material, and a lithium ion secondary battery using the negative electrode. Another object of the present invention is to provide metal-graphite composite particles containing a graphite material suitable as a material for such a negative electrode material.

本発明のリチウムイオン二次電池負極用金属−黒鉛系複合粒子(以下、単に「金属−黒鉛系複合粒子」ともいう。)は、リチウムと合金化可能な金属、黒鉛質材料および炭素質材料からなる金属−黒鉛系複合粒子において、該金属−黒鉛系複合粒子の全質量に対する該リチウムと合金化可能な金属の質量の割合が1質量%以上30質量%未満、該黒鉛質材料の質量の割合が30〜95質量%、該炭素質材料の質量の割合が4〜50質量%であり、かつ該黒鉛質材料が繊維状黒鉛質材料と非繊維状黒鉛質材料を含み、該黒鉛質材料の全質量に対する該繊維状黒鉛質材料の質量の割合が50質量%未満であり、さらに該金属−黒鉛系複合粒子の空隙率(%)を(1−嵩密度/真密度)×100で規定した場合、該空隙率が25〜80%であり、前記リチウムと合金化可能な金属と、前記繊維状黒鉛質材料および前記非繊維状黒鉛質材料とを混合、攪拌して造粒物を製造した後、該造粒物と前記炭素質材料の前駆体とを混合し、常圧または減圧下で、加熱して、該前駆体を前記炭素質材料に変化させて得られることを特徴とする金属−黒鉛系複合粒子、である
た、前記の金属−黒鉛系複合粒子を製造する本発明の金属−黒鉛系複合粒子の製造方法は、リチウムと合金化可能な金属と、繊維状黒鉛質材料および非繊維状黒鉛質材料とを混合、攪拌して造粒物を製造する工程と、前記造粒物と炭素質材料の前駆体とを混合し、常圧または減圧下で加熱して、該前駆体を炭素質材料に変化させることにより空隙を有する金属−黒鉛系複合粒子を得る工程と、を有する製造方法である。
The metal-graphite composite particles for a negative electrode of a lithium ion secondary battery of the present invention (hereinafter also simply referred to as “metal-graphite composite particles”) are made of a metal, graphite material and carbonaceous material that can be alloyed with lithium. In the metal-graphite composite particles, the ratio of the mass of the metal that can be alloyed with lithium to the total mass of the metal-graphite composite particles is 1% by mass or more and less than 30% by mass, and the ratio of the mass of the graphite material 30 to 95% by mass, the proportion of the mass of the carbonaceous material is 4 to 50% by mass, and the graphite material includes a fibrous graphite material and a non-fibrous graphite material, The ratio of the mass of the fibrous graphite material to the total mass is less than 50% by mass, and the porosity (%) of the metal-graphite composite particles is defined by (1-bulk density / true density) × 100. The porosity is 25-80%, A metal that can be alloyed with lithium, the fibrous graphite material and the non-fibrous graphite material are mixed and stirred to produce a granulated product, and then the granulated product and a precursor of the carbonaceous material And a metal-graphite composite particle obtained by heating under normal pressure or reduced pressure to change the precursor into the carbonaceous material .
Also, the metal - metal of the present invention for producing a graphite-based composite particles - the production method of the graphite composite particle, lithium can be alloyed with metals, a fibrous graphitized material and non-fibrous graphitic material Mixing and stirring to produce a granulated product, and mixing the granulated product and a precursor of the carbonaceous material, and heating under normal pressure or reduced pressure to change the precursor into a carbonaceous material A step of obtaining metal-graphite composite particles having voids.

また、本発明は、前記の金属−黒鉛系複合粒子を含むことを特徴とするリチウムイオン二次電池用負極材料、である。   Moreover, this invention is a negative electrode material for lithium ion secondary batteries characterized by including the said metal-graphite type composite particle.

また、本発明は、前記の金属−黒鉛系複合粒子を含むことを特徴とするリチウムイオン二次電池用負極、である。   Moreover, this invention is a negative electrode for lithium ion secondary batteries characterized by including the said metal-graphite type composite particle.

また、本発明は、前記のリチウムイオン二次電池用負極を用いることを特徴とするリチウムイオン二次電池、である。   Moreover, this invention is a lithium ion secondary battery characterized by using the said negative electrode for lithium ion secondary batteries.

本発明の金属−黒鉛系複合粒子を含有する負極材料・負極を用いて作製したリチウムイオン二次電池は、高い放電容量を有し、初期充放電効率およびサイクル特性に優れる。
そのため、本発明の負極材料・負極を用いてなるリチウムイオン二次電池は、近年の高エネルギー密度化に対する要望を満たし、搭載する機器の小型化および高性能化に有効である。
The lithium ion secondary battery produced using the negative electrode material and negative electrode containing the metal-graphite composite particles of the present invention has a high discharge capacity and is excellent in initial charge / discharge efficiency and cycle characteristics.
Therefore, the lithium ion secondary battery using the negative electrode material / negative electrode of the present invention satisfies the recent demand for higher energy density, and is effective in reducing the size and performance of the equipment to be mounted.

以下、本発明をより具体的に説明する。
(複合粒子)
本発明の金属−黒鉛系複合粒子は、リチウムと合金化可能な金属、繊維状黒鉛質材料、非繊維状黒鉛質材料、および炭素質材料からなり、特定範囲の空隙率を有する複合粒子である。該金属−黒鉛系複合粒子は、特定量の繊維状黒鉛質材料の存在により、複数の金属粒子を分散して包含し、複数の大小の空隙を分散して含有することができ、該各空隙の少なくとも一部が該各金属の周辺に存在することができる。そのような構造ゆえに、本発明の金属−黒鉛系複合粒子は、充電時の金属粒子の膨張を吸収し、負極材料として用いたときにサイクル特性を良好に確保することができる。そして該金属−黒鉛系複合粒子の周辺が炭素質材料で包囲されており、前記構造の維持に寄与する。
Hereinafter, the present invention will be described more specifically.
(Composite particles)
The metal-graphite composite particle of the present invention is a composite particle comprising a metal that can be alloyed with lithium, a fibrous graphite material, a non-fibrous graphite material, and a carbonaceous material, and having a porosity in a specific range. . The metal-graphite-based composite particles can contain a plurality of metal particles dispersedly and a plurality of large and small voids dispersed by the presence of a specific amount of fibrous graphite material. At least a portion of the metal may be present around each metal. Because of such a structure, the metal-graphite composite particles of the present invention absorb the expansion of the metal particles during charging, and can ensure good cycle characteristics when used as a negative electrode material. And the circumference | surroundings of this metal-graphite type composite particle are surrounded by the carbonaceous material, and it contributes to maintenance of the said structure.

前記金属−黒鉛系複合粒子の全質量に対する前記リチウムと合金化可能な金属の質量の割合は1質量%以上、30質量%未満でなければならない。好ましくは1質量%以上、25質量%未満、より好ましくは1〜20質量%である。該範囲であると、該金属−黒鉛系複合粒子の構造を制御することで、充電時の金属の膨張を吸収することが可能であり、かつ充分な高放電容量を得ることができる。すなわち、該割合が1質量%未満の場合には、放電容量の向上効果が小さいことがあり、逆に30質量%以上の場合には、充電時の金属の膨張を吸収しきれず、サイクル特性の改良効果が小さくなることがある。   The ratio of the mass of the metal that can be alloyed with lithium to the total mass of the metal-graphite composite particles must be 1% by mass or more and less than 30% by mass. Preferably they are 1 mass% or more and less than 25 mass%, More preferably, it is 1-20 mass%. Within this range, by controlling the structure of the metal-graphite composite particles, it is possible to absorb the expansion of the metal during charging and obtain a sufficiently high discharge capacity. That is, when the ratio is less than 1% by mass, the effect of improving the discharge capacity may be small. Conversely, when it is 30% by mass or more, the expansion of the metal during charging cannot be absorbed, and the cycle characteristics are not improved. The improvement effect may be reduced.

また、該金属−黒鉛系複合粒子の全質量に対する該黒鉛質材料の質量の割合は、30〜95質量%であり、好ましくは50〜90質量%である。そして該黒鉛質材料は繊維状黒鉛質材料と非繊維状黒鉛質材料を含み、該黒鉛質材料の全質量に対する該繊維状黒鉛質材料の質量の割合が50質量%未満でなければならない(ただし、0質量%を除く。)。好ましくは30〜45質量%である。したがって非繊維状黒鉛質材料の割合は、50質量%超、好ましくは55〜70質量%である。
該割合で繊維状黒鉛質材料と非繊維状黒鉛質材料とが共存することにより、黒鉛質材料の表面積の増加による充放電効率の低下がなく、充分な導電性を確保することができる。また、流動性を持った炭素質材料の前駆体を用いて、金属−黒鉛系複合粒子を調製する際に、該前駆体が、該金属−黒鉛系複合粒子を構成する繊維状黒鉛質材料の表面に吸着するため、該前駆体が、該金属−黒鉛系複合粒子内部にまで浸透しにくく、該金属−黒鉛系複合粒子内部に空隙を確保しやすいという利点もある。さらには、該繊維状黒鉛質材料が、金属粒子の脱落を防止する。
Moreover, the ratio of the mass of this graphite material with respect to the total mass of this metal-graphite type composite particle is 30-95 mass%, Preferably it is 50-90 mass%. The graphite material includes a fibrous graphite material and a non-fibrous graphite material, and the ratio of the mass of the fibrous graphite material to the total mass of the graphite material must be less than 50% by mass (however, , Excluding 0% by mass). Preferably it is 30-45 mass%. Therefore, the proportion of non-fibrous graphite material is more than 50% by weight, preferably 55 to 70% by weight.
When the fibrous graphite material and the non-fibrous graphite material coexist at this ratio, there is no decrease in charge / discharge efficiency due to an increase in the surface area of the graphite material, and sufficient conductivity can be ensured. Further, when the metal-graphite composite particles are prepared using a carbonaceous material precursor having fluidity, the precursor is a fibrous graphite material constituting the metal-graphite composite particles. Since it adsorbs on the surface, the precursor does not easily penetrate into the metal-graphite composite particles, and there is an advantage that it is easy to secure voids inside the metal-graphite composite particles. Furthermore, the fibrous graphite material prevents the metal particles from falling off.

前記金属−黒鉛系複合粒子の全質量に対する前記炭素質材料の質量の割合は、4〜50質量%でなければならない。好ましくは15〜45質量%である。該範囲であると、炭素質材料は該複合粒子の内部の空隙を埋めることなく、主に該複合粒子の表面を被覆することができる。その結果、充放電時の金属の膨張を該空隙が吸収する作用効果を損なわれることがないので、充放電効率や導電性を向上させることができる。   The ratio of the mass of the carbonaceous material to the total mass of the metal-graphite composite particles must be 4 to 50% by mass. Preferably it is 15-45 mass%. Within this range, the carbonaceous material can mainly cover the surface of the composite particles without filling the voids inside the composite particles. As a result, the effect of absorbing the expansion of the metal at the time of charging / discharging is not impaired, so that the charging / discharging efficiency and conductivity can be improved.

また、前記金属−黒鉛系複合粒子の空隙率(%)を(1−嵩密度/真密度)×100で規定した場合、該空隙率が25〜80%でなければならない。好ましくは40〜70%である。該範囲であると、リチウムと合金化可能な金属の充電時の膨張を吸収することができる。なお、空隙率は、後述する炭素質材料の前駆体の添加量や炭素質材料の前駆体を含浸する際の減圧度で調整することができる。
嵩密度は、JIS R1628に準拠し、容積既知の容器に前記金属−黒鉛系複合粒子を充填し、嵩密度測定装置を用いて求めることができる。真密度はピクノメーターを用い、適当な分散媒を選定し、液相置換法で求めることができる。
Further, when the porosity (%) of the metal-graphite composite particles is defined by (1-bulk density / true density) × 100, the porosity must be 25 to 80%. Preferably it is 40 to 70%. Within this range, expansion during charging of a metal that can be alloyed with lithium can be absorbed. The porosity can be adjusted by the amount of the carbonaceous material precursor to be described later and the degree of pressure reduction when impregnating the carbonaceous material precursor.
The bulk density can be determined according to JIS R1628 using a bulk density measuring device after filling the metal-graphite composite particles in a container having a known volume. The true density can be obtained by a liquid phase substitution method using a pycnometer, selecting an appropriate dispersion medium.

前記金属−黒鉛系複合粒子の形状は、特に制限されるものではないが、球状ましくは球状に近い塊状などであることが好ましい。前記金属−黒鉛系複合粒子の直径は3〜50μm、好ましくは5〜20μmである。該直径は、レーザー回折式粒度計で測定される累積度数が体積分率で50%となる粒子径である。他の成分の粒子径も同様である。   The shape of the metal-graphite composite particles is not particularly limited, but is preferably spherical or massive like a sphere. The metal-graphite composite particles have a diameter of 3 to 50 μm, preferably 5 to 20 μm. The diameter is a particle diameter at which the cumulative frequency measured by a laser diffraction particle size meter is 50% in volume fraction. The same applies to the particle sizes of the other components.

(リチウムと合金化可能な金属)
リチウムと合金化可能な金属は、Al、Pb、Zn、Sn、Bi、In、Mg、Ga、Cd、Ag、Si、B、Au、Pt、Pd、Sb、Ge、Niなどであり、これら金属の2種以上の合金であってもよい。合金には、上記以外の元素をさらに含有していてもよい。金属の一部が酸化物、窒化物、炭化物などの化合物であってもよい。好ましい金属はシリコンSiおよびスズSnであり、特に好ましいのは入手しやすいシリコンである。
金属の平均粒子径は10μm以下であることが好ましく、5μm以下であることがより好ましい。10μmを超えるとサイクル特性の改良効果が小さくなる場合がある。
金属の形状は特に制約されない。粒状、球状、板状、鱗片状、針状、糸状などのいずれであってもよい。
(Metal that can be alloyed with lithium)
Metals that can be alloyed with lithium are Al, Pb, Zn, Sn, Bi, In, Mg, Ga, Cd, Ag, Si, B, Au, Pt, Pd, Sb, Ge, Ni, and the like. Two or more kinds of alloys may be used. The alloy may further contain elements other than those described above. A part of the metal may be a compound such as an oxide, nitride, or carbide. Preferred metals are silicon Si and tin Sn, and particularly preferred is readily available silicon.
The average particle diameter of the metal is preferably 10 μm or less, and more preferably 5 μm or less. If it exceeds 10 μm, the effect of improving the cycle characteristics may be reduced.
The shape of the metal is not particularly limited. Any of a granular shape, a spherical shape, a plate shape, a scale shape, a needle shape, a thread shape and the like may be used.

(黒鉛質材料)
黒鉛質材料はリチウムイオンを吸蔵・放出できるものであれば、その形状は、球状、塊状、板状、鱗片状、繊維状などのいずれでもよい。しかし、前述したように、黒鉛質材料の全質量に対し、繊維状黒鉛質材料が50質量%以下、好ましくは45質量%以下、したがって、非繊維状黒鉛質材料が50質量%超、好ましくは55質量%超の質量割合で使用する必要がある。
繊維状黒鉛質材料は、その前駆体の繊維状炭素質材料を黒鉛化して得られるものが好ましい。該前駆体は、例えば、短軸長(直径)が1〜500nm、好ましくは10〜200nmで、アスペクト比が5以上、好ましくは10〜100のカーボンナノファイバー、カーボンナノチューブや気相成長炭素繊維などである。ここで、アスペクト比とは、繊維長/短軸長の比を言う。該前駆体の最終熱処理温度は1500〜3300℃、好ましくは2800〜3300℃である。
(Graphite material)
As long as the graphite material can occlude and release lithium ions, the shape thereof may be any of spherical, lump, plate, scale, and fiber. However, as described above, the fibrous graphite material is 50% by mass or less, preferably 45% by mass or less with respect to the total mass of the graphite material, and therefore the non-fibrous graphite material is more than 50% by mass, preferably It is necessary to use at a mass ratio exceeding 55 mass%.
The fibrous graphite material is preferably obtained by graphitizing the precursor fibrous carbonaceous material. The precursor has, for example, a short axis length (diameter) of 1 to 500 nm, preferably 10 to 200 nm, and an aspect ratio of 5 or more, preferably 10 to 100, such as carbon nanofiber, carbon nanotube, vapor grown carbon fiber, etc. It is. Here, the aspect ratio refers to the ratio of fiber length / short axis length. The final heat treatment temperature of the precursor is 1500 to 3300 ° C, preferably 2800 to 3300 ° C.

非繊維状黒鉛質材料は、具体的には、その一部または全部が黒鉛質で形成されているもの、例えば、タールピッチ類を最終的に1500℃以上で黒鉛化して得られる人造黒鉛や天然黒鉛などである。具体的には、石油系または石炭系のタールピッチ類などの易黒鉛化性炭素材料を熱処理して重縮合させたメソフェーズ焼成体、メソフェーズ小球体、コークス類を1500℃以上、好ましくは2800〜3300℃で黒鉛化処理したものである。
非繊維状黒鉛質材料は、また、前記した各種の混合物、造粒物、被覆物、積層物であってもよい。また、液相、気相、固相における各種化学的処理、熱処理、酸化処理、物理的処理などを施したものであってもよい。
非繊維状黒鉛質材料の平均粒子径は形状の如何を問わず、1〜30μm、特に3〜15μmであることが好ましい。
Specifically, the non-fibrous graphite material is partly or entirely formed of graphite, for example, artificial graphite or natural graphite obtained by graphitizing tar pitches finally at 1500 ° C. or higher. Such as graphite. Specifically, mesophase fired bodies, mesophase spherules, and cokes obtained by heat-treating and polycondensing a graphitizable carbon material such as petroleum-based or coal-based tar pitches are 1500 ° C. or higher, preferably 2800-3300. Graphitized at ℃.
The non-fibrous graphite material may also be the above-described various mixtures, granules, coatings, and laminates. Further, it may be subjected to various chemical treatments in the liquid phase, gas phase, and solid phase, heat treatment, oxidation treatment, physical treatment and the like.
The average particle diameter of the non-fibrous graphite material is preferably 1 to 30 μm, particularly 3 to 15 μm, regardless of the shape.

(炭素質材料)
炭素質材料は導電性を有し、金属と黒鉛質材料とを結着するものであり、不可欠な成分であり、前駆体を熱処理して得ることができる。
炭素質材料の前駆体は、タールピッチ類および/または樹脂類であることが好ましい。具体的には、石油系または石炭系のタールピッチ類として、コールタール、タール軽油、タール中油、タール重油、ナフタリン油、アントラセン油、コールタールピッチ、ピッチ油、メソフェーズピッチ、酸素架橋石油ピッチ、ヘビーオイルなどが挙げられる。また樹脂類として、ポリビニルアルコールなどの熱可塑性樹脂、フェノール樹脂、フラン樹脂などが挙げられる。
(Carbonaceous material)
The carbonaceous material has conductivity, binds the metal and the graphite material, is an indispensable component, and can be obtained by heat-treating the precursor.
The precursor of the carbonaceous material is preferably tar pitches and / or resins. Specifically, as petroleum-based or coal-based tar pitches, coal tar, tar light oil, tar medium oil, tar heavy oil, naphthalene oil, anthracene oil, coal tar pitch, pitch oil, mesophase pitch, oxygen-crosslinked petroleum pitch, heavy Examples include oil. Examples of the resins include thermoplastic resins such as polyvinyl alcohol, phenol resins, and furan resins.

本発明の金属−黒鉛系複合粒子の製造方法は、特に限定されないが、例えば、リチウムと合金化可能な金属と、繊維状黒鉛質材料および非繊維状黒鉛質材料を混合、攪拌して造粒物を製造した後、該造粒物と炭素質材料の前駆体を混合し、常圧または減圧下で、加熱して、炭素質材料の前駆体を炭素質材料に変化させて、空隙を有する金属−黒鉛系複合粒子を製造する方法を挙げることができる。
リチウムと合金化可能な金属と、繊維状黒鉛質材料および非繊維状黒鉛質材料の混合条件および攪拌条件は、特に限定されず、乾式、湿式などで適宜実施することができる。該造粒物と炭素質材料の前駆体との混合も乾式、湿式などで適宜実施することができる。また、本発明の金属−黒鉛系複合粒子の空隙率は、炭素質材料の前駆体の配合量、加熱温度、加熱雰囲気などを適宜選定することにより、変化させることができる。
The method for producing the metal-graphite composite particles of the present invention is not particularly limited. For example, a metal that can be alloyed with lithium, a fibrous graphite material, and a non-fibrous graphite material are mixed, stirred, and granulated. After the product is manufactured, the granulated product and the precursor of the carbonaceous material are mixed and heated under normal pressure or reduced pressure to change the precursor of the carbonaceous material into the carbonaceous material, thereby having voids. A method for producing metal-graphite composite particles can be mentioned.
The mixing conditions and stirring conditions of the metal that can be alloyed with lithium, the fibrous graphite material, and the non-fibrous graphite material are not particularly limited, and can be appropriately performed by a dry method, a wet method, or the like. Mixing of the granulated product and the precursor of the carbonaceous material can be appropriately performed by a dry method or a wet method. Moreover, the porosity of the metal-graphite composite particles of the present invention can be changed by appropriately selecting the blending amount of the precursor of the carbonaceous material, the heating temperature, the heating atmosphere, and the like.

該炭素質材料の前駆体は600℃以上、好ましくは800℃以上の温度で加熱され、炭素化され、炭素質材料に導電性が付与される。該加熱は、段階的に数回に分けて複数回行ってもよく、触媒の存在下に行ってもよい。また、酸化性ガス、非酸化性ガスの雰囲気のいずれで行ってもよい。ただし、1500℃以上では炭素質材料と金属シリコンが反応してSiCを生成するため、加熱温度は1500℃未満とする必要がある。1000〜1200℃であることが好ましい。また、適宜、分散媒を用いて混合することが好ましい。分散媒は、炭素質材料の前駆体が軟化、分解しない温度以下で除去することが好ましい。   The precursor of the carbonaceous material is heated at a temperature of 600 ° C. or higher, preferably 800 ° C. or higher, and carbonized to impart conductivity to the carbonaceous material. The heating may be performed several times stepwise and may be performed in the presence of a catalyst. Moreover, you may carry out in any atmosphere of oxidizing gas and non-oxidizing gas. However, since the carbonaceous material and metallic silicon react to generate SiC at 1500 ° C. or higher, the heating temperature needs to be lower than 1500 ° C. It is preferable that it is 1000-1200 degreeC. Moreover, it is preferable to mix using a dispersion medium suitably. The dispersion medium is preferably removed at a temperature that does not soften or decompose the precursor of the carbonaceous material.

本発明は前記金属−黒鉛系複合粒子を含有するリチウムイオン二次電池用負極材料であり、または該負極材料を用いるリチウムイオン二次電池用負極であり、さらには、該負極を用いるリチウムイオン二次電池である。
(負極)
本発明のリチウムイオン二次電池用負極の作製は、従来公知の負極の作製方法により実施されるが、前記金属−黒鉛系複合粒子と結着剤と溶媒からペースト状の負極合剤を調製し、これを集電材の片面または両面に塗布乾燥し、負極合剤層を形成した後、プレス加工などの圧着を行うと、負極合剤層と集電材との接着強度をさらに高めることができる。負極合剤層の層厚は10〜200μm、好ましくは20〜200μmである。
The present invention is a negative electrode material for a lithium ion secondary battery containing the metal-graphite composite particles, or a negative electrode for a lithium ion secondary battery using the negative electrode material, and further, a lithium ion secondary battery using the negative electrode. Next battery.
(Negative electrode)
The negative electrode for a lithium ion secondary battery of the present invention is produced by a conventionally known negative electrode production method. A paste-like negative electrode mixture is prepared from the metal-graphite composite particles, a binder and a solvent. The adhesive strength between the negative electrode mixture layer and the current collector can be further increased by applying and drying this to one or both sides of the current collector to form a negative electrode mixture layer and then performing pressure bonding such as pressing. The layer thickness of the negative electrode mixture layer is 10 to 200 μm, preferably 20 to 200 μm.

負極合剤ペーストの調製は、公知の攪拌機、混合機、混練機、ニーダーなどを用いて実施される。具体的には、本発明の金属−黒鉛系複合粒子を分級などにより所望の粒径に調整し、これらと結着剤および/または溶媒とを混合機を用いて混合して調製される。   The negative electrode mixture paste is prepared using a known stirrer, mixer, kneader, kneader or the like. Specifically, it is prepared by adjusting the metal-graphite composite particles of the present invention to a desired particle size by classification or the like and mixing them with a binder and / or solvent using a mixer.

結着剤としては、電解質に対して、化学的および電気化学的に安定性を示すものが好ましく、有機溶媒に溶解および/または分散させる有機系結着剤は勿論のこと、水系溶媒に溶解および/または分散させる水系結着剤が広く挙げられる。例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系樹脂、ポリエチレン、ポリビニルアルコールなどの樹脂、さらには、カルボキシメチルセルロース、スチレンブタジエンゴムなどのゴムが用いられる。カルボキシメチルセルロース、ポリビニルアルコールなどの樹脂、スチレンブタジエンゴムなどのゴムのような水系結着剤が特に好ましい。これらを併用することもできる。結着剤は、通常、負極合剤の全量中の0.5〜20質量%程度の割合で用いられることが好ましい。
溶媒としては、負極合剤の調製に使用される通常の溶媒が使用される。溶媒自体が結着剤として作用するものが好ましく使用される。具体的には、N−メチルピロリドン、ジメチルホルムアミド、水、エチルアルコールなどが挙げられる。水系溶媒の使用が環境汚染、安全性の点から好ましい。
As the binder, those that are chemically and electrochemically stable with respect to the electrolyte are preferable, and not only organic binders that are dissolved and / or dispersed in organic solvents, but also soluble in aqueous solvents and Widely mentioned are water-based binders to be dispersed. For example, fluorine resins such as polytetrafluoroethylene and polyvinylidene fluoride, resins such as polyethylene and polyvinyl alcohol, and rubbers such as carboxymethyl cellulose and styrene butadiene rubber are used. Water-based binders such as resins such as carboxymethyl cellulose and polyvinyl alcohol, and rubbers such as styrene butadiene rubber are particularly preferred. These can also be used together. In general, the binder is preferably used at a ratio of about 0.5 to 20% by mass in the total amount of the negative electrode mixture.
As the solvent, an ordinary solvent used for preparing the negative electrode mixture is used. Those in which the solvent itself acts as a binder are preferably used. Specific examples include N-methylpyrrolidone, dimethylformamide, water, ethyl alcohol and the like. Use of an aqueous solvent is preferable from the viewpoint of environmental pollution and safety.

負極の作製に用いる集電体の形状は、特に限定されることはないが、箔状、メッシュ、エキスパンドメタルなどの網状などである。集電材の材質としては、銅、ステンレス、ニッケルなどが好ましい。集電体の厚みは、箔状の場合で5〜20μm程度であるのが好ましい。   The shape of the current collector used for producing the negative electrode is not particularly limited, but may be a foil shape, a mesh shape, a net shape such as expanded metal, or the like. The material for the current collector is preferably copper, stainless steel, nickel or the like. The thickness of the current collector is preferably about 5 to 20 μm in the case of a foil.

また、本発明の金属−黒鉛系複合粒子と、ポリエチレン、ポリビニルアルコールなどの樹脂粉末とを乾式混合し、通常の成形方法に準じて、例えば、金型内でホットプレス成形して、負極を作製することもできる。
なお、本発明の金属−黒鉛系複合粒子に、負極材料・負極の作製に通常使用される導電材、改質材、添加剤などを共存させてもよい。例えば、天然黒鉛、人造黒鉛、カーボンブラック、気相成長炭素繊維、低結晶性炭素粒子またはこれらの黒鉛化物などを添加してもよい。これらの添加量は、一概に言えないが、総量として0.1〜50質量%である。
In addition, the metal-graphite composite particles of the present invention and resin powders such as polyethylene and polyvinyl alcohol are dry-mixed and subjected to hot press molding in a mold, for example, in accordance with a normal molding method to produce a negative electrode. You can also
Note that the metal-graphite composite particles of the present invention may be allowed to coexist with a conductive material, a modifier, an additive, and the like that are usually used for producing a negative electrode material and a negative electrode. For example, natural graphite, artificial graphite, carbon black, vapor grown carbon fiber, low crystalline carbon particles, or a graphitized product thereof may be added. Although these addition amounts cannot be generally stated, the total amount is 0.1 to 50% by mass.

(リチウムイオン二次電池)
リチウムイオン二次電池は、通常、負極、正極および非水電解質を主たる電池構成要素とし、正極および負極はそれぞれリチウムイオンの担持体であり、充電時にはリチウムイオンが負極に吸蔵され、放電時には負極から離脱する電池機構によっている。
本発明のリチウムイオン二次電池は、負極材料として前記の金属−黒鉛系複合粒子からなる負極材料を用いること以外は特に限定されず、正極、電解質、セパレータなどの他の電池構成要素については一般的なリチウムイオン二次電池の要素に準じる。
(Lithium ion secondary battery)
A lithium ion secondary battery usually has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main battery components. Each of the positive electrode and the negative electrode is a lithium ion carrier, and lithium ions are occluded in the negative electrode during charging and from the negative electrode during discharging. It depends on the battery mechanism to be detached.
The lithium ion secondary battery of the present invention is not particularly limited except that the negative electrode material composed of the above-mentioned metal-graphite composite particles is used as the negative electrode material, and other battery components such as a positive electrode, an electrolyte, and a separator are generally used. It conforms to the elements of a typical lithium ion secondary battery.

(正極)
正極は、例えば正極材料と結着剤および導電剤よりなる正極合剤を集電体の表面に塗布することにより形成される。正極材料(正極活物質)は、充分量のリチウムを吸蔵/離脱し得るものを選択することが好ましく、リチウム含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物およびそのリチウム化合物などのリチウム含有化合物、一般式MX Mo6 8-y (式中Mは少なくとも一種の遷移金属元素であり、Xは0≦X≦4、Yは0≦Y≦1の範囲の数値である)で表されるシェブレル相化合物、活性炭、活性炭素繊維などである。バナジウム酸化物は、V2 5 、V6 13、V2 4 、V3 8 で示されるものである。該リチウム含有遷移金属酸化物は、リチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶したものであってもよい。該複合酸化物は単独で使用しても、2種類以上を組合わせて使用してもよい。
(Positive electrode)
The positive electrode is formed, for example, by applying a positive electrode mixture comprising a positive electrode material, a binder and a conductive agent to the surface of the current collector. It is preferable to select a positive electrode material (positive electrode active material) that can occlude / release a sufficient amount of lithium. The lithium-containing transition metal oxide, transition metal chalcogenide, vanadium oxide, and lithium-containing compounds such as lithium compounds thereof are preferable. A compound represented by the general formula M X Mo 6 S 8-y (wherein M is at least one transition metal element, X is a numerical value in the range of 0 ≦ X ≦ 4, and Y ≦ 0 ≦ 1). Chevrel phase compounds, activated carbon, activated carbon fibers and the like. The vanadium oxide is represented by V 2 O 5 , V 6 O 13 , V 2 O 4 , or V 3 O 8 . The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. The composite oxide may be used alone or in combination of two or more.

リチウム含有遷移金属酸化物は、具体的には、LiM1 1-X2 X 2 (式中M1 およびM2 は少なくとも一種の遷移金属元素であり、Xは0≦X≦1の範囲の数値である)、またはLiM1 1-Y2 Y 4 (式中M1 およびM2 は少なくとも一種の遷移金属元素であり、Yは0≦Y≦1の範囲の数値である)で示される。
1 およびM2 で示される遷移金属元素は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどであり、好ましいのはCo、Fe、Mn、Ti、Cr、V、Alなどである。好ましい具体例は、LiCoO2 、LiNiO2 、LiMnO2 、LiNi0.9 Co0.1 2 、LiNi0.5 Mn0.5 2 などである。
該リチウム含有遷移金属酸化物は、例えば、リチウムと、遷移金属の酸化物、水酸化物、塩類等とを出発原料とし、これら出発原料を所望の金属酸化物の組成に応じて混合し、酸素雰囲気下600〜1000℃の温度で焼成することにより得ることができる。
Specifically, the lithium-containing transition metal oxide is LiM 1 1-X M 2 X O 2 (wherein M 1 and M 2 are at least one transition metal element, and X is in the range of 0 ≦ X ≦ 1. LiM 1 1-Y M 2 Y O 4 (wherein M 1 and M 2 are at least one transition metal element, and Y is a value in the range of 0 ≦ Y ≦ 1). Indicated.
The transition metal elements represented by M 1 and M 2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, etc., preferably Co, Fe, Mn, Ti, Cr , V, Al, etc. Preferred examples are LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Mn 0.5 O 2 and the like.
The lithium-containing transition metal oxide includes, for example, lithium and transition metal oxides, hydroxides, salts, and the like as starting materials, and these starting materials are mixed according to the composition of the desired metal oxide, and oxygen It can be obtained by firing at a temperature of 600 to 1000 ° C. in an atmosphere.

正極活物質は、前記化合物を単独で使用しても2種類以上併用してもよい。例えば、正極中に炭酸リチウム等の炭酸塩を添加することができる。また、正極を形成するに際しては、従来公知の導電剤や結着剤などの各種添加剤を適宜に使用することができる。
正極は、前記正極材料、結合剤、および正極に導電性を付与するための導電剤よりなる正極合剤を、集電体の両面に塗布して正極合剤層を形成して作製される。結着剤としては、負極の作製に使用されるものと同じものが使用可能であり、例えば、炭素材料、黒鉛やカーボンブラックが用いられる。
正極に用いる集電体の形状は特に限定されないが、箔状またはメッシュ、エキスパンドメタル等の網状等のものが用いられる。集電体の材質は、アルミニウム、銅、ステンレス、ニッケル等である。その厚さは箔状の場合は10〜40μmであることが好ましい。
The positive electrode active material may be used alone or in combination of two or more. For example, a carbonate such as lithium carbonate can be added to the positive electrode. Moreover, when forming a positive electrode, conventionally well-known various additives, such as a electrically conductive agent and a binder, can be used suitably.
The positive electrode is produced by applying a positive electrode mixture comprising the positive electrode material, a binder, and a conductive agent for imparting conductivity to the positive electrode on both sides of the current collector to form a positive electrode mixture layer. As the binder, the same ones used for the production of the negative electrode can be used, and for example, a carbon material, graphite or carbon black is used.
Although the shape of the current collector used for the positive electrode is not particularly limited, a foil shape or a mesh shape such as a mesh or an expanded metal is used. The material of the current collector is aluminum, copper, stainless steel, nickel, or the like. In the case of a foil shape, the thickness is preferably 10 to 40 μm.

正極も負極と同様に、正極合剤を溶剤中に分散させペースト状にし、このペースト状の正極合剤を集電体に塗布、乾燥して正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス等の圧着を行ってもよい。これにより正極合剤層が均一且つ強固に集電材に接着される。   Similarly to the negative electrode, the positive electrode mixture may be formed in a paste by dispersing the positive electrode mixture in a solvent, and the paste-like positive electrode mixture may be applied to a current collector and dried to form a positive electrode mixture layer. After forming the agent layer, pressure bonding such as pressing may be further performed. As a result, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.

(非水電解質)
本発明のリチウムイオン二次電池は、非水電解質として液系の電解質のほかに固体電解質またはゲル電解質などの高分子電解質を使用することができる。非水電解質としては、通常の非水電解液に使用される電解質塩であり、例えば、LiPF6 、LiBF4 、LiAsF6 、LiClO4 、LiB(C6 5 )、LiCl、LiBr、LiCF3 SO3 、LiCH3 SO3 、LiN(CF3 SO2 2 、LiC(CF3 SO2 3 、LiN(CF3 CH2 OSO2 2 、LiN(CF3 CF2 OSO2 2 、LiN(HCF2 CF2 CH2 OSO2 2 、LiN[(CF3 2 CHOSO2 2 、LiB[(C6 3 ((CF3 2 4 、LiAlCl4 、LiSiF6 などのリチウム塩を用いることができる。特にLiPF6 、LiBF4 が酸化安定性の点から好ましく用いられる。
電解質中の電解質塩濃度は、0.1〜5mol /dm3であることが好ましく、0.5〜3.0mol/dm3 であることがより好ましい。
(Nonaqueous electrolyte)
The lithium ion secondary battery of the present invention can use a polymer electrolyte such as a solid electrolyte or a gel electrolyte in addition to a liquid electrolyte as a nonaqueous electrolyte. As the non-aqueous electrolyte, and an electrolyte salt used in the conventional non-aqueous electrolyte, for example, LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiB (C 6 H 5), LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 2 OSO 2 ) 2 , LiN (HCF Use a lithium salt such as 2 CF 2 CH 2 OSO 2 ) 2 , LiN [(CF 3 ) 2 CHOSO 2 ] 2 , LiB [(C 6 H 3 ((CF 3 ) 2 ] 4 ), LiAlCl 4 , LiSiF 6. In particular, LiPF 6 and LiBF 4 are preferably used from the viewpoint of oxidation stability.
Concentration of the electrolyte salt in the electrolyte is preferably 0.1 to 5 mol / dm 3, more preferably 0.5~3.0mol / dm 3.

非水電解質液とするための溶媒は、通常の非水電解液に使用される溶媒であり、具体的には、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート、1,1−または1,2−ジメトキシエタン、1,2 −ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒を用いることができる。   The solvent for making the non-aqueous electrolyte solution is a solvent used for a normal non-aqueous electrolyte solution, specifically, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, anisole, ethers such as diethyl ether, Thioethers such as sulfolane and methylsulfolane, nitriles such as acetonitrile, chloronitrile and propionitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthophosphate Formate, nitrobenzene, benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, may be used an aprotic organic solvent such as dimethyl sulfite.

高分子電解質の製造方法は特に制限されないが、例えば、マトリックスを構成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して高分子化合物を溶融・溶解する方法、混合用有機溶媒に、高分子化合物、リチウム化合物および非水溶媒を溶解させた後、混合用有機溶媒を蒸発させる方法、重合性モノマー、リチウム塩および非水溶媒を混合し、混合物に紫外線、電子線または分子線などを照射して重合させる方法などを挙げることができる。高分子電解質中の非水溶媒の割合は10〜90質量%であることが好ましく、30〜80質量%であることがより好ましい。10質量%未満であると、導電率が低くなり、90質量%を超えると機械的強度が低下し、製膜しにくくなる。   The method for producing the polymer electrolyte is not particularly limited. For example, the polymer compound, lithium salt and non-aqueous solvent (plasticizer) constituting the matrix are mixed and heated to melt and dissolve the polymer compound. A method in which a polymer compound, a lithium compound, and a non-aqueous solvent are dissolved in an organic solvent for use, and then the organic solvent for mixing is evaporated. A polymerizable monomer, a lithium salt, and a non-aqueous solvent are mixed. Or the method of irradiating with a molecular beam etc. and polymerizing can be mentioned. The ratio of the nonaqueous solvent in the polymer electrolyte is preferably 10 to 90% by mass, and more preferably 30 to 80% by mass. If it is less than 10% by mass, the electrical conductivity will be low, and if it exceeds 90% by mass, the mechanical strength will be reduced and film formation will be difficult.

高分子電解質としては、ポリエチレンオキサイドやその架橋体などのエーテル系重合体、ポリメタクリレート系重合体、ポリアクリレート系重合体、ポリビニリデンフルオライド(PVDF)やビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系樹脂などを単独または混合して用いることができる。これらの中で、酸化還元安定性の観点などから、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系樹脂を用いることが好ましい。
高分子ゲル電解質の場合、可塑剤である非水電解液中の電解質塩濃度は0.1〜5mol /dm3であることが好ましく、0.5〜2.0mol/dm3 であることがより好ましい。
Examples of polymer electrolytes include ether-based polymers such as polyethylene oxide and cross-linked products thereof, polymethacrylate-based polymers, polyacrylate-based polymers, polyvinylidene fluoride (PVDF), and vinylidene fluoride-hexafluoropropylene copolymers. These fluororesins can be used alone or in combination. Among these, from the viewpoint of oxidation-reduction stability, it is preferable to use a fluorine-based resin such as polyvinylidene fluoride or vinylidene fluoride-hexafluoropropylene copolymer.
In the case of a polymer gel electrolyte, the electrolyte salt concentration in the non-aqueous electrolyte as a plasticizer is preferably 0.1 to 5 mol / dm 3 , more preferably 0.5 to 2.0 mol / dm 3. preferable.

(セパレータ)
本発明のリチウムイオン二次電池においては、セパレータを使用することもできる。セパレータは特に限定されるものではないが、例えば織布、不織布、合成樹脂製微多孔膜などが挙げられる。合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の面で好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等である。
(Separator)
In the lithium ion secondary battery of the present invention, a separator can also be used. Although a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. are mentioned. A synthetic resin microporous membrane is preferred, and among them, a polyolefin microporous membrane is preferred in terms of thickness, membrane strength, and membrane resistance. Specifically, it is a microporous membrane made of polyethylene and polypropylene, or a microporous membrane that combines these.

本発明のリチウムイオン二次電池の構造は任意であり、その形状、形態について特に限定されるものではなく、用途、搭載機器、要求される充放電容量などに応じて、円筒型、角型、コイン型、ボタン型などの中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものであることが好ましい。高分子固体電解質電池や高分子ゲル電解質電池の場合には、アルミラミネートフィルムに封入した構造とすることもできる。   The structure of the lithium ion secondary battery of the present invention is arbitrary, and is not particularly limited with respect to its shape and form, and may be cylindrical, rectangular, depending on the application, mounted equipment, required charge / discharge capacity, etc. A coin type, a button type, or the like can be arbitrarily selected. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to include a means for detecting an increase in the internal pressure of the battery and shutting off the current when there is an abnormality such as overcharging. In the case of a polymer solid electrolyte battery or a polymer gel electrolyte battery, a structure enclosed in an aluminum laminate film can also be used.

次に本発明を実施例および比較例により具体的に説明するが、本発明はこれらの例に限定されるものではない。また、実施例および比較例では、図1に示すような構成の評価用ボタン型二次電池を作製して評価した。実電池は、本発明の目的に基づき、公知の方法に準じて作製することができる。該評価用電池においては、作用電極を負極、対極を正極と表現した。
実施例および比較例において、嵩密度は、パウダーテスター[ホソカワミクロン(株)製]を用い、JIS R1628(ファインセラミックス粉末のかさ密度測定方法)の定容積測定法に準拠して測定した。
真密度は、ピクノメーターを用い、ブタノールを分散媒として液相置換法で測定した。
金属−黒鉛系複合粒子の平均粒子径は,レーザー回折式粒度分布計[セイシン(株)製、LS−5000]を用いて測定し、累積度数が体積分率で50%となる粒子径とした。
EXAMPLES Next, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these examples. In Examples and Comparative Examples, evaluation button type secondary batteries having the configuration as shown in FIG. 1 were produced and evaluated. A real battery can be manufactured according to a well-known method based on the objective of this invention. In the evaluation battery, the working electrode was expressed as a negative electrode, and the counter electrode was expressed as a positive electrode.
In Examples and Comparative Examples, the bulk density was measured using a powder tester [manufactured by Hosokawa Micron Co., Ltd.] according to JIS R1628 (method for measuring bulk density of fine ceramic powder).
The true density was measured by a liquid phase substitution method using a pycnometer and butanol as a dispersion medium.
The average particle size of the metal-graphite composite particles was measured using a laser diffraction particle size distribution meter (manufactured by Seishin Co., Ltd., LS-5000), and the particle size was such that the cumulative frequency was 50% in volume fraction. .

(実施例1)
(金属−黒鉛系複合粒子の製造)
表1に示す組成となるように、金属Si粉末[高純度化学研究所(株)製、平均粒子径2μm]、気相成長炭素繊維の黒鉛化物[昭和電工(株)製、平均繊維長10μm]、天然黒鉛[(株)中越黒鉛工業所製、平均粒子径10μm]を乾式混合して、二軸加熱ニーダーを用いて、150℃で1時間混練し、造粒物を製造した。次に、造粒物をコールタールピッチ溶液(溶媒:タール中油)に浸漬し、減圧下、950℃で焼成して、炭素質材料の含有量が表1になるように調整し、金属−黒鉛系複合粒子を得た。該金属−黒鉛系複合粒子の嵩密度、真密度を測定し、前記の式によって空隙率を計算した。結果を表1に示した。
Example 1
(Production of metal-graphite composite particles)
Metal Si powder [manufactured by High Purity Chemical Laboratory Co., Ltd., average particle diameter 2 μm], graphitized vapor-grown carbon fiber [manufactured by Showa Denko KK, average fiber length 10 μm so as to have the composition shown in Table 1 ], Natural graphite [manufactured by Chuetsu Graphite Co., Ltd., average particle size 10 μm] was dry-mixed and kneaded at 150 ° C. for 1 hour using a biaxial heating kneader to produce a granulated product. Next, the granulated product is immersed in a coal tar pitch solution (solvent: oil in tar) and fired at 950 ° C. under reduced pressure to adjust the content of the carbonaceous material to be as shown in Table 1, and metal-graphite System composite particles were obtained. The bulk density and true density of the metal-graphite composite particles were measured, and the porosity was calculated by the above formula. The results are shown in Table 1.

(負極合剤ペーストの作製)
前記金属−黒鉛系複合粒子90質量%と、ポリフッ化ビニリデン10質量%をN−メチルピロリドンに入れ、ホモミキサーを用いて2000rpm で3分間攪拌混合し、有機溶剤系負極合剤ペーストを調製した。
(Preparation of negative electrode mixture paste)
90% by mass of the metal-graphite composite particles and 10% by mass of polyvinylidene fluoride were placed in N-methylpyrrolidone and stirred and mixed for 3 minutes at 2000 rpm using a homomixer to prepare an organic solvent-based negative electrode mixture paste.

(作用電極の作製)
前記負極合剤ペーストを銅箔上に均一な厚さで塗布し、真空中90℃でN−メチルピロリドンを揮発させ、乾燥し、負極合剤層をハンドプレスによって加圧した。銅箔と負極合剤層を直径15.5mmの円柱状に打抜いて、銅箔(厚さ16μm)と、該銅箔に密着した負極合剤層(層厚50μm)とからなる作用電極を作製した。
(Production of working electrode)
The negative electrode mixture paste was applied to a copper foil with a uniform thickness, N-methylpyrrolidone was volatilized at 90 ° C. in a vacuum, dried, and the negative electrode mixture layer was pressed by a hand press. A working electrode comprising a copper foil (thickness 16 μm) and a negative electrode mixture layer (layer thickness 50 μm) adhered to the copper foil is punched out into a cylindrical shape having a diameter of 15.5 mm. Produced.

(対極の作製)
リチウム箔をニッケルネットに押付け、直径15.5mmの円柱状に打抜いて、ニッケルネットに密着したリチウム箔(厚さ0.5μm)からなる対極を作製した。
(Production of counter electrode)
The lithium foil was pressed against a nickel net and punched into a cylindrical shape with a diameter of 15.5 mm to produce a counter electrode made of a lithium foil (thickness 0.5 μm) in close contact with the nickel net.

(電解液・セパレータ)
エチレンカーボネート33vol%とメチルエチルカーボネート67vol%を混合してなる混合溶媒に、LiPF6 を1mol/dm3 となる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をポリプロピレン多孔質シート(厚さ20μm)に含浸させ、電解液が含浸したセパレータを作製した。
(Electrolyte / Separator)
LiPF 6 was dissolved at a concentration of 1 mol / dm 3 in a mixed solvent obtained by mixing 33 vol% ethylene carbonate and 67 vol% methyl ethyl carbonate to prepare a non-aqueous electrolyte. The obtained nonaqueous electrolytic solution was impregnated into a polypropylene porous sheet (thickness: 20 μm) to produce a separator impregnated with the electrolytic solution.

(評価電池)
評価電池として、図1に示すボタン型二次電池を次の手順で作製した。
集電材7bに密着した作用電極2と、集電材7aに密着した対極4との間に、電解液を含浸させたセパレータ5を挟んで、積層した。その後、負極集電材7b側が外装カップ1内に、正極集電材7a側が外装缶3内に収容されるように、外装カップ1と外装缶3とを合わせた。その際、外装カップ1と外装缶3との周縁部に、絶縁ガスケット6を介在させ、両周縁部をかしめて密閉した。
該評価電池について、温度25℃で下記のような充放電実験を行い、放電容量、初期充放電効率、サイクル特性を計算した。充放電特性(放電容量、初期充放電効率およびサイクル特性)を表2に示した。
(Evaluation battery)
As an evaluation battery, a button-type secondary battery shown in FIG. 1 was produced by the following procedure.
The working electrode 2 in close contact with the current collector 7b and the counter electrode 4 in close contact with the current collector 7a were stacked with a separator 5 impregnated with an electrolyte interposed therebetween. Thereafter, the outer cup 1 and the outer can 3 were combined so that the negative electrode current collector 7 b side was accommodated in the outer cup 1 and the positive electrode current collector 7 a side was accommodated in the outer can 3. At that time, an insulating gasket 6 was interposed between the peripheral edges of the outer cup 1 and the outer can 3, and both peripheral edges were caulked and sealed.
The evaluation battery was subjected to the following charge / discharge experiments at a temperature of 25 ° C., and the discharge capacity, initial charge / discharge efficiency, and cycle characteristics were calculated. The charge / discharge characteristics (discharge capacity, initial charge / discharge efficiency, and cycle characteristics) are shown in Table 2.

(放電容量・初期充放電効率)
0.9mAの電流値で回路電圧が0mVに達するまで定電流充電を行い、回路電圧が0mVに達した時点で定電圧充電に切替え、さらに電流値が20μAになるまで充電を続けた。その間の通電量から充電容量を求めた。その後、120分間休止した。次に、0.9mAの電流値で回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。次式から初期充放電効率を計算した。なお、この試験では、リチウムを黒鉛質粒子へ吸蔵する過程を充電、離脱する過程を放電とした。
初期充放電効率(%)=(第1サイクルの放電容量/第1サイクルの充電容量)× 100
(Discharge capacity and initial charge / discharge efficiency)
The constant current charging was performed until the circuit voltage reached 0 mV at a current value of 0.9 mA. When the circuit voltage reached 0 mV, switching was made to constant voltage charging, and the charging was continued until the current value reached 20 μA. The charging capacity was determined from the amount of electricity applied during that time. Then, it rested for 120 minutes. Next, constant current discharge was performed until the circuit voltage reached 1.5 V at a current value of 0.9 mA, and the discharge capacity was determined from the amount of current applied during this period. The initial charge / discharge efficiency was calculated from the following equation. In this test, the process of occluding lithium into the graphite particles was charged and the process of detaching was defined as discharge.
Initial charge / discharge efficiency (%) = (first cycle discharge capacity / first cycle charge capacity) × 100

(サイクル特性)
放電容量、初期充放電効率を評価した評価電池とは別の評価電池を同様に作製し、以下のような評価を行った。
回路電圧が0mVに達するまで4.0mAの電流値で定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた後、120分間休止した。次に、4.0mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行った。この充放電を20サイクル繰返した。第1サイクルと、第20サイクルの充放電容量を求め、次式を用いてサイクル特性を計算した。
サイクル特性=(第20サイクルにおける放電容量/第1サイクルにおける放電容 量)×100
(Cycle characteristics)
An evaluation battery different from the evaluation battery that evaluated the discharge capacity and the initial charge / discharge efficiency was similarly produced, and the following evaluation was performed.
After constant current charging at a current value of 4.0 mA until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA, and then rested for 120 minutes. Next, constant current discharge was performed at a current value of 4.0 mA until the circuit voltage reached 1.5V. This charging / discharging was repeated 20 cycles. The charge / discharge capacities of the first cycle and the 20th cycle were determined, and the cycle characteristics were calculated using the following formula.
Cycle characteristics = (discharge capacity in 20th cycle / discharge capacity in 1st cycle) × 100

(実施例2〜10、比較例1〜8)
表1に記載した金属Si粉末、気相成長炭素繊維の黒鉛化物、非繊維状黒鉛質材料およびコールタールピッチを、表1に示す組成となるように用いて、実施例1と同様な方法と条件で、金属−黒鉛系複合粒子を得た。該金属−黒鉛系複合粒子の空隙率を表1に示した。
得られた該金属−黒鉛系複合粒子を用いて、実施例1と同様な方法と条件で、負極剤ペーストを調製し、負極材料および負極を作製し、評価電池を作製した。電池特性(放電容量、初期充放電効率およびサイクル特性)を実施例1と同様に測定して、評価結果を表2に示した。
(Examples 2 to 10, Comparative Examples 1 to 8)
Using the metal Si powder, the vapor-grown carbon fiber graphitized material, the non-fibrous graphite material and the coal tar pitch described in Table 1 so as to have the composition shown in Table 1, the same method as in Example 1 Under the conditions, metal-graphite composite particles were obtained. The porosity of the metal-graphite composite particles is shown in Table 1.
Using the obtained metal-graphite composite particles, a negative electrode agent paste was prepared under the same method and conditions as in Example 1, a negative electrode material and a negative electrode were prepared, and an evaluation battery was prepared. The battery characteristics (discharge capacity, initial charge / discharge efficiency and cycle characteristics) were measured in the same manner as in Example 1, and the evaluation results are shown in Table 2.

実施例3と比較例1との対比から、金属−黒鉛系複合粒子に占める金属Siの割合が23質量%と35質量%との間には、特にサイクル特性に顕著な差があることが明らかである。
実施例7と比較例4との対比から、金属−黒鉛系複合粒子に占める黒鉛質材料の割合が40質量%と20質量%との間には、特にサイクル特性に顕著な差があることが明らかである。
実施例4と比較例2との対比から、金属−黒鉛系複合粒子の黒鉛質材料に占める繊維状黒鉛質材料の割合が45質量%と60質量%との間には、特にサイクル特性に顕著な差があることが明らかである。
実施例5と比較例3、実施例10と比較例8との対比から、金属−黒鉛系複合粒子の黒鉛質材料に占める炭素質材料の割合が40質量%と60質量%との間、および8質量%と1質量%との間には、特に初期充放電効率とサイクル特性に顕著な差があることが明らかである。
実施例9と比較例4、実施例10と比較例5との対比から、金属−黒鉛系複合粒子の空隙率が30%と22%との間、および70%と85%との間には、特にサイクル特性に顕著な差があることが明らかである。
From the comparison between Example 3 and Comparative Example 1, it is clear that there is a particularly significant difference in cycle characteristics when the proportion of metal Si in the metal-graphite composite particles is 23% by mass and 35% by mass. It is.
From the comparison between Example 7 and Comparative Example 4, there is a particularly significant difference in cycle characteristics when the proportion of the graphitic material in the metal-graphite composite particles is 40% by mass and 20% by mass. it is obvious.
From the comparison between Example 4 and Comparative Example 2, when the ratio of the fibrous graphite material to the graphite material of the metal-graphite composite particles is between 45% by mass and 60% by mass, the cycle characteristics are particularly remarkable. There is a clear difference.
From the comparison between Example 5 and Comparative Example 3, Example 10 and Comparative Example 8, the ratio of the carbonaceous material to the graphite material of the metal-graphite composite particles is between 40% by mass and 60% by mass, and It is clear that there is a marked difference in the initial charge / discharge efficiency and the cycle characteristics between 8% by mass and 1% by mass.
From the comparison between Example 9 and Comparative Example 4 and Example 10 and Comparative Example 5, the porosity of the metal-graphite composite particles was between 30% and 22%, and between 70% and 85%. In particular, it is clear that there are significant differences in cycle characteristics.

Figure 0004996827
Figure 0004996827

充放電試験に用いるためのボタン型評価電池の構造を示す模式断面図である。It is a schematic cross section which shows the structure of the button type evaluation battery for using for a charging / discharging test.

符号の説明Explanation of symbols

1 外装カップ
2 作用電極
3 外装缶
4 対極
5 セパレータ
6 絶縁ガスケット
7a、7b 集電材
DESCRIPTION OF SYMBOLS 1 Exterior cup 2 Working electrode 3 Exterior can 4 Counter electrode 5 Separator 6 Insulating gasket 7a, 7b Current collector

Claims (5)

リチウムと合金化可能な金属、黒鉛質材料および炭素質材料からなる金属−黒鉛系複合粒子において、該金属−黒鉛系複合粒子の全質量に対する該リチウムと合金化可能な金属の質量の割合が1質量%以上30質量%未満、該黒鉛質材料の質量の割合が30〜95質量%、該炭素質材料の質量の割合が4〜50質量%であり、かつ該黒鉛質材料が繊維状黒鉛質材料と非繊維状黒鉛質材料を含み、該黒鉛質材料の全質量に対する該繊維状黒鉛質材料の質量の割合が50質量%未満であり、さらに該金属−黒鉛系複合粒子の空隙率(%)を(1−嵩密度/真密度)×100で規定した場合、該空隙率が25〜80%であり、
前記リチウムと合金化可能な金属と、前記繊維状黒鉛質材料および前記非繊維状黒鉛質材料とを混合、攪拌して造粒物を製造した後、該造粒物と前記炭素質材料の前駆体とを混合し、常圧または減圧下で、加熱して、該前駆体を前記炭素質材料に変化させて得られることを特徴とするリチウムイオン二次電池負極用金属−黒鉛系複合粒子。
In a metal-graphite composite particle composed of a metal that can be alloyed with lithium, a graphite material, and a carbonaceous material, the ratio of the mass of the metal that can be alloyed with lithium to the total mass of the metal-graphite composite particle is 1 The ratio of the mass of the graphitic material is 30 to 95 mass%, the ratio of the mass of the carbonaceous material is 4 to 50 mass%, and the graphite material is fibrous graphite. A ratio of the mass of the fibrous graphite material to the total mass of the graphite material is less than 50 mass%, and the porosity of the metal-graphite composite particles (% ) Is defined by (1-bulk density / true density) × 100, the porosity is 25 to 80%,
After the metal that can be alloyed with lithium, the fibrous graphite material and the non-fibrous graphite material are mixed and stirred to produce a granulated product, the granulated product and the precursor of the carbonaceous material A metal-graphite based composite particle for a negative electrode of a lithium ion secondary battery, which is obtained by mixing a body and heating under normal pressure or reduced pressure to change the precursor to the carbonaceous material.
請求項1に記載のリチウムイオン二次電池負極用金属−黒鉛系複合粒子を製造する製造方法であって、
リチウムと合金化可能な金属と、繊維状黒鉛質材料および非繊維状黒鉛質材料とを混合、攪拌して造粒物を製造する工程と、
前記造粒物と炭素質材料の前駆体とを混合し、常圧または減圧下で加熱して、該前駆体を炭素質材料に変化させることにより空隙を有する金属−黒鉛系複合粒子を得る工程と、
を有するリチウムイオン二次電池負極用金属−黒鉛系複合粒子の製造方法。
A method for producing the metal-graphite composite particles for a negative electrode of a lithium ion secondary battery according to claim 1 ,
Mixing a metal capable of alloying with lithium, a fibrous graphite material and a non-fibrous graphite material, and stirring to produce a granulated product;
The step of obtaining the metal-graphite composite particles having voids by mixing the granulated material and the precursor of the carbonaceous material, and heating under normal pressure or reduced pressure to change the precursor to the carbonaceous material. When,
The manufacturing method of the metal-graphite type composite particle for lithium ion secondary battery negative electrodes which has NO.
請求項1に記載のリチウムイオン二次電池負極用金属−黒鉛系複合粒子を含むことを特徴とするリチウムイオン二次電池用負極材料。 A negative electrode material for a lithium ion secondary battery comprising the metal-graphite composite particles for a negative electrode of a lithium ion secondary battery according to claim 1 . 請求項1に記載のリチウムイオン二次電池負極用金属−黒鉛系複合粒子を含むことを特徴とするリチウムイオン二次電池用負極。 A negative electrode for a lithium ion secondary battery comprising the metal-graphite composite particles for a lithium ion secondary battery negative electrode according to claim 1 . 請求項に記載のリチウムイオン二次電池用負極を用いることを特徴とするリチウムイオン二次電池。 A lithium ion secondary battery using the negative electrode for a lithium ion secondary battery according to claim 4 .
JP2005081657A 2005-03-22 2005-03-22 Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery Active JP4996827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005081657A JP4996827B2 (en) 2005-03-22 2005-03-22 Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005081657A JP4996827B2 (en) 2005-03-22 2005-03-22 Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2006269110A JP2006269110A (en) 2006-10-05
JP4996827B2 true JP4996827B2 (en) 2012-08-08

Family

ID=37204858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005081657A Active JP4996827B2 (en) 2005-03-22 2005-03-22 Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4996827B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119553A1 (en) * 2008-03-25 2009-10-01 日本ゼオン株式会社 Method for production of electrode for hybrid capacitor
US9350015B2 (en) 2011-04-19 2016-05-24 Samsung Sdi Co., Ltd. Anode active material, anode and lithium battery including the material, and method of preparing the material
WO2014141732A1 (en) 2013-03-14 2014-09-18 Dic株式会社 Metal tin-carbon complex, method for producing said complex, negative electrode active material for non-aqueous lithium secondary batteries which is produced using said complex, negative electrode for non-aqueous lithium secondary batteries which comprises said negative electrode active material, and non-aqueous lithium secondary battery
KR101872217B1 (en) 2013-05-31 2018-06-28 쇼와 덴코 가부시키가이샤 Negative electrode material for lithium ion secondary battery
KR101704103B1 (en) * 2013-09-17 2017-02-07 주식회사 엘지화학 Porous silicon based anode active material and lithium secondary battery comprising the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4281099B2 (en) * 1999-03-24 2009-06-17 日立化成工業株式会社 Metal-carbon composite particles
JP2002231225A (en) * 2001-02-01 2002-08-16 Hitachi Chem Co Ltd Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
JP3897709B2 (en) * 2002-02-07 2007-03-28 日立マクセル株式会社 Electrode material, method for producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Also Published As

Publication number Publication date
JP2006269110A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP5348878B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3995050B2 (en) Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4809617B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP5993337B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JP4996830B2 (en) Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5543533B2 (en) Anode material for lithium ion secondary battery
JP5941437B2 (en) Composite particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6316466B2 (en) Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6285350B2 (en) Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery
JP2011243567A (en) Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6162482B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP4996827B2 (en) Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4050072B2 (en) Method for producing graphitic particles and negative electrode material for lithium ion secondary battery
CN112424118A (en) Method for producing monolithic mesophase graphitized article
JP4785341B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2006059704A (en) Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP6278870B2 (en) Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same
JP4643165B2 (en) Carbon material, negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP5865273B2 (en) Method for producing graphite material
JP4628007B2 (en) Carbon material manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2004083398A (en) Polycrystalline mesocarbon microsphere graphitized article, its manufacturing method, and lithium-ion secondary battery
JP2005281098A (en) Method for manufacturing carbon material, negative electrode for rechargeable lithium-ion battery, and rechargeable lithium-ion battery
JP2005281100A (en) Method for manufacturing carbon material, negative electrode material for rechargeable lithium-ion battery, negative electrode for rechargeable lithium-ion battery, and rechargeable lithium-ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4996827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150