JP4940392B2 - Method for producing carbon nanostructured material - Google Patents

Method for producing carbon nanostructured material Download PDF

Info

Publication number
JP4940392B2
JP4940392B2 JP2005064060A JP2005064060A JP4940392B2 JP 4940392 B2 JP4940392 B2 JP 4940392B2 JP 2005064060 A JP2005064060 A JP 2005064060A JP 2005064060 A JP2005064060 A JP 2005064060A JP 4940392 B2 JP4940392 B2 JP 4940392B2
Authority
JP
Japan
Prior art keywords
substrate
carbon
film
nanostructure material
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005064060A
Other languages
Japanese (ja)
Other versions
JP2006247758A (en
Inventor
眞幸 種村
正志 北澤
阿川  義昭
村上  裕彦
竜弘 野末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Ulvac Inc
Original Assignee
Olympus Corp
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Ulvac Inc filed Critical Olympus Corp
Priority to JP2005064060A priority Critical patent/JP4940392B2/en
Publication of JP2006247758A publication Critical patent/JP2006247758A/en
Application granted granted Critical
Publication of JP4940392B2 publication Critical patent/JP4940392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、フィールドエミッションディスプレイの電子源のカソード電極やテレビの電子銃、エックス線発生源の電子銃、あるいはSPM(走査型プローブ顕微鏡)用のSTM(走査型トンネル顕微鏡)やAFM(原子間力顕微鏡)等の探針、微小な針、もしくはマニュピレータ用プローブに用いられるカーボンナノファイバやカーボンナノチューブであるカーボンナノ構造材の製造方法に関する。   The present invention relates to a cathode electrode of an electron source of a field emission display, an electron gun of a television, an electron gun of an X-ray generation source, or an STM (scanning tunnel microscope) or an AFM (atomic force microscope) for an SPM (scanning probe microscope). ) Or the like, a micro needle, or a carbon nanostructure material that is a carbon nanotube used for a manipulator probe.

フラットパネルディスプレイとして、液晶ディスプレイ(LCD)やプラズマディスプレイ(PDP)が実用化されているが、近年、これら以外にもフィールドエミッションディスプレイ(FED)が注目されている(例えば、非特許文献1参照。)。   As a flat panel display, a liquid crystal display (LCD) or a plasma display (PDP) has been put into practical use. In recent years, a field emission display (FED) has attracted attention in addition to these (for example, see Non-Patent Document 1). ).

図6は、フィールドエミッションディスプレイの画素を示す概略構成図である。図6に示すように、該ディスプレイの画素は、カーボンナノ構造材のカーボンナノファイバ103またはカーボンナノチューブを有するカソード側と、蛍光体105を有するアノード側とからなる。画素のカソード側は、ガラス基板100上にカソード電極(陰極電極)101を設け、そのカソード電極101上にFe、Co、Ni、Pt等のいずれかの単膜あるいはそれらを主成分とする合金膜からなる触媒金属膜102を成膜して、該触媒金属膜102を触媒としてカソード電極101上に複数のカーボンナノファイバ103を成膜してなっている。画素のアノード側は、カソード電極101の前方側に配置したアノード電極(透明電極)104上に蛍光体105を塗布により設け、該蛍光体105上にガラス基板106を設けてなっている。カソード側とアノード側とは、カソード電極101とアノード電極104とが所定の隙間を有するように位置されるとともに、これらの間が所定の真空度に調整されている。   FIG. 6 is a schematic configuration diagram illustrating a pixel of the field emission display. As shown in FIG. 6, the pixel of the display includes a cathode side having carbon nanofibers 103 or carbon nanotubes of a carbon nanostructure material, and an anode side having a phosphor 105. On the cathode side of the pixel, a cathode electrode (cathode electrode) 101 is provided on a glass substrate 100, and a single film of Fe, Co, Ni, Pt or the like or an alloy film containing them as a main component is formed on the cathode electrode 101. A catalytic metal film 102 is formed, and a plurality of carbon nanofibers 103 are formed on the cathode electrode 101 using the catalytic metal film 102 as a catalyst. On the anode side of the pixel, a phosphor 105 is provided on an anode electrode (transparent electrode) 104 disposed on the front side of the cathode electrode 101 by coating, and a glass substrate 106 is provided on the phosphor 105. The cathode side and the anode side are positioned such that the cathode electrode 101 and the anode electrode 104 have a predetermined gap, and the space between them is adjusted to a predetermined degree of vacuum.

このカソード電極101とアノード電極104との間に電源107によって数kVの電圧を印加すると、カーボンナノファイバ103の先端部の電界が高くなり、その先端部からトンネル効果で電子が放出され、放出された電子が加速されて前方のアノード電極104を通って蛍光材105に衝突し、蛍光材105を励起して蛍光材に応じた3原色のうちの1色の光を放出し発光する。かくして複数の画素によって3原色の色合いを調整した多用な色の所望の画像を再現する。図中、カーボンナノファイバの等電位面を点線で示す。   When a voltage of several kV is applied between the cathode electrode 101 and the anode electrode 104 by the power source 107, the electric field at the tip of the carbon nanofiber 103 is increased, and electrons are emitted from the tip by the tunnel effect and emitted. The electrons are accelerated and collide with the fluorescent material 105 through the anode electrode 104 in the front, and the fluorescent material 105 is excited to emit light of one of the three primary colors corresponding to the fluorescent material. In this way, a desired image of various colors in which the hues of the three primary colors are adjusted by a plurality of pixels is reproduced. In the figure, the equipotential surface of the carbon nanofiber is indicated by a dotted line.

ところで、カソード電極101上の多数本のカーボンナノファイバ103は、ファイバ103が密集し、ある程度高さが揃っていると、1本1本のファイバ103の電界強度が高くても、全体として電界が平滑化されて、個々のファイバ103の先端部周囲の等電位面が鋭角にならず、ファイバ103の先端部から電子が放出されづらくなる(この現象はシールディング効果と呼ばれている)。また図7に示すように、カーボンナノファイバ103の高さが多少異なっていても、ファイバ103が密集していると、ファイバ103の先端部の等電位面はやはり鋭角にならず、電子が放出されなくなる。またカーボンナノファイバ103は、1本1本単独で存在する場合もあるが、概ね複数本のファイバ103が束(バンドル状態)になっていることが多く、その場合、図8に示すように、複数本のファイバ103が絡まって先端部を形成するので、同様に電界が平滑化され、電子の放出が阻害される。   By the way, the multiple carbon nanofibers 103 on the cathode electrode 101 have a high density of fibers 103 and have a certain level of height. Even if the electric field strength of each fiber 103 is high, the electric field as a whole is large. As a result of the smoothing, the equipotential surface around the tip of each fiber 103 does not become an acute angle, and electrons are not easily emitted from the tip of the fiber 103 (this phenomenon is called the shielding effect). Further, as shown in FIG. 7, even if the heights of the carbon nanofibers 103 are slightly different, if the fibers 103 are densely packed, the equipotential surface at the tip of the fiber 103 does not become an acute angle, and electrons are emitted. It will not be done. In addition, the carbon nanofibers 103 may exist individually one by one, but generally a plurality of fibers 103 are often bundled (bundled state), in which case, as shown in FIG. Since a plurality of fibers 103 are entangled to form the tip portion, the electric field is similarly smoothed and the electron emission is inhibited.

このようなことから、本発明者らは、シリコン基板上にカーボンナノ構造材のカーボンナノファイバあるいはカーボンナノチューブを密集させずに1本1本バラけた疎の状態で得るべく、基板の表面に炭素皮膜を形成し、その炭素皮膜を形成した基板の表面に、図1に示すような成長装置を用いてイオンビームを照射して、炭素皮膜をカーボンナノ構造材に成長させる実験研究を数年前から行っている。   In view of the above, the present inventors have found that carbon nanofibers or carbon nanotubes of a carbon nanostructure material are not densely packed on a silicon substrate, so that carbon nanofibers or carbon nanotubes are separated from each other in a sparse state. Several years ago, an experimental study was conducted to grow a carbon film into a carbon nanostructure material by irradiating the surface of the substrate on which the carbon film was formed with an ion beam using a growth apparatus as shown in FIG. Is going from.

基板には、例えば直径4インチのシリコン基板を使用する。まず、このシリコン基板の表面に、アークイオンプレィティング法により厚さ0.1〜3μmの炭素皮膜を予め形成して被覆する。その炭素皮膜を形成したシリコン基板を成長装置の基板ステージ3に搭載し、チャンバ5を閉じ、ロータリーポンプ7、ついでターボ分子ポンプ6でチャンバ1内を真空排気し、到達圧力が1×10-5Torr以下に達したところで、マスフローコントローラ8を用いてイオン源2にアルゴンガスを導入し、イオン源2を作動させて、Arイオンを0.3〜5kVの加速電圧で引き出し、220μA/cm2程度以上のイオン電流密度でステージ3上の基板の表面にアルゴンイオンを照射する。イオン照射に先立って基板は、加熱ヒータ4で約200℃まで加熱しておく。カーボンナノファイバの成長が可能な温度範囲は、室温〜1200℃である。 For example, a silicon substrate having a diameter of 4 inches is used as the substrate. First, a carbon film having a thickness of 0.1 to 3 μm is formed in advance on the surface of the silicon substrate by an arc ion plating method. The silicon substrate on which the carbon film is formed is mounted on the substrate stage 3 of the growth apparatus, the chamber 5 is closed, the inside of the chamber 1 is evacuated by the rotary pump 7 and then the turbo molecular pump 6, and the ultimate pressure is 1 × 10 −5. When reaching below Torr, argon gas is introduced into the ion source 2 using the mass flow controller 8, the ion source 2 is operated, and Ar ions are extracted at an accelerating voltage of 0.3 to 5 kV, about 220 μA / cm 2. The surface of the substrate on the stage 3 is irradiated with argon ions at the above ion current density. Prior to ion irradiation, the substrate is heated to about 200 ° C. by the heater 4. The temperature range in which carbon nanofibers can be grown is from room temperature to 1200 ° C.

上記のイオン照射を100分間程度行うと、図2に示すように、シリコン基板10の表面に炭素皮膜からなる多数の微小な円錐状の突起(成長用の突起)11が形成され、その各突起11の頂部にナノカーボンが成長し、直径約数nm〜数100nm、長さ0.1μm〜10μmのカーボンナノファイバ12が1本ずつ形成される。かくして、基板10上にカーボンナノファイバ12を密集させずに1本1ずつバラけた疎の状態で得ることができる。   When the above ion irradiation is performed for about 100 minutes, as shown in FIG. 2, a large number of minute conical projections (growth projections) 11 made of a carbon film are formed on the surface of the silicon substrate 10, and each of the projections. Nanocarbon grows on the top of 11, and carbon nanofibers 12 having a diameter of about several nm to several hundred nm and a length of 0.1 μm to 10 μm are formed one by one. Thus, the carbon nanofibers 12 can be obtained in a sparse state in which the carbon nanofibers 12 are separated from each other without being densely packed on the substrate 10.

またSPM(走査型プローブ顕微鏡)用のSTM(走査型トンネル顕微鏡)やAFM(原子間力顕微鏡)等の探針には、探針用の突起上にカーボンナノファイバを形成して探針を構成することがある。図3のように、基板10の表面にSPM用のSTMやAFM等の探針用の突起13を間隔を開けて予め多数形成しておき、その状態で基板10の表面に炭素皮膜を形成し、上記のイオン照射を行うと、微小な成長用の突起11の形成が、基板10の平面部でなく、突起13の頂部上に選択的に起こりやすく、さらにイオン照射を続けると、各突起11の頂部にナノカーボンが成長する。これにより、基板10上の探針用の突起13に細いカーボンナノファイバ12を1本ずつ形成することができる。   For probes such as STM (Scanning Tunneling Microscope) and AFM (Atomic Force Microscope) for SPM (Scanning Probe Microscope), carbon nanofibers are formed on the probe projections to configure the probe. There are things to do. As shown in FIG. 3, a large number of probe projections 13 such as SPM STM and AFM are formed in advance on the surface of the substrate 10 at intervals, and a carbon film is formed on the surface of the substrate 10 in that state. When the above ion irradiation is performed, the formation of the minute growth projections 11 is likely to occur selectively on the top of the projections 13 instead of the flat portion of the substrate 10. Nanocarbon grows on top of the surface. Thereby, the thin carbon nanofibers 12 can be formed one by one on the probe projection 13 on the substrate 10.

突起13の大きさは、高さ約0.1〜50μm、底辺の幅約0.05〜25μmである。突起13を形成するには、基板10に対し半導体加工法を用いる。具体的には、フォトリソグラフィを用いてマスクを転写した後、シリコン基板であればアルカリ溶液、例えばKOH(水酸化カリウム)やTMAH(tetramethyl ammonium hydroxide(テトラメチル水酸化アンモニウム))溶液でエッチング加工する。他の基板材料においても、ドライエッチングであるRIE(反応性イオンエッチング)やIPC(誘導結合型プラズマ)エッチングを用いて、基板上に突起を形成することが可能である。   The protrusion 13 has a height of about 0.1 to 50 μm and a bottom width of about 0.05 to 25 μm. In order to form the protrusion 13, a semiconductor processing method is used for the substrate 10. Specifically, after transferring the mask using photolithography, if it is a silicon substrate, it is etched with an alkaline solution such as KOH (potassium hydroxide) or TMAH (tetramethyl ammonium hydroxide) solution. . With other substrate materials, it is possible to form protrusions on the substrate using dry etching such as RIE (reactive ion etching) or IPC (inductively coupled plasma) etching.

図3において、符号14は探針を保持する支持部を基板10から切り離すための貫通孔で、カーボンナノファイバ12を形成後に貫通孔14のところで基板10を切断して、探針用の突起13を個々に分離するように使用する。分離用の貫通孔14は、大きさが数十μm以上で、突起13を形成したときと同様にアルカリ溶液またはドライエッチングを用いて基板10に形成する。
“光の話題”、「ディスプレイ市場の今後について」、2002年8月5日掲載、経済産業省 技術調査室、[平成16年4月28日検索],インターネット<URL:http://www.oitda.or.jp/main/hw/hw01302-j.html>
In FIG. 3, reference numeral 14 denotes a through hole for separating the support portion holding the probe from the substrate 10. After forming the carbon nanofibers 12, the substrate 10 is cut at the through hole 14, and the probe protrusion 13 is formed. Are used to separate them individually. The separation through-hole 14 has a size of several tens of μm or more, and is formed in the substrate 10 using an alkaline solution or dry etching in the same manner as when the protrusions 13 are formed.
“Topics of Light”, “The Future of the Display Market”, published on August 5, 2002, Ministry of Economy, Trade and Industry, Technical Research Office, [Search April 28, 2004], Internet <URL: http: // www. oitda.or.jp/main/hw/hw01302-j.html>

上記したように、基板の表面にアークイオンプレィティング法で成膜した炭素皮膜をカーボンナノファイバの成長用に使用した場合、直径4インチの基板に対し220μA/cm2程度以上のイオン電流密度で約100分のイオン照射を行わなければならず、イオン電流密度が大きい。このため、大型基板にカーボンナノファイバやカーボンナノチューブのカーボンナノ構造材を形成するには、大電流のイオン源が必要となる。 As described above, when a carbon film formed on the surface of the substrate by the arc ion plating method is used for the growth of carbon nanofibers, the ion current density is about 220 μA / cm 2 or more for a substrate having a diameter of 4 inches. Ion irradiation must be performed for about 100 minutes, and the ion current density is large. For this reason, a large current ion source is required to form carbon nanofibers or carbon nanostructures such as carbon nanotubes on a large substrate.

このような問題は、アーク蒸着法やECRプラズマCVD法等で成膜した炭素膜からカーボンナノファイバ等のカーボンナノ構造材を成長させる場合にも同様に確認されている。これらの方法で炭素膜を被覆した直径4インチの基板に、イオン電流密度約220μA/cm2、照射時間100分の条件でイオン照射すると、カーボンナノ構造材を成長させることができる。したがって、大型基板にカーボンナノ構造材を形成させるには、同様に、大電流のイオン源が必要である。 Such a problem has also been confirmed in the case where a carbon nanostructure material such as carbon nanofiber is grown from a carbon film formed by an arc deposition method, an ECR plasma CVD method, or the like. When a 4-inch diameter substrate coated with a carbon film by these methods is irradiated with ions under the conditions of an ion current density of about 220 μA / cm 2 and an irradiation time of 100 minutes, a carbon nanostructure material can be grown. Therefore, in order to form a carbon nanostructure material on a large substrate, an ion source with a large current is required as well.

なお、上記のアークイオンプレィティングやアーク蒸着法、ECRプラズマCVD法等は、いずれも、非常に緻密で硬い炭素皮膜を得ることができる成膜方法である。このうちアークイオンプレィティング法やアーク蒸着法は、従来、主に工具のコーティングに用いられ、ECRプラズマCVD法は、主にハードディスクの保護膜の形成に用いられている。   The arc ion plating, the arc vapor deposition method, the ECR plasma CVD method, and the like are all film forming methods capable of obtaining a very dense and hard carbon film. Of these, the arc ion plating method and the arc vapor deposition method are conventionally mainly used for coating of tools, and the ECR plasma CVD method is mainly used for forming a protective film of a hard disk.

したがって、本発明の課題は、表面に炭素皮膜を形成した基板をイオン照射して、基板の表面に形成された各微小突起の頂部に1本ずつカーボンナノファイバを成長させて、基板上にカーボンナノファイバやカーボンナノチューブであるカーボンナノ構造材をバラけた疎の状態で得るに際し、基板の表面に形成する炭素皮膜を適切なものに選択することによって、低い電流密度のイオン照射によってナノ構造材を疎な状態で成長可能としたカーボンナノ構造材の製造方法を提供することである。   Accordingly, an object of the present invention is to irradiate a substrate having a carbon film on the surface with ions, to grow one carbon nanofiber on the top of each microprotrusion formed on the surface of the substrate, and to form carbon on the substrate. When carbon nanostructure materials such as nanofibers and carbon nanotubes are obtained in a loose and sparse state, by selecting an appropriate carbon film to be formed on the surface of the substrate, the nanostructure material can be obtained by ion irradiation at a low current density. The object is to provide a method for producing a carbon nanostructure material that can be grown in a sparse state.

上記課題を解決するために、本発明のカーボンナノ構造材の製造方法は、基板の表面にアクリロニトリル系、ピッチ系又はフェノール樹脂系の有機ポリマー溶液を塗布し、前記有機ポリマー溶液が塗布された基板を真空加熱炉で加熱処理して、前記基板の表面に炭素皮膜を形成し、前記炭素皮膜が形成された基板の表面に真空槽で、電流密度30〜150μA/cm イオンビームを照射して、前記基板の表面に形成された多数の突起のそれぞれの頂部にカーボンナノファイバまたはカーボンナノチューブであるカーボンナノ構造材が1本成長した態様で、前記基板の表面にカーボンナノ構造材を形成することを特徴とする。 In order to solve the above-mentioned problems, the method for producing a carbon nanostructure material of the present invention includes applying a acrylonitrile-based, pitch-based or phenolic resin-based organic polymer solution to the surface of a substrate, and the substrate on which the organic polymer solution is applied. Is heated in a vacuum heating furnace to form a carbon film on the surface of the substrate, and the surface of the substrate on which the carbon film is formed is irradiated with an ion beam at a current density of 30 to 150 μA / cm 2 in a vacuum chamber. The carbon nanostructure material is formed on the surface of the substrate in such a manner that one carbon nanostructure material, which is a carbon nanofiber or a carbon nanotube, is grown on the top of each of the many protrusions formed on the surface of the substrate. It is characterized by that.

本発明によれば、前記有機ポリマー溶液はアクリロニトリル系重合体の溶液であり、前記重合体を基板の表面に塗布し、ついで前記基板を酸素含有雰囲気中で200〜400℃の温度で焼成して前記アクリロニトリル系重合体の塗膜を予備酸化処理し、ついで前記基板を不活性雰囲気中で少なくとも1000℃の温度で焼成することによって前記塗膜を炭化処理して、前記基板の表面に炭素皮膜を形成するようにすることができる。もしくは、前記有機ポリマー溶液はピッチ溶液であり、前記ピッチ系溶液を基板の表面に塗布し、ついで前記基板を不活性ガス雰囲気中で350〜450℃の温度で加熱して前記ピッチの塗膜を炭化処理することによって、前記基板の表面に炭素皮膜を形成してもよい。あるいは、前記有機ポリマー溶液はレゾール型またはノボラック型のフェノール樹脂溶液であり、前記フェノール樹脂溶液を基板の表面に塗布し、ついで150℃の温度で加熱して硬化し、ついで前記基板を不活性雰囲気中で少なくとも1000℃の温度で焼成することによって前記フェノール樹脂の塗膜を炭化処理して、前記基板の表面に炭素皮膜を形成するようにしてもよい。   According to the present invention, the organic polymer solution is an acrylonitrile-based polymer solution, the polymer is applied to the surface of the substrate, and then the substrate is baked at a temperature of 200 to 400 ° C. in an oxygen-containing atmosphere. The coating film of the acrylonitrile-based polymer is pre-oxidized, and then the coating film is carbonized by baking the substrate at a temperature of at least 1000 ° C. in an inert atmosphere to form a carbon coating on the surface of the substrate. Can be formed. Alternatively, the organic polymer solution is a pitch solution, and the pitch-based solution is applied to the surface of the substrate, and then the substrate is heated in an inert gas atmosphere at a temperature of 350 to 450 ° C. to form a coating film of the pitch. A carbon film may be formed on the surface of the substrate by carbonization treatment. Alternatively, the organic polymer solution is a resol-type or novolac-type phenol resin solution, and the phenol resin solution is applied to the surface of the substrate and then cured by heating at a temperature of 150 ° C., and then the substrate is inerted. In this case, the coating film of the phenol resin may be carbonized by baking at a temperature of at least 1000 ° C. to form a carbon film on the surface of the substrate.

また本発明によれば、炭素皮膜が形成された基板の表面に、真空アーク蒸着源により鉄、コバルト、モリブデン、ニッケル、パラジウムおよび白金のうちの少なくとも1種の原子またはイオンを膜厚1nm〜300nmで蒸着した後、もしくは蒸着と同時にイオンビームを照射するようにしてもよい。あるいは、基板表面に真空アーク蒸着源により鉄、コバルト、モリブデン、ニッケル、パラジウムおよび白金のうちの少なくとも1種を0.1〜50.0原子%含むカーボン混合膜を蒸着した後、もしくは蒸着と同時にイオンビームを照射するようにしてもよい。   Further, according to the present invention, at least one atom or ion of iron, cobalt, molybdenum, nickel, palladium and platinum is deposited on the surface of the substrate on which the carbon film is formed by a vacuum arc deposition source in a film thickness of 1 nm to 300 nm. The ion beam may be irradiated after vapor deposition or simultaneously with vapor deposition. Alternatively, after a carbon mixed film containing 0.1 to 50.0 atomic% of at least one of iron, cobalt, molybdenum, nickel, palladium, and platinum is deposited on the substrate surface by a vacuum arc deposition source, or simultaneously with the deposition. You may make it irradiate an ion beam.

本発明では、炭素皮膜を形成した基板の表面にイオンビームを照射することによってカーボンナノファイバやカーボンナノチューブであるカーボンナノ構造材を形成するに際し、炭素皮膜をポリアクリロニトリル系溶液等の有機ポリマー溶液を用いて形成するので、イオンビームの照射を電流密度を低減して行っても、基板の表面に形成された多数の突起のそれぞれの頂部に1本のカーボンナノ構造材が成長した態様で、基板の表面にカーボンナノ構造材を得ることができる。したがって、大電流のイオン源を用いなくても、大型基板にカーボンナノ構造材を形成させることができる。   In the present invention, when forming a carbon nanostructure material such as carbon nanofiber or carbon nanotube by irradiating the surface of the substrate on which the carbon film is formed with an ion beam, the carbon film is coated with an organic polymer solution such as a polyacrylonitrile-based solution. Even if ion beam irradiation is performed at a reduced current density, a single carbon nanostructure material is grown on top of each of a large number of protrusions formed on the surface of the substrate. A carbon nanostructured material can be obtained on the surface. Therefore, a carbon nanostructure material can be formed on a large substrate without using a large current ion source.

また基板表面に、真空アーク蒸着源により鉄、コバルト、モリブデン、ニッケル、パラジウムおよび白金のうちの少なくとも1種の原子またはイオンを膜厚1nm〜300nmで蒸着し、あるいは、これらの金属元素の少なくとも1種を0.1〜50.0原子%含むカーボン混合膜を蒸着し、蒸着後もしくは蒸着と同時にイオンビームを照射する場合には、金属微粒子によって炭素原子の拡散が制御されるので、基板上への突起の形成速度の速い遅いを調節できることから、突起の形成速度を制御することにより、結果としてカーボンナノ構造材の成長を調節することができ、カーボンナノ構造材の長さ、太さ、数、および密度を制御することができる。   Further, at least one atom or ion of iron, cobalt, molybdenum, nickel, palladium and platinum is deposited on the substrate surface with a film thickness of 1 nm to 300 nm by a vacuum arc deposition source, or at least one of these metal elements. When a carbon mixed film containing 0.1 to 50.0 atomic percent of the seed is deposited and irradiated with an ion beam after the deposition or simultaneously with the deposition, the diffusion of carbon atoms is controlled by the metal fine particles. As a result, the growth of carbon nanostructure material can be controlled by controlling the formation speed of the protrusion, and the length, thickness, number of carbon nanostructure material can be adjusted. , And the density can be controlled.

以下、本発明の実施形態について説明する。本発明は、炭素皮膜が形成された基板の表面に真空槽でイオンビームを照射することによって、基板の表面に形成されたそれぞれの突起の頂部に、カーボンナノ構造材のカーボンナノファイバあるいはカーボンナノチューブを1本ずつ成長させて、基板の表面にカーボンナノ構造材を1本1本バラけた疎な状態で形成するものである。本発明では、そのイオンビーム照射の電流密度を低くしても、基板表面にカーボンナノ構造材を疎な状態で形成させるために、基板表面にアークイオンプレィティングやアーク蒸着法、ECRプラズマCVD法によってではなく、有機ポリマー溶液によって炭素皮膜を形成することが大きな特徴である。   Hereinafter, embodiments of the present invention will be described. In the present invention, a carbon nanofiber or carbon nanotube of a carbon nanostructure material is formed on the top of each protrusion formed on the surface of the substrate by irradiating the surface of the substrate on which the carbon film is formed with an ion beam in a vacuum chamber. Are grown one by one to form a carbon nanostructure material in a sparse state on the surface of the substrate. In the present invention, in order to form a carbon nanostructure material in a sparse state on the substrate surface even when the ion beam irradiation current density is lowered, arc ion plating, arc vapor deposition, or ECR plasma CVD is performed on the substrate surface. The main feature is that the carbon film is formed by the organic polymer solution rather than by the above.

本発明において、有機ポリマー溶液としては、炭素繊維等の素材となるものが使用でき、アクリロニトリル系、ピッチ系、フェノール樹脂系の溶液を使用する。 In the present invention, as the organic polymer solution, a material such as carbon fiber can be used , and an acrylonitrile-based, pitch-based, or phenolic resin-based solution is used.

アクリロニトリル系溶液は、アクリロニトリル系重合体を有機溶媒に溶解したもので、紡糸によってアクリル繊維を得ることができる前駆体(プリカーサ)である。アクリロニトリル系重合体としては、アクリロニトリル単量体の繰り返し単位からなるものの他、これと共重合可能なオレフィン単量体とからなる繰り返し単位からなるものであってもよい。アクリロニトリルの製造法としては、いくつかの方法が知られているが、プロピレンとアンモニアとを空気中で酸化的に反応させることにより、メチル基をシアノ基に変換するアンモ酸化法(ソハイオ法)によって、工業的に大量に製造されている。   The acrylonitrile-based solution is a precursor (precursor) in which an acrylonitrile-based polymer is dissolved in an organic solvent and acrylic fibers can be obtained by spinning. The acrylonitrile-based polymer may be composed of a repeating unit composed of a repeating unit of an acrylonitrile monomer or an olefin monomer copolymerizable therewith. There are several known methods for producing acrylonitrile, but by an ammoxidation method (Sohio method) in which a methyl group is converted to a cyano group by oxidative reaction of propylene and ammonia in air. It is manufactured in large quantities industrially.

アクリロニトリルと共重合可能なオレフィン単量体としては、例えばアクリル酸、メタクリル酸およびそれらのエステル、アクリルアミド、酢酸ビニル、スチレン、塩化ビニル、塩化ビニリデン、無水マレイン酸、N−置換マレインイミド、ブタジエン、イソブレン等を挙げることができる。アクリロニトリル系重合体を溶解する有機溶媒としては、ジメチルホルムアルデヒド、ジメチルアセトアミド、ジメチルスルフォキシド等を好ましく使用することができる。アクリロニトリル系重合体と有機溶媒との割合は、アクリロニトリル系重合体5〜35重量%に対し有機溶媒95〜65重量%とすることが好ましい。   Examples of the olefin monomer copolymerizable with acrylonitrile include acrylic acid, methacrylic acid and esters thereof, acrylamide, vinyl acetate, styrene, vinyl chloride, vinylidene chloride, maleic anhydride, N-substituted maleimide, butadiene, and isobrene. Etc. As the organic solvent for dissolving the acrylonitrile-based polymer, dimethylformaldehyde, dimethylacetamide, dimethylsulfoxide and the like can be preferably used. The ratio of the acrylonitrile polymer and the organic solvent is preferably 95 to 65% by weight of the organic solvent with respect to 5 to 35% by weight of the acrylonitrile polymer.

このアクリロニトリル系溶液を基板の表面に炭化後の膜厚が約0.1〜3μmとなる量で、滴下法またはスピナー等によって塗布し、ついで基板を加熱炉に入れて酸素含有雰囲気中で200〜400℃の温度で3〜4分間焼成し、アクリロニトリルの塗膜を予備酸化処理(耐炎化)する。ついで基板を焼成炉に入れて窒素ガス等の不活性雰囲気中で少なくとも1000℃の温度で焼成して塗膜を炭化処理し、基板の表面に炭化または黒鉛化した炭素皮膜を得る。   This acrylonitrile-based solution is applied to the surface of the substrate in an amount such that the film thickness after carbonization is about 0.1 to 3 μm by a dropping method or a spinner, and then the substrate is placed in a heating furnace to be 200 to 200 in an oxygen-containing atmosphere. Baking is performed at a temperature of 400 ° C. for 3 to 4 minutes, and the acrylonitrile coating film is pre-oxidized (flame resistance). Next, the substrate is placed in a baking furnace and baked at a temperature of at least 1000 ° C. in an inert atmosphere such as nitrogen gas to carbonize the coating film to obtain a carbonized or carbonized carbon film on the surface of the substrate.

ピッチ系溶液としては、コールタールピッチや石油系ピッチ等が挙げられる。より具体的には、石炭系のコールタール、コールタールピッチ、石炭液化物、石油系のピッチ、例えばFCCオイル、コーカーオイルまたはそれらの蒸留残渣、またはナフタレン、アントラセンを、触媒やホルマリン誘導体で重縮合反応させ製造した芳香族樹脂、あるいはアルキルベンゼンを強酸性触媒下でホルムアルデヒド類を架橋したオリゴマーを加熱−減圧蒸留し製造したピッチを好ましく使用することができる。   Examples of the pitch-based solution include coal tar pitch and petroleum-based pitch. More specifically, coal-based coal tar, coal tar pitch, coal liquefaction, petroleum-based pitch, such as FCC oil, coker oil or their distillation residue, or naphthalene, anthracene are polycondensed with a catalyst or formalin derivative. A pitch produced by heating-vacuum distillation of an aromatic resin produced by reaction or an oligomer obtained by crosslinking formaldehyde with alkylbenzene in a strongly acidic catalyst can be preferably used.

このピッチ系溶液を基板の表面に炭化後の膜厚が約0.1〜3μmとなる量で塗布し、基板を加熱炉に入れ不活性雰囲気中で200〜400℃の温度で1〜6時間焼成してピッチの塗膜を炭化処理し、基板の表面に炭素皮膜を得る。   This pitch-based solution is applied to the surface of the substrate in such an amount that the film thickness after carbonization is about 0.1 to 3 μm, and the substrate is placed in a heating furnace at a temperature of 200 to 400 ° C. in an inert atmosphere for 1 to 6 hours. Baking and carbonizing the pitch coating film to obtain a carbon coating on the surface of the substrate.

フェノール系樹脂溶液としては、レゾール型、ノボラック型のフェノール樹脂を好ましく用いることでき、これらは有機溶媒に溶解して使用する。レゾール樹脂(レゾール型フェノール樹脂)は液状のフェノール樹脂で、水酸化ナトリウム、アンモニアまたは有機アミンのような塩基性触媒(約0.2〜2%)の存在下で、フェノールとホルムアルデヒドをモル比1対1〜2のホルムアルデヒド過剰の条件下で反応することによって得られる。ノボラック樹脂(ノボラック型フェノール樹脂)は、例えばシュウ酸のような酸触媒(約0.2〜2%)の存在下で、フェノールとホルムアルデヒドをモル比1対0.7〜0.9のフェノール過剰の条件下で反応することによって得られる。これらのフェノール樹脂は、アルコール、エーテル、エステル、ケトン、アミド等の有機溶媒に溶解して使用する。好ましくは、メタノール、エタノール、ブタノール、プロパノール等のアルコールがよい。   As the phenolic resin solution, a resol-type or novolac-type phenol resin can be preferably used, and these are used by dissolving in an organic solvent. Resol resin (resole type phenolic resin) is a liquid phenolic resin in which phenol and formaldehyde have a molar ratio of 1 in the presence of a basic catalyst (about 0.2-2%) such as sodium hydroxide, ammonia or organic amine. It is obtained by reacting under conditions of excess formaldehyde to 1-2. A novolak resin (novolak-type phenol resin) is an excess of phenol and formaldehyde in a molar ratio of 1: 0.7 to 0.9 in the presence of an acid catalyst (about 0.2 to 2%) such as oxalic acid. It can be obtained by reacting under the following conditions. These phenol resins are used by being dissolved in an organic solvent such as alcohol, ether, ester, ketone, amide or the like. Preferably, alcohols such as methanol, ethanol, butanol, and propanol are used.

このフェノール系樹脂溶液を基板の表面に炭化後の膜厚が約0.1〜3μmとなる量で塗布し、基板を加熱炉に入れて150℃の温度で加熱してフェノール樹脂の塗膜を硬化し、ついで基板を不活性雰囲気中で少なくとも1000℃の温度で焼成して塗膜を炭化処理し、基板の表面に炭素皮膜を得る。   The phenolic resin solution is applied to the surface of the substrate in such an amount that the film thickness after carbonization is about 0.1 to 3 μm, and the substrate is placed in a heating furnace and heated at a temperature of 150 ° C. to form a phenolic resin coating film. Then, the substrate is baked at a temperature of at least 1000 ° C. in an inert atmosphere to carbonize the coating to obtain a carbon coating on the surface of the substrate.

基板としてはシリコン基板等を使用することができる。基板の表面に有機ポリマー溶液で炭素皮膜を形成したら、その基板の表面にイオンビームを照射して、基板表面にカーボンナノ構造材を形成させる。本発明では、炭素皮膜を有機ポリマー溶液を用いて形成しているので、イオンビームは低電流密度の照射でよく、低電流密度のイオンビーム照射によって、図2に模式的に示すように、基板10の表面に炭素皮膜からなる高さ約0.5μm〜2μmの円錐状の微小突起11が約0.2〜30μmの間隔で多数形成され、その各突起11の頂部から1本ずつカーボンナノファイバ12が成長して、基板10の表面にカーボンナノファイバ12が長さが不揃いで1本1本バラけた疎の状態で形成される。   A silicon substrate or the like can be used as the substrate. After the carbon film is formed with the organic polymer solution on the surface of the substrate, the surface of the substrate is irradiated with an ion beam to form a carbon nanostructure material on the surface of the substrate. In the present invention, since the carbon film is formed using the organic polymer solution, the ion beam may be irradiated with a low current density, and the substrate is formed by the low current density ion beam irradiation as schematically shown in FIG. A large number of conical microprotrusions 11 having a height of about 0.5 μm to 2 μm made of a carbon film are formed on the surface of 10 at intervals of about 0.2 to 30 μm. 12 grows, and carbon nanofibers 12 are formed on the surface of the substrate 10 in a sparse state in which the lengths are not uniform and are separated one by one.

イオン照射の電流密度としては、30〜150μA/cm、好ましくは50〜100μA/cm程度がよい。照射時間としては、限定するものではないが、3〜150分、好ましくは15〜100分程度である。 The current density of the ion irradiation, 30~150μA / cm 2, preferably not good about 50~100μA / cm 2. Although it does not limit as irradiation time, It is 3 to 150 minutes, Preferably it is about 15 to 100 minutes.

本発明によれば、基板の表面にイオンビームを照射するに先立って、真空アーク蒸着源により鉄、コバルト、モリブデン、ニッケル、パラジウムおよび白金のうちの少なくとも1種の原子またはイオンを膜厚1nm〜300nmで蒸着し、あるいは、これらの金属元素の少なくとも1種を0.1〜50.0原子%含むカーボン混合膜を蒸着し、この蒸着後もしくは蒸着と同時にイオンビームを照射することができる。これによれば、金属微粒子によって炭素原子の拡散が制御されるので、基板上への突起の形成速度の速い遅いを制御できるので、その形成速度を制御することにより、カーボンナノファイバの成長を調節することができ、カーボンナノファイバの長さ、太さ、数、密度を制御することができる。以上はカーボンナノチューブについても同様である。   According to the present invention, prior to irradiating the surface of the substrate with the ion beam, the vacuum arc deposition source is used to deposit at least one atom or ion of iron, cobalt, molybdenum, nickel, palladium, and platinum in a film thickness of 1 nm to 1 nm. Vapor deposition can be performed at 300 nm, or a carbon mixed film containing 0.1 to 50.0 atomic% of at least one of these metal elements can be deposited, and an ion beam can be irradiated after or at the same time as the deposition. According to this, since the diffusion of carbon atoms is controlled by the metal microparticles, it is possible to control the slow and fast formation of protrusions on the substrate, so the growth of carbon nanofibers can be controlled by controlling the formation speed. The length, thickness, number and density of the carbon nanofibers can be controlled. The same applies to the carbon nanotubes.

図1に、本発明でカーボンナノ構造材の形成に使用する成長装置を示す。図は、チャンバの上下壁および前側を含む周囲壁の一部を除いて示してある。   FIG. 1 shows a growth apparatus used for forming a carbon nanostructure material in the present invention. The figure is shown except for a portion of the surrounding wall including the upper and lower walls and the front side of the chamber.

本成長装置は、アークプラズマガン1と、イオン源2と、基板ステージ3と、加熱ヒータ4とを有するチャンバ5を備え、チャンバ5にはターボ分子ポンプ6と、これに直列接続したロータリーポンプ7とが取付けられ、イオン源2には、ガス導入用マスフローコントローラ8を介して図示しないアルゴンガスボンベが接続されている。アークプラズマガン1とイオン源2とは、中心軸線を基板ステージ3に向けてチャンバ5の対向位置の側壁に45°の角度で取付けられている。基板ステージ3はチャンバ1の中央下部に設置され、該ステージ4に載せた基板の法線方向にアークプラズマガン1とイオン源2が位置するように、水平に対し±45°の角度でチルト可能になっている。本発明では、上記したように、基板の表面にポリマー溶液を塗布して炭素皮膜を形成するようになっており、アークプラズマガン1は、炭素皮膜上に蒸着触媒皮膜を形成するアーク蒸着源として使用する。図中、9はイオン源2のアルゴンイオン出口の前方に配置したファラデーカップ(フルエンス測定器)である。   This growth apparatus includes a chamber 5 having an arc plasma gun 1, an ion source 2, a substrate stage 3, and a heater 4. The chamber 5 includes a turbo molecular pump 6 and a rotary pump 7 connected in series to the turbo molecular pump 6. And an argon gas cylinder (not shown) is connected to the ion source 2 via a gas introduction mass flow controller 8. The arc plasma gun 1 and the ion source 2 are attached to the side wall at the opposite position of the chamber 5 at an angle of 45 ° with the central axis directed toward the substrate stage 3. The substrate stage 3 is installed at the lower center of the chamber 1 and can be tilted at an angle of ± 45 ° with respect to the horizontal so that the arc plasma gun 1 and the ion source 2 are positioned in the normal direction of the substrate placed on the stage 4. It has become. In the present invention, as described above, a polymer solution is applied to the surface of the substrate to form a carbon film, and the arc plasma gun 1 serves as an arc vapor deposition source for forming a vapor deposition catalyst film on the carbon film. use. In the figure, 9 is a Faraday cup (fluence measuring device) arranged in front of the argon ion outlet of the ion source 2.

表面に厚さ約0.1〜3μmの炭素皮膜を形成したシリコン基板を装置1の基板ステージ3に搭載し、チャンバ5を閉じ、ロータリーポンプ7、ついでターボ分子ポンプ6でチャンバ5内を真空排気し、到達圧力が1×10-5Torr以下に達したところで、マスフローコントローラ8を用いてイオン源2にアルゴンガスを導入し、イオン源2を作動させて、Arイオンを0.3〜5kVの加速電圧で引き出し、ステージ3上の加熱ヒータ4で室温〜約1200℃まで加熱した基板の表面に所定の電流密度でイオンを照射する。これによって、基板の表面にカーボンナノファイバが形成される。 A silicon substrate having a carbon film with a thickness of about 0.1 to 3 μm formed on the surface is mounted on the substrate stage 3 of the apparatus 1, the chamber 5 is closed, and the inside of the chamber 5 is evacuated by the rotary pump 7 and then the turbo molecular pump 6. Then, when the ultimate pressure reaches 1 × 10 −5 Torr or less, argon gas is introduced into the ion source 2 using the mass flow controller 8 and the ion source 2 is operated to make Ar ions 0.3 to 5 kV. The substrate is heated at room temperature to about 1200 ° C. with the heater 4 on the stage 3 and is radiated with ions at a predetermined current density. Thereby, carbon nanofibers are formed on the surface of the substrate.

上記製造方法により製造されたカーボンナノファイバまたはカーボンナノチューブは、フィールドエミッションディスプレイの電子源のカソード電極として、あるいは走査型プローブ顕微鏡用の探針として適用可能である。   The carbon nanofiber or carbon nanotube produced by the above production method can be applied as a cathode electrode of an electron source of a field emission display or a probe for a scanning probe microscope.

フィールドエミッションディスプレイの電子源のカソード電極として用いる場合には、基板上にカーボンナノファイバまたはカーボンナノチューブを密集させずに、1本1本を疎の状態で形成できるため、電子放出効率を著しく向上させることができる。   When used as a cathode electrode of an electron source of a field emission display, each one can be formed in a sparse state without concentrating carbon nanofibers or carbon nanotubes on a substrate, thereby significantly improving electron emission efficiency. be able to.

走査型プローブ顕微鏡用探針としては、シリコン基板上の微小突起に選択的にカーボンナノファイバまたはカーボンナノチューブを成長させることができるため、カーボンナノファイバまたはカーボンナノチューブ探針をバッチ処理で容易に製造することができる。そのため低コスト化が実現できるとともに、従来の接着法とは異なり、突起部より直接成長させることができるため、高耐久性で高アスペクト比の探針が形成可能となる。   As a probe for a scanning probe microscope, carbon nanofibers or carbon nanotubes can be selectively grown on microprojections on a silicon substrate, so that carbon nanofibers or carbon nanotube probes are easily manufactured by batch processing. be able to. Therefore, it is possible to reduce the cost, and unlike the conventional bonding method, it is possible to grow directly from the protruding portion, so that a highly durable and high aspect ratio probe can be formed.

本発明の実施例について説明する。   Examples of the present invention will be described.

実施例1
有機ポリマー溶液として、アクリロニトリル重合体であるレジスト液(クラリアントジャパン(株)製AZ P1350(粘度4.2cp))を使用し、これを直径4インチのシリコン基板の一方の表面全体にスポイトで滴下し塗布した。この基板を赤外線加熱方式の真空乾燥炉(アルバック理工(株)製RTA−6)のチャンバに入れ、ロータリーポンプで真空引きをしながらチャンバ内圧力が1〜2Paになったところで、基板を450℃で15分間焼成した。得られる膜厚を厚くするために、このレジストの塗布と焼成のプロセスを3回繰返して、基板の表面にアクリロニトリルの焼成炭素膜が膜厚約3μmで形成された。
Example 1
As the organic polymer solution, an acrylonitrile polymer resist solution (AZ P1350 (viscosity: 4.2 cp) manufactured by Clariant Japan Co., Ltd.) is used, and this is dropped onto one whole surface of a 4-inch diameter silicon substrate with a dropper. Applied. This substrate was put into a chamber of an infrared heating type vacuum drying furnace (RTA-6 manufactured by ULVAC-RIKO), and when the pressure in the chamber became 1 to 2 Pa while evacuating with a rotary pump, the substrate was placed at 450 ° C. Baked for 15 minutes. In order to increase the film thickness obtained, this resist coating and baking process was repeated three times to form a baked carbon film of acrylonitrile with a film thickness of about 3 μm on the surface of the substrate.

図1の装置を使用して、アクリロニトリルの炭素皮膜が形成された基板の表面に電流密度約70μA/cm2で100分間のイオン照射を行ったところ、基板表面にカーボンナノファイバをバラけた状態で得ることができた。得られた基板表面のカーボンナノファイバのSEM(走査型電子顕微鏡)写真を図4に示す。 Using the apparatus of FIG. 1, when ion irradiation was performed for 100 minutes at a current density of about 70 μA / cm 2 on the surface of the substrate on which the acrylonitrile carbon film was formed, carbon nanofibers were scattered on the surface of the substrate. I was able to get it. FIG. 4 shows an SEM (scanning electron microscope) photograph of the obtained carbon nanofibers on the surface of the substrate.

実施例2
基板の表面にイオン照射をする前に、基板表面の炭素皮膜上に鉄含有の蒸着皮膜を形成した他は、実施例1と同様にした。その結果、電流密度約70μA/cm2で100分間のイオン照射によって、基板の表面に実施例1と同様なカーボンナノファイバを得ることができた。
Example 2
Example 1 was performed except that an iron-containing vapor deposition film was formed on the carbon film on the surface of the substrate before ion irradiation was performed on the surface of the substrate. As a result, carbon nanofibers similar to those in Example 1 could be obtained on the surface of the substrate by ion irradiation for 100 minutes at a current density of about 70 μA / cm 2 .

実施例3
シリコン基板として、図3に示す探針用の突起および分離用の貫通孔を形成した基板を使用した。基板の突起(高さ15μm)を形成した凹凸表面に、実施例1で使用したのと同じレジスト液を1μm以下の膜厚で塗布し、実施例1と同様にして焼成して、基板の表面に凹凸を埋めた凹凸のない炭素皮膜を形成した。続いて、基板の炭素皮膜を形成した表面に、鉄を10原子%含むカーボンの混合膜を蒸着しつつ、電流密度約100μA/cm2で60分間のイオン照射を行い、基板上の探針用の突起に、成長用の突起を介してカーボンナノファイバが1本の割りで形成され、より低い電流密度および少ないイオン照射時間で、効率的にカーボンナノファイバを形成することができた。得られた基板表面のカーボンナノファイバのSEM写真を図5に示す。
Example 3
As the silicon substrate, the substrate in which the probe protrusions and the separation through holes shown in FIG. 3 were formed was used. The same resist solution as used in Example 1 was applied to the uneven surface on which the protrusions (15 μm in height) of the substrate were formed in a film thickness of 1 μm or less, and baked in the same manner as in Example 1 to obtain the surface of the substrate. A carbon film without unevenness was formed by filling the unevenness in the surface. Subsequently, while depositing a carbon mixed film containing 10 atomic% of iron on the surface of the substrate on which the carbon film is formed, ion irradiation is performed for 60 minutes at a current density of about 100 μA / cm 2 for the probe on the substrate. Carbon nanofibers were formed on each of the protrusions by a growth protrusion, and carbon nanofibers could be efficiently formed with a lower current density and a shorter ion irradiation time. An SEM photograph of the carbon nanofibers on the obtained substrate surface is shown in FIG.

なお、イオン照射は、Arイオンに限定されるものではなく、Ne(ネオン)、Xe(キセノン)等の希ガスイオン、N(窒素)、C(炭素)を含む反応性イオンであってもよい。   The ion irradiation is not limited to Ar ions, and may be reactive ions including rare gas ions such as Ne (neon) and Xe (xenon), N (nitrogen), and C (carbon). .

本発明の方法でカーボンナノ構造材の製造に使用する成長装置を示す概略構成図。The schematic block diagram which shows the growth apparatus used for manufacture of a carbon nanostructure material by the method of this invention. 本発明の方法でカーボンナノファイバを形成した基板表面を示す模式図。The schematic diagram which shows the substrate surface in which the carbon nanofiber was formed with the method of this invention. 本発明の方法で探針用突起にカーボンナノファイバを形成した基板表面を示す模式図。The schematic diagram which shows the board | substrate surface which formed the carbon nanofiber in the processus | protrusion for probe by the method of this invention. 本発明の実施例1で得られた基板表面のカーボンナノファイバを示すSEM写真。The SEM photograph which shows the carbon nanofiber of the substrate surface obtained in Example 1 of this invention. 本発明の実施例1で得られた基板表面のカーボンナノファイバを示すSEM写真。The SEM photograph which shows the carbon nanofiber of the substrate surface obtained in Example 1 of this invention. フィールドエミッションディスプレイの画素を示す概略構成図。The schematic block diagram which shows the pixel of a field emission display. 図6の画素を構成する基板表面のカーボンナノファイバの不良な形態の一例を示す図。The figure which shows an example of the defect form of the carbon nanofiber of the substrate surface which comprises the pixel of FIG. カーボンナノファイバの不良な形態の他の例を示す図である。It is a figure which shows the other example of the bad form of carbon nanofiber.

符号の説明Explanation of symbols

1 アークプラズマガン 2 イオン源
3 基板ステージ 4 加熱ヒータ
5 チャンバ 8 マスフローコントローラ
9 ファラデーカップ 10 基板
11 成長用の突起 12 カーボンナノファイバ
13 探針用の突起
DESCRIPTION OF SYMBOLS 1 Arc plasma gun 2 Ion source 3 Substrate stage 4 Heater 5 Chamber 8 Mass flow controller 9 Faraday cup 10 Substrate 11 Growth protrusion 12 Carbon nanofiber 13 Protrusion for probe

Claims (6)

基板の表面にアクリロニトリル系、ピッチ系又はフェノール樹脂系の有機ポリマー溶液を塗布し、前記有機ポリマー溶液が塗布された基板を真空加熱炉で加熱処理して、前記基板の表面に炭素皮膜を形成し、前記炭素皮膜が形成された基板の表面に真空槽で、電流密度30〜150μA/cmでイオンビームを照射して、前記基板の表面に形成された多数の突起のそれぞれの頂部にカーボンナノファイバまたはカーボンナノチューブであるカーボンナノ構造材が1本成長した態様で、前記基板の表面にカーボンナノ構造材を形成することを特徴とするカーボンナノ構造材の製造方法。 An organic polymer solution of acrylonitrile, pitch or phenol resin is applied to the surface of the substrate, and the substrate coated with the organic polymer solution is heat-treated in a vacuum heating furnace to form a carbon film on the surface of the substrate. The surface of the substrate on which the carbon film is formed is irradiated with an ion beam at a current density of 30 to 150 μA / cm 2 in a vacuum chamber, and carbon nano-particles are formed on the tops of a number of protrusions formed on the surface of the substrate. A method for producing a carbon nanostructure material, comprising forming a carbon nanostructure material on a surface of the substrate in a mode in which one carbon nanostructure material that is a fiber or a carbon nanotube is grown. 前記有機ポリマー溶液はアクリロニトリル系重合体溶液であり、前記重合体を基板の表面に塗布し、ついで前記基板を酸素含有雰囲気中で200〜400℃の温度で焼成して前記アクリロニトリル系重合体の塗膜を予備酸化処理し、ついで前記基板を不活性雰囲気中で少なくとも1000℃の温度で焼成することによって前記塗膜を炭化処理して、前記基板の表面に炭素皮膜を形成することを特徴とする請求項1のカーボンナノ構造材の製造方法。   The organic polymer solution is an acrylonitrile polymer solution. The polymer is applied to the surface of the substrate, and then the substrate is baked at a temperature of 200 to 400 ° C. in an oxygen-containing atmosphere to apply the acrylonitrile polymer. The film is pre-oxidized and then the substrate is baked at a temperature of at least 1000 ° C. in an inert atmosphere to carbonize the coating to form a carbon coating on the surface of the substrate. The manufacturing method of the carbon nanostructure material of Claim 1. 前記有機ポリマー溶液はピッチ溶液であり、前記ピッチ系溶液を基板の表面に塗布し、ついで前記基板を不活性ガス雰囲気中で350〜450℃の温度で加熱して前記ピッチの塗膜を炭化処理することによって、前記基板の表面に炭素皮膜を形成することを特徴とする請求項1のカーボンナノ構造材の製造方法。   The organic polymer solution is a pitch solution, and the pitch-based solution is applied to the surface of the substrate, and then the substrate is heated in an inert gas atmosphere at a temperature of 350 to 450 ° C. to carbonize the coating film of the pitch. The carbon nanostructure manufacturing method according to claim 1, wherein a carbon film is formed on the surface of the substrate. 前記有機ポリマー溶液はレゾール型またはノボラック型のフェノール樹脂溶液であり、前記フェノール樹脂溶液を基板の表面に塗布し、ついで150℃の温度で加熱して硬化し、ついで前記基板を不活性雰囲気中で少なくとも1000℃の温度で焼成することによって前記フェノール樹脂の塗膜を炭化処理して、前記基板の表面に炭素皮膜を形成することを特徴とする請求項1のカーボンナノ構造材の製造方法。   The organic polymer solution is a resol-type or novolac-type phenol resin solution, and the phenol resin solution is applied to the surface of the substrate and then cured by heating at a temperature of 150 ° C., and then the substrate is placed in an inert atmosphere. The method for producing a carbon nanostructure material according to claim 1, wherein the coating film of the phenol resin is carbonized by firing at a temperature of at least 1000 ° C to form a carbon film on the surface of the substrate. 前記炭素皮膜が形成された基板の表面にイオンビームを照射するのに先立って、真空アーク蒸着源により鉄、コバルト、モリブデン、ニッケル、パラジウムおよび白金のうちの少なくとも1種の原子またはイオンを膜厚1nm〜300nmで蒸着し、この蒸着後もしくは蒸着と同時にイオンビームを照射をすることを特徴とする請求項1〜4のいずれかの項に記載のカーボンナノ構造材の製造方法。   Prior to irradiating the surface of the substrate on which the carbon film is formed with an ion beam, a film of at least one atom or ion of iron, cobalt, molybdenum, nickel, palladium and platinum is formed by a vacuum arc evaporation source. 5. The method for producing a carbon nanostructure material according to claim 1, wherein vapor deposition is performed at 1 nm to 300 nm, and irradiation with an ion beam is performed after the vapor deposition or simultaneously with the vapor deposition. 前記炭素皮膜が形成された基板の表面にイオンビームを照射するのに先立って、真空アーク蒸着源により鉄、コバルト、モリブデン、ニッケル、パラジウムおよび白金のうちの少なくとも1種を0.1〜50.0原子%含むカーボン混合膜を蒸着し、この蒸着後もしくは蒸着と同時にイオンビームを照射することを特徴とする請求項1〜4のいずれかの項に記載のカーボンナノ構造材の製造方法。   Prior to irradiating the surface of the substrate on which the carbon film is formed with an ion beam, at least one of iron, cobalt, molybdenum, nickel, palladium, and platinum is 0.1-50. 5. The method for producing a carbon nanostructure material according to claim 1, wherein a carbon mixed film containing 0 atomic% is deposited and an ion beam is irradiated after or simultaneously with the deposition.
JP2005064060A 2005-03-08 2005-03-08 Method for producing carbon nanostructured material Active JP4940392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005064060A JP4940392B2 (en) 2005-03-08 2005-03-08 Method for producing carbon nanostructured material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005064060A JP4940392B2 (en) 2005-03-08 2005-03-08 Method for producing carbon nanostructured material

Publications (2)

Publication Number Publication Date
JP2006247758A JP2006247758A (en) 2006-09-21
JP4940392B2 true JP4940392B2 (en) 2012-05-30

Family

ID=37088765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064060A Active JP4940392B2 (en) 2005-03-08 2005-03-08 Method for producing carbon nanostructured material

Country Status (1)

Country Link
JP (1) JP4940392B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544523B2 (en) * 2005-12-23 2009-06-09 Fei Company Method of fabricating nanodevices
JP5178297B2 (en) * 2008-04-17 2013-04-10 オリンパス株式会社 CNF probe cantilever
JP5419001B2 (en) * 2008-09-16 2014-02-19 独立行政法人日本原子力研究開発機構 Method for producing nanofiber
JP5505786B2 (en) * 2010-03-02 2014-05-28 日新電機株式会社 Carbon nanotube structure manufacturing method and electron emission source using the same
JP2012047539A (en) * 2010-08-25 2012-03-08 Hitachi High-Technologies Corp Spm probe and light emitting portion inspection apparatus
CN102126718B (en) * 2011-04-07 2013-07-17 刘剑洪 Method for preparing carbon nano tubes and carbon micro tubes
JP2014234339A (en) * 2013-06-05 2014-12-15 日立造船株式会社 Carbon nanotube sheet and method for producing carbon nanotube sheet
JP7340226B2 (en) * 2019-03-25 2023-09-07 学校法人 名城大学 How to produce graphene

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280809A (en) * 1991-03-07 1992-10-06 Sumitomo Electric Ind Ltd Production of highly conductive hollow carbon
JP2873930B2 (en) * 1996-02-13 1999-03-24 工業技術院長 Carbonaceous solid structure having carbon nanotubes, electron emitter for electron beam source element composed of carbonaceous solid structure, and method of manufacturing carbonaceous solid structure
JP3363759B2 (en) * 1997-11-07 2003-01-08 キヤノン株式会社 Carbon nanotube device and method of manufacturing the same
EP1146013A4 (en) * 1998-12-28 2010-12-22 Osaka Gas Co Ltd Amorphous nano-scale carbon tube and production method therefor
JP2002025425A (en) * 2000-07-07 2002-01-25 Hitachi Ltd Electron emitter, its manufacturing method and electron beam device
JP3590606B2 (en) * 2001-11-16 2004-11-17 日本原子力研究所 Fabrication method of carbon nanotube using template
GB2384008B (en) * 2001-12-12 2005-07-20 Electrovac Method of synthesising carbon nano tubes
JP2003212972A (en) * 2002-01-18 2003-07-30 Sony Corp Method for manufacturing functional carbon material and functional carbon material
JP2003292310A (en) * 2002-03-29 2003-10-15 Osaka Gas Co Ltd Method for producing amorphous nanoscale carbon tube
WO2005007564A1 (en) * 2003-07-18 2005-01-27 Nec Corporation Method for fixing metal particle, and method for producing metal particle-containing substrate, method for producing carbon nanotube-containing substrate and method for producing semiconductor crystalline rod-containing substrate respectively using such fixing method
JP2005047763A (en) * 2003-07-30 2005-02-24 Japan Science & Technology Agency Carbon nano- and micro-meter structures and method for manufacturing them

Also Published As

Publication number Publication date
JP2006247758A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4940392B2 (en) Method for producing carbon nanostructured material
US7465210B2 (en) Method of fabricating carbide and nitride nano electron emitters
US7678452B2 (en) Carbon nanotube hybrid system using carbide-derived carbon, a method of making the same, an electron emitter comprising the same, and an electron emission device comprising the electron emitter
JP3610325B2 (en) Electron emitting device, electron source, and method of manufacturing image forming apparatus
US9771267B2 (en) Method for making carbon nanotube needle
JP2002150924A (en) Electron emitting element, electron source and image forming device
JP2002150925A (en) Electron emitting element, electron emitting device, liminous device and image forming device
JPH10112253A (en) Electron-emitting film and method
JPH10203810A (en) Production of carbon nanotube
Kumar et al. Field emission from camphor–pyrolyzed carbon nanotubes
JP2008105922A (en) Carbide-derived carbon, electron-emitting source for cold cathode, and electron-emitting element
CN100345239C (en) Method for preparing carbon nano tube field transmitting display device
Chen et al. Ultrahigh-current field emission from sandwich-grown well-aligned uniform multi-walled carbon nanotube arrays with high adherence strength
JP2004307324A (en) Method for manufacturing carbon fiber, electron emitter, electron source, image forming apparatus, light bulb and secondary battery
Tanemura et al. Room-temperature growth and applications of carbon nanofibers: A review
JP2003115255A (en) Field electron emitting electrode and its manufacturing method
KR100668332B1 (en) Fabrication method of device comprising carbide and nitride nano electron emitters
JP3524542B2 (en) Manufacturing method of carbon nanotube
Chen et al. Large current carbon nanotube emitter growth using nickel as a buffer layer
JP4707336B2 (en) Manufacturing method of electron source using carbon nanofiber
Mann et al. Direct growth of multi-walled carbon nanotubes on sharp tips for electron microscopy
Hawsawi et al. Water vapor-induced structure modification of vertically-aligned carbon nanotube arrays and successive thin film coating for enhanced field emission properties
Chen et al. Fabrication and characterization of carbon nanotube arrays using sandwich catalyst stacks
JP3854295B2 (en) Field electron emitter and display device
JP2008108631A (en) Field emission type cathode substrate, field emission light source, and field emission type display element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111213

R150 Certificate of patent or registration of utility model

Ref document number: 4940392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250