JP4939051B2 - Method for producing catalyst electrode of polymer electrolyte fuel cell - Google Patents

Method for producing catalyst electrode of polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4939051B2
JP4939051B2 JP2005378700A JP2005378700A JP4939051B2 JP 4939051 B2 JP4939051 B2 JP 4939051B2 JP 2005378700 A JP2005378700 A JP 2005378700A JP 2005378700 A JP2005378700 A JP 2005378700A JP 4939051 B2 JP4939051 B2 JP 4939051B2
Authority
JP
Japan
Prior art keywords
catalyst
platinum
fuel cell
polymer electrolyte
catalyst electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005378700A
Other languages
Japanese (ja)
Other versions
JP2007179932A (en
Inventor
和也 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005378700A priority Critical patent/JP4939051B2/en
Priority to US11/614,338 priority patent/US20070148531A1/en
Publication of JP2007179932A publication Critical patent/JP2007179932A/en
Priority to US12/792,341 priority patent/US20100240527A1/en
Application granted granted Critical
Publication of JP4939051B2 publication Critical patent/JP4939051B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、固体高分子型燃料電池の触媒電極の製造方法に関する。 The present invention relates to a method for producing a catalyst electrode of a polymer electrolyte fuel cell.

固体高分子形燃料電池は、エネルギー変換効率が高いこと、クリーンであること、静かであることなどから、将来のエネルギー生成装置として期待されている。とりわけ、近年では、自動車や家庭用発電機などの用途だけではなく、そのエネルギー密度の高さから携帯電話やノート型パソコン、デジタルカメラなど小型の電気機器に搭載することによって、従来の2次電池に比べ長時間駆動できる可能性があり、注目を集めている。しかしながら、車載用、家庭用に関しては、まだまだコストの削減が必要であり、その一手段として触媒使用量を減らすことが望まれている。また、小型の電気機器用としての実用化には、システム全体のコンパクト化、発電効率の向上が必須である。   The polymer electrolyte fuel cell is expected as a future energy generation device because of its high energy conversion efficiency, cleanliness, and quietness. In particular, in recent years, not only applications such as automobiles and household power generators, but also because of their high energy density, they can be installed in small electrical devices such as mobile phones, laptop computers, and digital cameras, thereby making conventional secondary batteries. It has the potential to be driven for a long time compared to, and is attracting attention. However, for in-vehicle use and home use, it is still necessary to reduce the cost, and it is desired to reduce the amount of catalyst used as one means. Also, for practical use as a small electric device, it is essential to make the entire system compact and improve the power generation efficiency.

これまで、触媒を微粒子化し、カーボン粒子などに担持させて3次元的に分散させることで、表面積を増大させ、触媒の利用効率を高めるという試みがなされてきた。また、一方では、触媒層を厚さ数μm程度と非常に薄く形成することで、物質輸送を良くし、触媒層が電解質膜近傍に集中することで、触媒有効面積を増大させる試みもなされてきた。特に、燃料電池を小型電気機器に搭載する場合においては、電池自体も小型化する必要があり、空気はポンプやブロワーなどを用いずに通気孔から自然拡散によって空気極へ供給される方式(air breathing)が多く採られている。このような場合、空気極での物質輸送が反応の律速となる場合が多く、触媒層を薄くすることは、有効な手段となると考えられる。   Up to now, attempts have been made to increase the surface area and increase the utilization efficiency of the catalyst by making the catalyst fine particles, supporting them on carbon particles, etc., and dispersing them three-dimensionally. On the other hand, attempts have been made to increase the effective catalyst area by improving the material transport by forming the catalyst layer as thin as several μm, and by concentrating the catalyst layer in the vicinity of the electrolyte membrane. It was. In particular, when the fuel cell is mounted on a small electric device, the cell itself needs to be miniaturized, and air is supplied to the air electrode by natural diffusion from the vent hole without using a pump or a blower (air). Breathing) is often used. In such a case, mass transport at the air electrode is often the rate-limiting reaction, and it is considered that thinning the catalyst layer is an effective means.

触媒利用率の向上と触媒層の膜厚方向の導電性向上を解決する手段として、特許文献1には、カーボンフナノァイバー表面上に触媒微粒子を担持して形成した燃料電池用電極が開示されている。
特開2002−298861号公報
Patent Document 1 discloses a fuel cell electrode formed by supporting catalyst fine particles on the surface of a carbon fiber as a means for solving an improvement in catalyst utilization and an improvement in conductivity in the thickness direction of the catalyst layer. Yes.
JP 2002-298661 A

しかしながら、より汎用性があり簡易な方法により触媒電極を製造し、その触媒電極の触媒利用率をさらに向上するという課題は、これまで十分に検討が為されてきたとは言えない。   However, it cannot be said that the problem of producing a catalyst electrode by a more versatile and simple method and further improving the catalyst utilization rate of the catalyst electrode has been sufficiently studied.

そこで、本発明は、以上の課題に対して鋭意検討を行って為されたものであり、触媒利用率を向上した触媒電極を汎用性がある簡易な方法によって製造できる固体高分子型燃料電池の触媒電極の製造方法を提供するものである。 Accordingly, the present invention has been made by intensively studying the above problems, and is a solid polymer fuel cell that can produce a catalyst electrode with improved catalyst utilization by a versatile and simple method. A method for producing a catalyst electrode is provided.

上記の課題を解決するための固体高分子型燃料電池の触媒電極の製造方法は、固体高分子型燃料電池の触媒電極であって、前記触媒電極は触媒と、触媒を担持する炭素繊維を有し、前記触媒は薄片状のナノ構造を有する固体高分子型燃料電池の触媒電極の製造方法において、前記触媒を反応性真空蒸着法によって形成する工程を有することを特徴とする。A method for producing a catalyst electrode of a polymer electrolyte fuel cell for solving the above problems is a catalyst electrode of a polymer electrolyte fuel cell, wherein the catalyst electrode has a catalyst and carbon fibers supporting the catalyst. In the method for producing a catalyst electrode of a polymer electrolyte fuel cell having a flaky nanostructure, the catalyst has a step of forming the catalyst by a reactive vacuum deposition method.

前記触媒が、薄片状のナノ構造単位を有した樹枝状構造であることが好ましい。
前記触媒は、白金酸化物、白金酸化物と白金以外の金属元素の酸化物との複合酸化物、前記白金酸化物または複合酸化物を還元処理してなる白金または白金を含んだ多元金属、白金と白金以外の金属元素の酸化物との混合物あるいは白金を含んだ多元金属と白金以外の金属元素の酸化物との混合物であることが好ましい。
It is preferable that the catalyst has a dendritic structure having flaky nanostructure units.
The catalyst includes platinum oxide, a composite oxide of platinum oxide and an oxide of a metal element other than platinum, platinum formed by reducing the platinum oxide or composite oxide, or a multi-metal containing platinum, platinum And a mixture of an oxide of a metal element other than platinum or a mixture of a multi-element metal containing platinum and an oxide of a metal element other than platinum.

前記白金以外の金属元素は、Al,Si,Ti,V,Cr,Fe,Co,Ni,Cu,Zn,Ge,Zr,Nb,Mo,Ru,Rh,Pd,Ag,In,Sn,Hf,Ta,W,Os,Ir,Au,La,Ce,Ndから選ばれる少なくとも一種類以上の金属からなることが好ましい。   The metal elements other than platinum are Al, Si, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ge, Zr, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Hf, It is preferably made of at least one metal selected from Ta, W, Os, Ir, Au, La, Ce, and Nd.

前記触媒の薄片の最大厚さが5nm以上50nm以下であることが好ましい。
前記炭素繊維はナノチューブまたはナノファイバーであることが好ましい。
前記炭素繊維の平均直径は5nm以上500nm以下で、平均長さは1μm以上100μm以下であることが好ましい。
The maximum thickness of the catalyst flakes is preferably 5 nm or more and 50 nm or less.
The carbon fibers are preferably nanotubes or nanofibers.
The carbon fiber preferably has an average diameter of 5 nm to 500 nm and an average length of 1 μm to 100 μm.

前記炭素繊維は熱CVD法によって形成することが好ましい。CVDとは、Chemical Vapor Deposition(化学気相成長)の略である。 The carbon fiber is preferably formed by a thermal CVD method. CVD is an abbreviation for Chemical Vapor Deposition .

本発明によれば、触媒利用率を向上した触媒電極を汎用性がある簡易な方法によって製造できる固体高分子型燃料電池の触媒電極の製造方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the catalyst electrode of the polymer electrolyte fuel cell which can manufacture the catalyst electrode which improved the catalyst utilization factor by a versatile simple method can be provided.

以下、図面を参照して、本発明の固体高分子型燃料電池の触媒電極およびその製造方法について、好適な実施の形態を例示的に詳しく説明する。ただし、この実施の形態に記載されている構成部材の材質、寸法、形状、その相対配置等は、特に特定的な記載がない限りは、本発明の範囲を限定するものではない。同様に以下に記述する製造方法も唯一のものではない。   Hereinafter, with reference to the drawings, preferred embodiments of the catalyst electrode of the polymer electrolyte fuel cell of the present invention and the manufacturing method thereof will be described in detail by way of example. However, the materials, dimensions, shapes, relative arrangements, and the like of the constituent members described in this embodiment do not limit the scope of the present invention unless otherwise specified. Similarly, the manufacturing method described below is not the only one.

図1は、本発明の触媒電極を用いた固体高分子型燃料電池の単セルの断面構成の一例を表す模式図である。図1において、1は固体高分子電解質膜、これを挟んで一対のカソード触媒電極4、アノード触媒電極5が配置され、さらにその外側にはカソードガス拡散層6、アノードガス拡散層7及びカソード電極8、アノード電極9が配置される。   FIG. 1 is a schematic diagram showing an example of a cross-sectional configuration of a single cell of a polymer electrolyte fuel cell using the catalyst electrode of the present invention. In FIG. 1, reference numeral 1 denotes a solid polymer electrolyte membrane, and a pair of cathode catalyst electrode 4 and anode catalyst electrode 5 are disposed across the membrane, and a cathode gas diffusion layer 6, an anode gas diffusion layer 7 and a cathode electrode are disposed on the outside thereof. 8. An anode electrode 9 is disposed.

本実施例においては、両極ともに薄片状のナノ構造、あるいは薄片状のナノ構造単位を有した樹枝状構造を有する触媒を炭素繊維上に形成した触媒電極を配置した例を示す。しかし、触媒電極の配置構成としてはこれに限定するものではなく、例えばカソード側のみ本発明の触媒電極を配置する場合、あるいはアノード側のみ本発明の触媒電極を配置する場合をも含んでおり、種々の構成を好ましく選択することができる。   In this embodiment, an example is shown in which a catalyst electrode in which a catalyst having a flaky nanostructure or a dendritic structure having a flaky nanostructure unit is formed on a carbon fiber is disposed on both electrodes. However, the arrangement configuration of the catalyst electrode is not limited to this, and includes, for example, the case where the catalyst electrode of the present invention is arranged only on the cathode side, or the case where the catalyst electrode of the present invention is arranged only on the anode side, Various configurations can be preferably selected.

さらに、図1において、2は触媒、3は触媒を担持する炭素繊維であり、これらから触媒電極4が構成される。
触媒2は薄片状のナノ構造を有することを特徴とする。特に、触媒は薄片状のナノ構造単位を有した樹枝状構造であることが好ましい。
Furthermore, in FIG. 1, 2 is a catalyst, 3 is carbon fiber which supports a catalyst, and the catalyst electrode 4 is comprised from these.
The catalyst 2 is characterized by having a flaky nanostructure. In particular, the catalyst preferably has a dendritic structure having flaky nanostructure units.

前記触媒は、白金酸化物、白金酸化物と白金以外の金属元素の酸化物との複合酸化物、前記白金酸化物または複合酸化物を還元処理してなる白金または白金を含んだ多元金属、白金と白金以外の金属元素の酸化物との混合物あるいは白金を含んだ多元金属と白金以外の金属元素の酸化物との混合物を好適に使用することができる。   The catalyst includes platinum oxide, a composite oxide of platinum oxide and an oxide of a metal element other than platinum, platinum formed by reducing the platinum oxide or composite oxide, or a multi-metal containing platinum, platinum It is possible to suitably use a mixture of a metal element oxide other than platinum or a mixture of a multielement metal containing platinum and an oxide of a metal element other than platinum.

前記白金以外の金属元素は、Al,Si,Ti,V,Cr,Fe,Co,Ni,Cu,Zn,Ge,Zr,Nb,Mo,Ru,Rh,Pd,Ag,In,Sn,Hf,Ta,W,Os,Ir,Au,La,Ce,Ndから選ばれる少なくとも一種類以上の金属を好ましく用いることができる。   The metal elements other than platinum are Al, Si, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ge, Zr, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Hf, At least one metal selected from Ta, W, Os, Ir, Au, La, Ce, and Nd can be preferably used.

以上述べた形態、組成、構成、寸法の触媒は、反応性真空蒸着法によって好適に形成することができる。例えば、薄片状のナノ構造を有する白金酸化物は、白金ターゲットを使用した反応性スパッタによって、炭素繊維上に容易に被覆形成することができる。   The catalyst having the form, composition, configuration and dimensions described above can be suitably formed by a reactive vacuum deposition method. For example, a platinum oxide having a flaky nanostructure can be easily formed on a carbon fiber by reactive sputtering using a platinum target.

炭素繊維3はグラファイト構造を有する繊維を示し、グラフェンのC軸が繊維長方向と平行なプレートレット型グラファイトナノファイバー(以下、GNFと称す)を使用することができる。また、グラフェンのC軸が繊維長方向と傾きを持ったへリングボーン型GNF、グラフェンのC軸が繊維長方向と垂直な、所謂カーボンナノチューブ(以下、CNTと称す)等を使用することができる。   The carbon fiber 3 is a fiber having a graphite structure, and a platelet-type graphite nanofiber (hereinafter referred to as GNF) in which the C axis of graphene is parallel to the fiber length direction can be used. Further, a herringbone GNF in which the C axis of graphene has an inclination with respect to the fiber length direction, a so-called carbon nanotube (hereinafter referred to as CNT) in which the C axis of graphene is perpendicular to the fiber length direction, and the like can be used. .

GNFあるいはCNTは、Pd、Fe、Co、Ni、あるいはこれらの合金を炭素繊維の生成触媒として配置した基体を、炭素含有ガスあるいは水素ガスと混合した炭素含有ガスを含む減圧雰囲気反応炉内にて、300℃〜800℃に加熱する。所謂熱CVD法によって形成することができる。   GNF or CNT is formed in a reduced-pressure atmosphere reactor containing a carbon-containing gas or a carbon-containing gas mixed with hydrogen gas on a substrate on which Pd, Fe, Co, Ni, or an alloy thereof is arranged as a carbon fiber production catalyst. Heat to 300 ° C to 800 ° C. It can be formed by a so-called thermal CVD method.

前記炭素繊維の直径は、生成触媒の膜厚、若しくは還元凝集処理後の生成触媒粒径によって制御することができ、平均直径5nm以上500nm以下、さらに好適には50nm以上300nm以下の範囲である。また、前記炭素繊維の長さは、その成長時間によって制御することができ、平均長さ1μm以上100μm以下、さらに好適には10μm以上50μm以下の範囲である。   The diameter of the carbon fiber can be controlled by the film thickness of the produced catalyst or the produced catalyst particle diameter after the reductive aggregation treatment, and has an average diameter of 5 nm to 500 nm, more preferably 50 nm to 300 nm. The length of the carbon fiber can be controlled by the growth time, and the average length is in the range of 1 μm to 100 μm, more preferably 10 μm to 50 μm.

こうして炭素繊維上に形成した、薄片状のナノ構造、あるいは薄片状のナノ構造単位を有した樹枝状構造を有する触媒は、これを直接高分子電解質膜に転写する方法を採ってもよい。また、基体から剥離した触媒電極を電解質溶液、有機溶媒、水と混合して触媒スラリーを作製した後にこれを電解質膜に直接塗布する方法を採ってもよい。あるいはこの触媒スラリーをブレード法にて転写層としてのテフロン(登録商標)シート上に形成した後、これを電解質膜に転写する方法(DeCal法)を採用することもできる。   The catalyst having a flaky nanostructure or a dendritic structure having a flaky nanostructure unit thus formed on the carbon fiber may be directly transferred to a polymer electrolyte membrane. Alternatively, a method may be employed in which the catalyst electrode peeled from the substrate is mixed with an electrolyte solution, an organic solvent, and water to prepare a catalyst slurry and then directly applied to the electrolyte membrane. Alternatively, a method (DeCal method) in which the catalyst slurry is formed on a Teflon (registered trademark) sheet as a transfer layer by a blade method and then transferred to an electrolyte membrane can be employed.

固体高分子電解質膜としては、弗化炭素骨格にスルホン酸基を末端につけた側鎖が結合した構造のパーフルオロスルホン酸ポリマーを好適に使用することができる。
パーフルオロスルホン酸ポリマーは弗化炭素骨格が架橋しておらず、骨格部分がファンデルワールス力で結合した結晶を形成しており、さらにスルホン酸基はいくつかが凝集して逆ミセル構造をとっており、ここがプロトンH+の伝導チャネルとなっている。なお、プロトンH+が電解質膜中をカソード側に向かって移動する場合には水分子を媒体として移動するので、電解質膜は水分子を保有する機能も有する。
As the solid polymer electrolyte membrane, a perfluorosulfonic acid polymer having a structure in which a side chain having a sulfonic acid group at the end is bonded to a fluorocarbon skeleton can be preferably used.
Perfluorosulfonic acid polymers do not have a cross-linked fluorocarbon skeleton, form crystals in which the skeleton is bonded by van der Waals forces, and some sulfonic acid groups aggregate to form a reverse micelle structure. This is the proton H + conduction channel. When proton H + moves in the electrolyte membrane toward the cathode side, it moves using water molecules as a medium, so that the electrolyte membrane also has a function of retaining water molecules.

したがって、固体高分子電解質膜の機能としては、アノード側で生成したプロトンH+をカソード側に伝達するとともに未反応の反応ガス(水素および酸素)を通さないこと、所定の保水機能を要する。この条件を満たすものであれば、任意のものを選択して使用することができる。 Therefore, as a function of the solid polymer electrolyte membrane, proton H + generated on the anode side is transmitted to the cathode side, unreacted reaction gases (hydrogen and oxygen) are not passed, and a predetermined water retention function is required. Any one satisfying this condition can be selected and used.

ガス拡散層5は、電極反応を効率良く行わせるために、燃料ガスまたは空気を燃料極または空気極の触媒電極中の電極反応領域へ、面内で均一に充分に供給する。それとともに、アノード電極反応によって生じる電荷を単セル外部に放出させること、さらに反応生成水や未反応ガスを単セル外部に効率よく排出する役割を担うものである。ガス拡散層としては、電子伝導性を有する多孔質体、例えばカーボンクロスやカーボンペーパーを好ましく用いることができる。   The gas diffusion layer 5 supplies the fuel gas or air uniformly and sufficiently in a plane to the electrode reaction region in the catalyst electrode of the fuel electrode or the air electrode in order to perform the electrode reaction efficiently. At the same time, the charge generated by the anode electrode reaction is released to the outside of the single cell, and the reaction product water and unreacted gas are efficiently discharged to the outside of the single cell. As the gas diffusion layer, a porous body having electron conductivity such as carbon cloth or carbon paper can be preferably used.

本発明の触媒電極および固体高分子型燃料電池の製造方法としては様々な方法があるが、図2に示す走査電子顕微鏡で示した触媒電極を例として、以下にその製造方法の一例を説明する。図2は、実施例1の触媒電極の触媒の粒子構造を示す走査電子顕微鏡(SEM)写真(倍率:5万倍)である。具体的には、図2に示す触媒電極は、GNF担体上に樹枝状の構造を有する酸化白金触媒を形成した例である。   There are various methods for producing the catalyst electrode and the polymer electrolyte fuel cell of the present invention. An example of the production method will be described below by taking the catalyst electrode shown in the scanning electron microscope shown in FIG. 2 as an example. . FIG. 2 is a scanning electron microscope (SEM) photograph (magnification: 50,000 times) showing the particle structure of the catalyst of the catalyst electrode of Example 1. Specifically, the catalyst electrode shown in FIG. 2 is an example in which a platinum oxide catalyst having a dendritic structure is formed on a GNF support.

(工程1)触媒担体としてのGNFを準備する。
Si基体上にGNF形成触媒となるPd−Co微粒子をCo50原子%の組成比で約20nmの膜厚で成膜する。これを熱CVD装置の反応容器内に配置し、真空排気後600℃、10分の加熱によりPd−Co微粒子を還元凝集せしめ、さらに1%アセチレン(99%ヘリウム)ガスおよび100%水素ガスをそれぞれ20sccmづつ導入して、反応容器内の全圧を2kPaに保持する。次いで反応容器内の基板温度を800℃まで上昇させて20分間保持し、Si基体上に直径約50nmのGNFを厚さ約20μm成長させる。
(Step 1) Prepare GNF as a catalyst carrier.
Pd—Co fine particles serving as a GNF forming catalyst are formed on a Si substrate with a composition ratio of Co 50 atomic% and a film thickness of about 20 nm. This was placed in a reaction vessel of a thermal CVD apparatus, Pd—Co fine particles were reduced and aggregated by heating at 600 ° C. for 10 minutes after evacuation, and further 1% acetylene (99% helium) gas and 100% hydrogen gas were respectively added. 20 sccm is introduced at a time, and the total pressure in the reaction vessel is maintained at 2 kPa. Next, the substrate temperature in the reaction vessel is raised to 800 ° C. and held for 20 minutes, and GNF having a diameter of about 50 nm is grown on the Si substrate to a thickness of about 20 μm.

(工程2)次に、上記工程によって作製した基体をスパッタ装置に移動し、樹枝状構造を有する酸化白金触媒を膜厚約100nm成膜する。
スパッタ室内圧力を1.0×10-4Paまで排気した後、Ar、O2を其々2.5、20.0sccm導入し、オリフィスにて全圧を6.0Paに調整する。
(Step 2) Next, the substrate prepared in the above step is moved to a sputtering apparatus, and a platinum oxide catalyst having a dendritic structure is formed to a thickness of about 100 nm.
After the sputtering chamber pressure is evacuated to 1.0 × 10 −4 Pa, Ar and O 2 are introduced to 2.5 and 20.0 sccm, respectively, and the total pressure is adjusted to 6.0 Pa at the orifice.

RF投入パワー4.0W/cm2にて反応性スパッタを行い、樹枝状構造を有する酸化 白金を膜厚約100nm成膜する。
このとき、スパッタされた原子は基体に対して指向性を持たずに入射、堆積するので、酸化白金はGNF表面にほぼ100%の被覆率で有効に形成される。
Reactive sputtering is performed at an RF input power of 4.0 W / cm 2 to form a platinum oxide having a dendritic structure with a film thickness of about 100 nm.
At this time, since the sputtered atoms are incident and deposited without directivity to the substrate, platinum oxide is effectively formed on the GNF surface with a coverage of almost 100%.

成膜が終了した基体は、10kPaの2%H2/Heに暴露することによって容易に還元される。
(工程3)還元処理まで行った触媒電極に対して、アイオノマー処理を行う。すなわち濃度、溶媒等を調整したNafion分散溶液を触媒電極表面に滴下する。
The substrate after film formation is easily reduced by exposure to 10 kPa of 2% H 2 / He.
(Step 3) An ionomer treatment is performed on the catalyst electrode that has been subjected to the reduction treatment. That is, a Nafion dispersion solution adjusted in concentration, solvent, etc. is dropped on the surface of the catalyst electrode.

(工程4)こうして作製した触媒電極によって固体高分子電解質膜(Dupont製、Nafion112)を挟みこんでホットプレスを行う。さらにSi基板を剥離することにより、一対の触媒電極を固体高分子電解質膜に転写して、電解質膜と一対の触媒電極を接合する。   (Step 4) Hot pressing is performed by sandwiching a solid polymer electrolyte membrane (manufactured by Dupont, Nafion 112) between the catalyst electrodes thus produced. Further, by peeling the Si substrate, the pair of catalyst electrodes is transferred to the solid polymer electrolyte membrane, and the electrolyte membrane and the pair of catalyst electrodes are joined.

(工程5)この接合体をガス拡散層としてのカーボンクロス(E−TEK製 LT1400−W)、さらに燃料極電極および空気極電極によって挟んで単セルを作製する。
以上、図2に示した触媒電極の場合を例として、固体高分子型燃料電池の単セルの作製方法を説明した。
(Step 5) A single cell is produced by sandwiching the joined body between a carbon cloth (LT1400-W manufactured by E-TEK) as a gas diffusion layer, and a fuel electrode and an air electrode.
As described above, the method for producing a single cell of the polymer electrolyte fuel cell has been described taking the case of the catalyst electrode shown in FIG. 2 as an example.

本発明はこの単セル構成の固体高分子型燃料電池に限定されるものではなく、単セルを複数スタックした構成の固体高分子型燃料電池をも含むものである。   The present invention is not limited to the polymer electrolyte fuel cell having a single cell configuration, but includes a polymer electrolyte fuel cell having a configuration in which a plurality of single cells are stacked.

次に、上記実施の形態に基づく、より具体的な実施例を詳細に説明する。
実施例1
本実施例は、実施形態中で述べた、GNF担体上に樹枝状の構造を有する白金触媒を形成した場合の例である。
Next, more specific examples based on the above embodiment will be described in detail.
Example 1
This example is an example in which a platinum catalyst having a dendritic structure is formed on a GNF support described in the embodiment.

以下、本実施例に係わる固体高分子型燃料電池の製造工程を詳細に説明する。
(工程1)
先ず、触媒担体としてのGNFを準備する。
Hereinafter, the manufacturing process of the polymer electrolyte fuel cell according to the present embodiment will be described in detail.
(Process 1)
First, GNF as a catalyst carrier is prepared.

Si基体上にGNF形成触媒となるPd−Co微粒子をCo50原子%の組成比で約20nmの膜厚で成膜した。これを熱CVD装置の反応容器内に配置した。真空排気後、600℃、10分の加熱によりPd−Co微粒子を還元凝集せしめ、さらに1%アセチレン(99%ヘリウム)ガスおよび100%水素ガスをそれぞれ20sccmづつ導入して、反応容器内の全圧を2kPaに保持した。次いで反応容器内の基体温度を800℃まで上昇させて20分間保持し、Si基体上に直径約50nmのGNFを厚さ約20μm成長させた。   Pd—Co fine particles serving as a GNF forming catalyst were formed on a Si substrate with a composition ratio of Co 50 atomic% and a film thickness of about 20 nm. This was placed in a reaction vessel of a thermal CVD apparatus. After evacuation, Pd—Co fine particles were reduced and aggregated by heating at 600 ° C. for 10 minutes, and further, 1% acetylene (99% helium) gas and 100% hydrogen gas were introduced in 20 sccm increments, and the total pressure in the reaction vessel was increased. Was maintained at 2 kPa. Next, the substrate temperature in the reaction vessel was raised to 800 ° C. and held for 20 minutes, and GNF having a diameter of about 50 nm was grown on the Si substrate to a thickness of about 20 μm.

(工程2)
次に、上記工程によって作製した基体をスパッタ装置に移動し、樹枝状構造を有する酸化白金触媒を成膜する。
(Process 2)
Next, the substrate manufactured by the above process is moved to a sputtering apparatus, and a platinum oxide catalyst having a dendritic structure is formed.

スパッタ室内圧力を1.0×10-4Paまで排気した後、Ar、O2を其々2.5、20.0sccm導入し、オリフィスにて全圧を6.0Paに調整した。
RF投入パワー4.0W/cm2にて反応性スパッタを行い、GNF表面上に樹枝状構造を有する酸化白金をアノード用50μg/cm2、カソード用0.5mg/cm2でそれぞれ成膜した。
After evacuating the sputtering chamber pressure to 1.0 × 10 −4 Pa, Ar and O 2 were introduced to 2.5 and 20.0 sccm, respectively, and the total pressure was adjusted to 6.0 Pa with the orifice.
Reactive sputtering was performed at an RF input power of 4.0 W / cm 2 , and platinum oxide having a dendritic structure on the GNF surface was formed at 50 μg / cm 2 for the anode and 0.5 mg / cm 2 for the cathode, respectively.

このとき、スパッタされた原子は基体に対して指向性を持たずに入射、堆積するので、酸化白金はGNF表面にほぼ100%の被覆率で有効に形成されていた。図2は、実施例1の触媒電極、すなわちグラファイトナノファイバー上に、酸化白金の薄片が集合して形成された樹枝状の構造を有する触媒電極の触媒の粒子構造を示す走査電子顕微鏡(SEM)写真(倍率:5万倍)である。   At this time, since the sputtered atoms are incident and deposited without directivity to the substrate, platinum oxide was effectively formed on the GNF surface with a coverage of almost 100%. FIG. 2 is a scanning electron microscope (SEM) showing the particle structure of the catalyst of the catalyst electrode of Example 1, that is, a catalyst electrode having a dendritic structure formed by assembling platinum oxide flakes on graphite nanofibers. It is a photograph (magnification: 50,000 times).

酸化白金の成膜が終了した基体は、10kPaの2%H2/Heに10分間暴露することによって容易に還元された。
(工程3)
還元処理まで行った触媒電極に対して、アイオノマー処理を行う。すなわち濃度、溶媒等を調整したNafion分散溶液を触媒電極表面に滴下した。アノード側の触媒電極、カソード側の触媒電極をそれぞれ作製した。
The substrate on which the platinum oxide film was formed was easily reduced by exposure to 10 kPa of 2% H 2 / He for 10 minutes.
(Process 3)
The ionomer treatment is performed on the catalyst electrode that has been subjected to the reduction treatment. That is, a Nafion dispersion solution adjusted in concentration, solvent and the like was dropped on the surface of the catalyst electrode. A catalyst electrode on the anode side and a catalyst electrode on the cathode side were prepared.

(工程4)
こうして作製した触媒電極によって固体高分子電解質膜(Dupont製、Nafion112)を挟みこんでホットプレスを行った。さらにPTFEシートを剥離することにより、一対の触媒電極を高分子電解質膜に転写して、電解質膜と一対の触媒電極を接合した。
(Process 4)
Hot pressing was performed by sandwiching a solid polymer electrolyte membrane (manufactured by Dupont, Nafion 112) with the catalyst electrode thus prepared. Further, by peeling the PTFE sheet, the pair of catalyst electrodes was transferred to the polymer electrolyte membrane, and the electrolyte membrane and the pair of catalyst electrodes were joined.

この接合体をガス拡散層としてのカーボンクロス(E−TEK製 LT1400−W)、さらに燃料極電極および空気極電極によって挟んで単セルを作製した。
以上の工程によって作製した単セルに関して、図3に示した構成の評価装置を用いて特性評価を行った。アノード電極側に水素ガスを、カソード電極側に空気を流し、電池温度80℃にて放電試験を行った。
This joined body was sandwiched between carbon cloth (LT1400-W, manufactured by E-TEK) as a gas diffusion layer, and a fuel electrode and an air electrode to produce a single cell.
With respect to the single cell manufactured through the above steps, the characteristics were evaluated using the evaluation apparatus having the configuration shown in FIG. A discharge test was conducted at a battery temperature of 80 ° C. by flowing hydrogen gas to the anode electrode side and air to the cathode electrode side.

このとき、比較例1として白金担持カーボンのDecal法により作製した単セルに関して同様の試験を行った。
まず反応律速領域である900mVでの電流密度を比較すると、本実施例1が7.4mA/cm2であったのに対し、比較例1では2.0mA/cm2であった。さらに、これを触媒担持量(カソード触媒換算)で除した触媒比活性を比較すると、本実施例1が14.8A/gであったのに対し、比較例1では5.7A/gであった。
At this time, as Comparative Example 1, a similar test was performed on a single cell produced by the Decal method of platinum-supported carbon.
First, comparing the current density at 900mV within a reaction rate-limiting region, the first embodiment whereas was 7.4 mA / cm 2, was 2.0 mA / cm 2 in Comparative Example 1. Furthermore, when the specific activity of the catalyst obtained by dividing this by the amount of catalyst supported (cathode catalyst conversion) was compared, it was 14.8 A / g in Example 1, whereas it was 5.7 A / g in Comparative Example 1. It was.

また限界電流領域で比較すると、本実施例1の単セルが600mA/cm2以上の電流密度であるのに対し、比較例1では520mA/cm2であった。すなわち、本実施例1の触媒電極は比較例1の触媒電極に対し、活性分極、抵抗分極および拡散分極のいずれにおいても、特性を大幅に向上にすることができた。 Further, when compared in the limit current region, the single cell of Example 1 has a current density of 600 mA / cm 2 or more, whereas in Comparative Example 1, it was 520 mA / cm 2 . That is, the catalyst electrode of Example 1 was able to greatly improve the characteristics in all of active polarization, resistance polarization, and diffusion polarization compared to the catalyst electrode of Comparative Example 1.

さらに単セルの初期状態を揃えて、起動特性の試験を行ったところ、比較例1のセルでは起動初期に十分な特性が得られなかったのに対し、本実施例1のセルでは起動初期からほぼ定格出力を得ることができた。   Furthermore, when the initial characteristics of the single cells were aligned and the start-up characteristics were tested, the cell of Comparative Example 1 did not provide sufficient characteristics at the start of the start, whereas the cell of Example 1 had the initial start-up characteristics. Almost rated output was obtained.

以上のように、固体高分子型燃料電池の触媒電極として本実施例1に係わる触媒電極を用いることにより、触媒活性が大幅に向上でき、優れた電池特性を有する燃料電池が得られた。さらに本実施例1にかかわる触媒電極の製造方法は、簡易かつ安価で再現性のよいプロセスであるため、安定な特性を持った固体高分子型燃料電池を低コストで実現できた。   As described above, by using the catalyst electrode according to Example 1 as the catalyst electrode of the polymer electrolyte fuel cell, the catalytic activity can be greatly improved, and a fuel cell having excellent cell characteristics was obtained. Furthermore, since the method for producing the catalyst electrode according to Example 1 is a simple, inexpensive, and reproducible process, a solid polymer fuel cell having stable characteristics could be realized at low cost.

実施例2
本実施例2は、実施例1と同様の方法で、GNF担体上に樹枝状の構造を有する白金−パラジウム複合酸化物触媒を形成した場合の触媒電極の例である。以下では本実施例2に係わる固体高分子型燃料電池の製造工程を、実施例1と構成および製法上異なる(工程1)〜(工程3)のみ説明する。
Example 2
Example 2 is an example of a catalyst electrode when a platinum-palladium composite oxide catalyst having a dendritic structure is formed on a GNF support in the same manner as Example 1. In the following, only the steps (step 1) to (step 3), which are different from the first embodiment in terms of configuration and manufacturing method, will be described for the manufacturing process of the polymer electrolyte fuel cell according to the second embodiment.

(工程1)
先ず、触媒担体としてのGNFを準備する。
Si基体上にGNF形成触媒となるNi微粒子を約20nmの膜厚で成膜して、これを熱CVD装置の反応容器内に配置した。真空排気後、600℃、10分の加熱により還元凝集せしめ、さらに1%アセチレン(99%ヘリウム)ガスおよび100%水素ガスをそれぞれ20sccmづつ導入して、反応容器内の全圧を2kPaに保持した。次いで反応容器内の基体温度を800℃まで上昇させて20分間保持し、Si基体上に直径約100nmのGNFを厚さ約30成長させた。
(Process 1)
First, GNF as a catalyst carrier is prepared.
Ni fine particles serving as a GNF forming catalyst were formed on a Si substrate with a film thickness of about 20 nm, and this was placed in a reaction vessel of a thermal CVD apparatus. After evacuation, the mixture was reduced and aggregated by heating at 600 ° C. for 10 minutes, and further, 1% acetylene (99% helium) gas and 100% hydrogen gas were introduced in 20 sccm each, and the total pressure in the reaction vessel was maintained at 2 kPa. . Next, the temperature of the substrate in the reaction vessel was raised to 800 ° C. and held for 20 minutes, and GNF having a diameter of about 100 nm was grown on the Si substrate to a thickness of about 30.

(工程2)
次に、上記工程によって作製した基体をスパッタ装置に移動し、樹枝状構造を有する白金−パラジウム複合酸化物触媒を成膜する。
(Process 2)
Next, the substrate manufactured by the above process is moved to a sputtering apparatus, and a platinum-palladium composite oxide catalyst having a dendritic structure is formed.

スパッタ室内圧力を1.0×10-4Paまで排気した後、Ar、O2を其々2.5、20.0sccm導入し、オリフィスにて全圧を6.0Paに調整した。
白金、パラジウムターゲットに対して、RF投入パワーをそれぞれ4.0W/cm2、2.5W/cm2にて反応性スパッタを行い、GNF表面上に樹枝状構造を有する酸化白金をアノード用50μg/cm2、カソード用0.4mg/cm2でそれぞれ成膜した。
After evacuating the sputtering chamber pressure to 1.0 × 10 −4 Pa, Ar and O 2 were introduced to 2.5 and 20.0 sccm, respectively, and the total pressure was adjusted to 6.0 Pa with the orifice.
Platinum for palladium target, respectively 4.0 W / cm 2 of RF input power, 2.5 W / cm 2 performs reactive sputtering at, for the anode of platinum oxide having a dendritic structure on GNF surface 50 [mu] g / cm 2, at the cathode for the 0.4mg / cm 2 was formed, respectively.

このとき、スパッタされた原子は基体に対して指向性を持たずに入射、堆積するので、白金−パラジウム複合酸化物はGNF表面にほぼ100%の被覆率で有効に形成されていた。   At this time, since the sputtered atoms were incident and deposited without directivity to the substrate, the platinum-palladium composite oxide was effectively formed on the GNF surface with a coverage of almost 100%.

成膜が終了した基体は、10kPaの2%H2/Heに10分間暴露することによって容易に還元された。
(工程3)
還元処理まで行った触媒電極に対して、アイオノマー処理を行う。すなわち濃度、溶媒等を調整したNafion分散溶液を触媒電極表面に滴下した。
The substrate after film formation was easily reduced by exposure to 10 kPa of 2% H 2 / He for 10 minutes.
(Process 3)
The ionomer treatment is performed on the catalyst electrode that has been subjected to the reduction treatment. That is, a Nafion dispersion solution adjusted in concentration, solvent and the like was dropped on the surface of the catalyst electrode.

以上の工程によって作製した単セルに関して、図3に示した構成の評価装置を用いて特性評価を行った。アノード電極側に水素ガスを、カソード電極側に空気を流し、電池温度80℃にて放電試験を行った。このとき、比較例1として白金担持カーボン触媒を用いて作製した単セルに関して同様の試験を行った。   With respect to the single cell manufactured through the above steps, the characteristics were evaluated using the evaluation apparatus having the configuration shown in FIG. A discharge test was conducted at a battery temperature of 80 ° C. by flowing hydrogen gas to the anode electrode side and air to the cathode electrode side. At this time, the same test was conducted on a single cell produced using a platinum-supported carbon catalyst as Comparative Example 1.

まず反応律速領域である900mVでの電流密度を比較すると、本実施例2が7.2mA/cm2であったのに対し、比較例1では2.0mA/cm2であった。さらに、これを触媒担持量(カソード触媒換算)で除した触媒比活性を比較すると、本実施例2が9.0A/gであったのに対し、比較例1では5.7A/gであった。 First, comparing the current density at 900mV within a reaction rate-limiting region, the second embodiment whereas was 7.2 mA / cm 2, was 2.0 mA / cm 2 in Comparative Example 1. Furthermore, when the specific activity of the catalyst obtained by dividing this by the amount of catalyst supported (cathode catalyst equivalent) was compared, it was 9.0 A / g in Example 2, whereas it was 5.7 A / g in Comparative Example 1. It was.

また限界電流領域で比較すると、本実施例2の単セルが600mA/cm2以上の電流密度であるのに対し、比較例1では520mA/cm2であった。すなわち、本実施例の触媒電極は比較例1の触媒電極に対し、活性分極、抵抗分極および拡散分極のいずれにおいても、特性を大幅に向上にすることができた。 Further, when compared in the limit current region, the single cell of Example 2 has a current density of 600 mA / cm 2 or more, whereas in Comparative Example 1, it was 520 mA / cm 2 . That is, the catalyst electrode of this example was able to greatly improve the characteristics of any of active polarization, resistance polarization and diffusion polarization compared to the catalyst electrode of Comparative Example 1.

さらに単セルの初期状態を揃えて、起動特性の試験を行ったところ、比較例1のセルでは起動初期に十分な特性が得られなかったのに対し、本実施例2のセルでは起動初期からほぼ定格出力を得ることができた。   Furthermore, when the start-up characteristics were tested with the initial state of the single cells aligned, the cell of Comparative Example 1 did not provide sufficient characteristics at the start-up stage, whereas the cell of Example 2 from the start-up stage. Almost rated output was obtained.

以上のように、固体高分子型燃料電池の触媒電極として本実施例2に係わる触媒電極を用いることにより、触媒活性が大幅に向上でき、優れた電池特性を有する燃料電池が得られた。さらに本実施例にかかわる触媒電極の製造方法は、簡易かつ安価で再現性のよいプロセスであるため、安定な特性を持った固体高分子型燃料電池を低コストで実現できた。   As described above, by using the catalyst electrode according to Example 2 as the catalyst electrode of the polymer electrolyte fuel cell, the catalytic activity can be greatly improved, and a fuel cell having excellent cell characteristics was obtained. Furthermore, since the catalyst electrode manufacturing method according to this example is a simple, inexpensive, and reproducible process, a solid polymer fuel cell having stable characteristics can be realized at low cost.

本発明によれば、触媒利用率を向上した構成の触媒電極を汎用性がある簡易な方法で製造できるので、前記触媒電極を長期間渡って均一で安定な発電特性を有する固体高分子型燃料電池に利用することができる。   According to the present invention, a catalyst electrode having an improved catalyst utilization rate can be produced by a simple method having versatility, so that the polymer electrode has a uniform and stable power generation characteristic over a long period of time. It can be used for batteries.

触媒電極を用いた固体高分子型燃料電池の単セルの断面構成の一例を表す模式図である。It is a schematic diagram showing an example of the section composition of the single cell of the polymer electrolyte fuel cell using a catalyst electrode. 実施例1の触媒電極の触媒の粒子構造を示す走査電子顕微鏡(SEM)写真(倍率:5万倍)である。2 is a scanning electron microscope (SEM) photograph (magnification: 50,000 times) showing the particle structure of the catalyst of the catalyst electrode of Example 1. FIG. 固体高分子型燃料電池の評価装置の模式図である。It is a schematic diagram of the evaluation apparatus of a polymer electrolyte fuel cell.

符号の説明Explanation of symbols

1 固体高分子電解質膜
2 触媒
3 炭素繊維
4 カソード触媒電極
5 アノード触媒電極
6 カソードガス拡散層
7 アノードガス拡散層
8 カソード電極
9 アノード電極
10 膜−電極接合体
DESCRIPTION OF SYMBOLS 1 Solid polymer electrolyte membrane 2 Catalyst 3 Carbon fiber 4 Cathode catalyst electrode 5 Anode catalyst electrode 6 Cathode gas diffusion layer 7 Anode gas diffusion layer 8 Cathode electrode 9 Anode electrode 10 Membrane-electrode assembly

Claims (8)

固体高分子型燃料電池の触媒電極であって、前記触媒電極は触媒と、触媒を担持する炭素繊維を有し、前記触媒は薄片状のナノ構造を有する固体高分子型燃料電池の触媒電極の製造方法において、前記触媒を反応性真空蒸着法によって形成する工程を有することを特徴とする固体高分子型燃料電池の触媒電極の製造方法。   A catalyst electrode of a polymer electrolyte fuel cell, wherein the catalyst electrode includes a catalyst and a carbon fiber supporting the catalyst, and the catalyst is a catalyst electrode of a polymer electrolyte fuel cell having a flaky nanostructure A method for producing a catalyst electrode of a polymer electrolyte fuel cell, comprising the step of forming the catalyst by a reactive vacuum deposition method. 前記触媒が、薄片状のナノ構造単位を有した樹枝状構造であることを特徴とする請求項1に記載の固体高分子型燃料電池の触媒電極の製造方法2. The method for producing a catalyst electrode of a polymer electrolyte fuel cell according to claim 1, wherein the catalyst has a dendritic structure having flaky nanostructure units. 前記触媒は、白金酸化物、白金酸化物と白金以外の金属元素の酸化物との複合酸化物、前記白金酸化物または複合酸化物を還元処理してなる白金または白金を含んだ多元金属、白金と白金以外の金属元素の酸化物との混合物あるいは白金を含んだ多元金属と白金以外の金属元素の酸化物との混合物であることを特徴とする請求項1または2に記載の固体高分子型燃料電池の触媒電極の製造方法The catalyst includes platinum oxide, a composite oxide of platinum oxide and an oxide of a metal element other than platinum, platinum formed by reducing the platinum oxide or composite oxide, or a multi-metal containing platinum, platinum 3. The solid polymer type according to claim 1, which is a mixture of a metal element oxide other than platinum or a mixture of a multielement metal containing platinum and an oxide of a metal element other than platinum. A method for producing a catalyst electrode of a fuel cell. 前記白金以外の金属元素は、Al,Si,Ti,V,Cr,Fe,Co,Ni,Cu,Zn,Ge,Zr,Nb,Mo,Ru,Rh,Pd,Ag,In,Sn,Hf,Ta,W,Os,Ir,Au,La,Ce,Ndから選ばれる少なくとも一種類以上の金属からなることを特徴とする請求項に記載の固体高分子型燃料電池の触媒電極の製造方法The metal elements other than platinum are Al, Si, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ge, Zr, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Hf, 4. The method for producing a catalyst electrode for a polymer electrolyte fuel cell according to claim 3 , comprising at least one metal selected from Ta, W, Os, Ir, Au, La, Ce, and Nd. 前記触媒の薄片の最大厚さが5nm以上50nm以下であることを特徴とする請求項1乃至4のいずれかの項に記載の固体高分子型燃料電池の触媒電極の製造方法5. The method for producing a catalyst electrode of a polymer electrolyte fuel cell according to claim 1, wherein the maximum thickness of the catalyst flakes is 5 nm or more and 50 nm or less. 前記炭素繊維は熱CVD法によって形成することを特徴とする請求項に記載の固体高分子型燃料電池の触媒電極の製造方法。 2. The method for producing a catalyst electrode of a polymer electrolyte fuel cell according to claim 1 , wherein the carbon fiber is formed by a thermal CVD method. 前記炭素繊維はナノチューブまたはナノファイバーであることを特徴とする請求項1または6に記載の固体高分子型燃料電池の触媒電極の製造方法The carbon fiber production method of the catalyst electrode of a polymer electrolyte fuel cell according to claim 1 or 6 characterized in that it is a nanotube or nanofiber. 前記炭素繊維の平均直径は5nm以上500nm以下で、平均長さは1μm以上100μm以下であることを特徴とする1、6または7のいずれかの項に記載の固体高分子型燃料電池の触媒電極の製造方法The catalyst electrode of a polymer electrolyte fuel cell according to any one of 1 , 6 and 7 , wherein the carbon fiber has an average diameter of 5 nm to 500 nm and an average length of 1 μm to 100 μm. Manufacturing method .
JP2005378700A 2005-12-22 2005-12-28 Method for producing catalyst electrode of polymer electrolyte fuel cell Expired - Fee Related JP4939051B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005378700A JP4939051B2 (en) 2005-12-28 2005-12-28 Method for producing catalyst electrode of polymer electrolyte fuel cell
US11/614,338 US20070148531A1 (en) 2005-12-22 2006-12-21 Catalyst electrode, production process thereof, and polymer electrolyte fuel cell
US12/792,341 US20100240527A1 (en) 2005-12-22 2010-06-02 Process for producing catalyst electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005378700A JP4939051B2 (en) 2005-12-28 2005-12-28 Method for producing catalyst electrode of polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2007179932A JP2007179932A (en) 2007-07-12
JP4939051B2 true JP4939051B2 (en) 2012-05-23

Family

ID=38304896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378700A Expired - Fee Related JP4939051B2 (en) 2005-12-22 2005-12-28 Method for producing catalyst electrode of polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4939051B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5371270B2 (en) 2007-06-12 2013-12-18 キヤノン株式会社 Method for producing catalyst layer for fuel cell
KR102043726B1 (en) * 2013-12-27 2019-11-12 도레이 카부시키가이샤 Carbon fiber nonwoven fabric, production method for carbon fiber nonwoven fabric, and nonwoven fabric of carbon fiber precurser fibers
JP5951055B2 (en) * 2015-02-11 2016-07-13 株式会社半導体エネルギー研究所 Power storage device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521381B1 (en) * 1999-03-16 2003-02-18 General Motors Corporation Electrode and membrane-electrode assemblies for electrochemical cells
KR100584671B1 (en) * 2004-01-14 2006-05-30 (주)케이에이치 케미컬 Process for the preparation of carbon nanotube or carbon nanofiber electrodes by using sulfur or metal nanoparticle as a binder and electrode prepared thereby
JP4977945B2 (en) * 2003-12-18 2012-07-18 トヨタ自動車株式会社 Membrane electrode assembly, method for producing the same, and fuel cell
JP2005294109A (en) * 2004-04-01 2005-10-20 Toyota Motor Corp Substrate for fuel cell, and the fuel cell
JP4539145B2 (en) * 2004-04-06 2010-09-08 トヨタ自動車株式会社 Membrane electrode assembly and fuel cell
JP4440711B2 (en) * 2004-06-11 2010-03-24 トヨタ自動車株式会社 FUEL CELL CELL MODULE, MANUFACTURING METHOD THEREOF, AND FUEL CELL
JP4438525B2 (en) * 2004-06-11 2010-03-24 トヨタ自動車株式会社 FUEL CELL CELL MODULE, MANUFACTURING METHOD THEREOF, AND FUEL CELL

Also Published As

Publication number Publication date
JP2007179932A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP4908778B2 (en) Method for producing catalyst layer of polymer electrolyte fuel cell and method for producing polymer electrolyte fuel cell
JP5107856B2 (en) Membrane-electrode assembly of fuel cell and method for producing the same
KR100658675B1 (en) Electrode for fuel cell, fuel cell comprising the same, and method for preparing the smme
KR100669456B1 (en) Electrode for fuel cell, fuel cell comprising the same, and method for preparing the smme
US20100240527A1 (en) Process for producing catalyst electrode
JP3878642B2 (en) Short carbon nanotube for catalyst support, method for producing the same, carbon nanotube-supported catalyst using the carbon nanotube, and fuel cell employing the same
JP5032443B2 (en) Membrane-electrode assembly for fuel cell and method for producing the same
US20130164652A1 (en) Carbon based electrocatalysts for fuel cells
EP1753057B1 (en) An electrode for a fuel cell
JP2007123043A (en) Solid-polymer fuel cell, catalyst layer thereof, manufacturing method thereof
JP2007526616A (en) Fuel cell with less platinum, catalyst and method for producing the same
WO2007061248A1 (en) Catalyst for fuel cell electrode and method of preparing the same
JP2007194197A (en) Catalyst electrode and its manufacturing method, and polymer electrolyte fuel cell
JP2008239369A (en) Method for refining carbon nanowall (cnw), refined carbon nanowall, method for manufacturing catalyst layer for fuel cell, catalyst layer for fuel cell, and polymer electrolyte fuel cell
JP2007141626A (en) Catalyst electrode for polymer electrolyte fuel cell, and the fuel cell
JP2007157646A (en) Catalyst electrode and polymer electrolyte fuel cell
WO2010117339A1 (en) Membrane electrode assembly and method of forming the same
KR20110078573A (en) Fuel cell electrode and method of fabricating thereof
JP4939051B2 (en) Method for producing catalyst electrode of polymer electrolyte fuel cell
JP2009064591A (en) Electrode for fuel cell, manufacturing method thereof, and membrane electrode assembly using the electrode
JP2007141624A (en) Catalyst layer for solid polymer fuel cell, and manufacturing method of the same
JP2009140667A (en) Solid polymer fuel cell, and manufacturing method thereof
JP2007123196A (en) Solid-polymer fuel cell, catalyst layer thereof, and manufacturing method thereof
JP2007141623A (en) Electrode catalyst for polymer electrolyte fuel cell and fuel cell using it
JP2012178360A (en) Catalyst layer of polymer electrolyte fuel cell, and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees