JP4930904B2 - 電気回路のスイッチング装置 - Google Patents

電気回路のスイッチング装置 Download PDF

Info

Publication number
JP4930904B2
JP4930904B2 JP2007232635A JP2007232635A JP4930904B2 JP 4930904 B2 JP4930904 B2 JP 4930904B2 JP 2007232635 A JP2007232635 A JP 2007232635A JP 2007232635 A JP2007232635 A JP 2007232635A JP 4930904 B2 JP4930904 B2 JP 4930904B2
Authority
JP
Japan
Prior art keywords
main
effect transistor
field effect
insulated gate
gate field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007232635A
Other languages
English (en)
Other versions
JP2009065026A5 (ja
JP2009065026A (ja
Inventor
良治 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2007232635A priority Critical patent/JP4930904B2/ja
Priority to CN2008801057758A priority patent/CN101809742B/zh
Priority to EP08829470A priority patent/EP2187441A4/en
Priority to PCT/JP2008/065838 priority patent/WO2009031567A1/ja
Publication of JP2009065026A publication Critical patent/JP2009065026A/ja
Priority to US12/717,615 priority patent/US7872315B2/en
Publication of JP2009065026A5 publication Critical patent/JP2009065026A5/ja
Application granted granted Critical
Publication of JP4930904B2 publication Critical patent/JP4930904B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823487MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/086Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Electronic Switches (AREA)

Description

本発明は、絶縁ゲート型電界効果トランジスタ(以下、MOSFET又はFETと呼ぶ)とこれを保護するための保護スイッチ手段とを含む電気回路のスイッチング装置に関する。
典型的なMOSFETは、ドレイン領域、ボデイ領域(ベース領域)、ソース領域、ドレイン領域に接続されたドレイン電極、ソース領域及びボデイ領域に接続されたソース電極、ドレイン領域とソース領域との間に露出するボデイ領域の表面を覆うゲート絶縁膜、及びゲート絶縁膜の上に配置されたゲート電極を有する。ソース電極はソース領域にオーミック接触していると共にボデイ領域にもオーミック接触している。従って、ドレイン電極とソース電極との間にボデイ領域のチャネルを通る電流通路の他にドレイン領域とボデイ領域との間のPN接合に基づく寄生ダイオード(ボデイダイオード又は内蔵ダイオード)を通る電流通路が生じる。MOSFETがNチャネル型である場合には、ドレイン電極の電位がソース電極の電位よりも高い時に上記寄生ダイオードは逆バイアス状態となり、ここを通る電流通路が形成されない。しかし、MOSFETが使用されている電気回路の動作に基づいて、又は電源(例えば電池)と電気回路との間の誤接続によりドレイン電極の電位がソース電極の電位よりも低くなることがある。この場合には寄生ダイオードが順バイアス状態となり、ここを電流が流れる。寄生ダイオードを介して電流が流れている時には、ゲート・ソース間の制御電圧でドレイン・ソース間の電流を制御できない。また、寄生ダイオードを介して大きい電流がドレイン・ソース間に流れると、MOSFET又は電気回路が破壊するおそれがある。
MOSFETの寄生ダイオードを通る電流を阻止するために、寄生ダイオードの極性(方向)と反対の極性(方向)を有する外部ダイオード(逆流阻止ダイオード)をMOSFETに直列に接続することが知られている。しかし、もし、外部ダイオードをMOSFETと同一の半導体基板に形成すると、半導体基板の寸法が必然的に大きくなり、且つ半導体装置のコストが高くなる。また、外部ダイオードをMOSFETと別の半導体基板に形成すると、MOSFETと外部ダイオードとを組み合せた電気回路が大型且つコスト高になる。また、外部ダイオードにMOSFETと同一の電流が流れるので、外部ダイオードにおいて比較的大きい電力損失が生じる。また、外部ダイオードをMOSFETに直列に接続した場合には、ドレイン電極の電位がソース電極の電位よりも低い時、即ち逆方向電圧がMOSFETに印加されている時にMOSFETの電流をゲート電圧で制御することが不可能になる。
外部ダイオードによって生じる問題を解決することを目的としてソース電極をボデイ領域にショットキー接触させたプレーナー構造のMOSFETが特開平7−15009号公報(特許文献1)に開示されている。また、本件出願人に係わる特願2006−326811にトレンチ構造のMOSFETにおいてソース電極をボデイ領域にショットキー接触させることが記載されている。これ等のようにソース電極をボデイ領域にショットキー接触させると、ソース電極とボデイ領域とによってショットキーダイオードが形成され、このショットキーダイオードが逆方向電流を阻止する。
上記のショットキーダイオードを内蔵するMOSFETの等価回路は、図2の主MOSFET14又は副MOSFET15と同様に示すことができる。そこで、図2の主MOSFET14を例にしてショットキーダイオードを内蔵するMOSFETを説明する。この主MOSFET14は、FETスイッチQ1と、第1及び第2のPN接合ダイオードDa、Dbと、ショットキーバリアダイオードDcとを有する。第1のダイオードDaはN型のドレイン領域とP型のボデイ領域との間のPN接合に基づく寄生ダイオード(ボデイダイオード)であり、第2のPN接合ダイオードDbはP型のボデイ領域とN型のソース領域との間のPN接合にも基づく寄生(内蔵)ダイオードである。ショットキーバリアダイオードDcはソース電極S1とP型のボデイ領域との間のショットキー接合に基づくダイオードである。第1のPN接合ダイオードDaはドレイン電極D1の電位がソース電極S1の電位よりも高い時に逆バイアスされる極性を有し、FETスイッチQ1に対して逆並列に接続されている。第2のPN接合ダイオードDbは第1のPN接合ダイオードDaと反対の極性を有して第1のPN接合ダイオードDaに直列に接続されている。ショットキーバリアダイオードDcを有さない従来の典型的なMOSFETにおいては、ショットキーバリアダイオードDcの部分が短絡されているので、第2のPN接合ダイオードDbは何らの機能も有さず、等価回路に示されない。ショットキーバリアダイオードDcは第1のPN接合ダイオードDaと逆の極性を有し、第1のPN接合ダイオードDaに直列に接続され、第2のPN接合ダイオードDbに並列に接続されている。
ところで、もし、第2のPN接合ダイオードDb及びショットキーバリアダイオードDcが十分の耐圧を有すれば、ソース電極S1の電位がドレイン電極D1の電位よりも高い時即ち逆方向電圧印加時に、逆方向電流が第2のPN接合ダイオードDb及びショットキーバリアダイオードDcで阻止される。しかし、ソース電極S1が正、ドレイン電極D1が負の逆方向電圧がソース電極S1とドレイン電極D1との間に印加されると、ソース電極S1とゲート電極G1との間の寄生容量によってゲート電極G1の電位が正になり、ゲート電極G1の電位がボデイ領域の電位よりも高くなり、ボデイ領域とソース領域との間のPN接合に基づいて形成される空乏層のゲート電極G1に近い部分(PN接合の露出部分)の厚みが小さくなり、第2のPN接合ダイオードDbの耐圧が低くなる。もし、ソース電極S1とドレイン電極D1との間の電圧が高い場合には、第2のPN接合ダイオードDbの耐圧が極めて低くなり、第2のPN接合ダイオードDbが実質的に機能しなくなり、第2のPN接合ダイオードDbを通って逆方向電流が流れ、ショットキーバリアダイオードDcを設けることによる利益が得られなくなる。
本発明が解決しようとする課題は、ショットキーダイオードを内蔵する絶縁ゲート電界効果トランジスタの保護が要求されていることであり、本発明の目的はこの要求に応えることができる絶縁ゲート電界効果トランジスタを含むスイッチング装置を提供することである。
上記課題を解決するための本発明は、
電圧が印加される第1及び第2の主端子と、
制御信号が供給される主制御端子と、
第1導電型のドレイン領域と、前記ドレイン領域上に配置され且つ露出面を有している第2導電型のボデイ領域と、前記ボデイ領域の中に形成され且つ露出面を有している第1導電型のソース領域と、前記ドレイン領域にオーミック接触し且つ前記第1の主端子に接続されているドレイン電極と、前記ソース領域にオーミック接触し且つ前記ボデイ領域にショットキー接触し且つ前記第2の主端子に接続されているソース電極と、前記ソース領域と前記ドレイン領域との間における前記ボデイ領域の露出面に形成されたゲート絶縁膜と、前記ゲート絶縁膜を介して前記ボデイ領域の露出面に対向し且つ前記主制御端子に接続されているゲート電極とを備えている主絶縁ゲート型電界効果トランジスタと、
前記主絶縁ゲート型電界効果トランジスタの前記ショットキー接触が逆バイアスされる向きの電圧が前記ドレイン電極と前記ソース電極との間に印加された時にオン状態になって前記主絶縁ゲート型電界効果トランジスタを保護するためのものであって、前記主絶縁ゲート型電界効果トランジスタの前記ドレイン電極に接続された第1の主端子と前記主絶縁ゲート型電界効果トランジスタの前記ゲート電極に接続された第2の主端子と前記主絶縁ゲート型電界効果トランジスタの前記ソース電極に接続された制御端子とを有している保護スイッチ手段と
を備えていることを特徴とする電気回路のスイッチング装置に係わるものである。
なお、請求項2に示すように、更に、前記主制御端子と前記主絶縁ゲート型電界効果トランジスタのゲート電極との間に接続された抵抗を備えていることが望ましい。
また、請求項に示すように、前記保護スイッチ手段は、前記主絶縁ゲート型電界効果トランジスタと同一の半導体基板に形成された半導体スイッチであることが望ましい。
また、請求項に示すように、前記保護スイッチ手段は、前記主絶縁ゲート型電界効果トランジスタの前記ドレイン電極と前記ゲート電極との間を選択的に短絡するための副絶縁ゲート型電界効果トランジスタであって、第1導電型のドレイン領域と、該副絶縁ゲート型電界効果トランジスタの前記ドレイン領域上に配置され且つ且つ露出面を有している第2導電型のボデイ領域と、該副絶縁ゲート型電界効果トランジスタの前記ボデイ領域の中に形成され且つ露出面を有している第1導電型のソース領域と、該副絶縁ゲート型電界効果トランジスタの前記ドレイン領域にオーミック接触し且つ前記主絶縁ゲート型電界効果トランジスタの前記ドレイン電極に接続されているドレイン電極と、該副絶縁ゲート型電界効果トランジスタの前記ソース領域にオーミック接触し且つ該副絶縁ゲート型電界効果トランジスタの前記ボデイ領域にショットキー接触し且つ前記主絶縁ゲート型電界効果トランジスタの前記ゲート電極に接続されているソース電極と、該副絶縁ゲート型電界効果トランジスタの前記ソース領域と該副絶縁ゲート型電界効果トランジスタの前記ドレイン領域との間における前記ボデイ領域の露出面に形成されたゲート絶縁膜と、該副絶縁ゲート型電界効果トランジスタの前記ゲート絶縁膜を介して該副絶縁ゲート型電界効果トランジスタの前記ボデイ領域の露出面に対向し且つ前記主絶縁ゲート型電界効果トランジスタの前記ソース電極に接続されているゲート電極とを備えていることが望ましい。
また、請求項に示すように、前記副絶縁ゲート型電界効果トランジスタは、前記主絶縁ゲート型電界効果トランジスタよりも小さい電流容量を有していることが望ましい。
また、請求項に示すように、前記主絶縁ゲート型電界効果トランジスタ及び前記副絶縁ゲート型電界効果トランジスタのそれぞれの前記ドレイン領域は、第1導電型の第1のドレイン領域と、前記第1のドレイン領域上に配置され且つ前記第1のドレイン領域よりも低い第1導電型不純物濃度を有している第2のドレイン領域とから成り、前記主絶縁ゲート型電界効果トランジスタ及び前記副絶縁ゲート型電界効果トランジスタのそれぞれの前記ボデイ領域は、前記第2のドレイン領域上に配置され且つ第2導電型を有している第1のボデイ領域と、前記第1のボデイ領域上に配置され且つ前記第1のボデイ領よりも低い第2導電型不純物濃度を有し且つ露出面を有している第2のボデイ領域とから成り、前記主絶縁ゲート型電界効果トランジスタ及び前記副絶縁ゲート型電界効果トランジスタのそれぞれの前記ソース領域は、前記第2のボデイ領域の中に形成され且つ露出面を有し且つ第1導電型を有している第1のソース領域と、前記第1のソース領域の中に形成され且つ前記第1のソース領域よりも高い第1導電型不純物濃度を有している第2のソース領域とから成ることが望ましい。
また、請求項に示すように、スイッチング装置を、
電圧が印加される第1及び第2の主端子と、
制御信号が供給される主制御端子と、
第1の主面と該第1の主面に対して平行に延びている第2の主面とを有し且つ前記第1の主面から前記第2の主面に向って延びているトレンチを有している半導体基体と、前記半導体基体内に配置され且つ前記半導体基体の前記第2の主面に露出する面を有し且つ第1導電型を有しているドレイン領域と、前記半導体基体内において前記ドレイン領域上に配置され且つ前記トレンチに露出する面と前記半導体基体の前記第1の主面に露出する面とを有し且つ第2導電型を有しているボデイ領域と、前記半導体基体内において前記ボデイ領域に隣接配置され且つ前記トレンチに露出する面と前記半導体基体の前記一方の主面に露出する面とを有し且つ第1導電型を有しているソース領域と、前記半導体基体の前記第2の主面において前記ドレイン領域にオーミック接触し且つ前記第1の主端子に接続されているドレイン電極と、前記半導体基体の前記第1の主面において前記ソース領域にオーミック接触し且つ前記ボデイ領域にショットキー接触し且つ前記第2の主端子に接続されているソース電極と、前記トレンチの壁面に形成され且つ少なくとも前記ボデイ領域の前記トレンチにおける露出面を覆っているゲート絶縁膜と、前記トレンチ内に配置され且つ前記ゲート絶縁膜を介して前記ボデイ領域の前記トレンチにおける露出面に対向し且つ前記主制御端子に接続されているゲート電極とを備えている主絶縁ゲート型電界効果トランジスタと、
前記主絶縁ゲート型電界効果トランジスタの前記ショットキー接触が逆バイアスされる向きの電圧が前記ドレイン電極と前記ソース電極との間に印加された時にオン状態になって前記主絶縁ゲート型電界効果トランジスタを保護するためのものであって、前記主絶縁ゲート型電界効果トランジスタの前記ドレイン電極に接続された第1の主端子と前記主絶縁ゲート型電界効果トランジスタの前記ゲート電極に接続された第2の主端子と前記主絶縁ゲート型電界効果トランジスタの前記ソース電極に接続された制御端子とを有している保護スイッチ手段と
で構成することができる。
また、請求項8、9に示すように、請求項に示すスイッチング装置を、請求項2,3と同様に構成することが望ましい。
また、請求項10に示すように、請求項のスイッチング装置において、前記保護スイッチ手段は前記主絶縁ゲート型電界効果トランジスタの前記ドレイン電極と前記ゲート電極との間を選択的に短絡するための副絶縁ゲート型電界効果トランジスタであって、第1の主面と該第1の主面に対して平行に延びている第2の主面とを有し且つ前記第1の主面から前記第2の主面に向って延びているトレンチを有している半導体基体と、該副絶縁ゲート型電界効果トランジスタの前記半導体基体内に配置され且つ前記半導体基体の前記第2の主面に露出する面を有し且つ第1導電型を有しているドレイン領域と、該副絶縁ゲート型電界効果トランジスタの前記半導体基体内において該副絶縁ゲート型電界効果トランジスタの前記ドレイン領域上に配置され且つ該副絶縁ゲート型電界効果トランジスタの前記トレンチに露出する面と該副絶縁ゲート型電界効果トランジスタの前記半導体基体の前記第1の主面に露出する面とを有し且つ第2導電型を有しているボデイ領域と、該副絶縁ゲート型電界効果トランジスタの前記半導体基体内において該副絶縁ゲート型電界効果トランジスタの前記ボデイ領域に隣接配置され且つ該副絶縁ゲート型電界効果トランジスタの前記トレンチに露出する面と該副絶縁ゲート型電界効果トランジスタの前記半導体基体の前記一方の主面に露出する面とを有し且つ第1導電型を有しているソース領域と、該副絶縁ゲート型電界効果トランジスタの前記半導体基体の前記第2の主面において該副絶縁ゲート型電界効果トランジスタの前記ドレイン領域にオーミック接触し且つ前記主絶縁ゲート型電界効果トランジスタの前記ドレイン電極に接続されているドレイン電極と、該副絶縁ゲート型電界効果トランジスタの前記半導体基体の前記第1の主面において該副絶縁ゲート型電界効果トランジスタの前記ソース領域にオーミック接触し且つ該副絶縁ゲート型電界効果トランジスタの前記ボデイ領域にショットキー接触し且つ前記主絶縁ゲート型電界効果トランジスタのゲート電極に接続されているソース電極と、該副絶縁ゲート型電界効果トランジスタの前記トレンチの壁面に形成され且つ少なくとも該副絶縁ゲート型電界効果トランジスタの前記ボデイ領域の前記トレンチにおける露出面を覆っているゲート絶縁膜と、該副絶縁ゲート型電界効果トランジスタの前記トレンチ内に配置され且つ該副絶縁ゲート型電界効果トランジスタの前記ゲート絶縁膜を介して該副絶縁ゲート型電界効果トランジスタの前記ボデイ領域の前記トレンチにおける露出面に対向し且つ前記主絶縁ゲート型電界効果トランジスタの前記ソース電極に接続されているゲート電極とを備えていることが望ましい。
また、請求項11に示すように、前記副絶縁ゲート型電界効果トランジスタは前記主絶縁ゲート型電界効果トランジスタよりも小さい電流容量を有していることが望ましい。
また、請求項12に示すように、請求項10のスイッチング装置において、前記主絶縁ゲート型電界効果トランジスタ及び前記副絶縁ゲート型電界効果トランジスタのそれぞれの前記ドレイン領域は、第1導電型の第1のドレイン領域と、前記第1のドレイン領域上に配置され且つ前記第1のドレイン領域よりも低い第1導電型不純物濃度を有している第2のドレイン領域とから成り、前記主絶縁ゲート型電界効果トランジスタ及び前記副絶縁ゲート型電界効果トランジスタのそれぞれの前記ボデイ領域は、前記第2のドレイン領域上に配置され且つ第2導電型を有している第1のボデイ領域と、前記第1のボデイ領域上に配置され且つ前記第1のボデイ領よりも低い第2導電型不純物濃度を有し且つ露出面を有している第2のボデイ領域とから成り、前記主絶縁ゲート型電界効果トランジスタ及び前記副絶縁ゲート型電界効果トランジスタの各ソース領域は、各半導体基体内において各第2のボデイ領域内に形成され且つ各トレンチに露出する面と各半導体基体の前記一方の主面に露出する面とを有し且つ第1導電型を有している第1のソース領域と、各第1のソース領域内に形成され且つ各トレンチに露出する面と各半導体基体の前記一方の主面に露出する面とを有し且つ各第1のソース領域よりも高い第1導電型不純物濃度を有している第2のソース領域とから成ることが望ましい。
また、請求項13に示すように、前記ボデイ領域は、前記トレンチから離れている第1の部分と前記トレンチに隣接している第2の部分とを有し、前記第2の部分の第2導電型不純物濃度は前記第1の部分の第2導電型不純物濃度よりも高いことが望ましい。
また、請求項14に示すように、前記ボデイ領域は、電子線の照射によって少数キャリアのライフタイムが短縮された領域であることが望ましい。
本発明のスイッチング装置は次の効果を有する。
(1)本発明のスイッチング装置の主絶縁ゲート電界効果トランジスタ(主MOSFET)にショットキーバリアダイオードが内蔵されている。このため、ボデイ領域とソース領域との間に等価的にPN接合ダイオードが生じている。もし、本発明に従う保護スイッチ手段を設けない場合には、ショットキーバリアダイオード及びPN接合ダイオードを逆バイアスする向きの電圧がソース電極とドレイン電極との間に印加された時に、既に説明したようにPN接合ダイオードの耐圧が低下し、PN接合ダイオードが逆流阻止機能を失うことがある。これに対し、本発明に従って保護スイッチ手段を設けた場合には、ドレイン電極とソース電極との間に逆方向電圧が印加された時に、保護スイッチ手段がオン状態になり、主絶縁ゲート電界効果トランジスタのドレイン電極とゲート電極との間が短絡され、主絶縁ゲート電界効果トランジスタ及びこれに接続された電気回路が保護される。即ち、保護スイッチ手段がオン状態になると、主絶縁ゲート電界効果トランジスタのゲート電極の電位がドレイン電極の電位に近づくために、ゲート電極の電位によるPN接合ダイオードの耐圧低下が実質的に生じなくなる。これにより主絶縁ゲート電界効果トランジスタ又は電気回路を逆方向電流から保護することができる。
(2)本発明のスイッチング装置は、第1及び第2の主端子と主制御端子とを有し、これ等によって外部に接続されるので、1個の3端子素子と同様に使用することができる。これにより、使い勝手の良いスイッチング装置を提供することができる。
請求項4,10の発明においては、主絶縁ゲート電界効果トランジスタと保護スイッチ手段としての副絶縁ゲート電界効果トランジスタとが実質的に同一な構成を有するので、保護スイッチ手段としての副絶縁ゲート電界効果トランジスタの製造が容易になり、スイッチング装置のコストの低減を図ることができる。
請求項6、12の発明によれば、ドレイン領域は、第1導電型の第1のドレイン領域と該第1のドレイン領域よりも低い第1導電型不純物濃度を有している第2のドレイン領域とから成り、前記ボデイ領域は、第1のボデイ領域と該第1のボデイ領よりも低い第2導電型不純物濃度を有している第2のボデイ領域とから成るので、主絶縁ゲート電界効果トランジスタの電気的特性を向上させることができる。
請求項の発明によれば、主絶縁ゲート電界効果トランジスタがトレンチ構造を有するので、主絶縁ゲート電界効果トランジスタの小型化及び低オン抵抗化を図ることができる。
次に、図1〜図10を参照して本発明の実施形態を説明する。
本発明の実施例1に従う複合半導体装置10は、図1に概略的に示すように、電圧が印加される第1及び第2の主端子11,12と、制御信号が供給される主制御端子13と、主絶縁ゲート型電界効果トランジスタ即ち主MOSFET14と、補助スイッチ手段としての副絶縁ゲート型電界効果トランジスタ即ち副MOSFET15と、ゲート抵抗16とを有する。主MOSFET14及び副MOSFET15は後述から明らかになるように逆流阻止用のショットキーダイオードを内蔵している。主MOSFET14と副MOSFET15とゲート抵抗16とは共通のシリコン半導体基体(基板)20を使用したモノリシック集積回路に構成されている。主MOSFET14と副MOSFET15との電気的分離領域が半導体基体20の一方の表面におけるライン18によって説明的に示され、主MOSFET14とゲート抵抗16との電気的分離領域がライン19によって説明的に示されている。なお、図1において、半導体基体20内の各素子を構成する半導体領域、及び半導体基体20の一方の表面上の絶縁膜の図示は省略されている。主MOSFET14と副MOSFET15は半導体基体20の他方の主面(下面)にドレイン電極(図示せず)をそれぞれ有し、これ等は金属製の導電性支持板20´に電気的及び機械的に結合されている。第1の主端子11は導電性支持板20´から導出され、導電性支持板20´と一体に形成されている。半導体基体20の一方の主面(上面)に主MOSFET14のソース電極S1とゲート電極G1が示され、また、副MOSFET15のソース電極S2とゲート電極G2が示されている。主MOSFET14のソース電極S1は導体21によって第2の主端子12に接続されていると共に導体22によって副MOSFET15のゲート電極G2に接続されている。主MOSFET14のゲート電極G1は導体23によってゲート抵抗16の一端に接続されていると共に導体24によって副MOSFET15のソース電極S2に接続されている。ゲート抵抗16の他端は導体25によって主制御端子13に接続されている。この複合半導体装置10は、主MOSFET14と副MOSFET25とゲート抵抗16とを有するが、これ等は一体化されているので、3端子素子として使用できる。
図2に図1の複合半導体装置10の等価回路が示されている。図2の等価回路において図1と同一機能を有する部分に同一の参照符号が付されている。主MOSFET14は、等価的に、nチャネル型のFETスイッチQ1と、第1及び第2のPN接合ダイオード(寄生ダイオード)Da、Dbと、ショットキ−バリアダイオードDcとを含んでいる。ボデイダイオードと呼ぶこともできる第1のPN接合ダイオードDaのカソードはドレイン電極D1に接続され、このアノードは第2のPN接合ダイオードDb及びショットキーバリアダイオードDcの各アノードに接続されている。第2のPN接合ダイオードDb及びショットキーバリアダイオードDcの各カソードはソース電極S1に接続されている。従って、第2のPN接合ダイオードDbは第1のPN接合ダイオードDaと逆の方向性を有して第1のPN接合ダイオードDaに対して直列に接続され、ショットキーバリアダイオードDcも第1のPN接合ダイオードDaと逆の方向性を有して第1のPN接合ダイオードDaに対して直列に接続されている。主MOSFET14のドレイン電極D1は第1の主端子11に接続され、ソース電極S1は第2の主端子12に接続され、ゲート電極G1はゲート抵抗16を介して主制御端子13に接続されている。
図2の補助スイッチ手段又は保護スイッチ手段としての副MOSFET15は、電流容量及び寸法が主MOSFET14よりも小さい点を除いて主MOSFET14と同一に構成され、等価的に、nチャネル型のFETスイッチQ2と、第1及び第2のPN接合ダイオード(寄生ダイオード)Da´、Db´と、ショットキ−バリアダイオードDc´とを含んでいる。第1のPN接合ダイオードDa´のカソードはドレイン電極D2に接続され、このアノードは第2のPN接合ダイオードDb´及びショットキーバリアダイオードDc´の各アノードに接続されている。第2のPN接合ダイオードDb´及びショットキーバリアダイオードDc´の各カソードはソース電極S2に接続されている。従って、第2のPN接合ダイオードDb´は第1のPN接合ダイオードDa´と逆の方向性を有して第1のPN接合ダイオードDa´に対して直列に接続され、ショットキーバリアダイオードDc´も第1のPN接合ダイオードDa´と逆の方向性を有して第1のPN接合ダイオードDa´に対して直列に接続されている。副MOSFET15のドレイン電極D2は主MOSFET14のドレイン電極D1に接続され、ソース電極S2は主MOSFET14のゲート電極G1に接続され、ゲート電極G2は主MOSFET14のソース電極S1に接続されている。本願請求項において、保護スイッチ手段としての副MOSFET15のドレイン電極D2は第1の主端子と呼ばれ、ソース電極S2は第2の主端子と呼ばれ、ゲート電極G2は制御端子と呼ばれている
複合半導体装置10の第1及び第2の主端子11,12間には負荷30を介して電源31が接続される。図2では電源31が電池等の直流電源で示されているが、これを交流電源にすることもできる。本発明に従って付加された副MOSFET15は、電源31の極性が点線で示すように実線と逆になった時に主MOSFET14に異常電流が流れることを防止する。
複合半導体装置10の主制御端子13と第2の主端子12との間にはゲート制御回路32が接続される。ゲート制御回路32は、主MOSFET14をオン状態にする時に閾値以上の正のゲート制御電圧を主MOSFET14のゲート電極G1とソース電極S1との間に供給し、主MOSFET14をオフ状態にする時に主制御端子13の電位を主MOSFET14のソース電極S1の電位と同一又はほぼ同一にする。即ち、主MOSFET14をオフ状態にする時には、主制御端子13と主MOSFET14のソース電極S1との間を短絡する。
図3は図1及び図2に示す主MOSFET14を詳しく示す断面図である。この主MOSFET14はトレンチ構造のMOSFETである。従って、主MOSFET14を構成する半導体基板と呼ぶこともできるシリコン半導体基体20は、この第1の主面41から第2の主面42に向って延びているトレンチ(溝)43を有する。ソース電極S1は半導体基体20の第1の主面41上に配置され、ドレイン電極D1は半導体基体20の第2の主面42に配置され、ゲート電極G1はトレンチ43の中に中に配置され、ゲート絶縁膜44を介してトレンチ43の壁面に対向している。ゲート電極G1はトレンチ43の上に配置された絶縁層45によってソース電極S1と電気的に分離され、図3には示されていない図1の配線導体23,24に接続されている。
半導体基体20は、大別してドレイン領域46とボデイ領域49とソース領域52とから成る。ドレイン領域46はN+型半導体から成る高不純物濃度の第1のドレイン領域47とN-型半導体から成る低不純物濃度の第2のドレイン領域48とから成る。ボデイ領域49はP型半導体から成る第1のボデイ領域(ベース領域)50とP-型半導体から成る低不純物濃度の第2のボデイ領域51とから成る。ソース領域52はN型半導体から成る低不純物濃度の第1のソース領域53とN+型半導体から成る高不純物濃度の第2のソース領域54とから成る。次に半導体基体20の各領域を詳しく説明する。
N+型(第1導電型)の第1のドレイン領域47は、半導体基体20の第2の主面42に露出する面を有し、且つ比較的高いN型不純物濃度(例えば1×1019cm-3〜1×1020cm-3)を有する。N-型の第2のドレイン領域48は、ドリフト領域と呼ばれることもある部分であって、第1のドレイン領域47に隣接配置され且つ第1のドレイン領域47よりも低い不純物濃度(例えば1×1015cm-3〜1×1017cm-3)を有する。この第2のドレイン領域48は、MOSFETの高耐圧化に寄与している。不純物濃度の低い第2のドレイン領域48におけるキャリアは電界によって加速される。従って、第2のドレイン領域48はバイポーラトランジスタの高抵抗コレクタ領域と同様に機能する。
この実施例では、N-型の半導体基板を用意し、この一方の主面にN型不純物を拡散することによってN+型(第1導電型)の第1のドレイン領域47が形成されている。しかし、N+型の半導体基板にN-型半導体をエピタキシャル成長させることによってN-型(第1導電型)の第2のドレイン領域48を得ることもできる。なお、N-型の第2のドレイン領域48は、N-型の半導体基板に各領域を形成した後の残存部分に相当する。
トレンチ43は、半導体基体20の第1の主面41から第2の主面42に向かって延びており、N-型の第2のドレイン領域48に少し食い込んでいる。このトレンチ43の深さは、第1の主面41からN-型の第2のドレイン領域48まで、又は第1の主面41からN-型の第2のドレイン領域48とN+型の第1のドレイン領域47との間までに設定される。なお、互いに平行な第1及び第2の主面41,42に対してトレンチ43は直角に延びている。この実施例では半導体基体20が複数のMOSFETセル(微小MOSFET)を有し、トレンチ43は複数のMOSFETセルを区画するように複数個設けられている。図3には2つのトレンチ43とこれらの間の1つのMOSFETセルが詳しく示めされている。この実施例では、N-型の半導体基板にN+型(第1導電型)の第1のドレイン領域47とP型(第2導電型)の第1のボデイ領域50とを形成し、しかる後、半導体基板に周知の異方性エッチングを施すことによってトレンチ43を形成しているが、トレンチ43の形成時点を任意に変更できる。
P型の第1のボデイ領域50はベース領域と呼ぶこともできるものであって、N-型の第2のドレイン領域48に隣接配置され且つトレンチ43にも隣接している。第1のボデイ領域50と第2のドレイン領域48との間のPN接合55は半導体基体20の第1及び第2の主面41,42に対して平行に延びている。このPN接合55によって図2に示す第1のPN接合ダイオードDaが形成されている。本実施例では、半導体基体20の第1の主面41からP型不純物を拡散することによって第1のボデイ領域50が形成されているので、第1のボデイ領域50の不純物濃度は第1の主面41側から第2の主面42側に向って徐々に低くなっている。このP型の第1のボデイ領域50は、N-型の第2のドレイン領域48よりも高い平均不純物濃度(例えば1×1016cm-3〜1×1017cm-3)を有する。なお、第1のボデイ領域50のP型不純物の平均濃度は、ゲート電極G1にゲート電圧が印加された時に点線で示すN型チャネル56を発生させることができる値に決定されている。このP型の第1のボデイ領域50を拡散で形成する代わりにN-型の第2のドレイン領域48上にP型半導体をエピタキシャル成長させることによって形成することもできる。
P-型の第2のボデイ領域51は、第2のベース領域と呼びこともできるものであって、第1のボデイ領域50に隣接していると共にトレンチ43にも隣接し且つ半導体基体20の第1の主面41に露出している面を有する。ソース電極S1はP-型の第2のボデイ領域51の露出面にショットキー接触している。従って、両者によって図2に示すショットキーバリアダイオード(SBD)Dcが形成されている。このショットキーバリアダイオードDcの逆耐圧を10V以上にするために第2のボデイ領域51の表面不純物濃度は第1のボデイ領域50のそれよりも低い値(例えば1×1016cm-3以下)に決定されている。なお、この実施例において、P-型の第2のボデイ領域51は、P型の第1のボデイ領域50にP型不純物濃度よりも低い濃度でN型不純物を拡散してP型不純物の一部をN型不純物で補償(相殺)することによって形成されている。
N型の第1のソース領域53は、P-型の第2のボデイ領域51に隣接し且つトレンチ43にも隣接し且つ半導体基体20の第1の主面41に露出した面を有する。第1のソース領域53はP-型の第2のボデイ領域51の中にN型不純物を選択的に拡散することによって形成された領域であるので、拡散の深さに応じてN型不純物濃度が低下している。このN型の第1のソース領域53とP-型の第2のボデイ領域51との間にPN接合57が形成されている。このPN接合57は、図2に示す第2のPN接合ダイオードDbを提供する。第2のPN接合ダイオードD2はショットキーバリアダイオードDcと同一又はこれ以上の逆耐圧を有することが望ましい。従って、N型の第1のソース領域53のN型不純物濃度は、第2のPN接合ダイオードDbに要求された逆耐圧を得ることができる値(例えば1×1016cm-3〜1×1018cm-3)に決定される。
N+型の第2のソース領域54は、第1のソース領域53に隣接し且つトレンチ43にも隣接し且つ半導体基体20の第1の主面41に露出した面を有する。第2のソース領域54のN型不純物濃度は、第1のソース領域53のそれよりも高い値(例えば1×1018cm-3〜1×1020cm-3)に決定される。N+型の第2のソース領域54は、第1のソース領域53の中にN型不純物を選択拡散することによって形成されている。
ソース電極S1は半導体基体20の第1の主面41の上に配置され、第1及び第2のソース領域53,54にオーミック接触し、P-型の第2のボデイ領域51にショットキー接触している。このソース電極S1は例えばAl又はTi等の金属、もしくはシリサイドから成る。ソース電極S1とP-型の第2のボデイ領域51とのショットキー接触によって図2のショットキーバリアダイオードDcが形成されている。この実施例ではソース電極S1の一部がショットキーバリアダイオードDcのカソードとして機能している。P-型の第2のボデイ領域51はP型の第1のボデイ領域50よりもP型不純物濃度が低いので、ソース電極S1とP-型の第2のボデイ領域51とによってショットキーバリアダイオードDcが良好に形成される。P-型の第2のボデイ領域51が半導体基体20の第1の主面41に露出している部分即ちショットキーバリアダイオードDcが形成されている部分は、2つのトレンチ43のほぼ中間に配置され、且つソース領域52を基準にしてチャネル56と反対側に配置されている。
ドレイン電極D1は、例えばAlやTi−Ni等の金属から成り、半導体基体20の第2の主面42においてN+型の第1のドレイン領域47にオーミック接触している。
ゲート絶縁膜44はシリコン酸化膜から成り、トレンチ43の壁面に形成されている。ゲート電極G1は、トレンチ43の中に充填された不純物ドープの多結晶シリコンから成る。不純物がドープされた多結晶シリコンは導電性を有するので、金属と同様にゲート電極G1として機能する。勿論ゲート電極G1を金属で形成することもできる。多結晶シリコンは狭義には金属でないが、等価的に金属と同様な機能を有するので、多結晶シリコンから成るゲート構造のFETを本願ではMOSFETと呼んでいる。
複合半導体装置10の補助スイッチ手段としての副絶縁ゲート型電界効果トランジスタ即ち副MOSFET15は、電流容量及び半導体基体20における占有面積が主MOSFET14よりの小さい点を除いて図3に示す主MOSFET14と同一に構成されている。従って、副MOSFET15の構成の詳細は特に図示されていない。副MOSFET15は主MOSFET14と同一の構成を有するので、主MOSFET14と同一の製造工程で且つ同一方法で形成されている。このため、副MOSFET15を設けることによる特別な製造工程が不要であり、複合半導体装置10の低コスト化を図ることができる。
図1及び図2に示すゲート抵抗16は、半導体基体20に形成された半導体抵抗から成る。勿論、ゲート抵抗16を半導体基体20の上、又は回路基板の上に形成された抵抗膜、又は個別抵抗素子等に置き換えることもできる。
次に、複合半導体装置10の動作を説明する。図2において実線で示すように電源31の正端子を負荷30を介して第1の主端子11に接続し、その負端子を第2の主端子12に接続し、ゲート制御回路32から主制御端子13に正のゲート制御電圧を印加すると、主MOSFET14のFETスイッチQ1がオンになる。即ち、主MOSFET14のゲート電極G1とソース電極S1との間に閾値(Vth)以上のゲート制御電圧が印加されると、ボデイ領域49のトレンチ43に露出する面の近傍にチャネル56が形成され、ドレイン電極D1、ドレイン領域46、チャネル56、ソース領域52及びソース電極S1の経路にドレイン電流IDが流れる。なお、ドレイン領域46とボデイ領域49との間のPN接合55に相当する図2に示す第1のPN接合ダイオードDaは逆バイアスされ、オフである。従って、この時に第2のPN接合ダイオードDb及びショットキーバリアダイオードDcを通って電流は流れない。また、副MOSFET15のゲート電極G2は主MOSFET14のソース電極S1に接続されているため、ゲート電極G2の電位は副MOSFET15のソース電極S2よりも低いので、副MOSFET15はオフである。
第1及び第2の主端子11,12間に図2において実線で示すように電源31が接続されている状態で、ゲート制御回路32のゲート制御電圧がゼロになり、主制御端子13の電位もゼロになると、主MOSFET14はオフになる。
第1及び第2の主端子11,12間に図2において点線で示すように電源31が逆極性に接続され、ゲート制御回路32のゲート制御電圧がゼロの場合、即ち主制御端子13と主MOSFET14のソース電極S1との間が短絡されている場合には、副MOSFET15のゲート電極G2の電位が第2の主端子12と同様に正電位になり、図2に等価的に示す副MOSFET15のFETスイッチQ2がオンになる。即ち、副MOSFET15における主MOSFET14のボデイ領域49に対応する領域に図3のチャネル56に対応するチャネルが形成され、副MOSFET15がオンになる。これにより、主MOSFET14のドレイン電極D1とゲート電極G1との間が副MOSFET15で短絡され、主MOSFET14のゲート電極G1の電位が主MOSFET14のボデイ領域49の電位よりも低くなり、主MOSFET14はオフに保たれる。このように第1及び第2の主端子11,12間に逆方向電圧が印加されている時には、主MOSFET14の第1のPN接合ダイオードDaに順バイアス電圧が印加され、第2のPN接合ダイオードD2及びショットキーバリアダイオードDcに逆バイアス電圧が印加される。従って、主MOSFET14の第1のPN接合ダイオードDaを通って流れる逆方向電流が制限される。
もし、本発明に従う副MOSFET15を設けない場合には、第1及び第2の主端子11,12間に図2において点線で示すように電源31が逆極性に接続された時には、副MOSFET15によって主MOSFET14のゲート電極G1とドレイン電極D1との間が短絡されない。このため、主MOSFET14のゲート電極G1の電位が主MOSFET14のボデイ領域49の電位よりも高くなり、ボデイ領域49とソース領域52との間のPN接合57のトレンチ43に露出する部分の近傍から正孔が排除され、空乏層が薄くなってPN接合57の耐圧が低下する。これに対し、本発明に従う副MOSFET15を設けた場合には、この副MOSFET15のオンによって主MOSFET14のゲート電極G1の電位が主MOSFET14のボデイ領域49の電位よりも低くなり、主MOSFET14におけるボデイ領域49とソース領域52との間のPN接合57のトレンチ43に露出する部分における空乏層が薄くならない。このため、第2のPN接合ダイオードDbの耐圧低下が生じない。従って、第2のPN接合ダイオードD2及びショットキーバリアダイオードDcによって逆方向電圧印加時における逆方向電流を制限することができる。
図4は第1及び第2の主端子11,12間に図2において点線で示すように電源31が逆極性に接続された時における主MOSFET14のドレイン・ソース間電圧VDS即ち第1及び第2の主端子11,12間電圧と第1の主端子11を流れる電流I11との関係をゲート抵抗16の値を3段階に変えて示す。即ち、図4の特性線Aはゲート抵抗16の値が100Ωの時のVDSとI11との関係、特性線Bはゲート抵抗16の値が11Ωの時のVDSとI11との関係、特性線Cはゲート抵抗16の値が零Ωの時のVDSとI11との関係を示す。
図4から明らかなように、第1及び第2の主端子11,12間に電源31が逆極性に接続された状態において、主MOSFET14のドレイン・ソース間電圧VDS即ち第1及び第2の主端子11,12間の電圧が約1〜1.5Vよりも小さい時には、副MOSFET15がオン状態に転換できず、オフ状態に保たれる。このため、主MOSFET14のゲート電極G1の電位がソース電極S1の電位とほぼ同一になり、ボデイ領域49の電位よりも高い。従って、第2のPN接合ダイオードDbの耐圧向上効果が発生しない。しかし、主MOSFET14のドレイン・ソース間電圧VDSの絶対値が約1〜1.5Vよりも小さいので、主MOSFET14のドレイン電流は第2のPN接合ダイオードDb及びショットキーバリアダイオードDcによって阻止され、零又は極めて小さい。
第1及び第2の主端子11,12間に図2において点線で示すように電源31が逆極性に接続された状態において、主MOSFET14のドレイン・ソース間電圧VDS即ち第1及び第2の主端子11,12間の電圧の絶対値が約1〜1.5Vよりも大きくなると、副MOSFET15がオンになる。副MOSFET15がオンの時には第2の主端子12、主制御端子13、ゲート抵抗16、副MOSFET15、及び第1の主端子11の経路で電流I11が流れる。
図4から明らかなように第1の主端子11を流れる電流I11は、ゲート抵抗16の値及び主MOSFET14のドレイン・ソース間電圧VDSの値の変化に応じて変化する。ゲート抵抗16の値が100Ωの時には、特性線Aに示すようにドレイン・ソース間電圧VDSが−10Vの時に電流I11が約0.1Aであり、ゲート抵抗16の値が11Ωの時には、特性線Bに示すようにドレイン・ソース間電圧VDSが−10Vの時に電流I11が約0.9Aであり、ゲート抵抗16の値が0Ωの時には、特性線Cに示すようにドレイン・ソース間電圧VDSが約−2Vの時に極めて大きい電流I11が流れる。逆方向電圧の印加時における電流I11を良好に制限するために、ゲート抵抗16を10Ω〜30kΩにすることが望ましい。
図2において電源31を点線で示すように逆極性に接続し、ゲート制御回路32から主制御端子13に正のゲート制御電圧を印加すると、主MOSFET14がオンになる。即ち、この場合には副MOSFET15のゲート電極G2の電位がソース電極S2の電位よりも低くなるので、副MOSFET15はオフに保たれる。このため、主MOSFET14のゲート電極G1の電位がソース電極S1の電位及びドレイン電極D1の電位よりも高くなり、主MOSFET14がオンになる。
実施例1は次の効果を有する。
(1)主MOSFET14の第1のPN接合ダイオードDaに対して逆の極性(方向性)を有するショットキーバリアダイオードDcが形成されているので、ソース電極S1の電位がドレイン電極D1の電位よりも高い時(逆方向電圧印加時)にチャネル56以外の部分を通って流れる電流を阻止することができる。
(2)主MOSFET14に逆方向電圧が印加された時に、副MOSFET15がオンになって主MOSFET14のゲート電極G1とドレイン電極D1の間を短絡するので、ゲート電極G1の電位がボデイ領域49の電位よりも低くなり、主MOSFET14におけるボデイ領域49とソース領域52との間のPN接合57のトレンチ43に露出する部分における空乏層が薄くならない。このため、第2のPN接合ダイオードDbの耐圧低下が生じない。従って、第2のPN接合ダイオードD2及びショットキーバリアダイオードDcによって逆方向電圧印加時における逆方向電流を良好に制限することができる。
(3)複合半導体装置10は、第1及び第2の主端子11,12と主制御端子13とを有し、これ等によって外部に接続されるので、1個の3端子素子と同様に使用することができる。これにより、使い勝手の良い複合半導体装置10を提供することができる。また、これを使用する電気装置の部品点数を低減できる。また、複合半導体装置10をメカニカルリレー等の代わりのスイッチ素子として容易に使用することができる。
(4)主MOSFET14と補助スイッチ手段としての副MOSFET15とが電流容量及び寸法を除いて実質的に同一な構成を有するので、補助スイッチ手段としての副MOSFET15を主MOSFET14と同時に形成することができ、複合半導体装置10の製造が容易になり、複合半導体装置10のコストの低減を図ることができる。また、副MOSFET15は主MOSFET14と同様に比較的高い耐圧を有するので、耐圧の高い複合半導体装置10を提供することができる。
(5)複合半導体装置10における副MOSFET15の占有面積は主MOSFET14の占有面積の1/10〜1/100であるので、従来の逆流阻止ダイオードを主MOSFET14に対して直列に接続した複合半導体装置よりも複合半導体装置10を小型化できる。なお、複合半導体装置10の寸法が従来の複合半導体装置の寸法と同一で良い場合は、主MOSFET14の占有面積の割合を増大させて、主MOSFET14のオン抵抗の低減を図ることができる。
(6)主MOSFET14及び副MOSFET15がトレンチを有するので、主MOSFET14及び副MOSFET15の小型化及び低オン抵抗化を図ることができる。
(7)ゲート制御回路32による主MOSFET14の電流制御を、主MOSFET14に正方向電圧が印加されている時と、逆方向電圧が印加されている時との両方で行うことができる。
(8)主MOSFET14のドレイン領域46はN+型半導体から成る第1のドレイン領域47とN-型半導体から成る第2のドレイン領域48とから成り、ボデイ領域49はP型半導体から成る第1のボデイ領域50とP-型半導体から成る第2のボデイ領域51とから成り、ソース領域52はN型半導体から成る第1のソース領域53とN+型半導体から成る第2のソース領域54とから成る。また、副MOSFET15も主MOSFET14と同様に構成されている。従って、耐圧等の電気的特性の良い主MOSFET14及び副MOSFET15を得ることができる。
(9)ショットキーバリアダイオードDcを良好に得るためにP-型の第2のボデイ領域51を形成し、且つソース領域52とボデイ領域49とドレイン領域46とに基づくNPN寄生トランジスタ作用を抑制するために低不純物濃度の第1のソース領域53を設けたにも拘わらず、チャネル56の下端からN+型の第1のドレイン領域47までの距離(N-型の第2のドレイン領域48の厚み)が特別に増大しない。換言すれば、図3においてP-型の第2のボデイ領域51及び第1のソース領域53の有無に関係なく、N-型の第2のドレイン領域48の厚みを一定に保つことができる。これにより、主MOSFET14のオン抵抗の増大を招かない。
(10)P型の第1のボデイ領域50は非選択拡散で形成され、且つトレンチ43によってN型の第1のソース領域53及びN+型の第2のソース領域54の横方向への広がりが制限されているので、主MOSFET14の横幅を低減できる。
次に、図5を参照して実施例2の複合半導体装置を説明する。但し、図5及び図6〜図10において図1〜図3と実質的に同一の部分には同一の参照符号を付してその説明を省略する。
図5には実施例2の複合半導体装置における変形された主MOSFET14aが示されている。図5の主MOSFET14aは、トレンチ43に沿ってP型不純物を注入することによって第1のボデイ領域50の中央の第1の部50aを囲む比較的高不純物濃度の第2の部分50bを設け、且つ第2のボデイ領域51の中央の第1の部分51aを囲む比較的高不純物濃度の第2の部分51bを設けた点、且つ少なくとも第1及び第2のボデイ領域50,51に電子線照射処理が施されている点で図3に示す実施例1の主MOSFET14と相違し、この他は図3と同一に形成されている。
第1及び第2のボデイ領域50,51におけるP型不純物注入で形成された第2の部分50b,51bは、主MOSFET14の閾値(スレッショルド電圧Vth)を高くするためのものであって、第1及び第2のボデイ領域50,51の中央部分から成る第1の部分50a,51aの外側、即ち第1及び第2のボデイ領域50,51のトレンチ43に沿ったチャネル56が形成される部分に形成され、且つ第1の部分50a,51aよりも高い不純物濃度を有する。図5では、第1のボデイ領域50におけるチャネル56の全長に対応するように第2の部分50bが形成されているが、この代りに第1のボデイ領域50の上側の一部(チャネル56の一部)のみに第2の部分50bを形成することもできる。また、図5では、第2のボデイ領域51におけるチャネル56の全長に対応するように第2の部分51bが形成されているが、この代りに第2のボデイ領域51のチャネル56が延びる方向の一部のみに第2の部分51bを形成すること、又は第2のボデイ領域51に第2の部分51bを形成しないこともできる。
比較的不純物濃度の高い第2の部分50b,51bが形成された主MOSFET14aは、第2の部分50b,51bを形成しない例えば図3の主MOSFET14よりも約1V高いのスレッショルド電圧Vthを有する。なお、第2の部分50b,51bは、限定的に形成されているので、主MOSFET14aの耐圧及びオン抵抗にほとんど影響を与えない。
図5に示す実施例2の主MOSFET14aの半導体基体20aには、図5において矢印60で示すようにソース電極S1を介して例えば2MeVの電子線が所望時間照射され、その後水素雰囲気中で300℃以上の熱処理が施されている。熱処理は電子線照射によってSi(シリコン)とSiO2(シリコン酸化物)との界面に生じたダメージを回復させるためのものである。電子線を照射すると、第1及び第2のボデイ領域50,51における少数キャリアのライフタイムが短くなる。このようにライフタイムが短くなると、主MOSFET14aに逆方向電圧が印加されている時にN-型の第2のドレイン領域48から第1及び第2のボデイ領域50,51に注入された電子(少数キャリア)が正孔と迅速に結合し、電子(少数キャリア)がN型の第1のソース領域53まで流れることが抑制される。これにより、主MOSFET14aの漏れ電流が小さくなり、主MOSFET14aの耐圧が向上する。例えば、第1及び第2のボデイ領域50,51における少数キャリアのライフタイムが従来のMOSFETの1/10になると、主MOSFET14aの耐圧は、従来のMOSFETの耐圧(15V)よりも高い21Vになる。
なお、実施例2では半導体基体20aの全体に電子線が照射されているが、局所的に照射することもできる。また、金等のライフタイムキラーを第1及び第2のボデイ領域50,51の中に分布させることもできる。
また、図2における副MOSFET15も図5の主MOSFET14aと同様に形成することができる。
実施例2は、上述したスレッショルド電圧Vthの上昇効果と、ライフタイム短縮の効果の他に、実施例1と同一の効果も有する。
図6に示す実施例3の変形された主MOSFET14bは、P-型の第2のボデイ領域51´の配置を除いて図3のMOSFETと同一に形成されている。図6においてはP-型の第2のボデイ領域51´が半導体基体20bの第1の主面41の近傍のみに設けられ、トレンチ43に隣接していない。P-型の第2のボデイ領域51´はソース電極S1を伴なってショットキーバリアダイオードを形成する。従って、図6のように対のトレンチ43の間にP-型の第2のボデイ領域51´を限定的に形成した主MOSFET14bであっても、図3の主MOSFET14と同様な効果を有する。なお、図6の実施例3の主MOSFET14bの第1のボデイ領域50にも、図5に示す第2の部分51bに相当するものを設けること、及び半導体基体20bに電子線を照射して第1及び第2のボデイ領域50,51´における少数キャリアのライフタイムを短くすることができる。
図7に実施例4に従う主MOSFETの変形された半導体基体20cの表面が示されている。図7に示す半導体基体20cにおいては、トレンチ43が格子状に配置され、この格子状のトレンチ43の中にP-型の第2のボデイ領域51、N型の第1のソース領域53、及びN+型の第2のソース領域54が配置されている。図7に示すように変形された半導体基体20cを有する主MOSFETは、図3に示す実施例1に従う主MOSFET14と同様に動作する。
図8に実施例5に従う主MOSFETの変形された半導体基体20dの表面が示されている。図8に示す半導体基体20dにおいては、トレンチ43が柱状に形成され、このトレンチ43を囲むようにN+型の第2のソース領域54、N型の第1のソース領域53及びP-型の第2のボデイ領域51が配置されている。図8に示すように変形された半導体基体20dを有する主MOSFETは、図3に示す実施例1に従う主MOSFET14と同様に動作する。
図9に実施例6に従うプレーナー構造を有する主MOSFET14dが示されている。主MOSFET14cのゲート絶縁膜44及びゲート電極G1は半導体基体20cの第1の主面41上に形成されている。また、ドレイン領域46a及びボデイ領域49aが半導体基体20cの第1の主面41に露出している。ドレイン領域46aは図3の実施例1と同様にN+型半導体から成る第1のドレイン領域47とN-型半導体から成る第2のドレイン領域48とを有し、第2のドレイン領域48のみが半導体基体20cの第1の主面41に露出している。ボデイ領域49aは、第2のドレイン領域48の中に島状に形成されたP型半導体から成る第1のボデイ領域50とP-型半導体から成る第2のボデイ領域51とから成る。ソース領域52aは第2のボデイ領域51の中に島状に形成されている。ゲート絶縁膜44は少なくともボデイ領域49aの露出面を覆うように半導体基体20cの第1の主面41上に形成されている。ゲート電極G1はゲート絶縁膜44を介してボデイ領域49aの露出面に対向している。ソース電極S1は、ソース領域52aにオーミック接触し、第2のボデイ領域51にショットキー接触している。従って、図9に実施例6に従う主MOSFET14cの等価回路を、図2の主MOSFET14と同様に示すことができる。この図9に実施例6に従う主MOSFET14dを使用して図1及び図2に示す複合半導体装置を構成しても実施例1と場合でも、図3に実施例1と同様な効果を得ることができる。
図10に実施例7に従う変形された主MOSFET14cの一部が示されている。この主MOSFET14cは、変形されたソース電極S1´を有する他は、図3の主MOSFET14と同一に構成されている。変形されたソース電極S1´は第2のボデイ領域51にショットキー接触する第1の金属層71と第1及び第2のソース領域53,54にオーミック接触する第2の金属層72とで構成されている。第1の金属層71は第2の金属層72に電気的に接続されている。この様にソース電極S1´が第1及び第2の金属層71,72の組み合わせで構成されている場合でも、図3に実施例1と同様な効果を得ることができる。
本発明は、上述の実施例に限定されるものでなく、例えば次の変形が可能なものである。
(1)スイッチ装置を、主MOSFET14、14a、14b、又は14cと副MOSFET15とゲート抵抗16とを含むモノリシックICで構成する代わりに、ハイブリッドIC又は個別部品で図2に示すように構成することもできる。
(2)ゲート抵抗16を半導体基体内の拡散領域で構成する代わりに、半導体基体上の絶縁層の上に多結晶シリコン層等の抵抗層を形成し、この抵抗層をゲート抵抗とすることができる。
(3)副MOSFET15の閾値電圧、耐圧等の電気的特性は主MOSFET14、14a、14b、又は14cの電気的特性と異なっても良い。
(4)補助スイッチ手段としての副MOSFET15の代わりに、主MOSFET14、14a、14b、又は14cと異なる構成のスイッチ素子又はスイッチ回路に置き換えることができる。例えば、ショットキーバリアダイオードは含まないが図2の第1のPN接合ダイオードDaに相当する寄生ダイオードを含む単数又は複数のMOSFETによって補助スイッチ手段を構成することができる。
(5)2回の不純物拡散によってN型の第1のソース領域53とN+型の第2のソース領域54とを形成する代わりに1回の不純物拡散によって半導体基体20の第1の主面41の近傍でN型不純物濃度が高く、PN接合57の近傍でN型不純物濃度が低い単一のソース領域を形成することができる。
本発明の実施例1に従う複合半導体装置を示す斜視図である。 図1の複合半導体装置の等価回路図である、 図1及び図2の主MOSFETを示す断面図である。 図1の複合半導体装置に逆方向電圧が印加されている時の主MOSFETのドレイン・ソース間電圧VDSと第1の主端子の電流I11との関係を示す特性図である。 実施例2に従う主MOSFETを図3と同様に示す断面図である。 実施例3に従う主MOSFETを図3と同様に示す断面図である。 実施例4に従う主MOSFETの半導体基体の一部を示す平面図である。 実施例5に従う主MOSFETの半導体基体の一部を示す平面図である。 実施例に従う主MOSFETを図3と同様に示す断面図である。 実施例に従う主MOSFETの一部を図3と同様に示す断面図である。

Claims (14)

  1. 電圧が印加される第1及び第2の主端子と、
    制御信号が供給される主制御端子と、
    第1導電型のドレイン領域と、前記ドレイン領域上に配置され且つ露出面を有している第2導電型のボデイ領域と、前記ボデイ領域の中に形成され且つ露出面を有している第1導電型のソース領域と、前記ドレイン領域にオーミック接触し且つ前記第1の主端子に接続されているドレイン電極と、前記ソース領域にオーミック接触し且つ前記ボデイ領域にショットキー接触し且つ前記第2の主端子に接続されているソース電極と、前記ソース領域と前記ドレイン領域との間における前記ボデイ領域の露出面に形成されたゲート絶縁膜と、前記ゲート絶縁膜を介して前記ボデイ領域の露出面に対向し且つ前記主制御端子に接続されているゲート電極とを備えている主絶縁ゲート型電界効果トランジスタと、
    前記主絶縁ゲート型電界効果トランジスタの前記ショットキー接触が逆バイアスされる向きの電圧が前記ドレイン電極と前記ソース電極との間に印加された時にオン状態になって前記主絶縁ゲート型電界効果トランジスタを保護するためのものであって、前記主絶縁ゲート型電界効果トランジスタの前記ドレイン電極に接続された第1の主端子と前記主絶縁ゲート型電界効果トランジスタの前記ゲート電極に接続された第2の主端子と前記主絶縁ゲート型電界効果トランジスタの前記ソース電極に接続された制御端子とを有している保護スイッチ手段と
    を備えていることを特徴とする電気回路のスイッチング装置。
  2. 更に、前記主制御端子と前記主絶縁ゲート型電界効果トランジスタのゲート電極との間に接続された抵抗を備えていることを特徴とする請求項1記載の電気回路のスイッチング装置。
  3. 前記保護スイッチ手段は、前記主絶縁ゲート型電界効果トランジスタと同一の半導体基板に形成された半導体スイッチであることを特徴とする請求項1記載の電気回路のスイッチング装置。
  4. 前記保護スイッチ手段は、前記主絶縁ゲート型電界効果トランジスタの前記ドレイン電極と前記ゲート電極との間を選択的に短絡するための副絶縁ゲート型電界効果トランジスタであって、第1導電型のドレイン領域と、該副絶縁ゲート型電界効果トランジスタの前記ドレイン領域上に配置され且つ且つ露出面を有している第2導電型のボデイ領域と、該副絶縁ゲート型電界効果トランジスタの前記ボデイ領域の中に形成され且つ露出面を有している第1導電型のソース領域と、該副絶縁ゲート型電界効果トランジスタの前記ドレイン領域にオーミック接触し且つ前記主絶縁ゲート型電界効果トランジスタの前記ドレイン電極に接続されているドレイン電極と、該副絶縁ゲート型電界効果トランジスタの前記ソース領域にオーミック接触し且つ該副絶縁ゲート型電界効果トランジスタの前記ボデイ領域にショットキー接触し且つ前記主絶縁ゲート型電界効果トランジスタの前記ゲート電極に接続されているソース電極と、該副絶縁ゲート型電界効果トランジスタの前記ソース領域と該副絶縁ゲート型電界効果トランジスタの前記ドレイン領域との間における前記ボデイ領域の露出面に形成されたゲート絶縁膜と、該副絶縁ゲート型電界効果トランジスタの前記ゲート絶縁膜を介して該副絶縁ゲート型電界効果トランジスタの前記ボデイ領域の露出面に対向し且つ前記主絶縁ゲート型電界効果トランジスタの前記ソース電極に接続されているゲート電極とを備えていることを特徴とする請求項1記載の電気回路のスイッチング装置。
  5. 前記副絶縁ゲート型電界効果トランジスタは、前記主絶縁ゲート型電界効果トランジスタよりも小さい電流容量を有していることを特徴とする請求項記載の電気回路のスイッチング装置。
  6. 前記主絶縁ゲート型電界効果トランジスタ及び前記副絶縁ゲート型電界効果トランジスタのそれぞれの前記ドレイン領域は、第1導電型の第1のドレイン領域と、前記第1のドレイン領域上に配置され且つ前記第1のドレイン領域よりも低い第1導電型不純物濃度を有している第2のドレイン領域とから成り、
    前記主絶縁ゲート型電界効果トランジスタ及び前記副絶縁ゲート型電界効果トランジスタのそれぞれの前記ボデイ領域は、前記第2のドレイン領域上に配置され且つ第2導電型を有している第1のボデイ領域と、前記第1のボデイ領域上に配置され且つ前記第1のボデイ領よりも低い第2導電型不純物濃度を有し且つ露出面を有している第2のボデイ領域とから成り、
    前記主絶縁ゲート型電界効果トランジスタ及び前記副絶縁ゲート型電界効果トランジスタのそれぞれの前記ソース領域は、前記第2のボデイ領域の中に形成され且つ露出面を有し且つ第1導電型を有している第1のソース領域と、前記第1のソース領域の中に形成され且つ前記第1のソース領域よりも高い第1導電型不純物濃度を有している第2のソース領域とから成ることを特徴とする請求項記載の電気回路のスイッチング装置。
  7. 電圧が印加される第1及び第2の主端子と、
    制御信号が供給される主制御端子と、
    第1の主面と該第1の主面に対して平行に延びている第2の主面とを有し且つ前記第1の主面から前記第2の主面に向って延びているトレンチを有している半導体基体と、前記半導体基体内に配置され且つ前記半導体基体の前記第2の主面に露出する面を有し且つ第1導電型を有しているドレイン領域と、前記半導体基体内において前記ドレイン領域上に配置され且つ前記トレンチに露出する面と前記半導体基体の前記第1の主面に露出する面とを有し且つ第2導電型を有しているボデイ領域と、前記半導体基体内において前記ボデイ領域に隣接配置され且つ前記トレンチに露出する面と前記半導体基体の前記一方の主面に露出する面とを有し且つ第1導電型を有しているソース領域と、前記半導体基体の前記第2の主面において前記ドレイン領域にオーミック接触し且つ前記第1の主端子に接続されているドレイン電極と、前記半導体基体の前記第1の主面において前記ソース領域にオーミック接触し且つ前記ボデイ領域にショットキー接触し且つ前記第2の主端子に接続されているソース電極と、前記トレンチの壁面に形成され且つ少なくとも前記ボデイ領域の前記トレンチにおける露出面を覆っているゲート絶縁膜と、前記トレンチ内に配置され且つ前記ゲート絶縁膜を介して前記ボデイ領域の前記トレンチにおける露出面に対向し且つ前記主制御端子に接続されているゲート電極とを備えている主絶縁ゲート型電界効果トランジスタと、
    前記主絶縁ゲート型電界効果トランジスタの前記ショットキー接触が逆バイアスされる向きの電圧が前記ドレイン電極と前記ソース電極との間に印加された時にオン状態になって前記主絶縁ゲート型電界効果トランジスタを保護するためのものであって、前記主絶縁ゲート型電界効果トランジスタの前記ドレイン電極に接続された第1の主端子と前記主絶縁ゲート型電界効果トランジスタの前記ゲート電極に接続された第2の主端子と前記主絶縁ゲート型電界効果トランジスタの前記ソース電極に接続された制御端子とを有している保護スイッチ手段と
    を備えていることを特徴とする電気回路のスイッチング装置。
  8. 更に、前記主制御端子と前記主絶縁ゲート型電界効果トランジスタのゲート電極との間に接続された抵抗を備えていることを特徴とする請求項記載の電気回路のスイッチング装置。
  9. 前記保護スイッチ手段は、前記主絶縁ゲート型電界効果トランジスタと同一の半導体基板に形成された半導体スイッチであることを特徴とする請求項記載の電気回路のスイッチング装置。
  10. 前記保護スイッチ手段は前記主絶縁ゲート型電界効果トランジスタの前記ドレイン電極と前記ゲート電極との間を選択的に短絡するための副絶縁ゲート型電界効果トランジスタであって、第1の主面と該第1の主面に対して平行に延びている第2の主面とを有し且つ前記第1の主面から前記第2の主面に向って延びているトレンチを有している半導体基体と、該副絶縁ゲート型電界効果トランジスタの前記半導体基体内に配置され且つ前記半導体基体の前記第2の主面に露出する面を有し且つ第1導電型を有しているドレイン領域と、該副絶縁ゲート型電界効果トランジスタの前記半導体基体内において該副絶縁ゲート型電界効果トランジスタの前記ドレイン領域上に配置され且つ該副絶縁ゲート型電界効果トランジスタの前記トレンチに露出する面と該副絶縁ゲート型電界効果トランジスタの前記半導体基体の前記第1の主面に露出する面とを有し且つ第2導電型を有しているボデイ領域と、該副絶縁ゲート型電界効果トランジスタの前記半導体基体内において該副絶縁ゲート型電界効果トランジスタの前記ボデイ領域に隣接配置され且つ該副絶縁ゲート型電界効果トランジスタの前記トレンチに露出する面と該副絶縁ゲート型電界効果トランジスタの前記半導体基体の前記一方の主面に露出する面とを有し且つ第1導電型を有しているソース領域と、該副絶縁ゲート型電界効果トランジスタの前記半導体基体の前記第2の主面において該副絶縁ゲート型電界効果トランジスタの前記ドレイン領域にオーミック接触し且つ前記主絶縁ゲート型電界効果トランジスタの前記ドレイン電極に接続されているドレイン電極と、該副絶縁ゲート型電界効果トランジスタの前記半導体基体の前記第1の主面において該副絶縁ゲート型電界効果トランジスタの前記ソース領域にオーミック接触し且つ該副絶縁ゲート型電界効果トランジスタの前記ボデイ領域にショットキー接触し且つ前記主絶縁ゲート型電界効果トランジスタのゲート電極に接続されているソース電極と、該副絶縁ゲート型電界効果トランジスタの前記トレンチの壁面に形成され且つ少なくとも該副絶縁ゲート型電界効果トランジスタの前記ボデイ領域の前記トレンチにおける露出面を覆っているゲート絶縁膜と、該副絶縁ゲート型電界効果トランジスタの前記トレンチ内に配置され且つ該副絶縁ゲート型電界効果トランジスタの前記ゲート絶縁膜を介して該副絶縁ゲート型電界効果トランジスタの前記ボデイ領域の前記トレンチにおける露出面に対向し且つ前記主絶縁ゲート型電界効果トランジスタの前記ソース電極に接続されているゲート電極とを備えていることを特徴とする請求項記載の電気回路のスイッチング装置。
  11. 前記副絶縁ゲート型電界効果トランジスタは前記主絶縁ゲート型電界効果トランジスタよりも小さい電流容量を有していることを特徴とする請求項10記載の電気回路のスイッチング装置。
  12. 前記主絶縁ゲート型電界効果トランジスタ及び前記副絶縁ゲート型電界効果トランジスタのそれぞれの前記ドレイン領域は、第1導電型の第1のドレイン領域と、前記第1のドレイン領域上に配置され且つ前記第1のドレイン領域よりも低い第1導電型不純物濃度を有している第2のドレイン領域とから成り、
    前記主絶縁ゲート型電界効果トランジスタ及び前記副絶縁ゲート型電界効果トランジスタのそれぞれの前記ボデイ領域は、前記第2のドレイン領域上に配置され且つ第2導電型を有している第1のボデイ領域と、前記第1のボデイ領域上に配置され且つ前記第1のボデイ領よりも低い第2導電型不純物濃度を有し且つ露出面を有している第2のボデイ領域とから成り、
    前記主絶縁ゲート型電界効果トランジスタ及び前記副絶縁ゲート型電界効果トランジスタの各ソース領域は、各半導体基体内において各第2のボデイ領域内に形成され且つ各トレンチに露出する面と各半導体基体の前記一方の主面に露出する面とを有し且つ第1導電型を有している第1のソース領域と、各第1のソース領域内に形成され且つ各トレンチに露出する面と各半導体基体の前記一方の主面に露出する面とを有し且つ各第1のソース領域よりも高い第1導電型不純物濃度を有している第2のソース領域とから成ることを特徴とする請求項10記載の電気回路のスイッチング装置。
  13. 前記ボデイ領域は、前記トレンチから離れている第1の部分と前記トレンチに隣接している第2の部分とを有し、前記第2の部分の第2導電型不純物濃度は前記第1の部分の第2導電型不純物濃度よりも高いことを特徴とする請求項記載の電気回路のスイッチング装置。
  14. 前記ボデイ領域は、電子線の照射によって少数キャリアのライフタイムが短縮された領域であることを特徴とする請求項記載の電気回路のスイッチング装置。
JP2007232635A 2007-09-07 2007-09-07 電気回路のスイッチング装置 Active JP4930904B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007232635A JP4930904B2 (ja) 2007-09-07 2007-09-07 電気回路のスイッチング装置
CN2008801057758A CN101809742B (zh) 2007-09-07 2008-09-03 电气电路的开关装置
EP08829470A EP2187441A4 (en) 2007-09-07 2008-09-03 SWITCHING DEVICE FOR ELECTRICAL CIRCUIT
PCT/JP2008/065838 WO2009031567A1 (ja) 2007-09-07 2008-09-03 電気回路のスイッチング装置
US12/717,615 US7872315B2 (en) 2007-09-07 2010-03-04 Electronic switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007232635A JP4930904B2 (ja) 2007-09-07 2007-09-07 電気回路のスイッチング装置

Publications (3)

Publication Number Publication Date
JP2009065026A JP2009065026A (ja) 2009-03-26
JP2009065026A5 JP2009065026A5 (ja) 2010-07-29
JP4930904B2 true JP4930904B2 (ja) 2012-05-16

Family

ID=40428881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007232635A Active JP4930904B2 (ja) 2007-09-07 2007-09-07 電気回路のスイッチング装置

Country Status (5)

Country Link
US (1) US7872315B2 (ja)
EP (1) EP2187441A4 (ja)
JP (1) JP4930904B2 (ja)
CN (1) CN101809742B (ja)
WO (1) WO2009031567A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526496B2 (ja) 2008-06-02 2014-06-18 サンケン電気株式会社 電界効果半導体装置及びその製造方法
US7999315B2 (en) * 2009-03-02 2011-08-16 Fairchild Semiconductor Corporation Quasi-Resurf LDMOS
JP5171776B2 (ja) * 2009-09-30 2013-03-27 株式会社日立製作所 半導体装置、及びそれを用いた電力変換装置
US8269277B2 (en) 2010-08-11 2012-09-18 Fairchild Semiconductor Corporation RESURF device including increased breakdown voltage
US8816468B2 (en) * 2010-10-21 2014-08-26 Vishay General Semiconductor Llc Schottky rectifier
US8450792B2 (en) * 2011-04-08 2013-05-28 International Business Machines Corporation Structure and fabrication method of tunnel field effect transistor with increased drive current and reduced gate induced drain leakage (GIDL)
DE112011105316T5 (de) * 2011-06-08 2014-03-27 Sumitomo Electric Industries, Ltd. Halbleitervorrichtung und Verfahren zur Herstellung derselben
US8785278B2 (en) 2012-02-02 2014-07-22 Alpha And Omega Semiconductor Incorporated Nano MOSFET with trench bottom oxide shielded and third dimensional P-body contact
JP5620421B2 (ja) * 2012-02-28 2014-11-05 株式会社東芝 半導体装置
US8581660B1 (en) * 2012-04-24 2013-11-12 Texas Instruments Incorporated Power transistor partial current sensing for high precision applications
KR20140076762A (ko) * 2012-12-13 2014-06-23 삼성전기주식회사 전력 반도체 소자 및 그 제조 방법
JP6319453B2 (ja) * 2014-10-03 2018-05-09 富士電機株式会社 半導体装置および半導体装置の製造方法
US11211485B2 (en) * 2017-11-01 2021-12-28 Suzhou Oriental Semiconductor Co., Ltd. Trench power transistor
DE102017130223B4 (de) 2017-12-15 2020-06-04 Infineon Technologies Ag Halbleitervorrichtung mit elektrisch parallel geschalteten planaren Feldeffekttransistorzellen und zugehöriger DC-DC-Wandler
JP6964538B2 (ja) * 2018-02-28 2021-11-10 株式会社 日立パワーデバイス 半導体装置および電力変換装置
JP2019175930A (ja) * 2018-03-27 2019-10-10 エイブリック株式会社 半導体装置及びその製造方法
JP7294036B2 (ja) * 2019-09-30 2023-06-20 三菱電機株式会社 半導体試験装置、半導体装置の試験方法および半導体装置の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139624A (ja) * 1982-02-15 1983-08-19 日産自動車株式会社 車両用負荷電流遮断回路
JPS58178632A (ja) * 1982-04-13 1983-10-19 Nissan Motor Co Ltd スイツチ回路
US4893158A (en) * 1987-06-22 1990-01-09 Nissan Motor Co., Ltd. MOSFET device
JP3182848B2 (ja) * 1992-03-24 2001-07-03 富士電機株式会社 半導体装置
JPH0715009A (ja) * 1993-01-14 1995-01-17 Toyota Autom Loom Works Ltd 縦型mos電界効果トランジスタ
DE19502117C2 (de) * 1995-01-24 2003-03-20 Infineon Technologies Ag Schutzanordnung gegen elektrostatische Entladungen in mit Feldeffekt steuerbaren Halbleiterbauelementen
US6441445B1 (en) * 1998-10-06 2002-08-27 Stmicroelectronics S.R.L. Integrated device with bipolar transistor and electronic switch in “emitter switching” configuration
JP2001284584A (ja) * 2000-03-30 2001-10-12 Toshiba Corp 半導体装置及びその製造方法
DE10026740C2 (de) * 2000-05-30 2002-04-11 Infineon Technologies Ag Halbleiterschaltelement mit integrierter Schottky-Diode und Verfahren zu dessen Herstellung
US7132712B2 (en) * 2002-11-05 2006-11-07 Fairchild Semiconductor Corporation Trench structure having one or more diodes embedded therein adjacent a PN junction
WO2002084745A2 (en) * 2001-04-11 2002-10-24 Silicon Wireless Corporation Power semiconductor devices and methods of forming same
JP4070485B2 (ja) * 2001-05-09 2008-04-02 株式会社東芝 半導体装置
US6998678B2 (en) * 2001-05-17 2006-02-14 Infineon Technologies Ag Semiconductor arrangement with a MOS-transistor and a parallel Schottky-diode
JP4225711B2 (ja) * 2001-06-29 2009-02-18 株式会社東芝 半導体素子及びその製造方法
JP2003031821A (ja) * 2001-07-17 2003-01-31 Toshiba Corp 半導体装置
US7652326B2 (en) * 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
JP4415767B2 (ja) * 2004-06-14 2010-02-17 サンケン電気株式会社 絶縁ゲート型半導体素子、及びその製造方法
US7952139B2 (en) * 2005-02-11 2011-05-31 Alpha & Omega Semiconductor Ltd. Enhancing Schottky breakdown voltage (BV) without affecting an integrated MOSFET-Schottky device layout
US7297603B2 (en) * 2005-03-31 2007-11-20 Semiconductor Components Industries, L.L.C. Bi-directional transistor and method therefor
JP2006326811A (ja) 2005-05-30 2006-12-07 Asahi Diamond Industrial Co Ltd メタルボンド砥石の製造方法
JP5034461B2 (ja) * 2006-01-10 2012-09-26 株式会社デンソー 半導体装置
US7598567B2 (en) * 2006-11-03 2009-10-06 Cree, Inc. Power switching semiconductor devices including rectifying junction-shunts

Also Published As

Publication number Publication date
EP2187441A1 (en) 2010-05-19
WO2009031567A1 (ja) 2009-03-12
CN101809742A (zh) 2010-08-18
JP2009065026A (ja) 2009-03-26
US7872315B2 (en) 2011-01-18
US20100155830A1 (en) 2010-06-24
CN101809742B (zh) 2012-08-08
EP2187441A4 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4930904B2 (ja) 電気回路のスイッチング装置
US11888047B2 (en) Lateral transistors and methods with low-voltage-drop shunt to body diode
JP5217849B2 (ja) 電気回路のスイッチング装置
TWI695454B (zh) 具有背對背場效應電晶體的雙向開關元件及其製造方法
US7902604B2 (en) Configuration of gate to drain (GD) clamp and ESD protection circuit for power device breakdown protection
JP2987328B2 (ja) 双方向電流阻止機能を備えたトレンチ型パワーmosfet
JP5526496B2 (ja) 電界効果半導体装置及びその製造方法
JP4772843B2 (ja) 半導体装置及びその製造方法
US7863678B2 (en) Insulated-gate field-effect transistor
JPH11284175A (ja) Mos型半導体装置
JP2009295641A5 (ja)
US9613945B1 (en) Semiconductor device and method of manufacturing semiconductor device
US10340147B2 (en) Semiconductor device with equipotential ring contact at curved portion of equipotential ring electrode and method of manufacturing the same
JP4431761B2 (ja) Mos型半導体装置
US20080116520A1 (en) Termination Structures For Semiconductor Devices and the Manufacture Thereof
JPH06350031A (ja) 集積化構造保護回路
JP2022167263A (ja) 半導体装置
JP3932665B2 (ja) 半導体装置
US11710734B2 (en) Cascode-connected JFET-MOSFET semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120123

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4930904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250