JP4892827B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP4892827B2
JP4892827B2 JP2004328749A JP2004328749A JP4892827B2 JP 4892827 B2 JP4892827 B2 JP 4892827B2 JP 2004328749 A JP2004328749 A JP 2004328749A JP 2004328749 A JP2004328749 A JP 2004328749A JP 4892827 B2 JP4892827 B2 JP 4892827B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
lattice
ear
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004328749A
Other languages
Japanese (ja)
Other versions
JP2006140033A (en
Inventor
一宏 杉江
章二 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004328749A priority Critical patent/JP4892827B2/en
Priority to TW094110275A priority patent/TWI251365B/en
Priority to US10/585,078 priority patent/US8197967B2/en
Priority to KR1020067015821A priority patent/KR101139665B1/en
Priority to PCT/JP2005/006475 priority patent/WO2005096431A1/en
Priority to EP05727619.8A priority patent/EP1742289B1/en
Publication of JP2006140033A publication Critical patent/JP2006140033A/en
Application granted granted Critical
Publication of JP4892827B2 publication Critical patent/JP4892827B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

鉛蓄電池は、車両のエンジン始動用やバックアップ電源用などに用いられている。その中でも始動用鉛蓄電池は、エンジン始動用セルモータへの電力供給とともに、車両に搭載された各種電気・電子機器へ電力を供給している。エンジン始動後、鉛蓄電池はオルタネータによって充電される。ここで、鉛蓄電池の充電と放電とがバランスし、鉛蓄電池のSOC(充電状態)が90〜100%に維持されるよう、オルタネータの出力電圧および出力電流が設定されている。   Lead-acid batteries are used for vehicle engine start-up and backup power supplies. Among them, the lead acid battery for start-up supplies power to various electric / electronic devices mounted on the vehicle as well as power supply to the engine start cell motor. After the engine is started, the lead storage battery is charged by an alternator. Here, the output voltage and output current of the alternator are set so that charging and discharging of the lead storage battery are balanced and the SOC (charged state) of the lead storage battery is maintained at 90 to 100%.

近年、環境保全の観点から車両の燃費向上が検討されている。例えば、車両の一時的な停車中にエンジンを停止するアイドルストップ車や、車両の減速時に車両の運動エネルギーを電気エネルギーに変換し、この電気エネルギーを蓄電することによって行う回生ブレーキシステムが実用化されている。   In recent years, improvement in fuel efficiency of vehicles has been studied from the viewpoint of environmental conservation. For example, idle stop vehicles that stop the engine while the vehicle is temporarily stopped, and regenerative braking systems that convert the vehicle's kinetic energy into electrical energy and store this electrical energy when the vehicle decelerates are put into practical use. ing.

例えば、アイドルストップシステムを搭載した車両では、アイドルストップ時に鉛蓄電池は充電されない。一方で、搭載機器へ電力供給するため、従来の車両の始動用鉛蓄電池に比較して、必然的にSOCが低い状態となる。また、回生ブレーキシステムを搭載した車両では、回生時の電気エネルギーを蓄電するために、鉛蓄電池のSOCをより低く、50〜90%程度に制御する必要がある。また、いずれのシステムにおいても、従来よりも頻繁に充電放電が繰り返されることになる。また、低SOCで充放電が行われるだけではなく、車両部品の電動化に伴う暗電流の増加により、長期間停車中に鉛蓄電池の放電が進行し、過放電をしてしまうケースが多くなってきている。   For example, in a vehicle equipped with an idle stop system, the lead storage battery is not charged during idle stop. On the other hand, in order to supply electric power to the on-board equipment, the SOC is inevitably lower than that of a conventional lead-acid battery for starting a vehicle. Further, in a vehicle equipped with a regenerative brake system, it is necessary to control the SOC of the lead storage battery to be lower and about 50 to 90% in order to store electric energy during regeneration. Moreover, in any system, charging / discharging is repeated more frequently than before. Moreover, not only charging / discharging is performed at a low SOC, but also due to an increase in dark current accompanying the electrification of vehicle parts, lead-acid batteries discharge during a long-term stop, resulting in overdischarge. It is coming.

従って、これらのシステムを搭載した車両に適応するため、これに用いる鉛蓄電池はSOCがより低い領域で頻繁に充放電が繰り返された時の寿命特性が要求される。このような使用モードでの鉛蓄電池の劣化要因は、鉛蓄電池の充電受入性の低下によるよる充電不足が主要因であった。   Therefore, in order to adapt to a vehicle equipped with these systems, the lead storage battery used in this system is required to have a life characteristic when charging and discharging are frequently repeated in a region where the SOC is lower. The main cause of deterioration of the lead storage battery in such a use mode is insufficient charge due to a decrease in charge acceptance of the lead storage battery.

車両の充電システムは、定電圧制御を基本としているため、負極の充電受入性低下により、充電早期に、負極電位が卑に移行し充電制御定電圧値まで電圧が上昇することで、電流が垂下する。そのため、鉛蓄電池は、充電電気量を十分確保することが出来なくなり、充電不足となり短寿命となる。   Since the vehicle charging system is based on constant voltage control, the current droops because the negative electrode potential shifts to the base and the voltage rises to the charge control constant voltage value at an early stage of charging due to the negative charge acceptability decline. To do. Therefore, the lead storage battery cannot secure a sufficient amount of charge electricity, becomes insufficiently charged and has a short life.

そこで、この劣化を抑制するため、例えば特許文献1には鉛−カルシウム−スズ合金の正極格子表面にスズおよびアンチモンを含有する鉛合金層を形成することが示されている。正極格子表面に存在するスズおよびアンチモンは活物質の劣化および活物質−格子界面での高抵抗層の形成を抑制する効果がある。   In order to suppress this deterioration, for example, Patent Document 1 shows that a lead alloy layer containing tin and antimony is formed on the surface of the positive electrode lattice of a lead-calcium-tin alloy. Tin and antimony present on the surface of the positive electrode lattice have an effect of suppressing deterioration of the active material and formation of a high resistance layer at the active material-lattice interface.

また、特に正極格子表面に配置したアンチモンは、その一部が正極活物質に捕捉されるものの、他の一部はその微量が電解液に溶出し、負極板上に析出する。負極活物質上に析出したアンチモンは負極の充電電位を貴に移行させることによって、充電電圧を低下させ、鉛蓄電池の充電受入性を向上させる作用を有している。その結果として、充放電サイクル中における充電不足と、これによる鉛蓄電池の短寿命が抑制されていた。   In particular, a part of antimony disposed on the surface of the positive electrode lattice is trapped by the positive electrode active material, but a small amount of the other part elutes in the electrolytic solution and is deposited on the negative electrode plate. The antimony deposited on the negative electrode active material has the effect of lowering the charging voltage and improving the charge acceptability of the lead storage battery by preciously shifting the charging potential of the negative electrode. As a result, insufficient charging during the charge / discharge cycle and the short life of the lead storage battery due to this were suppressed.

そして、このような特許文献1のような構成は、SOCが90%を超えるような比較的高いSOCで用いられる始動用鉛蓄電池において非常に有効であり、寿命特性を飛躍的に改善するものであった。   And such a structure like patent document 1 is very effective in the lead acid battery for starting used by comparatively high SOC that SOC exceeds 90%, and improves a lifetime characteristic drastically. there were.

しかしながら、前記したようなアイドルストップ車や、回生ブレーキシステムを搭載したような車両、すなわちSOCがより深く、充放電頻度がより多い使用環境下では、特許文献1のような構成のみの鉛蓄電池では、充電受入性は確保できるものの、負極格子耳で腐食が進行するという問題が発生してきた。その結果、負極格子耳厚みが減少し負極における集電効率を低下させ、寿命低下するものであった。   However, in an idle stop vehicle as described above or a vehicle equipped with a regenerative braking system, that is, in a usage environment where the SOC is deeper and the charge / discharge frequency is more frequent, However, although the charge acceptability can be ensured, there has been a problem that corrosion proceeds at the negative electrode lattice ear. As a result, the thickness of the negative electrode lattice lugs was reduced, the current collection efficiency in the negative electrode was lowered, and the life was shortened.

従来、負極格子耳の腐食に関しては、負極棚と負極格子耳が電解液から露出し、大気中の酸素に曝露されることによって、負極棚と負極格子耳との溶接部が腐食し、断線することが知られていた。しかしながら、負極棚および負極格子耳が電解液に浸漬した状態であっても、正極格子上に配置したSbや正極棚、正極柱および正極接続体といった鉛合金の接続部材中に含まれるSbが電解液に溶出し、負極格子耳表面に微量析出することにより、負極格子耳を腐食することがわかってきた。   Conventionally, regarding the corrosion of the negative electrode grid ear, the negative electrode shelf and the negative electrode grid ear are exposed from the electrolyte and exposed to oxygen in the atmosphere, so that the welded portion between the negative electrode shelf and the negative electrode grid ear is corroded and disconnected. It was known. However, even when the negative electrode shelf and the negative electrode grid ear are immersed in the electrolyte, Sb contained in the lead alloy connection member such as Sb arranged on the positive electrode lattice or the positive electrode shelf, the positive electrode column, and the positive electrode connector is electrolyzed. It has been found that the negative electrode lattice ear is corroded by being eluted into the liquid and deposited in a small amount on the surface of the negative electrode lattice ear.

特許文献2には、負極格子骨を除く正極格子、正極接続部材や負極格子耳や負極接続部材をSbを含まないPbもしくはPb合金で構成し、負極格子骨もしくは負極活物質のいずれか一方に減液量に影響しない程度の微量のSbを含んだ鉛蓄電池が提案されている。このような構成により、正極からのSbの溶出と負極耳へのSbの析出を抑制し、負極活物質中にSbを含むことによって、電池の充電受入性と深放電寿命をある程度まで改善することが示されている。
特開平3−37962号公報 特開2003−346888号公報
In Patent Document 2, the positive electrode lattice excluding the negative electrode lattice bone, the positive electrode connection member, the negative electrode lattice ear, and the negative electrode connection member are made of Pb or Pb alloy not containing Sb, and either the negative electrode lattice bone or the negative electrode active material is used. A lead storage battery containing a small amount of Sb that does not affect the amount of liquid reduction has been proposed. With such a configuration, elution of Sb from the positive electrode and precipitation of Sb on the negative electrode ears are suppressed, and by including Sb in the negative electrode active material, the charge acceptability and deep discharge life of the battery are improved to some extent. It is shown.
JP-A-3-37962 JP 2003-346888 A

上記のような特許文献2の構成を有した鉛蓄電池は、負極耳でのSb析出と、これによる負極耳腐食を抑制することができる。しかしながら、過放電やSOCが低い状態で頻繁に充放電が行われると、負極活物質中のSbが電解液中に再溶出し、負極格子耳に析出し、負極格子耳を腐食させるということが判ってきた。   The lead storage battery having the configuration of Patent Document 2 as described above can suppress Sb precipitation at the negative electrode ear and negative electrode ear corrosion caused thereby. However, if charging / discharging is frequently performed in a state where the overdischarge or the SOC is low, Sb in the negative electrode active material is re-eluted into the electrolytic solution, and is deposited on the negative electrode lattice ear, which corrodes the negative electrode lattice ear. I understand.

本発明は、前記したようなSOCが比較的低く、充放電頻度が多い使用環境化における鉛蓄電池の充電受入性を改善することによって、寿命特性を飛躍的に改善するとともに、過放電後も負極格子耳へのアンチモンの移動を防ぐことにより、負極格子耳における腐食を抑制することによって、高信頼性を有した長寿命の鉛蓄電池を提供することを目的とする。   The present invention drastically improves the life characteristics by improving the charge acceptability of the lead storage battery in a use environment where the SOC is relatively low and the charge / discharge frequency is high as described above, and the negative electrode even after overdischarge. An object of the present invention is to provide a long-life lead-acid battery having high reliability by preventing the antimony from moving to the lattice ear and thereby suppressing corrosion in the negative electrode lattice ear.

前記した課題を解決するための、本発明の請求項1に係る発明は、負極格子耳と負極格子骨とからなる負極格子と負極格子骨に充填された負極活物質を備えた負極板と、正極格子耳と正極格子骨とからなる正極格子と正極格子骨に充填された正極活物質を備えた正極板を有し、正極格子耳を集合溶接する正極棚とこの正極棚より導出された正極柱もしくは正極接続体とからなる正極接続部材と、負極格子耳を集合溶接する負極棚とこの負極棚より導出された負極柱もしくは負極接続体とからなる負極接続部材を備えた鉛蓄電池において、前記正極格子および前記正極接続部材はSbを含有しない鉛もしくは鉛合金からなり、前記負極格子および前記負極接続部材はSbを含有しない鉛もしくは鉛合金からなり、負極活物質中に0.0002質量%〜0.007質量%のSbを含み、前記負極格子はエキスパンド格子体であり、前記負極格子骨はエキスパンド網目とこれに連接する枠骨および下枠骨を備え、前記負極耳は前記枠骨に一体に設けられ、前記負極耳の高さ寸法をLt、前記枠骨の高さ寸法をLfとしたとき、比率(Lt/Lf)を2.2〜15.0とするものである。 The invention according to claim 1 of the present invention for solving the above-described problem includes a negative electrode lattice comprising a negative electrode lattice ear and a negative electrode lattice bone, and a negative electrode plate comprising a negative electrode active material filled in the negative electrode lattice bone, A positive electrode shelf comprising a positive electrode lattice comprising a positive electrode lattice ear and a positive electrode lattice bone, and a positive electrode plate comprising a positive electrode active material filled in the positive electrode lattice bone, and a positive electrode shelf that collectively welds the positive electrode lattice ear and a positive electrode derived from the positive electrode shelf In a lead storage battery comprising a negative electrode connecting member comprising a positive electrode connecting member comprising a column or a positive electrode connecting body, a negative electrode shelf for collectively welding negative electrode grid ears, and a negative electrode pillar or negative electrode connecting body derived from the negative electrode shelf, positive grid and said positive electrode connecting member is made of lead or lead alloy containing no Sb, the negative electrode grid and the negative electrode connecting member is made of lead or lead alloy containing no Sb, 0.0002 quality in the negative electrode active material % Comprises 0.007 wt% of Sb, the negative electrode grid is expanded grid, the negative electrode grid bone comprises a frame bone and the lower frame bones connected thereto and expanded mesh, the negative Gokumimi is the frame bone The ratio (Lt / Lf) is 2.2 to 15.0, where Lt is the height dimension of the negative electrode ear and Lf is the height dimension of the frame bone.

さらに、本発明の請求項2に係る発明は、請求項1の鉛蓄電池において、前記比率を2.2〜12.0としたことを特徴とするものである。   Further, the invention according to claim 2 of the present invention is characterized in that, in the lead storage battery of claim 1, the ratio is set to 2.2 to 12.0.

このような本発明の構成により、負極活物質よりSbが溶出した場合においても、溶出したSbが枠骨もしくは負極活物質に優先的に析出し、負極格子耳への析出が抑制されるため、負極格子耳へのSb析出による負極格子耳腐食を抑制することができる。   With such a configuration of the present invention, even when Sb is eluted from the negative electrode active material, the eluted Sb is preferentially deposited on the frame bone or the negative electrode active material, so that precipitation on the negative electrode lattice ear is suppressed. It is possible to suppress negative electrode lattice ear corrosion due to Sb deposition on the negative electrode lattice ear.

さらに、本発明の請求項3に係る発明は、請求項1もしくは請求項2の鉛蓄電池において、負極活物質中のSb濃度を0.0004〜0.006質量%としたことを特徴とするものである。これにより、さらに優れた負極格子耳腐食抑制効果と寿命改善効果を得ることができる。   Furthermore, the invention according to claim 3 of the present invention is characterized in that, in the lead storage battery of claim 1 or 2, the Sb concentration in the negative electrode active material is 0.0004 to 0.006 mass%. It is. Thereby, the further excellent negative electrode lattice ear | corn corrosion inhibitory effect and lifetime improvement effect can be acquired.

本発明の鉛蓄電池によれば、アイドルストップシステムや回生ブレーキシステムを搭載した車両のように、SOCが比較的低い領域で、より頻繁に充放電が繰り返される使用環境化において、充電受入性を改善することによって、寿命特性を飛躍的に改善するとともに、負極格子耳における腐食を抑制することによって、高信頼性を有した長寿命の鉛蓄電池を得ることができる。   According to the lead storage battery of the present invention, the charge acceptance is improved in a use environment where charging and discharging are repeated more frequently in a region where the SOC is relatively low, such as a vehicle equipped with an idle stop system and a regenerative braking system. By doing so, it is possible to obtain a long-life lead-acid battery having high reliability by dramatically improving the life characteristics and suppressing corrosion at the negative electrode grid ears.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

正極板2は図2に示したように、正極格子耳22と正極格子骨23とで構成される正極格子21に正極活物質24が充填された構成を有している。一方、負極板3は図3に示したように、負極格子耳32と負極格子骨33とで構成される負極格子31に負極活物質34が充填された構成を有している。   As shown in FIG. 2, the positive electrode plate 2 has a configuration in which a positive electrode active material 24 is filled in a positive electrode lattice 21 including positive electrode lattice ears 22 and positive electrode lattice bones 23. On the other hand, as shown in FIG. 3, the negative electrode plate 3 has a configuration in which a negative electrode active material 34 is filled in a negative electrode lattice 31 composed of negative electrode lattice ears 32 and negative electrode lattice bones 33.

また、負極格子骨31はエキスパンド格子であり、負極格子骨33はエキスパンド網目35とこれに連接する枠骨36を有し、この枠骨36に負極格子耳32が一体に設けられている。   Further, the negative electrode lattice 31 is an expanded lattice, the negative electrode lattice 33 has an expanded mesh 35 and a frame bone 36 connected to the expanded mesh 35, and the negative electrode lattice ear 32 is integrally provided on the frame bone 36.

本発明の鉛蓄電池1ではセパレータ4と正極板2および負極板3の所定枚数を組合せ、正極格子耳22および負極格子耳32の同極性の耳部同士を集合溶接してそれぞれ正極棚5および負極棚6が形成される。正極棚5には正極柱7もしくは正極接続体(図示せず)が、負極棚6には負極接続体8もしくは負極柱(図示せず)がそれぞれ形成される。図1に示した例では正極棚5に正極柱7、負極棚6に負極接続体8を設けた例を示しているが、必要に応じ、正極接続体7および負極柱8に換えて、正極接続体および負極柱をそれぞれ正極棚5および負極棚6に接合することとなる。   In the lead storage battery 1 of the present invention, a predetermined number of separators 4, a positive electrode plate 2 and a negative electrode plate 3 are combined, and the same polarity ears of the positive electrode grid ear 22 and the negative electrode grid ear 32 are collectively welded to the positive electrode shelf 5 and the negative electrode respectively. A shelf 6 is formed. A positive pole 7 or a positive electrode connection body (not shown) is formed on the positive electrode shelf 5, and a negative electrode connection body 8 or a negative electrode pillar (not shown) is formed on the negative electrode shelf 6. The example shown in FIG. 1 shows an example in which the positive electrode column 5 is provided on the positive electrode shelf 5 and the negative electrode connector 8 is provided on the negative electrode shelf 6, but the positive electrode connector 7 and the negative electrode column 8 may be replaced with the positive electrode column 7 as necessary. The connection body and the negative electrode column are joined to the positive electrode shelf 5 and the negative electrode shelf 6, respectively.

本発明において正極棚5、正極柱7および/もしくは正極接続体で構成される正極接続部材9と正極格子21はSb含まないPbもしくはPb合金で構成する。Sbを含まないPb合金としては、耐食性や機械的強度を考慮して、0.05〜3.0質量%程度のSnを含むPb−Sn合金や、0.01〜0.10質量%程度のCaを含むPb−Ca合金、あるいはこれらの三元合金(Pb−Ca−Sn合金)を用いることができる。   In the present invention, the positive electrode shelf 5, the positive electrode column 7, and / or the positive electrode connecting member 9 and the positive electrode lattice 21 configured by the positive electrode connecting body are configured by Pb or Pb alloy not containing Sb. As a Pb alloy not containing Sb, in consideration of corrosion resistance and mechanical strength, a Pb—Sn alloy containing about 0.05 to 3.0 mass% of Sn, or about 0.01 to 0.10 mass%. A Pb—Ca alloy containing Ca or a ternary alloy thereof (Pb—Ca—Sn alloy) can be used.

一方、負極に関して、負極棚6、負極接続体8および/もしくは負極柱で構成される負極接続部材10と、負極格子31を正極と同様、実質上Sbを含まないPbもしくはPb合金で構成する。Sbを含まないPb合金としては、耐食性や機械的強度を考慮して、0.05〜3.0質量%程度のSnを含むPb−Sn合金や、0.01〜0.10質量%程度のCaを含むPb−Ca合金、あるいはこれらの三元合金(Pb−Ca−Sn合金)を用いることができる。また、負極においては、正極よりも耐酸化性が要求されないため、純Pbを用いることもできる。   On the other hand, with respect to the negative electrode, the negative electrode shelf 6, the negative electrode connection body 8, and / or the negative electrode connection member 10 constituted by the negative electrode column, and the negative electrode lattice 31 are made of Pb or Pb alloy substantially free of Sb, like the positive electrode. As a Pb alloy not containing Sb, in consideration of corrosion resistance and mechanical strength, a Pb—Sn alloy containing about 0.05 to 3.0 mass% of Sn, or about 0.01 to 0.10 mass%. A Pb—Ca alloy containing Ca or a ternary alloy thereof (Pb—Ca—Sn alloy) can be used. Further, since the oxidation resistance is not required for the negative electrode as compared with the positive electrode, pure Pb can be used.

なお、0.01〜0.08質量%程度のBaや0.001〜0.05質量%Agといった元素の添加も正極格子の耐久性を向上する上で好ましい。なお、上記の組成の格子体や接続部材を製造する上で、鉛合金からのCaの酸化消失を抑制するために0.001〜0.05質量%程度のAlの添加や、不可避的な不純物としての0.0005〜0.005質量%程度のBiの存在は、本発明の効果を損なうものでなく、許容しうるものである。   In addition, addition of an element such as about 0.01 to 0.08 mass% Ba or 0.001 to 0.05 mass% Ag is also preferable for improving the durability of the positive electrode grid. In addition, in manufacturing the lattice body and the connection member having the above composition, Al is added in an amount of about 0.001 to 0.05% by mass and inevitable impurities in order to suppress the oxidation loss of Ca from the lead alloy. The presence of Bi in the range of about 0.0005 to 0.005% by mass does not impair the effects of the present invention and is acceptable.

そして、本発明では、負極活物質34中に0.0002質量%〜0.007質量%のSbを含む。負極活物質へのSbの添加は負極活物質ペーストにSb粉、Sb酸化物やSbの硫酸塩、アンチモン酸塩等のSbもしくはその化合物を添加すればよい。また、負極活物質中にSbやSb化合物を直接添加する方法にかえて、負極板をSbイオンを含む電解質、たとえば硫酸アンチモンやアンチモン酸塩を含む希硫酸電解液に浸漬し、電解めっきにより、負極活物質上にSbを電析させることもできる。 In the present invention, the negative electrode active material 34 contains 0.0002 mass% to 0.007 mass% of Sb. Sb may be added to the negative electrode active material by adding Sb powder, Sb oxide, Sb sulfate, antimonate, or other Sb or a compound thereof to the negative electrode active material paste. Further, instead of directly adding Sb or an Sb compound into the negative electrode active material, the negative electrode plate is immersed in an electrolyte containing Sb ions, for example, a dilute sulfuric acid electrolyte containing antimony sulfate or antimonate, and by electroplating, Sb can also be electrodeposited on the negative electrode active material.

Sbを負極活物質中に添加することにより、負極活物質の充電受入性が顕著に改善され、寿命特性が向上する。特に、Sbの含有濃度が0.0004質量%以上の領域で寿命特性は極めて顕著に改善される。一方、Sbの含有濃度が0.006質量%を超える領域では負極耳の腐食量が増加しはじめるため、含有濃度を0.006質量%以下とすることが好ましい。また、本発明の鉛蓄電池の負極活物質中に防縮剤としての硫酸バリウム、リグニン、ビスフェノールスルホン酸系縮合物等の合成リグニンや、電子伝導性向上目的としたカーボンや他の電子伝導剤を添加することは全く差し支えない。   By adding Sb to the negative electrode active material, the charge acceptability of the negative electrode active material is remarkably improved, and the life characteristics are improved. In particular, the life characteristics are remarkably improved in the region where the Sb concentration is 0.0004 mass% or more. On the other hand, since the corrosion amount of the negative electrode ear begins to increase in the region where the Sb content concentration exceeds 0.006% by mass, the content concentration is preferably 0.006% by mass or less. In addition, synthetic lignin such as barium sulfate, lignin, bisphenol sulfonic acid-based condensate as a shrink preventing agent, carbon for the purpose of improving electronic conductivity, and other electron conductive agents are added to the negative electrode active material of the lead storage battery of the present invention. There is no problem doing it.

そして、本発明の鉛蓄電池では、エキスパンド格子からなる負極格子31において、負極格子31はエキスパンド網目35と枠骨36で構成され、枠骨36に一体に設けた負極格子耳32の高さ寸法をLt、枠骨36の高さ寸法をLfとしたときに、比率(Lt/Lf)を2.2〜15.0、好ましくは、2.2〜12.0とする。なお、本発明の負極格子耳32の高さ寸法Ltは図3に示したように、負極格子耳32が負極棚6で集合溶接された状態における、負極格子耳32の枠骨36との基部から、負極棚6の下面までの寸法で表される。   In the lead storage battery of the present invention, in the negative electrode lattice 31 composed of an expanded lattice, the negative electrode lattice 31 is composed of an expanded mesh 35 and a frame bone 36, and the height dimension of the negative electrode lattice ear 32 provided integrally with the frame bone 36 is set. When the height dimension of Lt and the frame bone 36 is Lf, the ratio (Lt / Lf) is 2.2 to 15.0, preferably 2.2 to 12.0. In addition, the height dimension Lt of the negative electrode lattice ear 32 of the present invention is the base of the negative electrode lattice ear 32 and the frame bone 36 in a state where the negative electrode lattice ear 32 is collectively welded by the negative electrode shelf 6 as shown in FIG. To the lower surface of the negative electrode shelf 6.

上記の極板群を用い、以降は定法に従って鉛蓄電池を組み立てることにより、本発明の鉛蓄電池を得ることができる。なお、本発明では負極活物質中にSbといったPbよりも低い水素過電圧を有する物質を含むため、制御弁式鉛蓄電池に適用するものではない。制御弁式鉛蓄電池に適用した場合、微量のガス発生により、制御弁が開弁した状態となり、大気が電池内に流入し、負極が酸化するためである。したがって、本発明は極板群の全てが実質上電解液に浸された液式の鉛蓄電池に適用するものである。   The lead storage battery of the present invention can be obtained by assembling the lead storage battery according to a conventional method using the above electrode plate group. In the present invention, since the negative electrode active material contains a material having a hydrogen overvoltage lower than Pb such as Sb, it is not applied to a control valve type lead-acid battery. This is because when applied to a control valve type lead-acid battery, the control valve is opened due to the generation of a small amount of gas, the air flows into the battery, and the negative electrode is oxidized. Therefore, the present invention is applied to a liquid type lead storage battery in which all of the electrode plate group is substantially immersed in an electrolytic solution.

上記の本発明の構成を有した鉛蓄電池は、また、負極活物質のみSbを含むので、正極からSbが負極に移行することなく、負極耳の腐食を抑制することができる。また、負極に含まれるSbは負極の過電圧を低下させ、充電受入性を改善し、鉛蓄電池の寿命特性を改善する。   Since the lead storage battery having the above-described configuration of the present invention contains only Sb of the negative electrode active material, corrosion of the negative electrode ear can be suppressed without Sb moving from the positive electrode to the negative electrode. Further, Sb contained in the negative electrode lowers the overvoltage of the negative electrode, improves the charge acceptance, and improves the life characteristics of the lead storage battery.

一方、鉛蓄電池を低SOC状態で繰り返して充放電を行ったり、過放電することによって、負極活物質からSbが溶出した場合でも、Sbは優先的に枠骨36や負極活物質34に再析出するため、負極格子耳32へのSbの再析出が抑制され、これによる負極格子耳32の腐食が抑制される。   On the other hand, even when Sb is eluted from the negative electrode active material by repeatedly charging and discharging the lead storage battery in a low SOC state or over-discharging, Sb preferentially re-deposits on the frame 36 or the negative electrode active material 34. Therefore, reprecipitation of Sb on the negative electrode lattice ear 32 is suppressed, and corrosion of the negative electrode lattice ear 32 due to this is suppressed.

前記した比率(Lt/Lf)が15.0を超える場合、電解液中に溶出したSbの負極格子耳32への再析出量が増大し、負極格子耳32の腐食量が増大する。一方、比率(Lt/Lf)を15.0以下とした場合、枠骨36への再析出量が増大し、負極格子耳32への再析出量が減少するため、負極格子耳32の腐食を抑制することができる。   When the ratio (Lt / Lf) exceeds 15.0, the amount of reprecipitation of Sb eluted in the electrolyte on the negative electrode lattice ear 32 increases, and the amount of corrosion of the negative electrode lattice ear 32 increases. On the other hand, when the ratio (Lt / Lf) is 15.0 or less, the amount of reprecipitation on the frame bone 36 is increased, and the amount of reprecipitation on the negative electrode lattice ear 32 is decreased. Can be suppressed.

そして、比率(Lt/Lf)を小さくするに従い、負極格子耳32の腐食は抑制される。しかしながら、実際の鉛蓄電池を製造するにあたって、比率(Lt/Lf)を小さくする目的でLfをより長く設定する場合、エキスパンド網目35の高さ寸法をより短く設定する必要が生じ、負極活物質量の減量となるため、電池容量が減少せざるを得ない。   As the ratio (Lt / Lf) is decreased, the corrosion of the negative electrode lattice ear 32 is suppressed. However, in manufacturing an actual lead-acid battery, when Lf is set longer for the purpose of reducing the ratio (Lt / Lf), the height dimension of the expanded mesh 35 needs to be set shorter, and the amount of negative electrode active material Therefore, the battery capacity has to be reduced.

また、比率(Lt/Lf)を小さくする目的でLtをより短く設定する場合、正極板2および負極板3の上端と、正極棚5および負極棚6の下端間の距離がより短くなるため、内部短絡の危険性が増大する。また、極板間の短絡を防止する目的において、正極板2と負極板3間に介挿するセパレータ4の上端は正極板2および負極板3の上端より上方に位置させるため、極板上端とセパレータ上端間の寸法未満にLtを短く設定することはできない。したがって、極板間短絡を防止するために必要なセパレータ寸法と、極板と異極性の棚との短絡を防止するために必要な寸法を勘案してLtの下限値が決定される。したがって、電池の内部短絡を防止するとともに、必要とする蓄電池容量から、比率(Lt/Lf)の下限値が決定され、この比率の実用的な下限値は2.2である。   In addition, when Lt is set shorter for the purpose of reducing the ratio (Lt / Lf), the distance between the upper ends of the positive electrode plate 2 and the negative electrode plate 3 and the lower ends of the positive electrode shelf 5 and the negative electrode shelf 6 becomes shorter. Increased risk of internal short circuit. Further, in order to prevent a short circuit between the electrode plates, the upper end of the separator 4 interposed between the positive electrode plate 2 and the negative electrode plate 3 is positioned higher than the upper ends of the positive electrode plate 2 and the negative electrode plate 3. Lt cannot be set shorter than the dimension between the upper ends of the separators. Therefore, the lower limit value of Lt is determined in consideration of the separator size necessary for preventing a short circuit between the electrode plates and the dimension necessary for preventing a short circuit between the electrode plate and the shelf of different polarity. Therefore, while preventing the internal short circuit of a battery, the lower limit of ratio (Lt / Lf) is determined from the required storage battery capacity, and the practical lower limit of this ratio is 2.2.

負極格子耳腐食を抑制するために、本発明では比率(Lt/Lf)を2.2〜15.0に設定する。また、その中でも比率(Lt/Lf)を2.2〜12.0とすることにより、さらにすぐれた負極格子耳の腐食抑制効果と寿命改善効果を得ることができる。   In order to suppress negative electrode lattice ear corrosion, the ratio (Lt / Lf) is set to 2.2 to 15.0 in the present invention. Further, among them, by setting the ratio (Lt / Lf) to 2.2 to 12.0, it is possible to obtain a further excellent corrosion inhibition effect and life improvement effect of the negative electrode lattice ear.

さらに、本発明において、正極格子骨の正極活物質と接する表面の少なくとも一部に正極格子骨よりも高濃度のSnを含む層を形成することにより、深い放電や過放電での正極の充電受入性を改善し、寿命特性を向上することができる。このSnを含む層はSnによる正極活物質−格子界面での高抵抗層の生成を抑制するものであるから、その効果を得る上で、少なくとも、正極格子母材よりも高濃度のSnを含むことが必要である。例えば、正極格子が1.6質量%のSnを含む場合、少なくとも1.6質量%を超える濃度のSn量とし、3.0〜6.0質量%とする。正極格子母材よりも低濃度とした場合、格子表面のSn濃度はかえって低下するため、好ましくないことは明らかである。   Furthermore, in the present invention, a layer containing Sn having a higher concentration than that of the positive electrode lattice bone is formed on at least a part of the surface of the positive electrode lattice bone in contact with the positive electrode active material. The life characteristics can be improved. This Sn-containing layer suppresses the formation of a high-resistance layer at the positive electrode active material-lattice interface by Sn. Therefore, in order to obtain the effect, the Sn-containing layer contains at least a higher concentration of Sn than the positive electrode lattice base material. It is necessary. For example, when the positive electrode lattice includes 1.6% by mass of Sn, the Sn amount is at least at a concentration exceeding 1.6% by mass, and is 3.0 to 6.0% by mass. Obviously, when the concentration is lower than that of the positive electrode lattice base material, the Sn concentration on the surface of the lattice is lowered, which is not preferable.

以下に示す正極板等の鉛蓄電池部材を作成し、これら部材を組み合わせることにより、本発明例および比較例による電池を作成し、寿命試験を行うことによって負極耳の腐食と電池寿命特性の評価を行った。   Create lead-acid battery members such as the positive electrode plate shown below, combine these members to create batteries according to the present invention and comparative examples, and perform life tests to evaluate corrosion of the negative electrode ears and battery life characteristics. went.

1)正極板
1種類の正極格子を作成し、これに正極活物質を充填することにより、正極板を作成した。正極格子はPb−Ca−Sn合金を用い、合金組成はPb−0.07質量%Ca−1.3質量%Snである。この合金を段階的に圧延することによって、合金シートとした後に、エキスパンド加工を行って正極格子を形成した。なお、この正極格子中のSb定量分析を行ったところ、Sb濃度は検出限界(0.0001質量%)未満であった。
1) Positive electrode plate A positive electrode plate was prepared by preparing one type of positive electrode lattice and filling it with a positive electrode active material. The positive electrode lattice uses a Pb—Ca—Sn alloy, and the alloy composition is Pb—0.07 mass% Ca—1.3 mass% Sn. The alloy was rolled in stages to form an alloy sheet, and then expanded to form a positive electrode grid. In addition, when Sb quantitative analysis in this positive electrode lattice was performed, Sb density | concentration was less than the detection limit (0.0001 mass%).

正極用鉛粉(金属鉛、一酸化鉛および鉛丹の混合粉体)を水と希硫酸で混練して正極活物質ペーストを作成し、前記した正極格子に所定量充填した後、熟成乾燥することによって正極板を作製した。   A positive electrode active material paste is prepared by kneading lead powder for a positive electrode (mixed powder of metallic lead, lead monoxide and lead tan) with water and dilute sulfuric acid, filling a predetermined amount in the positive electrode lattice, and then aging and drying. Thus, a positive electrode plate was produced.

2)負極板
Pb−0.07質量%Ca−0.25質量%Sn合金を、正極と同様に圧延した後、エキスパンド加工を施して負極格子体を作成した。なお、この負極格子合金中に含まれるSb定量分析を行ったところ、Sb濃度は検出限界(0.0001質量%)未満であった。
2) Negative electrode plate A Pb-0.07 mass% Ca-0.25 mass% Sn alloy was rolled in the same manner as the positive electrode, and then subjected to expansion processing to prepare a negative electrode lattice. In addition, when Sb quantitative analysis contained in this negative electrode lattice alloy was performed, Sb density | concentration was less than the detection limit (0.0001 mass%).

負極格子は図3に示したエキスパンド格子からなる負極格子31を用いた。本実施例においては、負極棚で負極格子耳32を集合溶接した状態での負極格子耳32の高さ寸法をLt、枠骨36の高さ寸法をLtとしたときに、比率(Lt/Lf)を2.2、7.5、12.0、15.0、20.0および30.0に変化させた。なお、本実施例においては、電池の高さ寸法の制限から、Lt+Lfを30.0mmとした。また、枠骨36の幅寸法(図3におけるWf)は130.0mmとし、負極格子耳32の幅寸法(図3におけるWt)は15.0mm(Wt/Wf=0.115)および10.0mm(Wt/Wf=0.0789)の2種類として、これら2種類の負極格子耳幅寸法のものそれぞれについて、上記の比率(Lt/Lf)を変化させた。   As the negative electrode lattice, the negative electrode lattice 31 composed of the expanded lattice shown in FIG. 3 was used. In the present embodiment, when the height dimension of the negative electrode grid ear 32 is Lt and the height dimension of the frame bone 36 is Lt in a state where the negative electrode grid ears 32 are collectively welded on the negative electrode shelf, the ratio (Lt / Lf ) Was changed to 2.2, 7.5, 12.0, 15.0, 20.0 and 30.0. In this example, Lt + Lf was set to 30.0 mm due to the limitation of the height of the battery. Further, the width dimension (Wf in FIG. 3) of the frame frame 36 is 130.0 mm, and the width dimension (Wt in FIG. 3) of the negative electrode lattice ear 32 is 15.0 mm (Wt / Wf = 0.115) and 10.0 mm. As the two types (Wt / Wf = 0.0789), the above ratio (Lt / Lf) was changed for each of these two types of negative electrode grid ear width dimensions.

負極用鉛粉(金属鉛と一酸化鉛の混合粉体)にエキスパンダ(硫酸バリウムおよびリグニン)およびカーボンを添加し、水と希硫酸で混練することにより、負極活物質ペーストを作成した。この負極活物質ペーストを負極格子体に充填し、その後、熟成乾燥することによって負極板を得た。なお、本実施例においては、負極活物質ペースト中にSbの硫酸塩を添加し、化成終了状態の負極活物質中のSb濃度をそれぞれ0(検出限界である0.0001質量%未満)、0.0002質量%、0.0004質量%、0.006質量%および0.007質量%とした負極板を作成した。   An expander (barium sulfate and lignin) and carbon were added to a negative electrode lead powder (a mixed powder of metallic lead and lead monoxide) and kneaded with water and dilute sulfuric acid to prepare a negative electrode active material paste. The negative electrode active material paste was filled in a negative electrode lattice, and then aged and dried to obtain a negative electrode plate. In this example, Sb sulfate was added to the negative electrode active material paste, and the Sb concentration in the negative electrode active material in the chemical conversion completed state was 0 (less than 0.0001% by mass, which is the detection limit), 0 Negative electrode plates with .0002 mass%, 0.0004 mass%, 0.006 mass%, and 0.007 mass% were prepared.

3)セパレータ
セパレータは、厚さ0.3mmの微孔性ポリエチレン製シートをU字折りし、両側部を熱シールすることにより、上部のみが開口した袋状セパレータを作製した。微孔性ポリエチレン製シートは最大孔径10μmの微孔を有したものを用いた。なお、この袋状セパレータに負極板を収納した。
3) Separator As a separator, a 0.3 mm thick microporous polyethylene sheet was folded in a U shape and both sides were heat-sealed to produce a bag-shaped separator with only the upper part opened. The microporous polyethylene sheet used had micropores with a maximum pore diameter of 10 μm. In addition, the negative electrode plate was accommodated in this bag-shaped separator.

4)正極接続部材用鉛合金および負極接続部材用合金
正極接続部材および負極接続部材用合金として、Pb−2.5質量%Sn合金(合金A)とPb−2.5質量%Sb合金(合金B)を準備した。なお、合金A中のSb定量分析を行ったところ、Sb濃度は検出限界(0.0001質量%)未満であった。
4) Lead alloy for positive electrode connection member and alloy for negative electrode connection member As alloys for positive electrode connection member and negative electrode connection member, Pb-2.5 mass% Sn alloy (alloy A) and Pb-2.5 mass% Sb alloy (alloy) B) was prepared. In addition, when Sb quantitative analysis in the alloy A was performed, Sb density | concentration was less than the detection limit (0.0001 mass%).

上記の正極板、負極板、袋状セパレータおよび正・負極の接続部材用合金を表1および表2に示した組み合わせで用い、1セル当たり正極板5枚と負極板6枚から成る極板群を備え、電解液面を正極棚5および負極棚6の上面より上に設定することによって、極板群が電解液に浸漬された、液式の55D23形の始動用鉛蓄電池(12V48Ah)を作製した。   Using the above-described positive electrode plate, negative electrode plate, bag-shaped separator, and positive / negative electrode connection member alloy in combinations shown in Tables 1 and 2, an electrode plate group consisting of 5 positive electrode plates and 6 negative electrode plates per cell And a liquid type 55D23 type start-up storage battery (12V48Ah) in which the electrode plate group is immersed in the electrolyte is prepared by setting the electrolyte surface above the upper surfaces of the positive electrode shelf 5 and the negative electrode shelf 6 did.

表1および表2に示した各電池について、過放電後のサイクル寿命試験を行った。試験条件は以下の手順で行った。まず、25℃雰囲気下で、試験電池を10A定電流で、電池電圧が10.5Vとなるまで放電する。その後、電池端子間に12W電球を接続し、48時間放置することにより試験電池を過放電した。その後、試験電池を14.5V定電圧(最大電流25A)で8時間充電し、サイクル寿命試験を行った。   Each battery shown in Table 1 and Table 2 was subjected to a cycle life test after overdischarge. The test conditions were as follows. First, in a 25 ° C. atmosphere, the test battery is discharged at a constant current of 10 A until the battery voltage reaches 10.5V. Thereafter, a 12 W light bulb was connected between the battery terminals and left for 48 hours to overdischarge the test battery. Thereafter, the test battery was charged at a constant voltage of 14.5 V (maximum current 25 A) for 8 hours to perform a cycle life test.

サイクル寿命試験は次に示す試験条件で行った。25℃雰囲気下において、25A放電20秒と14V定電圧充電(最大充電電流25A)40秒とを7200サイクル繰り返した後に、試験電池の質量減(WL)を計測する。その後、300Aで30秒間放電し、30秒目放電電圧(V30)を計測する。その後、質量減(WL)分の水を試験電池に補水する。30秒目放電電圧V30が7.0Vに低下するまでの充放電サイクル数を寿命サイクル数とした。なお、通常、始動用鉛蓄電池においてJIS D5301で規定される軽負荷寿命試験は、25A放電4分と、最大電流25Aとした定電圧充電10分のサイクルで構成されるが、本試験では、軽負荷寿命試験よりもSOCが低い状態で充放電が頻繁に行われる試験条件とした。 The cycle life test was performed under the following test conditions. In an atmosphere of 25 ° C., the mass loss (W L ) of the test battery is measured after 7200 cycles of 25 A discharge for 20 seconds and 14 V constant voltage charge (maximum charge current 25 A) for 40 seconds. Thereafter, the battery is discharged at 300 A for 30 seconds, and the discharge voltage (V 30 ) at 30 seconds is measured. Thereafter, the test battery is replenished with water corresponding to the weight loss (W L ). The number of charge / discharge cycles until the 30- second discharge voltage V 30 was reduced to 7.0 V was defined as the life cycle number. Normally, a light load life test defined in JIS D5301 for a start-up lead-acid battery is composed of a cycle of 25 A discharge for 4 minutes and a constant current charge of 10 minutes with a maximum current of 25 A. The test conditions were such that charging and discharging were frequently performed in a state where the SOC was lower than in the load life test.

なお、寿命サイクル数の算出方法は以下の通りである。n回目に計測したV30電圧(充放電サイクル数は7200×n)で、初めてV30が7.0V以下となったとき、そのV30をVnとする。そして、前回(n−1回目)のV30電圧をVn−1としたときに、縦軸をV30、横軸を充放電サイクル数のグラフにおいて、座標(7200(n−1)、Vn−1)と座標(7200n、Vn)間を直線Lで結び、この直線LとV30=7.0との交点における横軸の値を寿命サイクル数とした。 The method for calculating the number of life cycles is as follows. n-th on the measured V 30 voltage (number of charge and discharge cycles 7200 × n), the first time V 30 is equal to or less than 7.0 V, to the V 30 and Vn. Then, last of V 30 voltage of (n-1 time) is taken as Vn-1, the vertical axis V 30, the horizontal axis in the graph of the number of charge and discharge cycles, the coordinates (7200 (n-1), Vn- 1) and coordinates (7200n, Vn) are connected by a straight line L, and the value on the horizontal axis at the intersection of this straight line L and V 30 = 7.0 is defined as the number of life cycles.

また、寿命試験が終了した各電池について、電池の分解調査を行い、負極の耳腐食率を求めた。なお、試験前の初期状態の負極耳断面積をS、寿命試験後の負極耳断面積をSEとし、{100×(S−SE)/S}として求めた耳断面積の減少率を耳腐食率とした。   Moreover, about each battery which the lifetime test was complete | finished, the decomposition | disassembly investigation of the battery was conducted and the ear corrosion rate of the negative electrode was calculated | required. Note that the negative electrode ear cross-sectional area in the initial state before the test is S, the negative electrode ear cross-sectional area after the life test is SE, and the reduction rate of the ear cross-sectional area obtained as {100 × (S-SE) / S} is the ear corrosion. Rate.

これらの過放電後のサイクル寿命試験における、負極耳腐食率および寿命サイクル数の結果を表3および表4に示す。   Tables 3 and 4 show the results of the negative electrode ear corrosion rate and the life cycle number in the cycle life test after these overdischarges.

表3および表4に示した結果から、正極および負極の接続部材にSbを含む鉛合金Bを用いた電池は、負極活物質中のSbの有無あるいは負極格子耳と枠骨の高さ寸法の比率比率(Lt/Lf)の変化によっても、負極耳腐食の進行が著しい。また、この腐食に伴う負極格子耳断面積の大幅な減少により、放電電圧の低下が著しく、30000〜60000サイクルで寿命終了となった。これは、正極や負極の接続部材に含まれるSbが過放電および充放電サイクル中に負極格子耳表面に析出したことによると推測できる。   From the results shown in Tables 3 and 4, the battery using the lead alloy B containing Sb as the connecting member of the positive electrode and the negative electrode has the presence or absence of Sb in the negative electrode active material or the height dimension of the negative electrode lattice ear and the frame bone. Even with the change in the ratio (Lt / Lf), the progress of the negative electrode ear corrosion is remarkable. Further, due to the significant decrease in the negative electrode lattice edge cross-sectional area due to this corrosion, the discharge voltage was remarkably lowered, and the life was terminated at 30000 to 60000 cycles. This can be presumed to be because Sb contained in the connecting member of the positive electrode or the negative electrode was deposited on the surface of the negative electrode lattice ear during the overdischarge and charge / discharge cycles.

正極および負極の接続部材にSbを含まず、かつ負極活物質中にSbを含まない比較例の試験電池は負極格子耳の腐食は殆ど進行していない。これは電池内に負極格子耳の腐食要因となるSbが実質上存在しないことによる。しかしながらこれらのSbを含まない比較例の電池は寿命サイクル数が著しく低下していた。これらの比較例の電池を分解したところ、負極、正極ともに活物質中に硫酸鉛が蓄積(サルフェーション化)していた。これは過放電に加え、充放電中に充電不足が進行したことによると推測される。   In the test battery of the comparative example which does not contain Sb in the connecting member of the positive electrode and the negative electrode and does not contain Sb in the negative electrode active material, the corrosion of the negative electrode lattice ear hardly progresses. This is due to the fact that Sb, which is a corrosive factor for the negative electrode grid ears, does not substantially exist in the battery. However, the battery of the comparative example which does not contain Sb had a significant decrease in the number of life cycles. When the batteries of these comparative examples were disassembled, lead sulfate was accumulated (sulfated) in the active material for both the negative electrode and the positive electrode. In addition to overdischarge, this is presumed to be due to insufficient charging during charging and discharging.

一方、正極および負極の接続部材にSbを含まず、負極活物質中にSbを含む電池は、負極活物質中にSbを含まない電池に比較して優れた寿命特性を有している。これは負極活物質中のSbが負極の充電電位を低下させることにより、前記したような充放電サイクル中での充電不足が解消されたことによる。   On the other hand, a battery that does not contain Sb in the connecting member of the positive electrode and the negative electrode and contains Sb in the negative electrode active material has excellent life characteristics as compared with a battery that does not contain Sb in the negative electrode active material. This is because Sb in the negative electrode active material reduces the charge potential of the negative electrode, thereby eliminating the above-described insufficient charge during the charge / discharge cycle.

しかしながら、負極のエキスパンド格子において、負極格子耳の高さ寸法(Lt)に対する枠骨の高さ寸法(Lf)の比率(Lt/Lf)が20.0および30.0とした比較例の電池では、負極格子耳の腐食が進行している。一方、本発明例では比率(Lt/Lf)を15.0とすることにより、負極格子耳の腐食が抑制され、この比率(Lt/Lf)が12.0以下で特に優れた腐食抑制効果を得られることが確認できた。なお、この傾向は負極格子耳32の幅寸法(Wt)が10.0mm、15.0mmのいずれも場合も変化がなかった。   However, in the expanded battery of the negative electrode, in the battery of the comparative example in which the ratio (Lt / Lf) of the height dimension (Lf) of the frame bone to the height dimension (Lt) of the negative electrode grid ear is 20.0 and 30.0 Corrosion of the negative electrode lattice ear is in progress. On the other hand, in the example of the present invention, by setting the ratio (Lt / Lf) to 15.0, corrosion of the negative electrode lattice ear is suppressed, and when this ratio (Lt / Lf) is 12.0 or less, a particularly excellent corrosion suppressing effect is obtained. It was confirmed that it was obtained. This tendency did not change when the width dimension (Wt) of the negative electrode grid ear 32 was 10.0 mm or 15.0 mm.

これら各試験電池の寿命試験終了後の試験電池を分解し、負極格子耳と枠骨のSbの分析を行ったところ、本発明例の電池および電池内にSbを含まない比較例の電池では、負極格子耳のSbは検出限界(0.0001質量%)未満であった。一方、正極および負極の接続部材中にSbを含まず、負極活物質のみにSbを含む電池であり、かつ比率(Lt/Lf)を20.0および30.0とした比較例の電池は負極格子耳に0.0005質量%程度のSbの存在が確認された。   After disassembling the test batteries after the end of the life test of each of these test batteries and analyzing Sb of the negative electrode lattice ear and the frame bone, in the battery of the present invention example and the battery of the comparative example not containing Sb in the battery, The Sb of the negative electrode lattice ear was less than the detection limit (0.0001% by mass). On the other hand, the battery of the comparative example which does not contain Sb in the connecting member of the positive electrode and the negative electrode but contains Sb only in the negative electrode active material and the ratio (Lt / Lf) is 20.0 and 30.0 is the negative electrode The presence of about 0.0005 mass% of Sb was confirmed in the lattice ears.

一方、本発明例の電池では、負極格子耳から検出限界値(0.0001質量%)を超えるSbは検出されなかったものの、負極の枠骨から0.0002質量%のSbが検出された。負極格子耳や枠骨はSbを含まないPb合金で作成したことから、この寿命試験終了後に検出されたSbは過放電および充放電サイクル中に負極活物質から溶出し、負極格子耳表面に再析出したものと考えられる。   On the other hand, in the battery of the present invention, Sb exceeding the detection limit (0.0001% by mass) was not detected from the negative electrode lattice ear, but 0.0002% by mass of Sb was detected from the frame of the negative electrode. Since the negative electrode lattice ears and the frame bones were made of a Pb alloy containing no Sb, Sb detected after the end of the life test was eluted from the negative electrode active material during the overdischarge and charge / discharge cycles, and re-appeared on the negative electrode lattice ear surface. It is thought that it precipitated.

本発明では、負極活物質中にSbを添加した場合においても、比率(Lt/Lf)を15.0以下、好ましくは12.0とすることにより、負極格子耳へのSbの析出が抑制され、負極格子耳の腐食が抑制できる。本発明例の電池では枠骨へのSbの析出が認められるものの、比較例における負極格子耳へのSbの析出よりも軽微であり、枠骨を殆ど腐食させることがなかったと考えられる。   In the present invention, even when Sb is added to the negative electrode active material, by setting the ratio (Lt / Lf) to 15.0 or less, preferably 12.0, Sb deposition on the negative electrode lattice ear is suppressed. The corrosion of the negative electrode lattice ear can be suppressed. In the battery of the present invention, Sb deposition on the frame bone was observed, but it was less than the Sb deposition on the negative electrode lattice ear in the comparative example, and it is considered that the frame bone was hardly corroded.

また、負極活物質中のSb含有濃度は0.0002質量%でも寿命を改善する効果が顕著に得られ、その効果は0.0004質量%で極めて顕著となる。一方、Sb含有濃度が0.007質量%の場合は0.006質量%の場合に比較して、負極格子耳の腐食率が増加する傾向が認められるため、Sb含有量は0.006質量%以下とすることが好ましい。したがって、本発明では寿命特性と負極格子耳腐食抑制の両面から、負極活物質中のSb含有濃度は0.0004質量%〜0.006質量%の範囲とすることが最も好ましい。   Further, the effect of improving the life is remarkably obtained even when the Sb-containing concentration in the negative electrode active material is 0.0002% by mass, and the effect becomes extremely remarkable at 0.0004% by mass. On the other hand, when the Sb content concentration is 0.007% by mass, the corrosion rate of the negative electrode lattice ear tends to increase as compared with the case of 0.006% by mass, so the Sb content is 0.006% by mass. The following is preferable. Therefore, in the present invention, the Sb-containing concentration in the negative electrode active material is most preferably in the range of 0.0004 mass% to 0.006 mass% in terms of both life characteristics and suppression of negative electrode grid ear corrosion.

以上、説明してきたように、本発明の構成による鉛蓄電池は、過放電後のサイクル寿命試験においても極めて良好な寿命特性を有し、かつ負極耳の腐食を顕著に抑制できることが確認できた。   As described above, it has been confirmed that the lead storage battery according to the configuration of the present invention has extremely good life characteristics even in the cycle life test after overdischarge and can significantly suppress the corrosion of the negative electrode ear.

以上、本発明の鉛蓄電池によれば、充放電中の充電不足を抑制するとともに、負極格子耳での腐食を抑制することにより、優れた寿命特性を有することから、充電不足となりやすい、アイドルストップ車や回生ブレーキシステム搭載車用の鉛蓄電池として極めて好適である。   As described above, according to the lead-acid battery of the present invention, since it has excellent life characteristics by suppressing the shortage of charging during charging and discharging, and by suppressing the corrosion at the negative electrode grid ear, the idle stop is likely to be insufficiently charged. It is extremely suitable as a lead storage battery for cars and cars equipped with a regenerative brake system.

電池の要部を示す図Diagram showing the main part of the battery 正極板を示す図Diagram showing positive electrode plate 負極板を示す図Diagram showing the negative electrode plate

符号の説明Explanation of symbols

1 鉛蓄電池
2 正極板
3 負極板
4 セパレータ
5 正極棚
6 負極棚
7 正極柱
8 負極接続体
9 正極接続部材
10 負極接続部材
21 正極格子
22 正極格子耳
23 正極格子骨
24 正極活物質
31 負極格子
32 負極格子耳
33 負極格子骨
34 負極活物質
35 エキスパンド網目
36 枠骨
DESCRIPTION OF SYMBOLS 1 Lead acid battery 2 Positive electrode plate 3 Negative electrode plate 4 Separator 5 Positive electrode shelf 6 Negative electrode shelf 7 Positive electrode pillar 8 Negative electrode connection body 9 Positive electrode connection member 10 Negative electrode connection member 21 Positive electrode lattice 22 Positive electrode lattice ear 23 Positive electrode lattice bone 24 Positive electrode active material 31 Negative electrode lattice 32 Negative electrode lattice ear 33 Negative electrode lattice bone 34 Negative electrode active material 35 Expanded mesh 36 Frame bone

Claims (3)

負極格子耳と負極格子骨とからなる負極格子と負極格子骨に充填された負極活物質を備えた負極板と、正極格子耳と正極格子骨とからなる正極格子と正極格子骨に充填された正極活物質を備えた正極板を有し、正極格子耳を集合溶接する正極棚とこの正極棚より導出された正極柱もしくは正極接続体とからなる正極接続部材と、負極格子耳を集合溶接する負極棚とこの負極棚より導出された負極柱もしくは負極接続体とからなる負極接続部材を備えた鉛蓄電池において、前記正極格子および前記正極接続部材はSbを含有しない鉛もしくは鉛合金からなり、前記負極格子および前記負極接続部材はSbを含有しない鉛もしくは鉛合金からなり、負極活物質中に0.0002質量%〜0.007質量%のSbを含み、
前記負極格子はエキスパンド格子であり、前記負極格子骨はエキスパンド網目とこれに連接する枠骨を備え、前記負極格子耳は前記枠骨に一体に設けられ、前記負極格子耳の高さ寸法をLt、前記枠骨の高さ寸法をLfとしたとき、比率(Lt/Lf)を2.2〜15.0としたことを特徴とする鉛蓄電池。
A negative electrode grid including a negative electrode lattice ear and a negative electrode lattice bone, a negative electrode plate including a negative electrode active material filled in the negative electrode lattice bone, a positive electrode lattice including a positive electrode lattice ear and a positive electrode lattice bone, and a positive electrode lattice bone A positive electrode connecting member having a positive electrode plate including a positive electrode active material and having a positive electrode shelf that collects and welds positive electrode grid ears, and a positive pole column or a positive electrode connection body derived from the positive electrode shelf, and the negative electrode grid ears are collectively welded. In a lead storage battery comprising a negative electrode connecting member comprising a negative electrode shelf and a negative electrode column or a negative electrode connecting body derived from the negative electrode shelf, the positive electrode grid and the positive electrode connecting member are made of lead or a lead alloy containing no Sb, The negative electrode grid and the negative electrode connecting member are made of lead or lead alloy not containing Sb, and contain 0.0002 mass% to 0.007 mass% of Sb in the negative electrode active material,
The negative electrode lattice is an expanded lattice, the negative electrode lattice bone includes an expanded mesh and a frame bone connected thereto, and the negative electrode lattice ear is provided integrally with the frame bone, and the height dimension of the negative electrode lattice ear is Lt A lead-acid battery characterized in that the ratio (Lt / Lf) is 2.2 to 15.0 when the height of the frame bone is Lf.
前記比率を2.2〜12.0としたことを特徴とする請求項1に記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the ratio is set to 2.2 to 12.0. 負極活物質中のSb濃度を0.0004〜0.006質量%としたことを特徴とする請求項1もしくは2に記載の鉛蓄電池。 The lead acid battery according to claim 1 or 2, wherein the Sb concentration in the negative electrode active material is 0.0004 to 0.006 mass%.
JP2004328749A 2004-04-02 2004-11-12 Lead acid battery Expired - Fee Related JP4892827B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004328749A JP4892827B2 (en) 2004-11-12 2004-11-12 Lead acid battery
TW094110275A TWI251365B (en) 2004-04-02 2005-03-31 Lead-acid battery
US10/585,078 US8197967B2 (en) 2004-04-02 2005-04-01 Long life and low corrosion lead storage battery with a separator including silica and oil
KR1020067015821A KR101139665B1 (en) 2004-04-02 2005-04-01 Lead storage battery
PCT/JP2005/006475 WO2005096431A1 (en) 2004-04-02 2005-04-01 Lead storage battery
EP05727619.8A EP1742289B1 (en) 2004-04-02 2005-04-01 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004328749A JP4892827B2 (en) 2004-11-12 2004-11-12 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2006140033A JP2006140033A (en) 2006-06-01
JP4892827B2 true JP4892827B2 (en) 2012-03-07

Family

ID=36620724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004328749A Expired - Fee Related JP4892827B2 (en) 2004-04-02 2004-11-12 Lead acid battery

Country Status (1)

Country Link
JP (1) JP4892827B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052438A1 (en) * 2009-10-26 2011-05-05 株式会社Gsユアサ Lead acid storage battery
WO2012105190A1 (en) * 2011-02-01 2012-08-09 パナソニック株式会社 Lead storage battery
WO2014097516A1 (en) * 2012-12-21 2014-06-26 パナソニック株式会社 Lead storage battery
JP6528436B2 (en) 2015-02-12 2019-06-12 株式会社Gsユアサ Lead storage battery, negative electrode plate thereof and method of manufacturing lead storage battery
JP6921037B2 (en) * 2018-05-29 2021-08-18 古河電池株式会社 Lead-acid battery
JPWO2020110175A1 (en) * 2018-11-26 2021-10-07 昭和電工マテリアルズ株式会社 Lead-acid battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154078A (en) * 1979-05-18 1980-12-01 Matsushita Electric Ind Co Ltd Lead-acid battery
JPS6053423B2 (en) * 1980-12-22 1985-11-26 新神戸電機株式会社 Method for producing sheet metal for expanded grids of lead-acid battery plates
JPS57162262A (en) * 1981-03-31 1982-10-06 Shin Kobe Electric Mach Co Ltd Manufacture device for lead battery plate
JP4501330B2 (en) * 2002-05-24 2010-07-14 パナソニック株式会社 Lead acid battery

Also Published As

Publication number Publication date
JP2006140033A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP5522444B2 (en) Lead acid battery
JP5079324B2 (en) Lead acid battery
JP5858048B2 (en) Lead acid battery
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
WO2014162674A1 (en) Lead acid storage battery
JPWO2005107004A1 (en) Lead acid battery
JP2006114417A (en) Lead-acid storage battery
JP2005302395A (en) Lead storage battery
JP4892827B2 (en) Lead acid battery
JP2008140645A (en) Lead acid battery
JP4904686B2 (en) Lead acid battery
JPWO2011027383A1 (en) Lead acid battery
JP4896392B2 (en) Lead acid battery
JP4904675B2 (en) Lead acid battery
JP2007035339A (en) Control valve type lead-acid storage battery
JP6197426B2 (en) Lead acid battery
JP5044888B2 (en) Liquid lead-acid battery
JP6921037B2 (en) Lead-acid battery
JP2006114416A (en) Lead-acid battery
JP2005294142A (en) Lead storage battery
JP4483308B2 (en) Lead acid battery
JP2006164598A (en) Lead acid battery
JP5375049B2 (en) Lead acid battery
JP4923399B2 (en) Lead acid battery
JP4503358B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071212

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees