JP2006164598A - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP2006164598A
JP2006164598A JP2004350914A JP2004350914A JP2006164598A JP 2006164598 A JP2006164598 A JP 2006164598A JP 2004350914 A JP2004350914 A JP 2004350914A JP 2004350914 A JP2004350914 A JP 2004350914A JP 2006164598 A JP2006164598 A JP 2006164598A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
lattice
lead
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004350914A
Other languages
Japanese (ja)
Inventor
Shoji Horie
章二 堀江
Kazuhiro Sugie
一宏 杉江
Shozo Murochi
省三 室地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004350914A priority Critical patent/JP2006164598A/en
Priority to DE602005009814T priority patent/DE602005009814D1/en
Priority to PCT/JP2005/006869 priority patent/WO2005099020A1/en
Priority to US10/587,186 priority patent/US8071239B2/en
Priority to KR1020067017135A priority patent/KR101128586B1/en
Priority to TW094110987A priority patent/TWI254478B/en
Priority to EP05728390A priority patent/EP1737062B1/en
Publication of JP2006164598A publication Critical patent/JP2006164598A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that Sb elutes from a negative electrode when a battery is overdischarged and a negative grid lug is corroded resulting in short service life if a material whose hydrogen overvoltage is lower than Pb such as Sb is added to the negative electrode for the purpose of improving charge acceptability in a negative electrode. <P>SOLUTION: Pb or a Pb alloy not containing Sb in connection members of the positive electrode and the negative electrode is used, and a negative electrode plate is housed in a bag-like separator of a microporous synthetic resin sheet containing Sb whose hydrogen overvoltage is lower than Pb in a negative electrode lattice rib. Preferably, an Sb content mass (WSb) contained in the negative electrode lattice rib is 0.0004 to 0.006% of the mass (WN) of the negative electrode active material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

鉛蓄電池は、車両のエンジン始動用やバックアップ電源用などに用いられている。その中でも始動用の鉛蓄電池は、エンジン始動用セルモータへの電力供給とともに、車両に搭載された各種電気・電子機器へ電力を供給している。エンジン始動後、鉛蓄電池はオルタネータによって充電される。ここで、鉛蓄電池の充電と放電とがバランスし、鉛蓄電池のSOC(充電状態)が90〜100%に維持されるよう、オルタネータの出力電圧および出力電流が設定されている。   Lead-acid batteries are used for vehicle engine start-up and backup power supplies. Among them, the lead acid battery for start-up supplies power to various electric / electronic devices mounted on the vehicle as well as power supply to the engine start cell motor. After the engine is started, the lead storage battery is charged by an alternator. Here, the output voltage and output current of the alternator are set so that charging and discharging of the lead storage battery are balanced and the SOC (charged state) of the lead storage battery is maintained at 90 to 100%.

近年、環境保全の観点から車両の燃費向上が検討されている。例えば、車両の一時的な停車中にエンジンを停止するアイドルストップ車や、車両の減速時に車両の運動エネルギーを電気エネルギーに変換し、この電気エネルギーを蓄電することによって行う回生ブレーキシステムが実用化されている。   In recent years, improvement in fuel efficiency of vehicles has been studied from the viewpoint of environmental conservation. For example, idle stop vehicles that stop the engine while the vehicle is temporarily stopped, and regenerative braking systems that convert the vehicle's kinetic energy into electrical energy and store this electrical energy when the vehicle decelerates are put into practical use. ing.

例えば、アイドルストップシステムを搭載した車両では、アイドルストップ時に鉛蓄電池は充電されない。一方で、搭載機器へ電力供給するため、従来の車両の始動用鉛蓄電池に比較して、必然的にSOCが低い状態となる。また、回生ブレーキシステムを搭載した車両では、回生時の電気エネルギーを蓄電するために、鉛蓄電池のSOCをより低く、50〜90%程度に制御する必要がある。   For example, in a vehicle equipped with an idle stop system, the lead storage battery is not charged during idle stop. On the other hand, in order to supply electric power to the on-board equipment, the SOC is inevitably lower than that of a conventional lead-acid battery for starting a vehicle. Further, in a vehicle equipped with a regenerative brake system, it is necessary to control the SOC of the lead storage battery to be lower and about 50 to 90% in order to store electric energy during regeneration.

また、いずれのシステムにおいても、従来よりも頻繁に充電放電が繰り返されることになる。また、低SOCで充放電が行われるだけではなく、車両部品の電動化に伴う暗電流の増加により、長期間停車中に鉛蓄電池の放電が進行し、過放電をしてしまうケースが多くなってきている。   Moreover, in any system, charging / discharging is repeated more frequently than before. Moreover, not only charging / discharging is performed at a low SOC, but also due to an increase in dark current accompanying the electrification of vehicle parts, lead-acid batteries discharge during a long-term stop, resulting in overdischarge. It is coming.

従って、これらのシステムを搭載した車両に適応するため、これに用いる鉛蓄電池はSOCがより低い領域で頻繁に充放電が繰り返された時の寿命特性が要求される。このような使用モードでの鉛蓄電池の劣化要因は、鉛蓄電池の充電受入性の低下によるよる充電不足が主要因であった。   Therefore, in order to adapt to a vehicle equipped with these systems, the lead storage battery used in this system is required to have a life characteristic when charging and discharging are frequently repeated in a region where the SOC is lower. The main cause of deterioration of the lead storage battery in such a use mode is insufficient charge due to a decrease in charge acceptance of the lead storage battery.

車両の充電システムは、定電圧制御を基本としているため、負極の充電受入性低下により、充電早期に、負極電位が卑に移行し充電制御定電圧値まで電圧が上昇することで、電流が垂下する。そのため、鉛蓄電池は、充電電気量を十分確保することが出来なくなり、充電不足となり短寿命となる。   Since the vehicle charging system is based on constant voltage control, the current droops because the negative electrode potential shifts to the base and the voltage rises to the charge control constant voltage value at an early stage of charging due to the negative charge acceptability decline. To do. Therefore, the lead storage battery cannot secure a sufficient amount of charge electricity, becomes insufficiently charged and has a short life.

そこで、この劣化を抑制するため、例えば特許文献1には鉛−カルシウム−スズ合金の正極格子表面にスズおよびアンチモンを含有する鉛合金層を形成することが示されている。正極格子表面に存在するスズおよびアンチモンは活物質の劣化および活物質−格子界面での高抵抗層の形成を抑制する効果がある。   In order to suppress this deterioration, for example, Patent Document 1 discloses that a lead alloy layer containing tin and antimony is formed on the surface of a positive electrode lattice of a lead-calcium-tin alloy. Tin and antimony present on the surface of the positive electrode lattice have an effect of suppressing deterioration of the active material and formation of a high resistance layer at the active material-lattice interface.

また、特に正極格子表面に配置したアンチモンは、その一部が正極活物質に捕捉されるものの、他の一部はその微量が電解液に溶出し、負極板上に析出する。負極活物質上に析出したアンチモンは負極の充電電位を貴に移行させることによって、充電電圧を低下させ、鉛蓄電池の充電受入性を向上させる作用を有している。その結果として、充放電サイクル中における充電不足と、これによる鉛蓄電池の短寿命が抑制されていた。   In particular, a part of antimony disposed on the surface of the positive electrode lattice is trapped by the positive electrode active material, but a small amount of the other part elutes in the electrolytic solution and is deposited on the negative electrode plate. The antimony deposited on the negative electrode active material has the effect of lowering the charging voltage and improving the charge acceptability of the lead storage battery by preciously shifting the charging potential of the negative electrode. As a result, insufficient charging during the charge / discharge cycle and the short life of the lead storage battery due to this were suppressed.

このような特許文献1のような構成は、SOCが90%を超えるような充電状態で用いられる始動用鉛蓄電池において非常に有効であり、寿命特性を飛躍的に改善するものであった。   Such a configuration as disclosed in Patent Document 1 is very effective in a start-up lead-acid battery used in a charged state in which the SOC exceeds 90%, and dramatically improves the life characteristics.

しかしながら、前記したようなアイドルストップ車や、回生ブレーキシステムを搭載したような車両に搭載される場合、すなわちSOCが低い領域で充放電頻度がより多い使用環境下で使用される場合に、特許文献1のような構成のみの鉛蓄電池では、充電受入性は確保できるものの、負極格子耳で腐食が進行するという問題が発生してきた。その結果、負極格子耳厚みが減少し負極における集電効率を低下させ、寿命低下するものであった。   However, when mounted on an idle stop vehicle as described above or a vehicle equipped with a regenerative braking system, that is, when used in a usage environment with a higher charge / discharge frequency in a region where the SOC is low, In the lead storage battery having only the configuration as in 1, the charge acceptability can be secured, but there has been a problem that the corrosion proceeds at the negative electrode grid ear. As a result, the thickness of the negative electrode lattice lugs was reduced, the current collection efficiency in the negative electrode was lowered, and the life was shortened.

また、負極格子耳厚みの減少は、集電効率の低下のみならず負極格子耳の強度低下を引き起こす。特に車両に搭載される電池は、車両の走行中、絶えず振動・衝撃が加わるため、負極格子耳が変形することによって負極板の位置ずれが生じて、正極板と内部短絡を引き起こす場合がある。   Moreover, the decrease in the thickness of the negative electrode grid ears causes a decrease in the strength of the negative electrode grid ears as well as a decrease in current collection efficiency. In particular, since a battery mounted on a vehicle is constantly subjected to vibration and impact while the vehicle is running, the negative electrode lattice ear may be deformed to cause a displacement of the negative electrode plate, thereby causing an internal short circuit with the positive electrode plate.

従来、負極格子耳の腐食に関しては、負極棚と負極格子耳が電解液から露出し、大気中の酸素に曝露されることによって、負極棚と負極格子耳との溶接部が腐食し、断線することが知られていた。しかしながら、負極棚および負極格子耳が電解液に浸漬した状態であっても、正極格子上に配置したSbや正極棚、正極柱および正極接続体といった鉛合金の接続部材中に含まれるSbが電解液に溶出し、負極格子耳表面に微量析出することにより、負極格子耳を腐食することがわかってきた。   Conventionally, regarding the corrosion of the negative electrode grid ear, the negative electrode shelf and the negative electrode grid ear are exposed from the electrolyte and exposed to oxygen in the atmosphere, so that the welded portion between the negative electrode shelf and the negative electrode grid ear is corroded and disconnected. It was known. However, even when the negative electrode shelf and the negative electrode grid ear are immersed in the electrolyte, Sb contained in the lead alloy connection member such as Sb arranged on the positive electrode lattice or the positive electrode shelf, the positive electrode column, and the positive electrode connector is electrolyzed. It has been found that the negative electrode lattice ear is corroded by being eluted into the liquid and deposited in a small amount on the surface of the negative electrode lattice ear.

特許文献2には、正極格子、正極接続部材や負極格子耳や負極接続部材をSbを含まないPbもしくはPb合金で構成し、負極格子骨もしくは負極活物質のいずれか一方に減液量に影響しない程度の微量のSbを含んだ鉛蓄電池が提案されている。このような構成により、正極からのSbの溶出と負極格子耳へのSbの析出を抑制し、負極活物質中にSbを含むことによって、電池の充電受入性と深放電寿命をある程度まで改善することが示されている。
特開平3−37962号公報 特開2003−346888号公報
In Patent Document 2, the positive electrode grid, the positive electrode connection member, the negative electrode grid ear, and the negative electrode connection member are made of Pb or Pb alloy that does not contain Sb, and either the negative electrode lattice bone or the negative electrode active material affects the amount of liquid reduction. A lead storage battery containing a small amount of Sb is not proposed. With such a configuration, the elution of Sb from the positive electrode and the precipitation of Sb on the negative electrode lattice ear are suppressed, and by including Sb in the negative electrode active material, the charge acceptability and deep discharge life of the battery are improved to some extent. It has been shown.
JP-A-3-37962 JP 2003-346888 A

上記のような特許文献2の構成を有した鉛蓄電池は、負極格子耳でのSb析出と、これによる負極格子耳腐食を抑制することができる。しかしながら、電池を過放電したり、SOCが低い領域で頻繁に充放電が繰り返されるような使用モードにおいて、負極格子骨に含まれるSbが電解液中に再溶出し、負極格子耳に析出し、負極格子耳を腐食させるということが判ってきた。   The lead storage battery having the configuration of Patent Document 2 as described above can suppress Sb precipitation at the negative electrode lattice ears and the negative electrode lattice ear corrosion caused thereby. However, in a use mode in which the battery is overdischarged or the charge / discharge is frequently repeated in a region where the SOC is low, Sb contained in the negative electrode lattice bone is re-eluted in the electrolytic solution and deposited on the negative electrode lattice ear, It has been found that the negative grid ears are corroded.

本発明は、前記したような使用モードにおける鉛蓄電池の充電受入性を改善することによって、寿命特性を飛躍的に改善するとともに、過放電やSOCが低い領域で充放電を繰り返した場合においても負極格子耳部へのアンチモンの移動を防ぐことにより、負極格子耳部における腐食を抑制することによって、高信頼性を有したアイドルストップ車や充電制御システムや、回生ブレーキシステム搭載車等に好適な鉛蓄電池を提供することを目的とする。   The present invention drastically improves the life characteristics by improving the charge acceptance of the lead storage battery in the use mode as described above, and the negative electrode even when the overdischarge and the SOC are repeated in a low SOC region. Lead that is suitable for highly reliable idle-stop cars, charging control systems, cars with regenerative braking systems, etc., by preventing antimony migration to the grid ears and suppressing corrosion at the negative grid ears An object is to provide a storage battery.

前記した課題を解決するため、本発明の請求項1に係る発明は、負極格子耳と負極格子骨とからなる負極格子と負極格子骨に充填された負極活物質を備えた負極板と、正極格子耳と正極格子骨とからなる正極格子と正極格子骨に充填された正極活物質を備えた正極板を有し、正極格子耳を集合溶接する正極棚とこの正極棚より導出された正極柱もしくは正極接続体とからなる正極接続部材と、負極格子耳を集合溶接する負極棚とこの負極棚より導出された負極柱もしくは負極接続体とからなる負極接続部材を備えた鉛蓄電池において、前記正極格子および前記正極接続部材はSbを含有しない鉛もしくは鉛合金からなり、前記負極格子耳および前記負極接続部材はSbを含有しない鉛もしくは鉛合金からなり、負極格子骨にPbよりも水素過電圧が低い物質を含み、かつ、微孔を有した合成樹脂シートの袋状セパレータで前記負極板を収納したことを特徴とする鉛蓄電池を示すものである。   In order to solve the above-described problem, the invention according to claim 1 of the present invention includes a negative electrode lattice including a negative electrode lattice ear and a negative electrode lattice bone, a negative electrode plate including a negative electrode active material filled in the negative electrode lattice bone, and a positive electrode A positive electrode shelf comprising a positive electrode lattice comprising a lattice ear and a positive electrode lattice bone, and a positive electrode plate comprising a positive electrode active material filled in the positive electrode lattice bone, and a positive electrode shelf that collectively welds the positive electrode lattice ear and a positive electrode column derived from the positive electrode shelf Alternatively, in the lead storage battery comprising a positive electrode connecting member comprising a positive electrode connecting body, a negative electrode shelf for collectively welding negative electrode grid ears, and a negative electrode connecting member comprising a negative electrode column or a negative electrode connecting body derived from the negative electrode shelf, the positive electrode The lattice and the positive electrode connecting member are made of lead or lead alloy not containing Sb, the negative electrode lattice ear and the negative electrode connecting member are made of lead or lead alloy not containing Sb, and the negative electrode lattice bone has a hydrogen content higher than Pb. Includes a pressure lower material and shows a lead-acid battery, characterized in that for accommodating the negative electrode plate in the bag-like separator synthetic resin sheet having fine pores.

また、本発明の請求項2に係る発明は、請求項1の鉛蓄電池において、前記水素過電圧が低い物質はSbであり、前記負極格子骨はSbを含まないPbもしくはPb合金からなる母材表面上にSbを含む層を形成してなることを特徴とするものである。   The lead-acid battery according to claim 2 of the present invention is the lead-acid battery according to claim 1, wherein the substance having a low hydrogen overvoltage is Sb, and the negative electrode lattice bone is made of Pb or Pb alloy containing no Sb. A layer containing Sb is formed thereon.

また、本発明の請求項3に係る発明は、請求項1もしくは2の鉛蓄電池において、負極格子骨中のSb含有質量(WSb)を負極活物質の質量(WN)の0.0004%〜0.006%としたことを特徴とするものである。   In the lead storage battery according to claim 1 or 2, the Sb-containing mass (WSb) in the negative electrode lattice bone is 0.0004% to 0 of the negative electrode active material mass (WN). 0.006%.

さらに、本発明の請求項4に係る発明は、請求項1、2もしくは3の鉛蓄電池において、正極格子骨はPb−Ca合金であり、前記正極格子骨の前記正極活物質と接する表面の少なくとも一部に前記正極格子骨に含まれるSnよりも高濃度のSnを含むことを特徴とするものである。   Furthermore, the invention according to claim 4 of the present invention is the lead-acid battery according to claim 1, 2, or 3, wherein the positive electrode lattice bone is a Pb-Ca alloy, and at least the surface of the positive electrode lattice bone in contact with the positive electrode active material. A part of it contains Sn at a higher concentration than Sn contained in the positive electrode lattice bone.

本発明の鉛蓄電池によれば、過放電したり、SOCが比較的低い領域で、より頻繁に充放電が繰り返される使用環境化において、充電受入性を改善することによって、寿命特性を飛躍的に改善するとともに、負極格子耳における腐食を抑制することによって、高信頼性を有した長寿命の鉛蓄電池を得ることができる。   According to the lead storage battery of the present invention, the life characteristics are dramatically improved by improving the charge acceptance in an environment where overdischarge or charge / discharge is repeated more frequently in a region where the SOC is relatively low. While improving and suppressing the corrosion in a negative electrode grating | lattice ear | edge, the long life lead storage battery with high reliability can be obtained.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

正極板2は図2に示したように、正極格子耳22と正極格子骨23とで構成される正極格子21に正極活物質24が充填された構成を有している。一方、負極板3は図3に示したように、負極格子耳32と負極格子骨33とで構成される負極格子31に負極活物質34が充填された構成を有している。   As shown in FIG. 2, the positive electrode plate 2 has a configuration in which a positive electrode active material 24 is filled in a positive electrode lattice 21 including positive electrode lattice ears 22 and positive electrode lattice bones 23. On the other hand, as shown in FIG. 3, the negative electrode plate 3 has a configuration in which a negative electrode active material 34 is filled in a negative electrode lattice 31 composed of negative electrode lattice ears 32 and negative electrode lattice bones 33.

本発明の鉛蓄電池1ではセパレータ4と正極板2および負極板3の所定枚数を組合せ、正極格子耳22および負極格子耳32の同極性の耳部同士を集合溶接してそれぞれ正極棚5および負極棚6が形成される。正極棚5には正極柱7もしくは正極接続体(図示せず)が、負極棚6には負極接続体8もしくは負極柱(図示せず)がそれぞれ形成される。図1に示した例では正極棚5に正極柱7、負極棚6に負極接続体8を設けた例を示しているが、必要に応じ、正極柱7および負極接続体8に換えて、正極接続体および負極柱をそれぞれ正極棚5および負極棚6に接合することとなる。   In the lead storage battery 1 of the present invention, a predetermined number of separators 4, a positive electrode plate 2 and a negative electrode plate 3 are combined, and the same polarity ears of the positive electrode grid ear 22 and the negative electrode grid ear 32 are collectively welded to the positive electrode shelf 5 and the negative electrode respectively. A shelf 6 is formed. A positive pole 7 or a positive electrode connection body (not shown) is formed on the positive electrode shelf 5, and a negative electrode connection body 8 or a negative electrode pillar (not shown) is formed on the negative electrode shelf 6. In the example shown in FIG. 1, an example is shown in which the positive electrode column 5 is provided on the positive electrode shelf 5, and the negative electrode connector 8 is provided on the negative electrode shelf 6. The connection body and the negative electrode column are joined to the positive electrode shelf 5 and the negative electrode shelf 6, respectively.

例えば、6セルが直列接続された公称電圧12Vの始動用鉛蓄電池は、一般的に正極端子側から1番目の端セルを構成する極板群においては図1に示したように、正極棚5に正極柱7が接続し、負極棚6には負極接続体8が接続される。また、正極端子側から6番目の端セルを構成する極板群においては正極棚5に正極接続体が接続され、負極棚6には負極極柱が接続される。そして、これら端セル間に位置する中間セルを構成する極板群は正極棚5、負極棚6ともに、それぞれ正極および負極の接続体が接続された構成をとる。   For example, a starting lead storage battery having a nominal voltage of 12 V in which 6 cells are connected in series generally has a positive electrode shelf 5 as shown in FIG. 1 in the electrode plate group constituting the first end cell from the positive electrode terminal side. The negative pole connecting body 8 is connected to the negative pole shelf 6. In the electrode plate group constituting the sixth end cell from the positive electrode terminal side, the positive electrode connector is connected to the positive electrode shelf 5, and the negative electrode pole column is connected to the negative electrode shelf 6. And the electrode group which comprises the intermediate | middle cell located between these end cells takes the structure by which the connection body of the positive electrode and the negative electrode was connected to the positive electrode shelf 5 and the negative electrode shelf 6, respectively.

本発明において正極棚5、正極柱7および/もしくは正極接続体で構成される正極接続部材9と正極格子21はSb含まないPbもしくはPb合金で構成する。Sbを含まないPb合金としては、耐食性や機械的強度を考慮して、0.05〜3.0質量%程度のSnを含むPb−Sn合金や、0.01〜0.10質量%程度のCaを含むPb−Ca合金、あるいはこれらの三元合金(Pb−Ca−Sn合金)を用いることができる。   In the present invention, the positive electrode shelf 5, the positive electrode column 7, and / or the positive electrode connecting member 9 and the positive electrode lattice 21 configured by the positive electrode connecting body are configured by Pb or Pb alloy not containing Sb. As a Pb alloy not containing Sb, in consideration of corrosion resistance and mechanical strength, a Pb—Sn alloy containing about 0.05 to 3.0 mass% of Sn, or about 0.01 to 0.10 mass%. A Pb—Ca alloy containing Ca or a ternary alloy thereof (Pb—Ca—Sn alloy) can be used.

一方、負極に関して、負極棚6、負極接続体8および/もしくは負極極柱で構成される負極接続部材10と、負極格子耳32を正極と同様、実質上Sbを含まないPbもしくはPb合金で構成する。Sbを含まないPb合金としては、耐食性や機械的強度を考慮して、0.05〜3.0質量%程度のSnを含むPb−Sn合金や、0.01〜0.10質量%程度のCaを含むPb−Ca合金、あるいはこれらの三元合金(Pb−Ca−Sn合金)を用いることができる。また、負極においては、正極よりも耐酸化性が要求されないため、純Pbを用いることもできる。   On the other hand, regarding the negative electrode, the negative electrode shelf 6, the negative electrode connecting body 8, and / or the negative electrode connecting member 10 constituted by the negative electrode pole column, and the negative electrode lattice ear 32 are made of Pb or Pb alloy substantially free of Sb, like the positive electrode. To do. As a Pb alloy not containing Sb, in consideration of corrosion resistance and mechanical strength, a Pb—Sn alloy containing about 0.05 to 3.0 mass% of Sn, or about 0.01 to 0.10 mass%. A Pb—Ca alloy containing Ca or a ternary alloy thereof (Pb—Ca—Sn alloy) can be used. Further, since the oxidation resistance is not required for the negative electrode as compared with the positive electrode, pure Pb can be used.

なお、0.01〜0.08質量%程度のBaや0.001〜0.05質量%Agといった元素の添加も正極格子の耐久性を向上する上で好ましい。なお、上記の組成の格子体や接続部材を製造する上で、溶融鉛合金からのCaの酸化消失を抑制するために0.001〜0.05質量%程度のAlの添加や、不可避的な不純物としての0.0005〜0.005質量%程度のBiの存在は、本発明の効果を損なうものでなく、許容しうるものである。   In addition, addition of an element such as about 0.01 to 0.08 mass% Ba or 0.001 to 0.05 mass% Ag is also preferable for improving the durability of the positive electrode grid. In addition, in manufacturing the lattice body and the connection member having the above-described composition, in order to suppress the disappearance of Ca from the molten lead alloy, the addition of about 0.001 to 0.05% by mass of Al is inevitable. The presence of about 0.0005 to 0.005 mass% Bi as an impurity does not impair the effects of the present invention and is acceptable.

そして、本発明では、負極格子骨33中にPbよりも水素過電圧の低い物質を含む。Pbよりも水素過電圧が低い物質としては、Sbを用いることができる。SbはPbと容易に合金を形成し、かつ比較的安価である点で好ましい。この場合、本発明の鉛蓄電池の負極格子31において、負極格子耳32はSbを含まないものの、負極活物質34と接する負極格子骨33はSbを含む構成を有する。   In the present invention, the negative electrode lattice bone 33 contains a substance having a hydrogen overvoltage lower than that of Pb. Sb can be used as a substance having a hydrogen overvoltage lower than that of Pb. Sb is preferable because it easily forms an alloy with Pb and is relatively inexpensive. In this case, in the negative electrode lattice 31 of the lead storage battery of the present invention, the negative electrode lattice lug 32 does not contain Sb, but the negative electrode lattice bone 33 in contact with the negative electrode active material 34 has a configuration containing Sb.

鋳造格子体、エキスパンド格子体といった、通常、鉛蓄電池用格子体として用いられる格子体は、その製造工法上、格子耳と格子骨は同一材質で構成されることが一般的である。したがって、本発明のように、負極格子骨33のみにSbを含有させる場合、負極格子耳32と負極格子骨33とをSbを含まない鉛もしくは鉛合金で形成し、負極格子骨33の表面にのみ、Sbを含む層を形成することが好ましい。   In general, a lattice body such as a cast lattice body or an expanded lattice body, which is used as a lead-acid battery lattice body, is generally composed of the same material for lattice ears and lattice bones. Therefore, when Sb is contained only in the negative electrode lattice bone 33 as in the present invention, the negative electrode lattice ear 32 and the negative electrode lattice bone 33 are formed of lead or a lead alloy containing no Sb, and the surface of the negative electrode lattice bone 33 is formed. Only the layer containing Sb is preferably formed.

また、特に負極格子用合金として、強度に優れたPb−Ca合金を用い、この合金中に直接Sbを添加する場合、CaとSbとの金属間化合物が生成する場合がある。この金属間化合物は硫酸と接触することによって、負極格子合金の腐食を促進する作用がある。   In particular, when a Pb—Ca alloy having excellent strength is used as the negative electrode lattice alloy and Sb is added directly to the alloy, an intermetallic compound of Ca and Sb may be generated. This intermetallic compound has an action of promoting corrosion of the negative electrode lattice alloy by contacting with sulfuric acid.

したがって、特に負極格子合金にPb−Ca合金を用いる場合、Sbを負極格子骨の母材中に均一に添加するのではなく、Sbを含む層を負極格子骨33表面に集中して配置することによって、両者が混合せず、結果的にSbとCaとの金属間化合物が生成し得ない構成とすることが好ましい。   Therefore, particularly when a Pb—Ca alloy is used as the negative electrode lattice alloy, Sb is not uniformly added to the base material of the negative electrode lattice bone, but a layer containing Sb is concentrated on the surface of the negative electrode lattice bone 33. Therefore, it is preferable that the two are not mixed and consequently an intermetallic compound of Sb and Ca cannot be generated.

負極格子骨33の表面のみにSbを含む層を形成する手段としては、Sbを含む鉛合金を負極格子骨33の表面に溶射して得ることができる。また、負極格子31としてエキスパンド格子体を用いる場合には、他の手段として、Sbを含まないPbもしくはPb合金の鋳造スラブ上に、SbもしくはSbを含むPb合金からなる箔を重ね合わせ、両者を圧延一体化した圧延Pb合金シートをエキスパンド加工することによって得ることができる。   As a means for forming a layer containing Sb only on the surface of the negative electrode lattice 33, a lead alloy containing Sb can be obtained by thermal spraying on the surface of the negative electrode lattice 33. When an expanded lattice is used as the negative electrode lattice 31, as another means, a foil made of Pb alloy containing Sb or Sb is superimposed on a cast slab of Pb or Pb alloy not containing Sb, It can be obtained by expanding a rolled Pb alloy sheet integrated with rolling.

この場合、圧延Pb合金シートの一部にSbを含む箔を重ね合わせない部分を設け、この部分を負極格子耳32に成型加工し、Sbを含む箔を重ね合わせた部分をエキスパンド加工して負極格子骨33とすることにより、図4に示したような負極格子骨33表面のみにSbを含む層35を形成することができる。   In this case, a portion where the foil containing Sb is not overlapped is provided on a part of the rolled Pb alloy sheet, this portion is molded into the negative electrode lattice ear 32, and the portion where the foil containing Sb is overlapped is expanded to form a negative electrode. By using the lattice bone 33, the layer 35 containing Sb can be formed only on the surface of the negative electrode lattice bone 33 as shown in FIG.

このようなSbを含む箔を圧延一体化する手法は箔中に含まれるSbと圧延Pbシート母材中に含まれるCaとが溶融・混合しないため、腐食の要因となるSbとCaとの金属間化合物の生成を抑制することができる点で、極めて好ましい。また、このような手法は溶射によるものと比較して、製造工程の大幅な変更を要さず、比較的簡便に実施可能である点でも好ましい。   The method of rolling and integrating such a Sb-containing foil is that Sb contained in the foil and Ca contained in the rolled Pb sheet base material are not melted and mixed, so that the metal of Sb and Ca, which causes corrosion, is used. This is extremely preferable in that the formation of intermetallic compounds can be suppressed. Such a method is also preferable in that it does not require a significant change in the manufacturing process and can be carried out relatively easily as compared with the thermal spraying method.

そして、本発明の鉛蓄電池では、負極板を微孔を有したポリエチレン等の合成樹脂シートの袋状セパレータに収納した構成とする。合成樹脂シートは電解液中のイオンや水分子の透過を可能とし、かつ活物質粒子の透過を抑制できる程度の微孔、たとえば、最大孔径10μm程度以下の孔を有したものを用いる。合成樹脂シートは耐酸性および耐酸化性を有した、ポリプロピレン、ポリエチレン等の材料から選択する。   And in the lead acid battery of this invention, it is set as the structure which accommodated the negative electrode plate in the bag-shaped separator of synthetic resin sheets, such as polyethylene which has a micropore. As the synthetic resin sheet, there are used micropores that can permeate ions and water molecules in the electrolytic solution and can suppress permeation of the active material particles, for example, those having pores with a maximum pore diameter of about 10 μm or less. The synthetic resin sheet is selected from materials such as polypropylene and polyethylene having acid resistance and oxidation resistance.

上記の極板群を用い、以降は定法に従って極板群が電解液に浸漬した状態の鉛蓄電池を組み立てることにより、本発明の鉛蓄電池を得る。なお、本発明では負極活物質中に、Sbの様なPbよりも低い水素過電圧を有する物質を含むため、制御弁式鉛蓄電池に適用するものではない。制御弁式鉛蓄電池に適用した場合、微量のガス発生により、電池内圧が増加し、長時間、制御弁が開弁した状態となる。その結果、大気が電池内に流入し、負極が酸化するためである。   The lead storage battery of the present invention is obtained by assembling a lead storage battery in which the electrode group is immersed in an electrolytic solution according to a conventional method, using the above electrode group. In the present invention, since the negative electrode active material includes a material having a hydrogen overvoltage lower than Pb, such as Sb, it is not applied to a control valve type lead-acid battery. When applied to a control valve type lead storage battery, the internal pressure of the battery increases due to the generation of a small amount of gas, and the control valve is opened for a long time. As a result, air flows into the battery and the negative electrode is oxidized.

本発明では、Sbを負極格子骨に含有することにより、電池を充電した際の負極の過電圧が低下し、負極活物質の充電性が顕著に改善され、寿命特性が向上する。特にSbの含有質量(WSb)を負極活物質の質量(WN)の0.0004%以上(すなわち、WSb×100/Wn≧0.0004)とすることにより、寿命特性は極めて顕著に改善される。   In the present invention, by containing Sb in the negative electrode lattice bone, the overvoltage of the negative electrode when the battery is charged is lowered, the chargeability of the negative electrode active material is remarkably improved, and the life characteristics are improved. Particularly, when the Sb content (WSb) is 0.0004% or more of the mass (WN) of the negative electrode active material (that is, WSb × 100 / Wn ≧ 0.0004), the life characteristics are remarkably improved. .

一方、Sbの含有質量(WSb)が負極活物質の質量(WN)の0.007%では負極格子耳の腐食が徐々に進行しはじめるため、Sbの含有質量(WSb)の負極活物質の質量(WN)に対する比率(WSb/WN)を0.006%以下(すなわち、0.006≧WSb×100/Wn)とすることが好ましい。   On the other hand, when the Sb content mass (WSb) is 0.007% of the mass (WN) of the negative electrode active material, the corrosion of the negative electrode lattice ears gradually begins to progress, so the mass of the negative electrode active material with the Sb content mass (WSb) The ratio (WSb / WN) to (WN) is preferably 0.006% or less (that is, 0.006 ≧ WSb × 100 / Wn).

上記の本発明の構成を有した鉛蓄電池は、負極格子骨のみにSbを含むので、正極からのSbが負極に移行することなく、負極格子耳の腐食を抑制することができる。負極に含まれるSbは負極の過電圧を低下させ、充電受入性を改善し、鉛蓄電池の寿命特性を改善する。   Since the lead storage battery having the above-described configuration of the present invention contains Sb only in the negative electrode lattice bone, corrosion of the negative electrode lattice ear can be suppressed without Sb from the positive electrode moving to the negative electrode. Sb contained in the negative electrode lowers the overvoltage of the negative electrode, improves the charge acceptance, and improves the life characteristics of the lead storage battery.

本発明のSbを負極格子骨に含有させる構成は、負極活物質にSbを含む構成に比較して、以下の利点がある。負極活物質にSbを含む構成とした場合、負極活物質ペースト錬合時にSbを添加することとなる。鉛蓄電池製造では1台の練合機で多品種の活物質ペーストを練合することが一般的である。そのような場合、練合機中に残留した活物質ペースト中のSbが他品種の活物質ペーストに混入する可能性がある。   The configuration in which the negative electrode lattice bone of the present invention contains Sb has the following advantages compared to the configuration in which the negative electrode active material contains Sb. When it is set as the structure which contains Sb in a negative electrode active material, Sb will be added at the time of negative electrode active material paste refining. In lead acid battery production, it is common to knead various types of active material pastes with one kneader. In such a case, Sb in the active material paste remaining in the kneading machine may be mixed in the active material paste of other varieties.

また、練合機を洗浄した水や、ペースト充填工程において発生した屑ペーストを回収し、水分量を調整して活物質ペーストとして再利用することも鉛蓄電池生産では一般的に行われている。負極活物質中にSbを添加する場合、Sbを含む屑ペーストとSbを含まない屑ペーストを区分して回収・再利用する必要があるため、設備や工程管理が複雑となる。負極格子表面にのみSbを配置する構成では、これらの問題が発生しないため、設備コストや工程管理面で好ましい
また、本発明の鉛蓄電池は、電池を過放電したり、低SOC領域で充放電を頻繁に繰り返すことによって、負極格子骨33からSbイオンが溶出した場合においても、負極板を収納する袋状セパレータ表面にただちにSbイオンが吸着されるため、Sbの負極格子耳への再析出と、これによる負極格子耳の腐食を抑制することができる。
In addition, it is a common practice in lead-acid battery production to collect the water from which the kneader has been washed and the waste paste generated in the paste filling step, adjust the amount of water and reuse it as an active material paste. When Sb is added to the negative electrode active material, it is necessary to separate and collect and reuse waste paste containing Sb and waste paste not containing Sb, which complicates facilities and process management. In the configuration in which Sb is arranged only on the negative electrode lattice surface, these problems do not occur, so it is preferable in terms of equipment cost and process control. The lead storage battery of the present invention overdischarges the battery or charges and discharges in a low SOC region By repeating this frequently, even when Sb ions are eluted from the negative electrode lattice bone 33, Sb ions are immediately adsorbed on the surface of the bag-like separator that houses the negative electrode plate. Thus, corrosion of the negative electrode lattice ear can be suppressed.

袋状セパレータでのSbの吸着は負極板面と接触する袋状セパレータ内側面と、この内側面に開口する微孔で行われると推測される。また、負極板を袋状セパレータに収納することによって、溶出したSbイオンの吸着がより効果的に行われるとともに、袋状セパレータ内側の電解液から外側の電解液へのSb拡散が抑制される。   It is presumed that the adsorption of Sb by the bag-shaped separator is carried out by the inner surface of the bag-shaped separator that comes into contact with the negative electrode plate surface and the micropores that open to the inner surface. Moreover, by accommodating the negative electrode plate in the bag-shaped separator, the eluted Sb ions are more effectively adsorbed, and Sb diffusion from the electrolyte solution inside the bag-shaped separator to the outer electrolyte solution is suppressed.

本発明とは異なり、袋状セパレータ中に負極板を収納しない構成では、負極格子骨から溶出したSbイオンは、袋状セパレータを透過することなく、袋状セパレータ外側の電解液中を拡散することにより、負極格子耳に析出するため、負極格子耳の腐食が発生する。   Unlike the present invention, in a configuration in which the negative electrode plate is not housed in the bag-shaped separator, Sb ions eluted from the negative electrode lattice bone diffuse in the electrolyte outside the bag-shaped separator without passing through the bag-shaped separator. Therefore, the negative electrode lattice ear is corroded because it is deposited on the negative electrode lattice ear.

本発明において、図5に示したように、正極格子骨23の正極活物質24と接する表面の少なくとも一部に正極格子骨よりも高濃度のSnを含む層25を形成することにより、深い放電や過放電での正極の充電受入性を改善し、寿命特性を向上することができる。このSnを含む層25はSnによる正極活物質−格子界面での高抵抗層の生成を抑制するものであるから、その効果を得る上で、少なくとも、正極格子母材よりも高濃度のSnを含むことが必要である。   In the present invention, as shown in FIG. 5, by forming a layer 25 containing Sn at a higher concentration than the positive electrode lattice bone on at least a part of the surface in contact with the positive electrode active material 24 of the positive electrode lattice bone 23, deep discharge It is possible to improve the charge acceptability of the positive electrode during overdischarge and to improve the life characteristics. Since the layer 25 containing Sn suppresses the generation of a high resistance layer at the positive electrode active material-lattice interface due to Sn, in order to obtain the effect, at least Sn having a higher concentration than that of the positive electrode lattice base material is used. It is necessary to include.

例えば、正極格子21が1.6質量%のSnを含む場合、少なくとも1.6質量%を超える濃度のSn量とし、3.0〜6.0質量%とする。正極格子母材よりも低濃度とした場合、格子表面のSn濃度はかえって低下するため、好ましくないことは明らかである。   For example, when the positive electrode grid 21 contains 1.6 mass% of Sn, it is set as the amount of Sn of the density | concentration exceeding 1.6 mass% at least, and shall be 3.0-6.0 mass%. Obviously, if the concentration is lower than that of the positive electrode lattice base material, the Sn concentration on the surface of the lattice is lowered, which is not preferable.

以下に示す正極板、負極板、セパレータ、接続部材用合金等の鉛蓄電池部材を準備し、これら部材を組み合わせることにより、本発明例および比較例による電池を作成し、寿命試験を行うことによって負極格子耳の腐食と電池寿命特性の評価を行った。   By preparing lead storage battery members such as the following positive electrode plate, negative electrode plate, separator, alloy for connecting member, etc., by combining these members, a battery according to the present invention example and a comparative example is prepared, and a life test is performed to prepare the negative electrode Evaluation of lattice ear corrosion and battery life characteristics was performed.

1)正極板
2種類の正極格子(正極格子A、正極格子B)を作成し、それぞれについて正極活物質を充填することにより、2種類の正極板(正極板A、正極板B)を作成した。正極格子AはPb−Ca−Sn合金を用い、合金組成はPb−0.07質量%Ca−1.3質量%Snである。この合金を段階的に圧延することによって、合金シートとした後に、エキスパンド加工を行って正極格子を形成した。なお、この正極格子A中のSb定量分析を行ったところ、Sb濃度は検出限界(0.0001質量%)未満であった。
1) Positive electrode plate Two types of positive electrode plates (positive electrode plate A, positive electrode plate B) were prepared by preparing two types of positive electrode lattices (positive electrode lattice A, positive electrode lattice B) and filling each with a positive electrode active material. . The positive electrode lattice A uses a Pb—Ca—Sn alloy, and the alloy composition is Pb—0.07 mass% Ca—1.3 mass% Sn. The alloy was rolled in stages to form an alloy sheet, and then expanded to form a positive electrode grid. In addition, when Sb quantitative analysis in this positive electrode grating | lattice A was performed, Sb density | concentration was less than the detection limit (0.0001 mass%).

正極格子Bは正極格子Aにおいて、合金シートのエキスパンド加工を行う部分、すなわち、正極格子骨に相当する部分に合金シート圧延工程でPb−5.0質量%Snの層を10μmの厚みで形成したものである。なお、この正極格子B中のSb定量分析を行ったところ、Sb濃度は検出限界(0.0001質量%)未満であった。   In the positive electrode grid B, a Pb-5.0 mass% Sn layer was formed to a thickness of 10 μm in the positive electrode grid A in the portion where the alloy sheet is expanded, that is, the portion corresponding to the positive electrode lattice bone, in the alloy sheet rolling process. Is. In addition, when Sb quantitative analysis in this positive electrode lattice B was performed, Sb density | concentration was less than the detection limit (0.0001 mass%).

鉛粉(金属鉛、一酸化鉛および鉛丹の混合粉体)を水と希硫酸で混練して正極活物質ペーストを作成し、前記した正極格子Aおよび正極格子Bに所定量充填した後、熟成乾燥することによって正極板を作製した。正極活物質中に含まれるSb定量分析を行ったところ、Sb濃度は検出限界(0.0001質量%)未満であった。なお、正極格子Aを用いた正極板と正極板A、正極格子Bを用いた正極板を正極板Bとした。   After preparing a positive electrode active material paste by kneading lead powder (a mixed powder of metallic lead, lead monoxide and lead tan) with water and dilute sulfuric acid, and filling the positive electrode grid A and the positive electrode grid B with a predetermined amount, A positive electrode plate was prepared by aging and drying. When Sb quantitative analysis contained in a positive electrode active material was performed, Sb density | concentration was less than the detection limit (0.0001 mass%). The positive electrode plate using the positive electrode grid A, the positive electrode plate A, and the positive electrode plate using the positive electrode grid B were defined as the positive electrode plate B.

2)負極板
負極格子については格子骨にSbを含まない負極格子Cと、格子骨表面にSbを含む層を形成した負極格子Dを作成した。
2) Negative electrode plate For the negative electrode lattice, a negative electrode lattice C containing no Sb in the lattice bone and a negative electrode lattice D in which a layer containing Sb was formed on the lattice bone surface were prepared.

・負極格子C
Pb−0.07質量%Ca−0.25質量%Sn合金のスラブ(10mm厚)を圧延して0.6mm厚の圧延シートとした後、エキスパンド加工を施して負極格子Cを作成した。なお、この負極格子合金中に含まれるSb定量分析を行ったところ、Sb濃度は検出限界(0.0001質量%)未満であり、検出できなかった。
・ Negative electrode grid C
A slab (10 mm thick) of Pb-0.07 mass% Ca-0.25 mass% Sn alloy was rolled into a rolled sheet having a thickness of 0.6 mm, and then subjected to an expanding process to create a negative electrode lattice C. In addition, when Sb quantitative analysis contained in this negative electrode lattice alloy was performed, Sb density | concentration was less than a detection limit (0.0001 mass%), and was not able to be detected.

・負極格子D
負極格子Cに用いたものと同様、厚み10mmのPb−0.07質量%Ca−0.25質量%Snの合金スラブと、Pb−1.0質量%SbのPb−Sb合金箔を重ね合わせて圧延することにより、0.6mmの圧延シートとした後、エキスパンド加工を施して負極格子Dを作成した。
・ Negative electrode grid D
Similar to the one used for the negative electrode grid C, a 10 mm thick Pb-0.07 mass% Ca-0.25 mass% Sn alloy slab and a Pb-1.0 mass% Sb Pb-Sb alloy foil are overlapped. After rolling into a 0.6 mm rolled sheet, an expansion process was performed to create a negative electrode grid D.

なお、Pb−Sb合金箔を重ね合わせる部分はエキスパンド加工部(負極格子骨に対応)のみとし、負極格子耳に対応する部分にはPb−Sb合金箔を重ね合わせない構成とした。なお、合金スラブ中のSb定量分析を行ったところ、Sb濃度は検出限界(0.0001質量%)未満であった。したがって、格子体Bは格子耳および格子骨内部にはSbを含まず、格子骨表面にSbを含んだ構成となる。   The portion where the Pb—Sb alloy foil is overlaid is only the expanded portion (corresponding to the negative electrode lattice bone), and the portion corresponding to the negative electrode lattice ear is not overlaid with the Pb—Sb alloy foil. In addition, when Sb quantitative analysis in the alloy slab was performed, Sb concentration was less than a detection limit (0.0001 mass%). Therefore, the lattice body B has a configuration in which Sb is not included in the lattice ears and lattice bones, and Sb is included on the lattice bone surface.

負極格子Dの格子表面に含まれるSb量は格子表面のSbを含む層の厚みによって決定づけられ、Sbを含む層の厚みはPb−Sb合金箔の厚みによって制御することができる。Sbを含む層に含まれるSb含有質量(WSb)の負極活物質の質量(WN)に対する比率をそれぞれ、0%、0.0002%、0.0004%、0.006%および0.007%となるよう、Pb−Sb合金箔の厚みを種々変更した負極格子体を作成した。   The amount of Sb contained in the lattice surface of the negative electrode lattice D is determined by the thickness of the layer containing Sb on the lattice surface, and the thickness of the layer containing Sb can be controlled by the thickness of the Pb—Sb alloy foil. The ratio of the Sb-containing mass (WSb) contained in the layer containing Sb to the mass (WN) of the negative electrode active material is 0%, 0.0002%, 0.0004%, 0.006%, and 0.007%, respectively. Thus, negative electrode lattices in which the thickness of the Pb—Sb alloy foil was variously changed were prepared.

上記した負極格子Cおよび格子骨表面に様々な厚みで形成したPb−Sb層を有する負極格子Dに鉛粉(金属鉛と一酸化鉛の混合粉体)にエキスパンダ(硫酸バリウムおよびリグニン)およびカーボンを添加し、水と希硫酸で混練することにより、負極活物質ペーストを作成した。この負極活物質ペーストを負極格子体に充填し、その後、熟成乾燥することによって負極板を得た。なお、化成終了後の負極活物質中のSb定量分析を行ったところ、Sb濃度は検出限界(0.0001質量%)未満であり、検出できなかった。   The above-described negative electrode lattice C and negative electrode lattice D having Pb—Sb layers formed at various thicknesses on the lattice bone surface, lead powder (mixed powder of metal lead and lead monoxide), expander (barium sulfate and lignin), and A negative electrode active material paste was prepared by adding carbon and kneading with water and dilute sulfuric acid. The negative electrode active material paste was filled in a negative electrode lattice, and then aged and dried to obtain a negative electrode plate. In addition, when Sb quantitative analysis in the negative electrode active material after chemical conversion was completed, Sb density | concentration was less than a detection limit (0.0001 mass%), and it was not detectable.

また、本実施例では、エキスパンダとして天然リグニン(日本製紙ケミカル(株)製バニレックスN)を用いたが、天然リグニンに換えて、合成リグニンを呼ばれるビスフェノールスルホン酸系縮合物(例えば日本製紙ケミカル(株)製ビスパーズP215)を用いてもよい。   In this example, natural lignin (Vanilex N manufactured by Nippon Paper Chemicals Co., Ltd.) was used as the expander. Co., Ltd. Vispers P215) may be used.

3)セパレータ
セパレータとして、平均孔径10μm以下の微孔を有した厚み0.3mmのポリエチレンシートを袋状としたものを用いた。なお、この袋状セパレータは正極板に対向する面に上下方向の線状リブを複数本、互いに平行になるよう設けた。正極活物質である二酸化鉛は強い酸化力を有しているため、袋状セパレータのベース面が直接正極活物質と接触することによるセパレータの酸化劣化を抑制するため、正極板面と袋状セパレータのベース面とが直接接触しないよう、線状リブを設けた。
3) Separator As the separator, a bag made of a 0.3 mm thick polyethylene sheet having micropores with an average pore diameter of 10 μm or less was used. The bag-like separator was provided with a plurality of vertical ribs on the surface facing the positive electrode plate in parallel with each other. Since lead dioxide, which is a positive electrode active material, has a strong oxidizing power, in order to suppress oxidative deterioration of the separator due to direct contact between the base surface of the bag-shaped separator and the positive electrode active material, the positive electrode plate surface and the bag-shaped separator The linear rib was provided so that it might not contact directly with the base surface.

なお、本実施例においては、後述するように、袋状セパレータ内に収納する極板の極性を正極板としたもの、および負極板としたものを作成するが、正極板を袋状セパレータに収納する場合、正極板と対向する袋状セパレータの内側面に線状リブを配置し、負極板を袋状セパレータに収納する場合、正極板と対向する袋状セパレータの外側面に線状リブを配置した。   In this embodiment, as will be described later, a positive electrode plate and a negative electrode plate having polarities stored in the bag-shaped separator are prepared. However, the positive electrode plate is stored in the bag-shaped separator. When placing a linear rib on the inner surface of the bag-like separator facing the positive electrode plate and storing the negative electrode plate in the bag-like separator, placing the linear rib on the outer surface of the bag-like separator facing the positive electrode plate did.

4)正極接続部材用鉛合金および負極接続部材用合金
正極接続部材および負極接続部材用合金として、Pb−2.5質量%Sn合金(合金A)とPb−2.5質量%Sb合金(合金B)を準備した。なお、合金A中のSb定量分析を行ったところ、Sb濃度は検出限界(0.0001質量%)未満であった。
4) Lead alloy for positive electrode connection member and alloy for negative electrode connection member As alloys for positive electrode connection member and negative electrode connection member, Pb-2.5 mass% Sn alloy (alloy A) and Pb-2.5 mass% Sb alloy (alloy) B) was prepared. In addition, when Sb quantitative analysis in the alloy A was performed, Sb density | concentration was less than the detection limit (0.0001 mass%).

(実施例1)
上記した正極板A、正極板B、負極板およびセパレータを表1および表2に示した組み合わせで用い、1セル当たり正極板5枚と負極板6枚から成る極板群を備え、正・負の極板と棚をすべて電解液中に浸漬した液式の55D23形の始動用鉛蓄電池(12V48Ah)を作製した。なお、袋状セパレータ内側に収納する極板を負極板のみとし、正極板を袋状セパレータ外側に配置した電池、および正極板のみを袋状セパレータ内側に収納し、負極板を袋状セパレータ外側に配置した電池を作成した。なお、袋状セパレータはシート状のセパレータを2つ折し、両側部を熱シールすることにより、上部が開口し、上部を除いた両側部および下部が閉じた形状とした。
Example 1
The positive electrode plate A, the positive electrode plate B, the negative electrode plate and the separator described above are used in the combinations shown in Tables 1 and 2, and each electrode has a positive electrode plate group consisting of five positive electrode plates and six negative electrode plates. A liquid type 55D23 type lead acid battery for start-up (12V48Ah) was prepared by immersing all the electrode plates and shelves in the electrolyte. In addition, the electrode plate accommodated inside the bag-shaped separator has only the negative electrode plate, the battery in which the positive electrode plate is disposed outside the bag-shaped separator, and only the positive electrode plate is accommodated inside the bag-shaped separator, and the negative electrode plate is disposed outside the bag-shaped separator. The arranged battery was created. The bag-shaped separator was formed by folding two sheet-shaped separators and heat-sealing both side parts so that the upper part opened and the both side parts excluding the upper part and the lower part were closed.

Figure 2006164598
Figure 2006164598

Figure 2006164598
Figure 2006164598

表1および表2に示した各電池について、過放電後のサイクル寿命試験を行った。試験条件は以下の手順で行った。まず、25℃雰囲気下で、試験電池を10A定電流で、電池電圧が10.5Vとなるまで放電する。その後、電池端子間に12W電球を接続し、48時間放置することにより試験電池を過放電した。その後、試験電池を14.5V定電圧(最大電流25A)で8時間充電し、サイクル寿命試験を行った。   Each battery shown in Table 1 and Table 2 was subjected to a cycle life test after overdischarge. The test conditions were as follows. First, in a 25 ° C. atmosphere, the test battery is discharged at a constant current of 10 A until the battery voltage reaches 10.5V. Thereafter, a 12 W light bulb was connected between the battery terminals and left for 48 hours to overdischarge the test battery. Thereafter, the test battery was charged at a constant voltage of 14.5 V (maximum current 25 A) for 8 hours to perform a cycle life test.

サイクル寿命特性は次に示す試験条件で行った。25℃雰囲気下において、25A放電20秒と14V定電圧充電(最大充電電流25A)40秒とを7200サイクル繰り返した後に、このサイクルによる質量減(WL)を計測する。その後、300Aで30秒間放電し、30秒目の放電電圧(V30)を計測する。その後、質量減(WL)分の水を鉛蓄電池に補水する。 The cycle life characteristics were measured under the following test conditions. In an atmosphere of 25 ° C., 25A discharge for 20 seconds and 14V constant voltage charge (maximum charging current 25A) for 40 seconds are repeated for 7200 cycles, and then the mass loss (W L ) due to this cycle is measured. Thereafter, the battery is discharged at 300 A for 30 seconds, and the discharge voltage (V 30 ) at 30 seconds is measured. Thereafter, the lead storage battery is replenished with water corresponding to the mass loss (W L ).

上記の充放電7200サイクル毎のV30が7.2Vに低下するまでの充放電サイクル数を寿命サイクル数とする。なお、通常、始動用鉛蓄電池においてJIS D5301で規定される軽負荷寿命試験は、25A放電4分と、最大電流25Aとした定電圧充電10分のサイクルで構成されるが、本試験では、軽負荷寿命試験よりもSOCが低い状態で充放電が頻繁に行われる試験条件とした。 The number of charge / discharge cycles until the V 30 for every 7200 cycles of charge / discharge is reduced to 7.2V is defined as the life cycle number. Normally, a light load life test defined in JIS D5301 for a start-up lead-acid battery is composed of a cycle of 25 A discharge for 4 minutes and a constant current charge of 10 minutes with a maximum current of 25 A. The test conditions were such that charging and discharging were frequently performed in a state where the SOC was lower than in the load life test.

寿命サイクル数の算出方法は以下の通りとした。n回目に計測したV30電圧(充放電サイクル数は7200×n)で、初めてV30が7.2V以下となったとき、そのV30をVnとする。そして、前回(n−1回目)のV30電圧をVn−1としたときに、縦軸をV30、横軸を充放電サイクル数のグラフにおいて、座標(7200(n−1)、Vn−1)と座標(7200n、Vn)間を直線Lで結び、この直線LとV30=7.2との交点における横軸の値を寿命サイクル数とした。 The calculation method of the life cycle number was as follows. n-th on the measured V 30 voltage (number of charge and discharge cycles 7200 × n), the first time V 30 is equal to or less than 7.2V, that the V 30 and Vn. Then, last of V 30 voltage of (n-1 time) is taken as Vn-1, the vertical axis V 30, the horizontal axis in the graph of the number of charge and discharge cycles, the coordinates (7200 (n-1), Vn- 1) and coordinates (7200n, Vn) are connected by a straight line L, and the value on the horizontal axis at the intersection of this straight line L and V 30 = 7.2 is defined as the number of life cycles.

また、寿命試験が終了した各電池について、電池の分解調査を行い、負極の耳腐食率を求めた。なお、試験前の初期状態の負極格子耳断面積をS、寿命試験後の負極格子耳断面積をSEとし、{100×(S−SE)/S}として求めた耳断面積の減少率を耳腐食率とした。なお、試験前の初期状態における負極格子耳断面積は(幅)13.0mm×(厚み)0.7mm=9.1mm2としており、耳腐食率50%の場合、腐食によって断面積が4.55mm2減少したことに相当する。 Moreover, about each battery which the lifetime test was complete | finished, the decomposition | disassembly investigation of the battery was conducted and the ear corrosion rate of the negative electrode was calculated | required. In addition, the negative electrode lattice ear cross-sectional area in the initial state before the test is S, the negative electrode lattice ear cross-sectional area after the life test is SE, and the reduction rate of the ear cross-sectional area obtained as {100 × (S−SE) / S} is Ear corrosion rate. The cross-sectional area of the negative electrode grid ear in the initial state before the test was (width) 13.0 mm × (thickness) 0.7 mm = 9.1 mm 2 , and when the ear corrosion rate was 50%, the cross-sectional area was 4. This corresponds to a reduction of 55 mm 2 .

これらの過放電後のサイクル寿命試験における、負極格子耳腐食率および寿命サイクル数の結果を表3および表4に示す。   Tables 3 and 4 show the results of the negative electrode lattice ear corrosion rate and the life cycle number in the cycle life test after these overdischarges.

Figure 2006164598
Figure 2006164598

Figure 2006164598
Figure 2006164598

・接続部材にSbを含む鉛合金Bを用いた電池
表4に示した結果から、正極および負極の接続部材にSbを含む鉛合金(合金B:Pb−2.5質量%Sb)を用いた電池(C1〜C5、CS1〜CS5、D1〜D5、DS1〜DS5)については、負極格子耳腐食は著しい。そして、負極格子耳断面積の大幅な減少により、放電電圧の低下が著しく、13200〜23400サイクルで寿命終了となった。これは正極側や負極側の接続部材に含まれるSbが電解液中に溶出し、負極格子耳に再析出することによると考えられる。これらの試験電池を分解し、負極格子耳のSbの定量分析を行ったところ、負極格子耳に0.0005質量%程度のSbの存在が確認された。
-Battery using lead alloy B containing Sb as connecting member From the results shown in Table 4, a lead alloy containing Sb (alloy B: Pb-2.5 mass% Sb) was used as the connecting member of the positive electrode and the negative electrode. For batteries (C1 to C5, CS1 to CS5, D1 to D5, DS1 to DS5), negative electrode grid ear corrosion is significant. Then, due to the significant decrease in the cross-sectional area of the negative electrode grid ears, the discharge voltage was remarkably lowered, and the life ended in 13200 to 23400 cycles. This is considered to be because Sb contained in the connecting member on the positive electrode side or the negative electrode side elutes in the electrolytic solution and re-deposits on the negative electrode lattice ear. When these test batteries were disassembled and quantitative analysis of Sb in the negative electrode lattice ear was performed, the presence of about 0.0005 mass% Sb in the negative electrode lattice ear was confirmed.

また、特に負極格子骨にSbを含まない電池(C1、CS1、D1およびDS1)において、負極板を袋状セパレータに収納した電池(D1およびDS1)は正極板を袋状セパレータに収納した電池(C1およびCS1)に比較して、寿命サイクル数により劣っている。   In particular, in batteries (C1, CS1, D1, and DS1) that do not contain Sb in the negative electrode lattice bone, batteries (D1 and DS1) in which the negative electrode plate is stored in the bag-shaped separator are batteries (D1 and DS1) in which the positive electrode plate is stored in the bag-shaped separator ( Compared to C1 and CS1), the life cycle number is inferior.

これは接続部材中に含まれるSbが溶出した際、負極板を袋状セパレータに収納した電池では、負極板がセパレータで覆われているため、負極板へのSbの析出が抑制される。その結果、Sbによる負極の充電受入性の向上はなく、良好な寿命が得られない。一方、正極板が袋状セパレータに収納され、負極板が袋状セパレータに収納されていない電池ではSbの負極板上での析出がセパレータにより抑制されないため、負極板上に析出したSbにより負極の充電受入性が良化し、寿命特性が向上する。   This is because when the Sb contained in the connecting member is eluted, in the battery in which the negative electrode plate is housed in the bag-shaped separator, the negative electrode plate is covered with the separator, so that the precipitation of Sb on the negative electrode plate is suppressed. As a result, there is no improvement in charge acceptance of the negative electrode due to Sb, and a good life cannot be obtained. On the other hand, in a battery in which the positive electrode plate is accommodated in the bag-shaped separator and the negative electrode plate is not accommodated in the bag-shaped separator, the deposition of Sb on the negative electrode plate is not suppressed by the separator. Charge acceptance is improved and life characteristics are improved.

このように、接続部材合金中のSbは負極の充電受入性を向上させる作用があるものの、負極格子耳にも析出することにより、負極格子耳を腐食させるため、望ましくない。   Thus, although Sb in the connection member alloy has the effect of improving the charge acceptability of the negative electrode, it is not desirable because it also corrodes the negative electrode lattice ear by depositing on the negative electrode lattice ear.

また負極格子骨にSbを含ませる場合、このSb量(WSb)を負極活物質の質量(WN)の0.0004%程度とすることにより、負極格子骨にSbを含まない電池に比較して若干寿命サイクル数の増加が認められるが、依然として負極格子耳の腐食が顕著に進行し、これによる集電性の低下により寿命終了した。   Further, when Sb is included in the negative electrode lattice bone, the amount of Sb (WSb) is set to about 0.0004% of the mass (WN) of the negative electrode active material, so that the negative electrode lattice bone does not contain Sb. Although the life cycle number slightly increased, corrosion of the negative electrode grid ears still progressed remarkably, and the life was terminated due to a decrease in current collecting performance.

・接続部材にSbを含まない鉛合金Aを用いた電池
表3に示した結果から、正極および負極の接続部材にSbを含まない鉛合金(合金A:Pb−2.5質量%Sn)を用い、負極格子骨表面にSbを含有した電池において、袋状セパレータに負極板を収納した本発明例の電池(B2〜B5およびBS2〜BS5)は、袋状セパレータに収納する極板を正極板とした比較例の電池(A2〜A5およびAS2〜AS5)に比較して、負極格子耳腐食が抑制されるとともに、極めて良好な寿命サイクル数を有している。
-Battery using lead alloy A containing no Sb as connecting member From the results shown in Table 3, lead alloy containing no Sb in the connecting member of positive electrode and negative electrode (alloy A: Pb-2.5 mass% Sn) In the battery containing Sb on the negative electrode lattice bone surface, the batteries (B2 to B5 and BS2 to BS5) of the example of the present invention in which the negative electrode plate is accommodated in the bag-like separator are the positive electrode plates that are accommodated in the bag-like separator. As compared with the batteries of comparative examples (A2 to A5 and AS2 to AS5), the negative electrode lattice ear corrosion is suppressed and the life cycle number is extremely good.

この寿命特性改善効果は負極格子骨表面のSbにより、負極板の充電受入性が向上することによるものと考えられる。なお、これらの本発明例の電池を分解し、負極格子耳のSbの定量分析を行ったところ、負極格子耳から検出限界値(0.0001質量%)を超える量のSbは検出できなかった。   The effect of improving the life characteristics is considered to be due to the improvement in charge acceptance of the negative electrode plate by Sb on the negative electrode lattice bone surface. In addition, when these batteries of the present invention were disassembled and quantitative analysis of Sb in the negative electrode lattice ear was performed, Sb in an amount exceeding the detection limit (0.0001% by mass) could not be detected from the negative electrode lattice ear. .

本発明の負極格子耳腐食抑制効果は、負極格子骨から電解液中に溶出したSbイオンが袋状セパレータの内側面に吸着されることによると推測できる。Sbイオンが袋状セパレータ内部で吸着・捕捉される結果、Sbイオンの負極格子耳近傍への拡散が抑制され、負極格子耳への再析出とこれによる負極格子耳の腐食が抑制されると推測できる。   It can be presumed that the negative electrode lattice ear corrosion inhibiting effect of the present invention is due to adsorption of Sb ions eluted from the negative electrode lattice bone into the electrolyte on the inner surface of the bag-like separator. As a result of Sb ions being adsorbed and trapped inside the bag-like separator, diffusion of Sb ions to the vicinity of the negative electrode lattice ear is suppressed, and it is assumed that reprecipitation to the negative electrode lattice ear and corrosion of the negative electrode lattice ear due to this are suppressed. it can.

また、袋状セパレータ内側面に吸着したSbイオンは、電池の充電時にセパレータ面に近接した負極活物質や負極格子骨に再析出することにより、負極の充電受入性改善効果が持続的に得られると推測される。   Further, the Sb ions adsorbed on the inner surface of the bag-like separator are re-deposited on the negative electrode active material and the negative electrode lattice bone close to the separator surface when charging the battery, so that the effect of improving the charge acceptability of the negative electrode is continuously obtained. It is guessed.

一方、前記したように、負極板を袋状セパレータ外側に配置し、正極板を袋状セパレータ内側に収納し、Sbを負極格子骨に含む電池(A2〜A5およびAS2〜AS5)では、負極格子耳腐食が顕著に進行し、これによる集電性の低下によって、14600〜20300サイクルで寿命終了した。これは寿命試験前の過放電によって負極格子骨より溶出したSbが負極格子耳に析出し、充放電サイクルを経て負極格子耳を腐食させ、その結果負極格子の集電性が急激に低下することによると推測できる。したがって、負極格子耳の腐食を抑制し、かつ寿命特性を改善するために、負極板を袋状セパレータ内側に収納する必要がある。   On the other hand, as described above, in the batteries (A2 to A5 and AS2 to AS5) in which the negative electrode plate is disposed outside the bag-shaped separator, the positive electrode plate is accommodated inside the bag-shaped separator, and Sb is included in the negative electrode lattice bone, The ear corrosion progressed remarkably, and due to the decrease in the current collecting property, the life ended in 14600 to 20300 cycles. This is because Sb eluted from the negative electrode lattice bone by the overdischarge before the life test is deposited on the negative electrode lattice ear, corrodes the negative electrode lattice ear through the charge / discharge cycle, and as a result, the current collecting property of the negative electrode lattice sharply decreases. Can be guessed. Therefore, in order to suppress the corrosion of the negative electrode grid ear and improve the life characteristics, it is necessary to store the negative electrode plate inside the bag-like separator.

一方、負極格子骨表面にSbを含まない比較例の電池(A1およびAS1)は、負極格子耳の腐食は殆ど進行しないものの、寿命サイクルが低下していた。寿命終了後の電池を分解調査したところ、正極板および負極板ともに放電生成物である硫酸鉛が蓄積しており、充放電サイクル中に電池の充電受入性低下と、これによる充電不足により、比較的短期間で寿命終了したと考えられる。   On the other hand, the batteries of the comparative examples (A1 and AS1) containing no Sb on the negative electrode lattice bone surface had a reduced life cycle although the corrosion of the negative electrode lattice ears hardly progressed. When the batteries after the end of their life were disassembled, lead sulfate, which is a discharge product, was accumulated on both the positive and negative plates. Comparison was made due to the decrease in battery charge acceptance during the charge / discharge cycle and the resulting lack of charge. It is thought that the life was over in a short period of time.

負極格子表面のSb含有質量(WSb)に関しては、負極活物質の質量(WN)の0.0002%以上で寿命特性を改善する効果があるが、負極活物質の質量(WN)の0.0004%以上とすることにより、より安定して高い寿命特性を得ることができる。また、Sb含有質量(WSb)を負極活物質の質量(WN)の0.007%とした場合、負極格子耳腐食率が増大し、これによる負極格子の集電性の低下で寿命サイクル数も低下しはじめる。したがって、寿命特性向上効果と負極格子耳腐食抑制効果を両立する上で、負極格子骨のSb含有質量(WSb)は負極活物質の質量(WN)の0.0004%〜0.006%とすることがより好ましい。   Regarding the Sb-containing mass (WSb) on the negative electrode lattice surface, there is an effect of improving the life characteristics at 0.0002% or more of the mass (WN) of the negative electrode active material, but 0.0004 of the mass (WN) of the negative electrode active material. By setting it as% or more, high life characteristics can be obtained more stably. Further, when the Sb-containing mass (WSb) is set to 0.007% of the mass (WN) of the negative electrode active material, the negative electrode grid ear corrosion rate increases, resulting in a decrease in the current collecting performance of the negative electrode grid and the number of life cycles. It begins to decline. Therefore, in order to achieve both the life characteristic improvement effect and the negative electrode lattice ear corrosion suppression effect, the Sb-containing mass (WSb) of the negative electrode lattice bone is set to 0.0004% to 0.006% of the mass (WN) of the negative electrode active material. It is more preferable.

なお、本発明例の電池において、正極格子表面に格子母材よりも高濃度のSnを含む層を形成した電池(BS2〜BS5)は、この層を設けない電池(B2〜B5)に比較して良好な寿命特性を有している。一方、比較例の電池では、正極格子表面のSnを含む層の存在により、寿命特性が若干良化する傾向にあるが、極めて微小な効果であり、本発明例ほど寿命特性に顕著に影響していなかった。   In the battery of the present invention, the battery (BS2 to BS5) in which a layer containing Sn at a higher concentration than the lattice base material is formed on the surface of the positive electrode lattice is compared with the battery (B2 to B5) in which this layer is not provided. Have good life characteristics. On the other hand, in the battery of the comparative example, the life characteristics tend to be slightly improved due to the presence of the Sn-containing layer on the surface of the positive electrode lattice, but this is a very small effect, and the life characteristics of the present invention are significantly affected. It wasn't.

正極格子表面に母材よりも高濃度のSnを含む層を形成することにより、正極の充電受入性が改善するものの、正極のみを改善しても電池の寿命特性向上効果はそれほど得られないことがわかる。本発明のように、負極格子耳腐食の抑制と、負極の充電受入性の向上とを両立した構成において、より好ましくは正極格子表面に高濃度のSnを含む層を配置することにより、寿命特性をより顕著に改善することができる。   By forming a layer containing Sn at a higher concentration than the base material on the surface of the positive electrode grid, the charge acceptability of the positive electrode is improved, but even if only the positive electrode is improved, the effect of improving the battery life characteristics cannot be obtained so much I understand. As in the present invention, in the configuration in which both the suppression of the negative electrode grid ear corrosion and the improvement of the charge acceptance of the negative electrode are achieved, it is more preferable to dispose a layer containing a high concentration of Sn on the surface of the positive electrode grid to thereby improve the life characteristics. Can be improved more remarkably.

以上、説明してきたように、本発明の構成による鉛蓄電池は、過放電後のサイクル寿命試験においても極めて良好な寿命特性を有し、かつ負極格子耳の腐食を顕著に抑制できることが確認できた。   As described above, it has been confirmed that the lead-acid battery according to the configuration of the present invention has extremely good life characteristics even in the cycle life test after overdischarge and can significantly suppress the corrosion of the negative electrode grid ear. .

以上、本発明の鉛蓄電池によれば、深放電における正極の劣化と負極における充電受入性を改善することによって、深放電寿命特性を飛躍的に改善するとともに、負極格子耳部における腐食を抑制することができるので、高信頼性を有したアイドルストップ車や回生ブレーキシステム搭載車等に好適である。   As described above, according to the lead-acid battery of the present invention, by improving the deterioration of the positive electrode in the deep discharge and the charge acceptability in the negative electrode, the deep discharge life characteristics are dramatically improved and the corrosion at the negative electrode grid ear is suppressed. Therefore, it is suitable for a highly reliable idle stop vehicle, a vehicle equipped with a regenerative brake system, and the like.

極板群構成を示す一部破載図Partially broken view showing electrode plate configuration 正極板を示す図Diagram showing positive electrode plate 負極板を示す図Diagram showing the negative electrode plate 負極板の断面を示す図The figure which shows the section of the negative electrode plate 正極板の断面を示す図The figure which shows the section of the positive electrode plate

符号の説明Explanation of symbols

1 鉛蓄電池
2 正極板
3 負極板
4 セパレータ
5 正極棚
6 負極棚
7 正極柱
8 負極接続体
9 正極接続部材
10 負極接続部材
21 正極格子
22 正極格子耳
23 正極格子骨
24 正極活物質
25 Snを含む層
31 負極格子
32 負極格子耳
33 負極格子骨
34 負極活物質
35 Sbを含む層
DESCRIPTION OF SYMBOLS 1 Lead acid battery 2 Positive electrode plate 3 Negative electrode plate 4 Separator 5 Positive electrode shelf 6 Negative electrode shelf 7 Positive electrode pillar 8 Negative electrode connection body 9 Positive electrode connection member 10 Negative electrode connection member 21 Positive electrode lattice 22 Positive electrode lattice ear 23 Positive electrode lattice bone 24 Positive electrode active material 25 Sn Including layer 31 Negative electrode lattice 32 Negative electrode lattice ear 33 Negative electrode lattice bone 34 Negative electrode active material 35 Layer containing Sb

Claims (4)

負極格子耳と負極格子骨とからなる負極格子と負極格子骨に充填された負極活物質を備えた負極板と、正極格子耳と正極格子骨とからなる正極格子と正極格子骨に充填された正極活物質を備えた正極板を有し、正極格子耳を集合溶接する正極棚とこの正極棚より導出された正極柱もしくは正極接続体とからなる正極接続部材と、負極格子耳を集合溶接する負極棚とこの負極棚より導出された負極柱もしくは負極接続体とからなる負極接続部材を備えた鉛蓄電池において、前記正極格子および前記正極接続部材はSbを含有しない鉛もしくは鉛合金からなり、前記負極格子耳および前記負極接続部材はSbを含有しない鉛もしくは鉛合金からなり、負極格子骨にPbよりも水素過電圧が低い物質を含み、かつ、微孔を有した合成樹脂シートの袋状セパレータで前記負極板を収納したことを特徴とする鉛蓄電池。 A negative electrode grid including a negative electrode lattice ear and a negative electrode lattice bone, a negative electrode plate including a negative electrode active material filled in the negative electrode lattice bone, a positive electrode lattice including a positive electrode lattice ear and a positive electrode lattice bone, and a positive electrode lattice bone A positive electrode connecting member having a positive electrode plate including a positive electrode active material and having a positive electrode shelf that collects and welds positive electrode grid ears, and a positive pole column or a positive electrode connection body derived from the positive electrode shelf, and the negative electrode grid ears are collectively welded. In a lead storage battery comprising a negative electrode connecting member comprising a negative electrode shelf and a negative electrode column or a negative electrode connecting body derived from the negative electrode shelf, the positive electrode grid and the positive electrode connecting member are made of lead or a lead alloy containing no Sb, The negative electrode grid ear and the negative electrode connecting member are made of lead or lead alloy containing no Sb, the negative electrode lattice bone contains a substance having a hydrogen overvoltage lower than that of Pb, and has a microporous hole. Lead-acid battery, characterized in that for accommodating the negative electrode plate with a separator. 前記水素過電圧が低い物質はSbであり、前記負極格子骨はSbを含まないPbもしくはPb合金からなる母材表面上にSbを含む層を形成してなることを特徴とする請求項1に記載の鉛蓄電池。 The material having a low hydrogen overvoltage is Sb, and the negative electrode lattice bone is formed by forming a layer containing Sb on a base material surface made of Pb or Pb alloy not containing Sb. Lead acid battery. 負極格子骨中のSb含有質量(WSb)を負極活物質の質量(WN)の0.0004%〜0.006%としたことを特徴とする請求項1もしくは2に記載の鉛蓄電池。 The lead acid battery according to claim 1 or 2, wherein the Sb-containing mass (WSb) in the negative-electrode lattice bone is 0.0004% to 0.006% of the mass (WN) of the negative-electrode active material. 前記正極格子骨はPb−Ca合金であり、前記正極格子骨の前記正極活物質と接する表面の少なくとも一部に前記正極格子骨に含まれるSnよりも高濃度のSnを含むことを特徴とする請求項1、2もしくは3に記載の鉛蓄電池。 The positive electrode lattice bone is a Pb—Ca alloy, and at least a part of the surface of the positive electrode lattice bone in contact with the positive electrode active material contains Sn having a higher concentration than Sn contained in the positive electrode lattice bone. The lead acid battery according to claim 1, 2 or 3.
JP2004350914A 2004-04-08 2004-12-03 Lead acid battery Pending JP2006164598A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004350914A JP2006164598A (en) 2004-12-03 2004-12-03 Lead acid battery
DE602005009814T DE602005009814D1 (en) 2004-04-08 2005-04-07 lead-acid battery
PCT/JP2005/006869 WO2005099020A1 (en) 2004-04-08 2005-04-07 Lead storage battery
US10/587,186 US8071239B2 (en) 2004-04-08 2005-04-07 Long life and low corrosion lead storage battery
KR1020067017135A KR101128586B1 (en) 2004-04-08 2005-04-07 Lead storage battery
TW094110987A TWI254478B (en) 2004-04-08 2005-04-07 Lead-acid battery
EP05728390A EP1737062B1 (en) 2004-04-08 2005-04-07 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350914A JP2006164598A (en) 2004-12-03 2004-12-03 Lead acid battery

Publications (1)

Publication Number Publication Date
JP2006164598A true JP2006164598A (en) 2006-06-22

Family

ID=36666378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350914A Pending JP2006164598A (en) 2004-04-08 2004-12-03 Lead acid battery

Country Status (1)

Country Link
JP (1) JP2006164598A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034167A (en) * 2006-07-27 2008-02-14 Matsushita Electric Ind Co Ltd Lead acid storage battery
JP2015187990A (en) * 2010-09-29 2015-10-29 株式会社Gsユアサ Lead storage battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346888A (en) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2004281197A (en) * 2003-03-14 2004-10-07 Matsushita Electric Ind Co Ltd Lead acid storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346888A (en) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2004281197A (en) * 2003-03-14 2004-10-07 Matsushita Electric Ind Co Ltd Lead acid storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034167A (en) * 2006-07-27 2008-02-14 Matsushita Electric Ind Co Ltd Lead acid storage battery
JP2015187990A (en) * 2010-09-29 2015-10-29 株式会社Gsユアサ Lead storage battery

Similar Documents

Publication Publication Date Title
JP5522444B2 (en) Lead acid battery
WO2005096431A1 (en) Lead storage battery
JPWO2005124920A1 (en) Lead acid battery
JP5016306B2 (en) Lead acid battery
WO2014162674A1 (en) Lead acid storage battery
JP5061451B2 (en) Anode current collector for lead acid battery
KR101128586B1 (en) Lead storage battery
JP2014123510A (en) Lead storage battery
WO2006049295A1 (en) Negative electrode current collector for lead storage battery and lead storage battery including the same
JP2010170939A (en) Lead storage battery
JP2005302395A (en) Lead storage battery
JP2006114417A (en) Lead-acid storage battery
JP4892827B2 (en) Lead acid battery
JP5116331B2 (en) Lead acid battery
JP5044888B2 (en) Liquid lead-acid battery
JP4896392B2 (en) Lead acid battery
JP2002164080A (en) Lead-acid battery
JP4904686B2 (en) Lead acid battery
JP4904675B2 (en) Lead acid battery
JP2006164598A (en) Lead acid battery
JP6197426B2 (en) Lead acid battery
JP6244801B2 (en) Lead acid battery
JP2006114416A (en) Lead-acid battery
JP4686808B2 (en) Lead acid battery
JP4904674B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071212

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906