JP4483308B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP4483308B2
JP4483308B2 JP2004010703A JP2004010703A JP4483308B2 JP 4483308 B2 JP4483308 B2 JP 4483308B2 JP 2004010703 A JP2004010703 A JP 2004010703A JP 2004010703 A JP2004010703 A JP 2004010703A JP 4483308 B2 JP4483308 B2 JP 4483308B2
Authority
JP
Japan
Prior art keywords
battery
lead
electrode plate
antimony
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004010703A
Other languages
Japanese (ja)
Other versions
JP2005203318A (en
Inventor
孝之 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2004010703A priority Critical patent/JP4483308B2/en
Publication of JP2005203318A publication Critical patent/JP2005203318A/en
Application granted granted Critical
Publication of JP4483308B2 publication Critical patent/JP4483308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、例えば自動車の始動用等として用いて好適な鉛蓄電池に関するものである。   The present invention relates to a lead storage battery suitable for use, for example, for starting automobiles.

自動車用の鉛蓄電池は、始動用や電装品の駆動用として、自家用や営業用に広汎に用いられている。しかし、使用車によって始動頻度、電装品負荷等が異なるため、電池の寿命に至る劣化モードがそれぞれ異なっている。一例として挙げると、宅配車、配送車のような営業車両では、省エネ、環境対策から頻繁に始動−停止が繰り返されるされるアイドリングストップスタート(ISS)が実施されている。さらに、昼間点灯、パワーゲート、保冷器等の負荷が増大している。特に、都市部の車は店舗が多く間隔が狭いため走行距離が短く、多頻度の始動停止が繰り返される。このような車両では、オルタネータによる充電が十分されず、鉛蓄電池は放電サイドで使用される。 Lead-acid batteries for automobiles are widely used for personal use and business use for starting and driving electrical components . However, since the starting frequency, the electrical component load, and the like differ depending on the vehicle used, the deterioration modes leading to the battery life are different. As an example, in a business vehicle such as a delivery vehicle or a delivery vehicle, an idling stop start (ISS) in which start-stop is frequently repeated for energy saving and environmental measures is performed. In addition, loads such as daytime lighting, power gates, and coolers are increasing. In particular, urban vehicles have many shops and narrow intervals, so the travel distance is short, and frequent start and stop are repeated. In such a vehicle, charging by the alternator is not sufficient, and the lead storage battery is used on the discharge side.

鉛蓄電池は電解液として希硫酸を用いており、硫酸分は充電反応で正・負極活物質と反応して硫酸鉛化する。硫酸分は、放電反応で正・負極活物質から電解液中に放出される。このように硫酸は、正・負極活物質を保持している極板と電解液の間を移動している。充電時に極板から放出された硫酸は、周囲の電解液より比重が高いので、電池の下部に沈降する。そうなると、電池の上部の電解液は比重が低く、下部は高くなるという成層化現象が発生する。成層化で上下に硫酸の濃淡が発生すると、極板下部が硫酸鉛化して不活性化し、反応できなくなる。また、極板上部は、電解液が薄くなり反応性が低下する。このような現象は、電池が深い放電で使われた場合に発生し、上記のような放電サイドで使用される車両に認められ、短寿命や始動不良の原因となっている。   Lead acid batteries use dilute sulfuric acid as the electrolyte, and the sulfuric acid content reacts with the positive and negative electrode active materials in a charge reaction to lead to lead sulfate. The sulfuric acid component is released into the electrolytic solution from the positive and negative electrode active materials by a discharge reaction. Thus, the sulfuric acid moves between the electrode plate holding the positive and negative electrode active materials and the electrolytic solution. The sulfuric acid released from the electrode plate at the time of charging has a higher specific gravity than the surrounding electrolyte, and thus settles at the bottom of the battery. Then, a stratification phenomenon occurs in which the electrolyte in the upper part of the battery has a low specific gravity and a lower part in the electrolyte. If the concentration of sulfuric acid is generated up and down due to stratification, the lower part of the electrode plate becomes lead sulfate and inactivates, making it impossible to react. In addition, at the upper part of the electrode plate, the electrolyte solution becomes thin and the reactivity decreases. Such a phenomenon occurs when the battery is used in deep discharge, and is recognized in the vehicle used on the discharge side as described above, which causes a short life and start failure.

この改善策として、ニッケルを0.0002質量%以上、0.003質量%以下含む鉛−アンチモン系合金を正極格子に用いる鉛蓄電池が提案されている(例えば、特許文献1参照。)。   As a measure for improvement, a lead storage battery using a lead-antimony alloy containing nickel in an amount of 0.0002 mass% or more and 0.003% by mass or less for a positive electrode grid has been proposed (for example, see Patent Document 1).

この鉛蓄電池では、以下のような理由で電解液の成層化が抑制できると説明されている。即ち、充放電サイクル中に正極格子が腐食してニッケルが電解液中に溶出し、これが負極に析出する。この負極に析出したニッケルが、充電中の電解液の分解による水素ガス発生量をわずかに増大させ、発生したガスが電解液を撹拌しながら大気中に放出されるため、電解液の成層化を抑制できるとされている
特開平9−231980号公報
In this lead storage battery, it is described that stratification of the electrolyte can be suppressed for the following reasons. That is, during the charge / discharge cycle, the positive electrode lattice corrodes and nickel is eluted in the electrolyte solution, which is deposited on the negative electrode. The nickel deposited on the negative electrode slightly increases the amount of hydrogen gas generated by the decomposition of the electrolyte during charging, and the generated gas is released into the atmosphere while stirring the electrolyte. It can be suppressed .
JP-A-9-231980

しかしながら、ニッケルは負極の水素過電圧を著しく低下させるので、過充電時の電解液の電気分解が大きく、電池の減液量が増加するという問題を生じさせる。また、分解されるのは水分なので、電解液の比重が上昇して格子腐食や硫酸鉛化を促進させるという問題が生じる。格子腐食や硫酸鉛化が促進されると、充放電できなくなり、電池の容量が低下するという問題が生じる。 However, since nickel significantly lowers the hydrogen overvoltage of the negative electrode, the electrolysis of the electrolyte during overcharging is large, causing a problem that the amount of liquid reduction of the battery increases . Moreover, since it is water | moisture content that is decomposed | disassembled, the specific gravity of electrolyte solution raises and the problem that a lattice corrosion and lead sulfate conversion are accelerated | stimulated arises. The lattice corrosion and sulfuric lead content is promoted, it will not be charged and discharged, a problem that the capacity of the battery is lowered.

このように、ニッケルは電解液の成層化に一定の効果はあるものの、ニッケルの添加量が多くなり過ぎるとかえって成層化を促進させるという弊害があった。そのため、ニッケルの添加量に制限が設けられているが、実際に合金を調製して正極格子を鋳造する段階で、ニッケルの添加量を規格値にすることは困難であった。その理由は、合金調製時に酸化滓が発生し歩留まりが下がること、及び格子鋳造時に合金中でニッケルの偏在が発生することにある。 Thus, although nickel has a certain effect on the stratification of the electrolytic solution, there is an adverse effect that the stratification is promoted if the amount of nickel added is excessive. For this reason, there is a limit to the amount of nickel added, but it was difficult to set the amount of nickel to the standard value at the stage of actually preparing the alloy and casting the positive grid. The reason is that oxidized soot is generated at the time of alloy preparation and the yield is lowered, and uneven distribution of nickel is generated in the alloy at the time of lattice casting .

本発明の目的は、ニッケルを用いずに成層化を防止できる鉛蓄電池を提供することにある。   An object of the present invention is to provide a lead storage battery capable of preventing stratification without using nickel.

本発明は、鉛−アンチモン系の正極格子を用いた正極板を備えた鉛蓄電池を対象とする。本発明においては、シリカを含んでいて前記正極板から溶出したアンチモンを該シリカに吸着させる吸着層が、負極板の下半分の両表面に設けられている。The present invention is directed to a lead storage battery including a positive electrode plate using a lead-antimony positive electrode grid. In the present invention, adsorption layers containing silica and adsorbing antimony eluted from the positive electrode plate to the silica are provided on both surfaces of the lower half of the negative electrode plate.

本発明の鉛蓄電池では、鉛−アンチモン系の正極格子を用いているので、充放電で正極格子からアンチモンがプラスイオンとして溶出し、負極に電気的に引き寄せられて析出する。このアンチモンは水素過電圧を低下させ、電解液の電気分解を促進して水素ガスを発生させるので、この水素ガスにより電解液を撹拌し、成層化を抑制することができる。また本発明では、正極板から溶出するアンチモンを吸着する吸着層を負極板の下半分の両面に設けているので、水素ガスによる撹拌効果を効率的に実施することができる。また、吸着層は、電極活物質よりも比表面積が大きく、かつ耐酸性を有するシリカからなっているので、効率よくアンチモンを吸着させることができる。 The lead-acid battery of the invention, a lead - because it uses a positive electrode grid of antimony, antimony from the positive electrode grid eluted as positive ions in charging and discharging, it deposited electrically attracted to the negative electrode. The antimony reduces the hydrogen overvoltage, since to generate hydrogen gas to promote electrolysis of the electrolytic solution by the hydrogen gas and stirred an electrolytic solution, it is possible to suppress the stratification. In the present invention, since the adsorption layers for adsorbing antimony eluted from the positive electrode plate are provided on both surfaces of the lower half of the negative electrode plate , the stirring effect by hydrogen gas can be efficiently implemented. Moreover, since the adsorption layer is made of silica having a specific surface area larger than that of the electrode active material and having acid resistance, antimony can be efficiently adsorbed.

本発明のように、吸着層を負極板の下半分の両面に設けると、この吸着層により多くのアンチモンを吸着することができる。成層化で問題となるのは電池の下部であるので、負極板の下部に選択的にアンチモンを吸着させれば、そこでより多くの水素ガスを発生をさせることができる。 When the adsorption layer is provided on both surfaces of the lower half of the negative electrode plate as in the present invention, a large amount of antimony can be adsorbed by this adsorption layer. Since the problem in stratification is the lower part of the battery, if antimony is selectively adsorbed on the lower part of the negative electrode plate, more hydrogen gas can be generated there.

さらに、吸着層は極板の表層に存在するので、極板表層からガスがより多く発生する。このように、極板従来技術のように極板全体でのガス発生よりも、電池下部及び表層でより多くガスを発生させるので電解液の撹拌効率が向上する。   Furthermore, since the adsorption layer exists in the surface layer of the electrode plate, more gas is generated from the electrode plate surface layer. Thus, since the gas is generated more in the lower part of the battery and in the surface layer than the gas generation in the entire electrode plate as in the conventional electrode plate, the stirring efficiency of the electrolyte is improved.

以下、本発明を実施するための最良の形態について説明する。本発明の鉛蓄電池では、鉛−アンチモン系の正極格子を用いる。このようにすると、充放電で正極格子からアンチモンが溶出する。アンチモンはプラスイオンとして溶出するので、負極に電気的に引き寄せられて析出する。ニッケルほどではないが、アンチモンも水素過電圧を低下させ、電解液の電気分解を促進し、水素ガスを発生させる。この水素ガスの発生で、電解液を撹拌し、成層化を抑制する。また本発明では、水素ガスによる撹拌効果を効率的に実施するために、負極板に正極板のアンチモンを吸着する吸着層を設ける。 Hereinafter, the best mode for carrying out the present invention will be described. The lead-acid battery of the present invention uses a lead-antimony positive electrode grid. If it does in this way, antimony will elute from a positive electrode grating | lattice by charging / discharging. Since antimony is eluted as positive ions, it is attracted electrically to the negative electrode and deposited. Although not as good as nickel, antimony also reduces hydrogen overvoltage, promotes electrolysis of the electrolyte, and generates hydrogen gas. The generation of hydrogen gas stirs the electrolyte and suppresses stratification. Moreover, in this invention, in order to implement the stirring effect by hydrogen gas efficiently, the adsorption layer which adsorb | sucks the antimony of a positive electrode plate is provided in a negative electrode plate.

この吸着層は負極板の下半分に配置させる。この吸着層は、アンチモンの吸着能を上げるために高比表面積のシリカを含んでいる。   This adsorption layer is disposed in the lower half of the negative electrode plate. This adsorption layer contains silica with a high specific surface area in order to increase the adsorption capacity of antimony.

従来のようにニッケルを用いると、水素過電圧の低下による減液量増加や自己放電の増加等の問題が発生するが、本発明では、ニッケルを用いないのでこれらの性能は低下しない。   When nickel is used as in the prior art, problems such as an increase in liquid reduction due to a decrease in hydrogen overvoltage and an increase in self-discharge occur. However, in the present invention, nickel is not used, so these performances do not deteriorate.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

鉛粉を乾式練合した後に、水と希硫酸を所定量加え、混練して正極ペーストを調製する。この正極ペーストを鉛−アンチモン系格子に充填し、所定の熟成、乾燥をして正極板を作製する。同様な手法で負極ペーストを調製し、鉛−カルシウム格子に充填して負極板を作製する。この負極板の下半分の両面にコロイダルシリカを塗布し、乾燥させて吸着層を作る。なお、コロイダルシリカは、塗布する代わりにスプレー等を用いて噴霧してもよい。   After lead powder is dry-kneaded, a predetermined amount of water and dilute sulfuric acid are added and kneaded to prepare a positive electrode paste. This positive electrode paste is filled in a lead-antimony lattice, and is subjected to predetermined aging and drying to produce a positive electrode plate. A negative electrode paste is prepared by the same method and filled in a lead-calcium lattice to produce a negative electrode plate. Colloidal silica is applied to both sides of the lower half of the negative electrode plate and dried to form an adsorption layer. In addition, you may spray colloidal silica using a spray etc. instead of apply | coating.

続いて、セパレータを介して正極板と負極板とを互い違いに積層し、極板群を作る。この極板群の集電タブを溶接してストラップを形成する。これら極板群を電槽に挿入し、12V電池を組立てる。この電池の電槽内に希硫酸を注液し、通電して電槽化成する。電解液の量と濃度を調整してJIS5301記載の55D23形電池とした。この本発明の電池を電池No.1とする。   Then, a positive electrode plate and a negative electrode plate are laminated | stacked alternately via a separator, and an electrode group is produced. The current collecting tabs of the electrode plate group are welded to form a strap. These electrode plate groups are inserted into a battery case to assemble a 12V battery. Dilute sulfuric acid is poured into the battery case of this battery, and the battery case is formed by energization. A 55D23 type battery described in JIS 5301 was prepared by adjusting the amount and concentration of the electrolytic solution. This battery of the present invention was designated as battery no. Set to 1.

比較のために、特開平9−231980号公報に記載されているニッケルを0.0002質量%含む鉛−アンチモン系合金を正極格子に用いた55D23形電池を電池No.2、同様にニッケルを0.003質量%含む正極格子を用いた55D23形電池を電池No.3とする。さらに、比較として、正極格子にニッケルを含まず、負極に吸着層を有さない55D23形電池を電池No.4とする。   For comparison, a 55D23 battery using a lead-antimony alloy containing 0.0002% by mass of nickel described in Japanese Patent Application Laid-Open No. 9-231980 as a positive electrode grid is shown in Battery No. 2. Similarly, a 55D23 type battery using a positive electrode grid containing 0.003% by mass of nickel is referred to as a battery no. 3. Further, as a comparison, a 55D23 type battery that does not contain nickel in the positive electrode lattice and does not have an adsorption layer in the negative electrode is shown in Battery No. 4.

これら電池を表1に示す40℃でのJIS軽負荷寿命試験に供した。

Figure 0004483308
These batteries were subjected to a JIS light load life test at 40 ° C. shown in Table 1.
Figure 0004483308

上記サイクルを480サイクル継続し、56h放置する。続いて、356A放電で30秒間放電する。寿命は、30秒目の電圧が7.2Vを下回った時点とする。   The above cycle is continued for 480 cycles and left for 56 hours. Subsequently, the battery is discharged with 356 A discharge for 30 seconds. The lifetime is the time when the voltage at 30 seconds falls below 7.2V.

軽負荷寿命試験結果を図1に示す。この図から、正極格子にニッケルを含まず、負極に吸着層を有さない電池No.4に対して、ニッケルを正極格子に添加した電池No.2,3は寿命が伸びている。本発明の電池No.1は、これらよりさらに長寿命であることが分かる。   The results of the light load life test are shown in FIG. From this figure, it can be seen that battery No. 1 does not contain nickel in the positive electrode grid and does not have an adsorption layer in the negative electrode. No. 4 battery No. 4 with nickel added to the positive grid. 2 and 3 have an extended life. Battery No. of the present invention. It can be seen that 1 has a longer life than these.

これらの結果は、電解液の成層化が抑制されたためと考えられる。寿命試験チェック時の電解液を、電池上部と下部でサンプリングした結果を図2に示す。電池No.4は、サイクルが進行する度に上下の液比重差が大きくなることが分かる。このような状態では、極板下部でサルフェーションが進行していると考えられる。正極格子にニッケルを添加することで、電池No.2,3のように上下の比重差は緩和され成層化が解消されてくる。本発明電池No.1でも、ほとんど成層化が発生していない。また、本発明電池No.1は、サイクル進行に対して比重の上昇が比較的緩やかである。これは、ニッケルが含まれていないため過電圧の低下が小さくなり、電解液中の水分電解量が比較的少なくなったためと考えられる。   These results are thought to be because the stratification of the electrolyte was suppressed. FIG. 2 shows the results of sampling the electrolyte at the time of the life test at the upper and lower parts of the battery. Battery No. No. 4 shows that the difference in specific gravity between the upper and lower liquids increases as the cycle proceeds. In such a state, it is considered that sulfation proceeds in the lower part of the electrode plate. By adding nickel to the positive grid, battery no. As in 2 and 3, the difference in specific gravity between the upper and lower sides is relaxed and stratification is eliminated. The present battery No. Even at 1, almost no stratification occurred. In addition, the present battery No. No. 1 has a relatively slow increase in specific gravity as the cycle progresses. This is presumably because the decrease in overvoltage was small because nickel was not contained, and the amount of water electrolysis in the electrolyte was relatively small.

寿命試験チェック時に減液量を測定した結果を図3に示す。本発明の電池No.1は電池No.4と同等の減液量である。これは、アンチモンの量が同じためと考える。ニッケルを添加した電池No.2,3は減液が著しく、ニッケルが負極に析出して過電圧が低下したため水分電解量が増加した影響と考えられる。   FIG. 3 shows the result of measuring the amount of liquid reduction during the life test check. Battery No. of the present invention. 1 is a battery No. 1; The amount of liquid reduction is equivalent to 4. This is because the amount of antimony is the same. Battery no. Nos. 2 and 3 are thought to be the effect of increased water electrolysis because nickel was deposited on the negative electrode and the overvoltage was reduced.

以上のように本発明では、負極板に正極板のアンチモンを吸着する吸着層を設けたため、負極で水素過電圧を低下させてガス発生を促進し、電解液を撹拌して成層化を解消できた。また、ニッケル等の過電圧を低下させる元素を用いないため、減液量を抑えることが可能である。   As described above, in the present invention, since the adsorption layer for adsorbing the antimony of the positive electrode plate is provided on the negative electrode plate, the hydrogen overvoltage is reduced at the negative electrode to promote gas generation, and the stratification can be eliminated by stirring the electrolyte. . In addition, since no element such as nickel is used to reduce the overvoltage, the amount of liquid reduction can be suppressed.

本発明の提供する鉛蓄電池により、アイドリングストッブや重負荷使用の宅配車、配送車にみられる電解液の成層化を抑制することでき、寿命性能を向上させることができる。また、減液性能も従来と同等であり、産業上の利用性は非常に高い。   The lead storage battery provided by the present invention can suppress the stratification of the electrolyte solution found in idling stoves, heavy-duty delivery vehicles, and delivery vehicles, and can improve the life performance. Moreover, the liquid reduction performance is equivalent to the conventional one, and the industrial applicability is very high.

本発明の鉛蓄電池と従来の鉛蓄電池のJIS軽負荷寿命試験結果を示す図である。It is a figure which shows the JIS light load life test result of the lead acid battery of this invention, and the conventional lead acid battery. 本発明の鉛蓄電池と従来の鉛蓄電池のJIS軽負荷寿命試験中の電解液比重を示す図である。It is a figure which shows the electrolyte solution specific gravity in the JIS light load life test of the lead acid battery of this invention, and the conventional lead acid battery. 本発明の鉛蓄電池と従来の鉛蓄電池のJIS軽負荷寿命試験中の減液量を示す図である。It is a figure which shows the liquid reduction amount in the JIS light load life test of the lead acid battery of this invention, and the conventional lead acid battery.

Claims (1)

鉛−アンチモン系の正極格子を用いた正極板を備えた鉛蓄電池において、シリカを含んでいて前記正極板から溶出したアンチモンを該シリカに吸着させる吸着層が、負極板の下半分の両表面に設けられていることを特徴とする鉛蓄電池。 In a lead storage battery including a positive electrode plate using a lead-antimony-based positive electrode grid, adsorption layers containing silica and adsorbing antimony eluted from the positive electrode plate to the silica are formed on both surfaces of the lower half of the negative electrode plate. A lead-acid battery characterized by being provided .
JP2004010703A 2004-01-19 2004-01-19 Lead acid battery Expired - Fee Related JP4483308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004010703A JP4483308B2 (en) 2004-01-19 2004-01-19 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004010703A JP4483308B2 (en) 2004-01-19 2004-01-19 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2005203318A JP2005203318A (en) 2005-07-28
JP4483308B2 true JP4483308B2 (en) 2010-06-16

Family

ID=34823352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004010703A Expired - Fee Related JP4483308B2 (en) 2004-01-19 2004-01-19 Lead acid battery

Country Status (1)

Country Link
JP (1) JP4483308B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041757A (en) * 2011-08-17 2013-02-28 Gs Yuasa Corp Lead acid storage battery
JP5757235B2 (en) * 2011-12-28 2015-07-29 株式会社Gsユアサ Liquid lead acid battery, battery system using the same, and method of using liquid lead acid battery
KR101786393B1 (en) 2016-10-14 2017-10-17 현대자동차주식회사 Electrolyte composition of lead storage battery and lead storage battery using the same

Also Published As

Publication number Publication date
JP2005203318A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
JP2008243487A (en) Lead acid battery
WO2013073091A1 (en) Lead storage cell
JP2008243606A (en) Lead acid storage battery
JP2008243493A (en) Lead acid storage battery
JP2008243489A (en) Lead acid storage battery
JP2003151617A (en) Lead-acid battery
JP2005302395A (en) Lead storage battery
WO2013114822A1 (en) Lead-acid battery
JP4515902B2 (en) Lead acid battery
JP4483308B2 (en) Lead acid battery
JP4647722B1 (en) Lead acid battery
JP5116331B2 (en) Lead acid battery
JP2006114417A (en) Lead-acid storage battery
JP4892827B2 (en) Lead acid battery
JP4904675B2 (en) Lead acid battery
JP2006210059A (en) Lead acid storage battery
JP4904686B2 (en) Lead acid battery
JP2005294142A (en) Lead storage battery
JP4364054B2 (en) Lead acid battery
JP4470381B2 (en) Lead acid battery
JP5034159B2 (en) Negative electrode active material for lead acid battery and lead acid battery using the same
JP2019207786A (en) Lead acid battery
JP4904674B2 (en) Lead acid battery
JP2005268061A (en) Lead storage cell
JP4854157B2 (en) Chemical conversion method for positive electrode plate and lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees