JP5375049B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP5375049B2
JP5375049B2 JP2008303974A JP2008303974A JP5375049B2 JP 5375049 B2 JP5375049 B2 JP 5375049B2 JP 2008303974 A JP2008303974 A JP 2008303974A JP 2008303974 A JP2008303974 A JP 2008303974A JP 5375049 B2 JP5375049 B2 JP 5375049B2
Authority
JP
Japan
Prior art keywords
alloy
lead
battery
positive electrode
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008303974A
Other languages
Japanese (ja)
Other versions
JP2010129424A (en
Inventor
あかね 内田
和成 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008303974A priority Critical patent/JP5375049B2/en
Publication of JP2010129424A publication Critical patent/JP2010129424A/en
Application granted granted Critical
Publication of JP5375049B2 publication Critical patent/JP5375049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To achieve elongation of a life of a battery by restraining Sb from precipitating on an anode to promote electrolysis of water, doing away with decrease of electrolyte solution, and retaining maintenance-free property, although it is hard to completely remove the Sb from the inside of the battery, in view of performance problems of a lead acid storage battery for an automobile use. <P>SOLUTION: The lead acid storage battery with a cathode and an anode grids formed of a Pb-Ca alloy comprises a Pb-Sb alloy layer with an Sb content of 1.0 wt.% to 10 wt.% at least at a portion of a face in contact with the cathode grid surface, with Bi ions of 0.5 to 800 ppm contained in the electrolyte solution. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

一般自動車の普及とともに、自動車用鉛蓄電池に対しても電解液の補給を不要とするメンテナンスフリー化が求められるようになってきた。   With the spread of general automobiles, there has been a demand for maintenance-free, which eliminates the need for electrolyte replenishment for lead-acid batteries for automobiles.

従来、自動車用鉛蓄電池の正極格子にはPb−Sb系合金が使用されてきたが、Sbは電池使用中に電解液に溶出し、負極板上に析出して負極の水素過電圧を低下させる作用があり、Pb−Sb系合金格子では過充電状態で水の電気分解が促進され、電解液中の水分減少が増加する。そのため、正極格子にはPb−Sb系合金に代えて、自己放電が少なく電解液が減少しにくいPb−Ca系合金が実用化されてきた。   Conventionally, Pb—Sb alloys have been used for the positive electrode grid of lead-acid batteries for automobiles, but Sb elutes into the electrolyte during use of the battery and precipitates on the negative electrode plate to lower the hydrogen overvoltage of the negative electrode. In the Pb—Sb alloy lattice, electrolysis of water is promoted in an overcharged state, and the water content in the electrolytic solution is increased. For this reason, Pb—Ca alloys have been put to practical use in place of Pb—Sb alloys in the positive electrode lattice, which have less self-discharge and less electrolyte.

しかし、自動車の高性能化が進んだことでエンジンルーム内に設置された鉛蓄電池の周囲の冷却空間の減少や、電装品の増加等により、電池が高温状態で使用されることが多くなってきた。   However, as the performance of automobiles has increased, batteries are often used at high temperatures due to a decrease in cooling space around lead-acid batteries installed in the engine room and an increase in electrical components. It was.

高温状態では、常温と比較して電池の劣化が促進されるため、格子の耐食性を高めるためにSnを加えたPb−Ca−Sn系合金格子の採用等の手段が開発されてきたが、Pb−Ca系合金格子はPb−Sb系合金と比較して、電池特性の低下や活物質の軟化が起こりやすくなる等の問題があり、電池の長寿命化の要望があった。   Since the deterioration of the battery is accelerated in a high temperature state as compared with normal temperature, means such as adoption of a Pb—Ca—Sn alloy lattice added with Sn in order to increase the corrosion resistance of the lattice has been developed. The -Ca alloy lattice has problems such as deterioration of battery characteristics and softening of the active material as compared with the Pb-Sb alloy, and there has been a demand for extending the life of the battery.

そのため、特許文献1には、Caを0.02wt%〜0.15wt%、Snを0〜5.0wt%含み、残部がPbからなるPb−Ca系合金製の格子体表面に、Sbを0.8wt%〜50wt%、Snを1.0wt%〜10wt%、残部がPbからなるPb−Sb−Sn合金層を有し、格子目の1目の横の長さが縦の長さより長い格子体を備えることで、メンテナンスフリー性を維持しながら、高温雰囲気中での耐久性を高めて長寿命化を図ることが示されている。
特開平3−37962号公報
For this reason, Patent Document 1 discloses that Pb—Ca-based alloy lattice body surface containing 0.02 wt% to 0.15 wt% Ca, 0 to 5.0 wt% Sn and the balance being Pb is 0 Sb. .8 wt% to 50 wt%, Sn 1.0 wt% to 10 wt%, a Pb—Sb—Sn alloy layer composed of Pb as the balance, and the lattice has a grid with a horizontal length longer than the vertical length It has been shown that providing a body increases durability in a high-temperature atmosphere while maintaining maintenance-free properties, thereby extending the life.
JP-A-3-37962

しかし、前述したように、正極格子表面にSb含有層を形成した鉛蓄電池であっても、使用期間が長期間になると、正極格子表面上のSbが、負極に析出して電解液中の水の電気分解を促進させるため、メンテナンスフリー性を低下させていた。   However, as described above, even in the lead storage battery in which the Sb-containing layer is formed on the surface of the positive electrode lattice, when the usage period becomes long, Sb on the surface of the positive electrode lattice is deposited on the negative electrode and water in the electrolyte In order to promote the electrolysis, the maintenance-free property has been reduced.

本発明は、正極格子表面上にSbを含む、Pb−Sb合金層を形成した鉛蓄電池においても、電解液中の水の電気分解を抑制した、より長寿命の、メンテナンスフリー性に優れた鉛蓄電池を提供するものである。   The present invention is a lead-acid battery that has a Pb—Sb alloy layer containing Sb on the surface of the positive electrode lattice, and has a longer life and superior maintenance-free property, suppressing electrolysis of water in the electrolyte. A storage battery is provided.

上記の課題を解決するために、本発明の請求項1に係る発明は、正極格子および負極格子がPb−Ca系合金で形成された鉛蓄電池であって、Sb含有量が1.0wt%〜10wt%のPb−Sb系合金層を正極格子表面の活物質と接する表面の少なくとも一部に備え、電解液中に1.0ppm〜40ppmのBiイオンが含まれていることを特徴とする。 In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention is a lead-acid battery in which the positive electrode lattice and the negative electrode lattice are formed of a Pb—Ca-based alloy, and the Sb content is 1.0 wt% to A 10 wt% Pb—Sb alloy layer is provided on at least a part of the surface of the positive electrode lattice surface in contact with the active material, and 1.0 ppm to 40 ppm of Bi ions are contained in the electrolytic solution.

本発明の請求項に記載される発明は、請求項の発明において、Sbを実質上含まない、Pb−Sn合金からなるストラップ、接続体および極柱を備えていることを特徴とする。 The invention described in claim 2 of the present invention is characterized in that, in the invention of claim 1 , a strap made of a Pb—Sn alloy substantially free of Sb, a connecting body and a pole column are provided.

本発明によれば、正極格子表面上にPb−Sb合金層を形成した鉛蓄電池において、より寿命特性とメンテナンスフリー性に優れた鉛蓄電池を得られるという、顕著な効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, in the lead storage battery which formed the Pb-Sb alloy layer on the positive electrode lattice surface, there exists a remarkable effect that the lead storage battery which was excellent in the lifetime characteristic and maintenance-free property can be obtained.

本発明の鉛蓄電池の最良の形態について説明する。   The best mode of the lead storage battery of the present invention will be described.

図1に示したように、本発明の鉛蓄電池1の正極板2に用いられている正極格子(図示せず)の母材はPb−Ca系合金であり、格子の作成方法としては、従来から知られている鋳造格子、連続鋳造格子あるいは上記鉛合金の圧延体にパンチング加工やエキスパンド加工を施した格子体を用いることができる。   As shown in FIG. 1, the base material of the positive electrode lattice (not shown) used for the positive electrode plate 2 of the lead storage battery 1 of the present invention is a Pb—Ca alloy, and a conventional method for forming the lattice is as follows. Can be used, such as a cast grid, a continuous cast grid, or a grid body obtained by subjecting a rolled body of the above lead alloy to punching or expanding.

また、本発明では、上記正極格子表面の活物質と接する表面に少なくとも一部にPb−Sb合金層を形成し、このPb−Sb合金層中に含まれるSb量を1.0wt%〜10wt%の範囲とする。   In the present invention, a Pb—Sb alloy layer is formed at least partially on the surface of the positive electrode lattice surface in contact with the active material, and the amount of Sb contained in the Pb—Sb alloy layer is 1.0 wt% to 10 wt%. The range.

Pb−Sb系合金層の格子表面への形成方法としては、母材合金であるPb−Ca系合金と、Pb−Sb系合金とを重ね合わせて圧延する方法、あるいは母材合金格子(Pb−Ca系合金格子)にSbを電析させる等の方法がある。   As a method for forming the Pb—Sb alloy layer on the lattice surface, a method of rolling a Pb—Ca alloy and a Pb—Sb alloy, which are parent alloys, by rolling, or a parent alloy lattice (Pb— There is a method of electrodepositing Sb on a Ca-based alloy lattice).

上記の正極格子に活物質ペーストを充填後、熟成乾燥することにより未化成状態の正極板2を得る。なお、正極活物質ペーストとしては、従来から知られているように、鉛酸化物および金属鉛を成分とする鉛粉を水と希硫酸で練合して得ることができる。なお、負極板3については、公知の負極板3を用いることができるが、負極板3を構成する負極格子(図示せず)はPb−Ca合金で構成される。   After filling the positive electrode lattice with the active material paste, the positive electrode plate 2 in an unformed state is obtained by aging and drying. As known in the art, the positive electrode active material paste can be obtained by kneading lead powder containing lead oxide and metal lead as components with water and dilute sulfuric acid. In addition, although the well-known negative electrode plate 3 can be used about the negative electrode plate 3, the negative electrode grating | lattice (not shown) which comprises the negative electrode plate 3 is comprised with a Pb-Ca alloy.

上記により得られた未化成状態の正極板2と負極板3とをセパレータ4を介して積層し、同極性の極板同士の耳部を、それぞれ正極ストラップ7および負極ストラップ8で連結することによって極板群5を構成する。更に、極板群5を電槽6内で直列接続するよう、接続体9で接続し、両端の極板群5に正極及び負極の極柱10を溶接する。蓋11を電槽6に溶着し、蓋11と一体成型されている端子ブッシング12に極板群5から導出された極柱10が挿通され、両者が溶接されて形成する。その後、蓋に設けた注液口13より希硫酸電解液を注液して、化成充電を行い、充電済みの鉛蓄電池とする。   By laminating the unformed positive electrode plate 2 and the negative electrode plate 3 obtained as described above via the separator 4, and connecting the ears of the same polarity electrode plates with the positive electrode strap 7 and the negative electrode strap 8, respectively. The electrode plate group 5 is configured. Further, the electrode plate group 5 is connected by the connecting body 9 so as to be connected in series in the battery case 6, and the positive and negative electrode columns 10 are welded to the electrode plate group 5 at both ends. The lid 11 is welded to the battery case 6, the pole column 10 led out from the electrode plate group 5 is inserted into the terminal bushing 12 integrally molded with the lid 11, and both are welded to form. Then, dilute sulfuric acid electrolyte is injected from the injection port 13 provided on the lid, and chemical conversion charging is performed to obtain a charged lead-acid battery.

本発明では、化成充電後の希硫酸電解液中にBiイオンを1.0ppm〜40ppmの範囲で含む。なお、電解液中にBiイオンを含有させる時期は、化成充電前でも化成充電後でも得られる効果は同じである。 In this invention, Bi ion is contained in the range of 1.0 ppm-40 ppm in the dilute sulfuric acid electrolyte solution after chemical conversion charge. In addition, the time which Bi ion is contained in electrolyte solution has the same effect acquired before and after chemical conversion charge.

また、電解液中にBiイオンを含有させる方法としては、無機および有機のBi塩を電解液に溶解する方法が挙げられる。   Moreover, as a method of making Bi ion contain in electrolyte solution, the method of melt | dissolving inorganic and organic Bi salt in electrolyte solution is mentioned.

上記構成により、Sbが正極から溶解、負極へ析出しても、同様に電解液中のBiイオンも負極にBiあるいはBi化合物として析出しているため、Sbの負極への析出を阻害、もしくはSbが負極へ析出して水素過電圧を低下させることを抑制し、結果として水の電気分解による電解液の減少を抑制する。   With the above configuration, even if Sb is dissolved from the positive electrode and deposited on the negative electrode, Bi ions in the electrolytic solution are also deposited on the negative electrode as Bi or Bi compounds, so that Sb deposition on the negative electrode is inhibited, or Sb Is prevented from being deposited on the negative electrode and lowering the hydrogen overvoltage, and as a result, a decrease in the electrolyte due to electrolysis of water is suppressed.

その結果として、寿命特性と、メンテナンスフリー性を両立した鉛蓄電池を得ることができる。なお、本実施形態においては、鉛蓄電池の構造について例示したが、請求項に記載された構成を有しておれば、他の構造を有するものであっても、本発明の効果を得ることができる。   As a result, a lead storage battery having both life characteristics and maintenance-free properties can be obtained. In addition, in this embodiment, although illustrated about the structure of lead acid battery, if it has the structure described in the claim, even if it has another structure, the effect of this invention can be acquired. it can.

正極格子表面に設けたPb−Sb合金層中のSb含有量(wt%)と電解液中のBiイオン濃度(ppm)とをパラメータとして変化させた鉛蓄電池を作成した。これらの各電池は、それぞれサイクル寿命特性、および減液量を評価した。なお、正負のストラップ、接続体、正負の極柱(以下、総称して鉛部品)は、Pb−Sb合金と、Pb−Sn合金のものを作成した。なお、Pb−Sb合金としては、Pb−2.5wt%Sb合金、Pb−Sn合金としてはPb−2.5wt%Sn合金とした。なお、Pb−Sn合金中のSb含有量は0.001wt%未満であり、メンテナンスフリー性を低下させない、実質上含まない程度のものを用いた。   A lead storage battery in which the Sb content (wt%) in the Pb—Sb alloy layer provided on the positive electrode lattice surface and the Bi ion concentration (ppm) in the electrolytic solution were changed as parameters was prepared. Each of these batteries was evaluated for cycle life characteristics and liquid reduction amount. In addition, the positive / negative strap, the connection body, and the positive / negative pole columns (hereinafter collectively referred to as lead parts) were made of a Pb—Sb alloy and a Pb—Sn alloy. The Pb-Sb alloy was a Pb-2.5 wt% Sb alloy, and the Pb-Sn alloy was a Pb-2.5 wt% Sn alloy. In addition, the Sb content in the Pb—Sn alloy is less than 0.001 wt%, and a material that does not deteriorate maintenance-free property and does not substantially contain is used.

正極格子表面の活物質と接する面の一部にPb−Sb合金層を形成したものと、しないものを作成した。なお、Pb−Sb合金層中のSb濃度はそれぞれ1.0wt%、10wt%、15wt%に変化させた。なお、Pb−Sb合金層の形成方法は、Pb−0.06wt%Ca−1.6wt&Sn合金のスラブの片面に、上記したPb−Sb合金層と同一組成を有するPb−Sb合金箔を圧着することによって得たPb合金シートをエキスパンド加工することによって得た。したがって、4辺からなる矩形の正極格子断面の1辺にPb−Sb合金層が形成されており、活物質と接触した構成となっている。なお、負極格子は、Pb−0.07wt%−0.25wt%からなるエキスパンド格子体を用いた。   What formed the Pb-Sb alloy layer in the part of the surface which contact | connects the active material of the positive electrode grid surface, and the thing which does not create were produced. The Sb concentration in the Pb—Sb alloy layer was changed to 1.0 wt%, 10 wt%, and 15 wt%, respectively. The Pb-Sb alloy layer is formed by pressing a Pb-Sb alloy foil having the same composition as that of the Pb-Sb alloy layer on one side of a slab of Pb-0.06 wt% Ca-1.6 wt & Sn alloy. The Pb alloy sheet thus obtained was obtained by expanding. Therefore, the Pb—Sb alloy layer is formed on one side of the rectangular positive electrode cross section having four sides, and is in contact with the active material. As the negative electrode lattice, an expanded lattice body composed of Pb-0.07 wt% -0.25 wt% was used.

また、電解液のBiイオン濃度は化成充電後の電解液に硫酸ビスマスを規定量溶解させることで調整した。   The Bi ion concentration of the electrolytic solution was adjusted by dissolving a specified amount of bismuth sulfate in the electrolytic solution after chemical charging.

上記によって得た各電池は、JIS D 5301(始動用鉛蓄電池)に規定された80D26電池であり、以下に示す条件で評価試験を行った。   Each battery obtained by the above was an 80D26 battery defined in JIS D 5301 (lead storage battery for starting), and an evaluation test was performed under the following conditions.

(サイクル寿命試験)
サイクル寿命特性はJIS D 5301「軽負荷寿命試験」の4分放電を3分放電に変更して80度気相中で実施した。即ち、25A放電3分と14.8V定電圧(最大電流25A)10分とを480サイクル繰り返す毎に490A30秒間の判定放電を行い、放電末期電流が7.2V以下となると寿命と判定した。
(Cycle life test)
The cycle life characteristics were measured in the gas phase at 80 degrees by changing the 4-minute discharge in JIS D 5301 “Light load life test” to the 3-minute discharge. That is, every time 480 cycles of 25 A discharge for 3 minutes and 14.8 V constant voltage (maximum current 25 A) were repeated for 480 cycles, determination discharge was performed for 490 A for 30 seconds, and when the end-of-discharge current was 7.2 V or less, the life was determined.

(減液試験)
減液量(%)は、48A放電60秒と14.8V充電(最大電流48A)90秒とを500サイクル繰り返した後に、試験前後の電解液重量減量(%)を比較した。
(Liquid reduction test)
The amount of liquid reduction (%) was determined by comparing the weight loss (%) of the electrolyte before and after the test after 500 cycles of 48 seconds of discharge for 48 A and 90 seconds for 14.8 V charge (maximum current 48 A).

本実施例における各電池の構成と、サイクル寿命試験結果および減液試験結果を表1〜表3に示す。   Tables 1 to 3 show the configuration of each battery, the cycle life test results, and the liquid reduction test results in this example.

Figure 0005375049
Figure 0005375049

Figure 0005375049
Figure 0005375049

Figure 0005375049
Figure 0005375049

表1〜3に示した結果から、鉛部品にPb−Sb合金を使用し、Pb−Sb合金層を有していない電池A1〜A8は、Biイオンの濃度に関わらず減液量が少なく、サイクル寿命特性は低いことが分かる。これは、鉛部品から溶出したSbの負極への析出もしくは、負極に析出したSbによる水素過電圧の低下を、Biが阻害しているために減液量が少なくなり、正極格子にSbが存在しないため、充電受入性の低下や、正極活物質の劣化等によりサイクル寿命が低下したためと考えられる。   From the results shown in Tables 1 to 3, batteries A1 to A8 that use a Pb-Sb alloy for lead parts and do not have a Pb-Sb alloy layer have a small liquid reduction amount regardless of the concentration of Bi ions. It can be seen that the cycle life characteristics are low. This is because the amount of liquid reduction decreases because Bi hinders the precipitation of Sb eluted from the lead parts on the negative electrode or the decrease in hydrogen overvoltage due to Sb deposited on the negative electrode, and there is no Sb in the positive electrode lattice. For this reason, it is considered that the cycle life is reduced due to a decrease in charge acceptability and a deterioration of the positive electrode active material.

鉛部品にPb−Sb合金を使用し、Sb含有量1.0wt%のPb−Sb合金層を有した電池B1〜B8およびSb含有量10wt%のPb−Sb合金層を有した電池C1〜C8は、Biイオンの濃度1.0〜40ppm(電池B3〜B4、電池C3〜C4)でサイクル寿命特性が特に良くなり、減液量が少なくなっている。これは、正極格子表面のSbの作用により正極活物質の劣化が抑制され、鉛部品および正極格子から溶出したSbの負極への析出もしくは、負極に析出したSbによる水素過電圧の低下を、Biが阻害したためと考えられる。また、Bi添加量が少ない場合は溶出したSbの影響を抑制できず、Bi添加量が多い場合は、過剰量のBiが負極に析出することによる自己放電の増加や、Bi自身による負極の水素過電圧の低下のため、サイクル寿命の低下や減液量の増加が生じたと推定される。 B1 to B8 having a Pb—Sb alloy layer having a Sb content of 1.0 wt% and B1 to B8 having a Pb—Sb alloy layer having a Sb content of 10 wt% Has a Bi ion concentration of 1.0 to 40 ppm (batteries B3 to B4 , batteries C3 to C4 ), the cycle life characteristics are particularly improved, and the amount of liquid reduction is reduced. This is because deterioration of the positive electrode active material is suppressed by the action of Sb on the surface of the positive electrode lattice, and precipitation of Sb eluted from the lead parts and the positive electrode lattice on the negative electrode or a decrease in hydrogen overvoltage due to Sb deposited on the negative electrode This is thought to be due to inhibition. Further, when the amount of Bi added is small, the effect of the eluted Sb cannot be suppressed. When the amount of Bi added is large, an increase in self-discharge due to precipitation of an excessive amount of Bi on the negative electrode, or hydrogen in the negative electrode due to Bi itself. It is estimated that due to the decrease in overvoltage, the cycle life decreased and the amount of liquid reduction increased.

ところが、鉛部品にPb−Sb合金を使用し、Sb含有量15wt%のPb−Sb合金層を有した電池D1〜D8になると、サイクル寿命特性は良いが、全体的に減液量が増加している。これは、正極格子のSb量が増加したことで充電電気量が増加し、電解液中の水の電気分解が促進したためと考えられる。   However, when Pb-Sb alloy is used for the lead parts and the batteries D1 to D8 having the Pb-Sb alloy layer with the Sb content of 15 wt% are obtained, the cycle life characteristics are good, but the liquid reduction amount increases as a whole. ing. This is thought to be because the amount of charged electricity was increased by increasing the amount of Sb in the positive electrode grid, and the electrolysis of water in the electrolytic solution was promoted.

一方、鉛部品に、実質的にSbを含まないPb−Sn合金を使用し、Pb−Sb合金層を有していない電池E1〜E8は、減液量は少ないが、サイクル寿命特性がかなり悪くなっている。これは、電池内部にSbが存在しないことで減液量が少なくなるものの、充電受入性が低下したためと考えられる。   On the other hand, batteries E1 to E8 that use a Pb—Sn alloy that does not substantially contain Sb for the lead parts and do not have a Pb—Sb alloy layer have a small amount of liquid reduction, but the cycle life characteristics are considerably poor. It has become. This is thought to be because the amount of liquid reduction is reduced due to the absence of Sb inside the battery, but the charge acceptance is reduced.

鉛部品に、実質的にSbを含まないPb−Sn合金を使用し、Sb含有量1.0wt%のPb−Sb合金層を有した電池F1〜F8およびSb含有量10wt%のPb−Sb合金層を有した電池G1〜G8は、Biイオンの濃度1.0〜40ppm(電池F3〜F4、電池G3〜G4)でサイクル寿命特性、減液特性共にかなり良くなっている。これは、鉛部品にPb−Sb合金を使用した電池B、Cの結果と同様の現象が起こっていると推定され、更に、電池F、Gは、鉛部品にPb−Sn合金を使用しているため、Sbの負極への析出が少なくなり、減液特性が向上したと考えられる。 Pb-Sn alloy containing Pb-Sb alloy having Sb content of 1.0 wt% and Pb-Sb alloy having Sb content of 10 wt%, using Pb-Sn alloy substantially free of Sb for lead parts The batteries G1 to G8 having layers have considerably improved cycle life characteristics and liquid reduction characteristics at a Bi ion concentration of 1.0 to 40 ppm (batteries F3 to F4 , batteries G3 to G4 ). This is presumed that the same phenomenon as the result of batteries B and C using Pb-Sb alloy for lead parts occurs, and batteries F and G use Pb-Sn alloy for lead parts. Therefore, it is considered that the precipitation of Sb on the negative electrode is reduced and the liquid reduction property is improved.

鉛部品に、実質的にSbを含まないPb−Sn合金を使用し、Sb含有量15wt%のPb−Sb合金層を有した電池H1〜H8になると、サイクル寿命特性は良いが、全体的に減液量が増加している。これは、正極格子のSb量が増加したことで充電電気量が増加し、水の電気分解による電解液の減少が促進されたと考えられる。   When Pb—Sn alloy containing substantially no Sb is used for the lead component and the batteries H1 to H8 having the Pb—Sb alloy layer with an Sb content of 15 wt% are obtained, the cycle life characteristics are good. The amount of liquid reduction is increasing. This is thought to be due to the increase in the amount of charged electricity due to the increase in the amount of Sb in the positive electrode grid, and the decrease in the electrolyte due to the electrolysis of water.

また、特性の良かった電池(電池B3〜B4、電池C3〜C4、電池F3〜F4、電池G3〜G4、Sbの析出もしくはSbによる水素過電圧の低下を阻害すると考えられるBiイオン濃度が、1.0ppm〜40ppmのときに極大になると考えられる。 In addition, batteries having good characteristics (batteries B3 to B4 , batteries C3 to C4 , batteries F3 to F4 , batteries G3 to G4 ) have a Bi ion concentration that is considered to inhibit the precipitation of Sb or the decrease in hydrogen overvoltage due to Sb. It is considered the maximum in ing at the time of the 1.0ppm~ 40 ppm.

鉛部品に使用したPb−Sb合金と、実質的にSbを含まないPb−Sn合金との結果を比較すると、鉛部品に実質的にSbを含まないPb−Sn合金を使用した電池(電池E、F、G、H)の方が電解液の減少が少なくなっているため、より有効であることがわかる。   Comparing the results of the Pb—Sb alloy used for the lead component and the Pb—Sn alloy substantially free of Sb, a battery using the Pb—Sn alloy substantially free of Sb in the lead component (battery E , F, G, and H) are more effective because the decrease in the electrolyte is less.

以上の結果から、正極格子表面にSb含有量が1.0wt%〜10wt%のPb−Sb合金層を備え、電解液中に1.0ppm〜40ppmのBiイオンが含まれているとき、サイクル寿命と減液特性とを両立させることができるという、顕著な効果を得ることができる。 From the above results, when the Pb—Sb alloy layer having a Sb content of 1.0 wt% to 10 wt% is provided on the surface of the positive electrode lattice and the electrolyte contains 1.0 ppm to 40 ppm Bi ions, the cycle is It is possible to obtain a remarkable effect that both the life and the liquid reducing property can be achieved.

本発明の構成によれば、良好な寿命を有するとともに、電解液の減少を抑制し、メンテナンスフリー性に優れた自動車用鉛蓄電池を提供することができ、工業上極めて有用である。   According to the configuration of the present invention, it is possible to provide a lead-acid battery for automobiles that has a good life, suppresses a decrease in the electrolyte, and has excellent maintenance-free properties, which is extremely useful industrially.

本発明の実施形態による鉛蓄電池の概観図Overview of lead-acid battery according to an embodiment of the present invention

符号の説明Explanation of symbols

1 鉛蓄電池
2 正極板
3 負極板
4 セパレータ
5 極板群
6 電槽
7 正極ストラップ
8 負極ストラップ
9 接続体
10 極柱
11 蓋
12 ブッシング
13 注液口
DESCRIPTION OF SYMBOLS 1 Lead acid battery 2 Positive electrode plate 3 Negative electrode plate 4 Separator 5 Electrode plate group 6 Battery case 7 Positive electrode strap 8 Negative electrode strap 9 Connection body 10 Polar pillar 11 Lid 12 Bushing 13 Injection port

Claims (2)

正極格子および負極格子がPb−Ca系合金で形成された液式の鉛蓄電池であって、Sb含有量が1.0wt%〜10wt%のPb−Sb系合金層を正極格子表面の活物質に接する表面の少なくとも一部に備え、電解液中に1.0ppm〜40ppmのBiイオンが含まれていることを特徴とする鉛蓄電池。 A liquid lead acid battery in which a positive electrode lattice and a negative electrode lattice are formed of a Pb—Ca alloy, and a Pb—Sb alloy layer having an Sb content of 1.0 wt% to 10 wt% is used as an active material on the surface of the positive electrode lattice A lead-acid battery comprising at least a part of a surface to be in contact and containing 1.0 ppm to 40 ppm of Bi ions in an electrolytic solution. 実質的にSbを含まない、Pb−Sn系合金からなるストラップ、接続体および極柱を備えていることを特徴とした請求項に記載された鉛蓄電池。 The lead acid battery according to claim 1 , comprising a strap made of a Pb—Sn alloy substantially free of Sb, a connecting body, and a pole column.
JP2008303974A 2008-11-28 2008-11-28 Lead acid battery Active JP5375049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008303974A JP5375049B2 (en) 2008-11-28 2008-11-28 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008303974A JP5375049B2 (en) 2008-11-28 2008-11-28 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2010129424A JP2010129424A (en) 2010-06-10
JP5375049B2 true JP5375049B2 (en) 2013-12-25

Family

ID=42329670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008303974A Active JP5375049B2 (en) 2008-11-28 2008-11-28 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5375049B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1211470B (en) * 1987-07-21 1989-11-03 Magneti Marelli Spa LEAD ACCUMULATOR WITH GAS RECOMBINATION
JP4904675B2 (en) * 2004-09-10 2012-03-28 パナソニック株式会社 Lead acid battery
JP2006318658A (en) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2008034167A (en) * 2006-07-27 2008-02-14 Matsushita Electric Ind Co Ltd Lead acid storage battery

Also Published As

Publication number Publication date
JP2010129424A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP5522444B2 (en) Lead acid battery
US5120620A (en) Binary lead-tin alloy substrate for lead-acid electrochemical cells
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
JP5061451B2 (en) Anode current collector for lead acid battery
WO2010058240A1 (en) Low water loss battery
JP2008140645A (en) Lead acid battery
JP2002175798A (en) Sealed lead-acid battery
US4166155A (en) Maintenance-free battery
JP2006114417A (en) Lead-acid storage battery
JP4892827B2 (en) Lead acid battery
JP5375049B2 (en) Lead acid battery
JP4896392B2 (en) Lead acid battery
JP2008243480A (en) Lead storage battery
JP4356321B2 (en) Lead acid battery
JP4904675B2 (en) Lead acid battery
JP2008146960A (en) Lead-acid battery
JP2005294142A (en) Lead storage battery
JP2019207786A (en) Lead acid battery
JP2006114416A (en) Lead-acid battery
JP2005122922A (en) Manufacturing method of grid for lead acid battery and lead acid battery
JP6830615B2 (en) Control valve type lead acid battery
JP2011159551A (en) Lead-acid storage battery
JP4923399B2 (en) Lead acid battery
JP2006310062A (en) Lead-acid battery
JP4802903B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111013

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R151 Written notification of patent or utility model registration

Ref document number: 5375049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350