JP4878452B2 - Composite coated copper wire and composite coated enameled copper wire - Google Patents

Composite coated copper wire and composite coated enameled copper wire Download PDF

Info

Publication number
JP4878452B2
JP4878452B2 JP2005223731A JP2005223731A JP4878452B2 JP 4878452 B2 JP4878452 B2 JP 4878452B2 JP 2005223731 A JP2005223731 A JP 2005223731A JP 2005223731 A JP2005223731 A JP 2005223731A JP 4878452 B2 JP4878452 B2 JP 4878452B2
Authority
JP
Japan
Prior art keywords
copper wire
composite
plating film
carbon
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005223731A
Other languages
Japanese (ja)
Other versions
JP2007042355A (en
Inventor
辰男 山口
弘 北沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku Electric Co Ltd
Original Assignee
Totoku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totoku Electric Co Ltd filed Critical Totoku Electric Co Ltd
Priority to JP2005223731A priority Critical patent/JP4878452B2/en
Publication of JP2007042355A publication Critical patent/JP2007042355A/en
Application granted granted Critical
Publication of JP4878452B2 publication Critical patent/JP4878452B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複合被覆銅線及び複合被覆エナメル銅線に関し、更に詳しくは、電子機器等に用いられるコイル用線材に利用でき、はんだ付け作業の際に生じるはんだ細り現象を抑制できる非磁性タイプの複合被覆銅線及び複合被覆エナメル銅線に関するものである。   The present invention relates to a composite-coated copper wire and a composite-coated enameled copper wire. The present invention relates to a composite coated copper wire and a composite coated enameled copper wire.

代表的な環境負荷物質として鉛(Pb)が知られている。鉛は、電子機器等のプリント基板や各種コイル部品等と配線材等とを接続する「はんだ」に含まれている物質であり、近年、電子機器・部品メーカーは、はんだに含まれている鉛を全廃する方向で動いている。反面、錫(Sn)と鉛とからなる共晶はんだ(Sn64−Pb36)等は、錫単体のものよりも融点が180℃と低く、低温でのはんだ付け作業を行うことができるという利点があると共に、はんだに含まれる鉛は、Sn−Cu相互拡散を抑制する金属として作用するので、作業性及び接合の信頼性には欠かせない存在となっていた。なお、無鉛化を実現したはんだ合金は、微小添加物として、Ag、Bi、Cu、Zn等の2元系又は3元系合金として既に上市されている。   Lead (Pb) is known as a typical environmental load substance. Lead is a substance contained in "solder" that connects printed circuit boards and various coil components, etc., such as electronic devices, and wiring materials, etc. In recent years, electronic device / component manufacturers have been using lead contained in solder. Is moving in the direction of abolishing. On the other hand, eutectic solder (Sn64-Pb36) composed of tin (Sn) and lead has an advantage that it has a melting point as low as 180 ° C. and can be soldered at a low temperature. At the same time, the lead contained in the solder acts as a metal that suppresses Sn—Cu interdiffusion, and thus has been indispensable for workability and bonding reliability. Solder alloys that have been made lead-free have already been put on the market as binary or ternary alloys such as Ag, Bi, Cu, and Zn as fine additives.

上述した無鉛はんだ合金には、従来のはんだに含まれる鉛の有する機能が具備されておらず、コイル線材と基板等とを接続する際に、Sn−Cuの相互拡散が進行し、いわゆる“銅の溶食(銅のはんだ細り)”現象が如実に現れてしまう。その結果、そのはんだ細りに起因した製品歩留まりの悪化が生じるおそれがある。   The above-described lead-free solder alloy does not have the function of lead contained in conventional solder, and Sn—Cu interdiffusion progresses when connecting a coil wire and a substrate, so-called “copper” The phenomenon of "corrosion (thinning of copper solder)" appears. As a result, the product yield may be deteriorated due to the solder thinning.

こうした問題に対しては、下記特許文献1〜5でその対策が提案されている。特許文献1には、金属芯材外周に展延性のある靭軟な高純度鉄の電着鉄めっき層を形成させた鉄被覆複合材及びその製造方法について記載されており、その鉄めっき層によって銅のはんだ細りを抑制できることが記載されている。また、特許文献2,3には、銅導線の外周にニオブ又はテルルを真空蒸着、スパッタリング、イオンプレーディング法のいずれかの方法によって被覆し、そのニオブ層又はテルル層によって銅のはんだ細りを抑制できることが記載されている。また、特許文献4には、下地銅線にFe、Ni又はFe30±2%Niの何れかのめっき層を形成し、そのめっき層によって銅のはんだ細りを抑制できることが記載されている。また、特許文献5には、下地銅線にニッケルめっき皮膜を形成した後、更にその外周に塑性加工が容易な単一金属を電析させ、その後塑性加工により細径化した複合被覆銅線が記載されており、そのニッケルめっき皮膜によって銅のはんだ細りを抑制できることが記載されている。
特開平01−017892号公報 特開平06−119815号公報 特開平07−176214号公報 特開2003−092029号公報 特開2005−85590号公報
The following patent documents 1-5 have proposed the countermeasure with respect to such a problem. Patent Document 1 describes an iron-coated composite material in which an electrodeposited iron plating layer of tough and soft high-purity iron having a spreadability is formed on the outer periphery of a metal core material and a method for producing the same. It is described that copper thinning can be suppressed. In Patent Documents 2 and 3, niobium or tellurium is coated on the outer periphery of the copper conductor wire by any one of vacuum deposition, sputtering, and ion-plating, and the copper solder thinning is suppressed by the niobium layer or tellurium layer. It describes what you can do. Patent Document 4 describes that a plating layer of Fe, Ni, or Fe30 ± 2% Ni is formed on a base copper wire, and the solder thinning of copper can be suppressed by the plating layer. Further, Patent Document 5 discloses a composite coated copper wire in which a nickel-plated film is formed on a base copper wire, a single metal that is easily plastically processed is electrodeposited on the outer periphery, and then the diameter is reduced by plastic processing. It is described that copper thinning can be suppressed by the nickel plating film.
Japanese Patent Laid-Open No. 01-017892 Japanese Patent Laid-Open No. 06-198115 Japanese Patent Application Laid-Open No. 07-176214 JP 2003-092029 A JP-A-2005-85590

しかしながら、上記特許文献1に記載の鉄めっき層は熱処理を施すことによって展延性が改善されるものであることから、熱処理条件如何によっては細径化が困難であるという問題点があった。   However, the iron plating layer described in Patent Document 1 has a problem that it is difficult to reduce the diameter depending on the heat treatment conditions because the spreadability is improved by heat treatment.

また、上記特許文献2,3に記載のニオブ層又はテルル層は乾式プロセスで成膜されるので、所望の厚さにするのに長時間を要し、銅線の数十倍のコストになってしまう。その結果、実用レベルでの使用が困難であるという問題点があった。   Moreover, since the niobium layer or tellurium layer described in Patent Documents 2 and 3 is formed by a dry process, it takes a long time to obtain a desired thickness, which is several tens of times the cost of copper wire. End up. As a result, there is a problem that it is difficult to use at a practical level.

また、上記特許文献4に記載のめっき層は卑な電位を有する金属で形成されているので、そのめっき層が最表面に形成されて大気に曝されると、そのめっき層は酸化によりはんだ濡れ性が阻害されるという問題点があった。また、そのめっき層が形成された銅線上にエナメル塗料を塗布焼付けしてマグネットワイヤを製造する場合には、めっき層がエナメル塗料をはじくという現象が生じ、ピンホール等の欠陥が発生するという問題点があった。また、めっき層を構成するFe、Ni等の金属は炭化物生成反応の標準自由エネルギーが高いため、ダイヤモンド製のダイを用いて塑性加工を施す際、ダイ孔が簡単に磨耗し、線引き加工中の断線、仕上がり外径の変動、線材の外形変形等のトラブルが生じ易いという問題があった。更には、はんだ細りを抑制するめっき層の厚さと、はんだ細り抑制効果との関係が明瞭に記載されてないため、その条件ではんだ溶食効果を見出せるものとは考え難いものである。また、上記特許文献5に記載の複合被覆エナメル銅線を用いて巻線コイルを作製した場合、ニッケルめっき皮膜が有する磁性が、コイルの動作特性に対して必ずしも好ましい結果をもたらさないと考えられる。   In addition, since the plating layer described in Patent Document 4 is formed of a metal having a base potential, when the plating layer is formed on the outermost surface and exposed to the atmosphere, the plating layer is soldered by oxidation. There was a problem that sex was inhibited. In addition, when a magnet wire is produced by applying and baking an enamel paint on a copper wire on which the plating layer is formed, the phenomenon that the plating layer repels the enamel paint occurs and defects such as pinholes occur. There was a point. Moreover, since metals such as Fe and Ni constituting the plating layer have a high standard free energy of carbide generation reaction, when plastic working is performed using a diamond die, the die hole is easily worn, and the wire is being drawn. There was a problem that troubles such as disconnection, variation in the finished outer diameter, and deformation of the outer shape of the wire were liable to occur. Furthermore, since the relationship between the thickness of the plating layer that suppresses solder thinning and the solder thinning suppression effect is not clearly described, it is difficult to think that the solder corrosion effect can be found under the conditions. Further, when a wound coil is manufactured using the composite-coated enameled copper wire described in Patent Document 5, it is considered that the magnetism of the nickel plating film does not necessarily give a favorable result with respect to the operating characteristics of the coil.

本発明は、上記問題を解決するためになされたものであって、その目的は、特に近年の無鉛はんだでの接合によるはんだ細りを抑制でき、はんだ接合の信頼性を確保することができるコストパフォーマンスの優れた非磁性タイプの複合被覆銅線及び複合被覆エナメル銅線を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and the object of the present invention is to reduce the solder thinning caused by the joining with lead-free solder in recent years, and to ensure the reliability of solder joining. An excellent nonmagnetic type composite-coated copper wire and composite-coated enameled copper wire are provided.

上記課題を解決するための本発明の複合被覆銅線は、銅又は銅合金からなる中心導体と、当該中心導体の外周上に形成されたカーボン複合めっき皮膜と、最外層に形成されたはんだ付け可能なめっき皮膜とを少なくとも有することを特徴とする。   In order to solve the above problems, the composite coated copper wire of the present invention includes a central conductor made of copper or a copper alloy, a carbon composite plating film formed on the outer periphery of the central conductor, and soldering formed on the outermost layer. And having a possible plating film.

この発明によれば、(1)中心導体上に形成されたカーボン複合めっき皮膜は、はんだの錫成分と中心導体の銅成分との間で起こるSn−Cu相互拡散の障害(バリア)として作用するので、特に無鉛はんだでのはんだ付け時のはんだ細り現象を抑制することができ、その結果、はんだ付け時の工程歩留まりや製品の信頼性を向上させることができる。また、(2)最外層のはんだ付け可能なめっき皮膜が銅、金、銀、錫等である場合は、はんだやエナメル塗料に対する濡れ性がよいので、はんだ付けやエナメル塗料の塗布を不具合なく行うことができる。(3)こうした本発明の複合被覆銅線は、全て非磁性材料で構成されているので、コイルの動作特性を向上させるはんだ細りのない線材として極めて有用である。   According to this invention, (1) the carbon composite plating film formed on the center conductor acts as an obstacle (barrier) to Sn-Cu interdiffusion occurring between the tin component of the solder and the copper component of the center conductor. Therefore, it is possible to suppress the solder thinning phenomenon particularly when soldering with lead-free solder, and as a result, it is possible to improve process yield and product reliability during soldering. (2) When the outermost solderable plating film is copper, gold, silver, tin, etc., it has good wettability with respect to solder and enamel paint, so soldering and enamel paint can be applied without problems. be able to. (3) Since the composite coated copper wire of the present invention is made of a nonmagnetic material, it is extremely useful as a wire without solder thinning that improves the operating characteristics of the coil.

本発明の複合被覆銅線は、前記カーボン複合めっき皮膜が、カーボンファイバー又はカーボンナノチューブと、銅、金及び銀の群から選ばれる金属を有する複合めっき皮膜であることを特徴とする。   The composite coated copper wire of the present invention is characterized in that the carbon composite plating film is a composite plating film having carbon fiber or carbon nanotube and a metal selected from the group of copper, gold and silver.

カーボンファイバーとカーボンナノチューブは、導電性、強度、摺動性(潤滑性)及び復元力に優れているが、それに加え、本発明者は、カーボンファイバー及びカーボンナノチューブの表面が化学的に安定で比表面積が小さく、はんだが非常に付着し難い特性を持つことを見出した。こうしたカーボンファイバー又はカーボンナノチューブを延展性のよい銅、金又は銀中に分散させたカーボン複合めっき膜は、はんだの錫成分と中心導体の銅成分との間で起こるSn−Cu相互拡散の障害(バリア)として作用するので、特に無鉛はんだでのはんだ付け時のはんだ細り現象を抑制することができ、その結果、はんだ付け時の工程歩留まりや製品の信頼性を向上させることができる。   Carbon fibers and carbon nanotubes are excellent in electrical conductivity, strength, slidability (lubricity), and restoring force. In addition, the present inventor has shown that the surface of carbon fibers and carbon nanotubes is chemically stable. It has been found that the surface area is small and the solder is very difficult to adhere. Such a carbon composite plating film in which carbon fibers or carbon nanotubes are dispersed in copper, gold, or silver with good spreadability is an obstacle to Sn-Cu interdiffusion between the tin component of the solder and the copper component of the central conductor ( Since it acts as a barrier), it is possible to suppress the solder thinning phenomenon particularly during soldering with lead-free solder, and as a result, it is possible to improve the process yield and product reliability during soldering.

本発明の複合被覆銅線は、前記カーボン複合めっき皮膜の厚さt(μm)が、0.7<t<1.6の範囲内にあることが好ましい。   In the composite-coated copper wire of the present invention, the thickness t (μm) of the carbon composite plating film is preferably in the range of 0.7 <t <1.6.

この発明によれば、カーボン複合めっき皮膜の厚さを上記範囲内にしたので、はんだ付け時のはんだ細りを抑制できると共に、耐屈曲性や良好な加工性を確保することができる。   According to this invention, since the thickness of the carbon composite plating film is within the above range, it is possible to suppress solder thinning during soldering and to ensure bending resistance and good workability.

本発明の複合被覆銅線は、前記複合被覆銅線の切断強度(N)が、当該複合被覆銅線の中心導体と同じ種類の導体からなる同一径の銅線又は銅合金線と比較して、1.1倍を超え、1.3倍未満であることが好ましい。   The composite-coated copper wire of the present invention has a cutting strength (N) of the composite-coated copper wire that is the same as that of the central conductor of the composite-coated copper wire, compared to a copper wire or copper alloy wire having the same diameter. More than 1.1 times and less than 1.3 times.

この発明によれば、複合被覆銅線の中心導体と同じ種類の導体からなる同一径の銅線又は銅合金線とを比較したときの複合被覆銅線の切断強度が上記範囲内であるので、マグネットワイヤとした後にコイル部品に巻線加工する際に、工程中の断線を低減できると共に、はんだ付け部の接合強度を向上させることができる。また、スプリングバック現象が生じるのを防ぐことができる。その結果、完成部品のはんだ付け部の信頼性を高めることができる。なお、切断強度が極度に高すぎると巻線不良が発生し易いので、その上限値を設定することが好ましい。   According to this invention, the cutting strength of the composite coated copper wire is within the above range when comparing the same diameter copper wire or copper alloy wire made of the same type of conductor as the central conductor of the composite coated copper wire, When winding a coil component after forming a magnet wire, disconnection during the process can be reduced, and the bonding strength of the soldered portion can be improved. Further, it is possible to prevent the spring back phenomenon from occurring. As a result, the reliability of the soldered part of the finished part can be increased. Note that, if the cutting strength is extremely high, winding defects are likely to occur. Therefore, it is preferable to set the upper limit.

本発明の複合被覆銅線は、前記はんだ付け可能なめっき皮膜が、塑性加工が容易で炭素との親和力が低い金属からなるものであり、前記複合被覆銅線が、塑性加工により細径化されてなるものであることを特徴とする。   The composite coated copper wire of the present invention is such that the solderable plating film is made of a metal that is easily plastically processed and has a low affinity for carbon, and the composite coated copper wire is thinned by plastic working. It is characterized by the above.

この発明によれば、最外層のはんだ付け可能なめっき皮膜が、塑性加工が容易で炭素との親和力が低い金属(すなわち、炭化物生成反応の標準自由エネルギーが低い金属)で形成されているので、例えばダイヤモンド製のダイを用いて塑性加工を施した際に、ダイ孔が簡単には磨耗せず、線引き加工中の断線、仕上がり外径の変動、線材の外形変形等のトラブルが生じ難いという効果があり、細径化に有利である。めっき皮膜を構成する好ましい金属としては、銅、金、銀、錫等が挙げられる。なお、所定のめっき条件でめっきすることにより延展性のよいカーボン複合めっき皮膜が得られるので、従来技術のような熱処理を施さなくても、塑性加工可能なカーボン複合めっき皮膜を容易に形成することができる。その結果、製造工程中にノウハウを有する作業が無く、安定製造が可能となるので、歩留まり向上等の改善を図ることができ、コスト的にも有利となる。   According to the present invention, the outermost solderable plating film is formed of a metal that is easy to be plastically processed and has a low affinity for carbon (that is, a metal having a low standard free energy of carbide generation reaction). For example, when plastic working is performed using a diamond die, the die hole does not wear easily, and troubles such as wire breakage during wire drawing, fluctuations in the finished outer diameter, and external deformation of the wire are unlikely to occur. This is advantageous for reducing the diameter. Preferred metals constituting the plating film include copper, gold, silver, tin and the like. In addition, since a carbon composite plating film with good spreadability can be obtained by plating under predetermined plating conditions, it is easy to form a carbon composite plating film that can be plastically processed without heat treatment as in the prior art. Can do. As a result, there is no know-how in the manufacturing process, and stable manufacturing is possible. Therefore, it is possible to improve yield and the like, which is advantageous in terms of cost.

上記課題を解決する本発明の複合被覆エナメル銅線は、上記本発明の複合被覆銅線の外周に、はんだ付け可能な絶縁エナメル被膜、又は、はんだ付け可能な絶縁エナメル被膜と融着エナメル被膜が塗布焼付けされていることを特徴とする。   The composite-coated enameled copper wire of the present invention that solves the above-mentioned problems has a solderable insulating enamel coating, or a solderable insulating enamel coating and a fusion enamel coating on the outer periphery of the composite-coated copper wire of the present invention. It is characterized by being coated and baked.

この発明によれば、複合被覆銅線の外周にはんだ付け可能な絶縁エナメル被膜が塗布焼付けされているので、端末をはんだ付けすることができるコイル等の製造に好ましく利用できる。また、さらに融着エナメル被膜が塗布焼付されている場合には、コイル状に捲線した後に溶剤、通電又は熱風等により融着することができるので、自己支持型のコイル用線材として好ましく使用することができる。   According to this invention, since the insulating enamel film which can be soldered is applied and baked on the outer periphery of the composite coated copper wire, it can be preferably used for manufacturing a coil or the like capable of soldering the terminal. In addition, when a fusion enamel coating is applied and baked, it can be fused with a solvent, energization, hot air, etc. after being coiled, so it is preferably used as a self-supporting coil wire Can do.

本発明の複合被覆銅線及び複合被覆エナメル銅線によれば、特に無鉛はんだでのはんだ付け時のはんだ細り現象を抑制することができるので、はんだ付け時の工程歩留まりや製品の信頼性を向上させることができるコストパフォーマンスの優れたものとすることができる。また、最外層のはんだ付け可能なめっき皮膜が銅、金、銀、錫等である場合は、はんだやエナメル塗料に対する濡れ性がよいので、はんだ付けやエナメル塗料の塗布を不具合なく行うことができる。こうした本発明の複合被覆銅線は、全て非磁性材料で構成されているので、コイルの動作特性を向上させるはんだ細りのない線材として極めて有用である。   According to the composite coated copper wire and the composite coated enameled copper wire of the present invention, it is possible to suppress the solder thinning phenomenon particularly when soldering with lead-free solder, thereby improving the process yield and product reliability during soldering. The cost performance can be improved. Also, when the outermost solderable plating film is copper, gold, silver, tin, etc., it has good wettability to solder and enamel paint, so soldering and enamel paint can be applied without any problems. . Such composite coated copper wires of the present invention are all made of a nonmagnetic material, and are extremely useful as a wire without solder thinness that improves the operating characteristics of the coil.

以下、本発明の複合被覆銅線及び複合被覆エナメル銅線について詳細に説明する。なお、これにより本発明が限定されるものではない。   Hereinafter, the composite-coated copper wire and composite-coated enameled copper wire of the present invention will be described in detail. Note that the present invention is not limited thereby.

図1は、本発明の複合被覆銅線の一例を示す概略断面図である。本発明の複合被覆銅線10は、銅又は銅合金からなる中心導体11と、その中心導体11の外周上に形成されたカーボン複合めっき皮膜12と、最外層に形成されたはんだ付け可能なめっき皮膜13とを少なくとも有している。この複合被覆銅線10は、最終製品線径となる中心導体上にカーボン複合めっき皮膜とはんだ付け可能なめっき皮膜とを形成したものであってもよいし、最終製品線径よりも太い線径の中心導体上に厚めのカーボン複合めっき皮膜と厚めのはんだ付け可能なめっき皮膜とを形成した後、塑性加工によって最終製品線径まで細径化したものであってもよい。後者の場合、塑性加工する前の母材の断面形態も図1と同様の形態となっている。   FIG. 1 is a schematic cross-sectional view showing an example of the composite coated copper wire of the present invention. The composite coated copper wire 10 of the present invention includes a center conductor 11 made of copper or a copper alloy, a carbon composite plating film 12 formed on the outer periphery of the center conductor 11, and a solderable plating formed on the outermost layer. And at least a coating 13. The composite coated copper wire 10 may be formed by forming a carbon composite plating film and a solderable plating film on a central conductor that becomes the final product wire diameter, or a wire diameter larger than the final product wire diameter. A thick carbon composite plating film and a thick solderable plating film may be formed on the central conductor of the first conductor, and then thinned to the final product wire diameter by plastic working. In the latter case, the cross-sectional form of the base material before plastic working is the same form as FIG.

(中心導体)
中心導体11は、銅又は銅合金からなるものであり、具体的には、タフピッチ銅、無酸素銅等の銅材料や、銀入り銅等の銅合金材料を挙げることができる。中心導体11の直径は、はんだ細りが問題になる範囲であることが好ましく、例えば0.02〜0.40mm程度の範囲内である。なお、本発明の複合被覆銅線10が塑性加工により細径化されて製造される場合には、カーボン複合めっき皮膜等が形成される前の中心導体の直径は特に限定されず、通常は、0.1〜1.0mm程度の範囲を例示できる。
(Center conductor)
The center conductor 11 is made of copper or a copper alloy, and specifically includes copper materials such as tough pitch copper and oxygen-free copper, and copper alloy materials such as silver-containing copper. The diameter of the center conductor 11 is preferably in a range where solder thinning becomes a problem, and is, for example, in a range of about 0.02 to 0.40 mm. In addition, when the composite coated copper wire 10 of the present invention is manufactured by reducing the diameter by plastic working, the diameter of the central conductor before the carbon composite plating film or the like is formed is not particularly limited. A range of about 0.1 to 1.0 mm can be exemplified.

(カーボン複合めっき皮膜)
カーボン複合めっき皮膜12は、めっき金属21中にカーボン材料22が分散されている分散めっき皮膜である。このカーボン複合めっき皮膜12を構成するめっき金属21としては、例えば、銅、金及び銀の群から選ばれるいずれかを挙げることができる。いずれの材質を選択するかは、それぞれの特徴を考慮して選択され、例えば、導電性、耐食性、強度、等を考慮して選択される。さらに、これらのめっき金属21は、展延性がよいので屈曲や塑性加工にも優れており、例えば本発明の複合被覆銅線10が塑性加工により細径化されて製造される場合の塑性変形にも十分に追従できる。
(Carbon composite plating film)
The carbon composite plating film 12 is a dispersion plating film in which a carbon material 22 is dispersed in a plating metal 21. Examples of the plating metal 21 constituting the carbon composite plating film 12 include one selected from the group consisting of copper, gold, and silver. Which material is selected is selected in consideration of each characteristic, for example, in consideration of conductivity, corrosion resistance, strength, and the like. Furthermore, since these plated metals 21 have good spreadability, they are excellent in bending and plastic working. For example, in the case where the composite coated copper wire 10 of the present invention is manufactured by reducing the diameter by plastic working, Can fully follow.

めっき金属21中に含まれるカーボン材料22としては、カーボンファイバー及びカーボンナノチューブ等を挙げることができる。本発明においては、そうしたカーボン材料22がめっき金属21中に均一に分散されている。これらのカーボン材料22は、熱伝導性、導電性、強度、摺動性(潤滑性)、復元力(反発力)等に優れており、また、化学的に安定で比表面積が小さく、吸着水分量も極めて小さいという特徴があるが、それに加え、本発明者は、カーボンファイバー及びカーボンナノチューブの表面が化学的に安定で比表面積が小さく、はんだが非常に付着し難いという特性を見出し、そうしたカーボンファイバー又はカーボンナノチューブを上記めっき金属21中に分散させてカーボン複合めっき皮膜10を成膜した。こうして形成されたカーボン複合めっき皮膜10は、はんだの錫成分と中心導体の銅成分との間で起こるSn−Cu相互拡散の障害(バリア)として作用するので、特に無鉛はんだでのはんだ付け時のはんだ細り現象を抑制することができ、その結果、はんだ付け時の工程歩留まりや製品の信頼性を向上させることができる。   Examples of the carbon material 22 contained in the plated metal 21 include carbon fibers and carbon nanotubes. In the present invention, such a carbon material 22 is uniformly dispersed in the plated metal 21. These carbon materials 22 are excellent in thermal conductivity, electrical conductivity, strength, slidability (lubricity), restoring force (repulsive force), etc., and are chemically stable and have a small specific surface area, adsorbed moisture. In addition to the feature that the amount is extremely small, the present inventors have found that the surface of the carbon fiber and the carbon nanotube is chemically stable, the specific surface area is small, and the solder is very difficult to adhere. A carbon composite plating film 10 was formed by dispersing fibers or carbon nanotubes in the plating metal 21. The carbon composite plating film 10 thus formed acts as a barrier (barrier) to Sn-Cu interdiffusion that occurs between the tin component of the solder and the copper component of the central conductor, and thus particularly when soldering with lead-free solder. The solder thinning phenomenon can be suppressed, and as a result, the process yield during soldering and the reliability of the product can be improved.

カーボン複合めっき皮膜に含まれるカーボンファイバーやカーボンナノチューブ等のカーボン材料22の含有量は、めっき金属21に対して、重量比で0.1〜5.0%の範囲内であることが好ましい。カーボン材料の含有量が0.1%未満では、はんだ細りの抑制効果が十分でないことがあり、カーボン材料の含有量が5.0%を超えると、カーボン複合めっき皮膜の展延性が低下して加工性(コイル巻線性や塑性加工性)に劣ることがある。なお、カーボンファイバーやカーボンナノチューブ等のカーボン材料22は、めっき金属11中でどのような態様で含まれていてもよく、例えばカーボンファイバーが「立つ」ように放射状に含まれていてもよいし、多方向に向くようにランダムに含まれていてもよい。   The content of the carbon material 22 such as carbon fiber or carbon nanotube contained in the carbon composite plating film is preferably within a range of 0.1 to 5.0% by weight with respect to the plating metal 21. If the carbon material content is less than 0.1%, the solder thinning suppression effect may not be sufficient. If the carbon material content exceeds 5.0%, the spreadability of the carbon composite plating film may be reduced. It may be inferior in workability (coil winding property or plastic workability). The carbon material 22 such as carbon fiber or carbon nanotube may be included in any manner in the plated metal 11, for example, may be included radially so that the carbon fiber “stands”, It may be included at random so as to face in multiple directions.

カーボン複合めっき皮膜12の厚さ(t)は特に限定されないが、塑性加工によって製造された複合被覆銅線の場合も含め、最終的な厚さ(t)として、0.7μmを超え、1.6μm未満であることが好ましい。カーボン複合めっき皮膜12の厚さが0.7μm以下の場合は、はんだ細りの抑制効果が小さくなる傾向がある。また、カーボン複合めっき皮膜の厚さが1.6μm以上の場合は、はんだ細りの抑制効果は奏するものの、中心導体11とカーボン複合めっき皮膜12との機械的強度の相違により、耐屈曲性等の機械的特性が阻害され易く、良好な加工性を確保することができないことがあると共に、塑性加工によって製造される場合には、断線等の問題を誘発させる要因となる。   Although the thickness (t) of the carbon composite plating film 12 is not particularly limited, the final thickness (t) exceeds 0.7 μm including the case of the composite coated copper wire manufactured by plastic working. It is preferably less than 6 μm. When the thickness of the carbon composite plating film 12 is 0.7 μm or less, the solder thinning suppression effect tends to be small. Further, when the thickness of the carbon composite plating film is 1.6 μm or more, although the effect of suppressing the solder thinning is exhibited, due to the difference in mechanical strength between the center conductor 11 and the carbon composite plating film 12, the bending resistance and the like are improved. Mechanical properties are easily hindered, and good workability may not be ensured, and in the case of being manufactured by plastic working, it causes a problem such as disconnection.

なお、所定のめっき条件でめっきすることにより延展性がよいカーボン複合めっき皮膜12が得られるので、従来技術のような熱処理を施さなくても、塑性加工可能なカーボン複合めっき皮膜12を容易に形成することができる。その結果、製造工程中にノウハウを有する作業が無く、安定製造が可能となるので、歩留まり向上等の改善を図ることができ、コスト的にも有利となる。   In addition, since the carbon composite plating film 12 having good spreadability can be obtained by plating under predetermined plating conditions, the carbon composite plating film 12 that can be plastically processed can be easily formed without performing heat treatment as in the prior art. can do. As a result, there is no know-how in the manufacturing process, and stable manufacturing is possible. Therefore, it is possible to improve yield and the like, which is advantageous in terms of cost.

(カーボン複合めっき皮膜の形成方法)
カーボン複合めっき皮膜は、めっき液中にカーボン材料を分散させた状態で中心導体に給電して形成することができる。めっき液としては、通常、上述しためっき金属の無機塩と、支持電解質と、カーボン材料とを少なくとも有する分散めっき液が用いられる。このめっき液には、必要に応じて、界面活性剤、光沢剤、塩素成分等の各種の添加剤が含有される。特に本発明における分散めっきは、多少の撥水性を有するカーボン材料22をめっき液中で均一に分散させておくことが重要であるので、界面活性剤を添加することが好ましい。めっき液中へのカーボン材料の分散量は、めっき液の性質やめっき皮膜中に含有させようとする量によって任意に設定される。
(Method for forming carbon composite plating film)
The carbon composite plating film can be formed by supplying power to the central conductor in a state where the carbon material is dispersed in the plating solution. As the plating solution, a dispersion plating solution having at least the above-described inorganic salt of a plating metal, a supporting electrolyte, and a carbon material is usually used. The plating solution contains various additives such as a surfactant, a brightener, and a chlorine component as necessary. In particular, in the dispersion plating in the present invention, it is important to uniformly disperse the carbon material 22 having some water repellency in the plating solution. Therefore, it is preferable to add a surfactant. The amount of carbon material dispersed in the plating solution is arbitrarily set depending on the properties of the plating solution and the amount to be contained in the plating film.

めっきは、中心導体を前処理し、めっき液中にカーボン材料を分散させた状態でその中心導体に給電して行われる。中心導体への前処理としては、金属一般に対して行われる前処理であればよく、特に限定されない。めっきは、電気めっきであっても無電解めっきであっても構わないが、密着性等の観点からは電気めっきが好ましい。無電解めっきの場合には還元剤を含有する。めっき条件についても、カーボン材料の含有量や、得られためっき金属の物性(硬さ、強度、耐食性)を考慮して任意の条件が設定される。そうした条件としては、例えば、電流密度、液温、撹拌強度等を挙げることができる。めっき後は、各種の洗浄工程が施される。   Plating is performed by pre-treating the central conductor and supplying power to the central conductor in a state where the carbon material is dispersed in the plating solution. The pretreatment for the central conductor is not particularly limited as long as it is a pretreatment performed on general metals. The plating may be electroplating or electroless plating, but electroplating is preferable from the viewpoint of adhesion and the like. In the case of electroless plating, it contains a reducing agent. As for the plating conditions, arbitrary conditions are set in consideration of the content of the carbon material and the physical properties (hardness, strength, corrosion resistance) of the obtained plated metal. Examples of such conditions include current density, liquid temperature, and stirring intensity. After the plating, various cleaning steps are performed.

特に好ましいカーボン複合めっき液として、硫酸銅めっき液を挙げることができる。めっき条件として、硫酸銅220g/L、硫酸55g/L、塩酸50mg/L、カーボン材料(昭和電工株式会社、気相法炭素繊維、商品名:VGCF、繊維径150nm、繊維長10〜20μm)0.5〜2.0g/L、界面活性剤(和光純薬工業株式会社、商品名:PA5000)0.1g/Lを含有するめっき液を用い、液温30℃、陰極電流密度2〜4A/dmの範囲内で電解めっきすることが好ましい。こうした条件でカーボン複合めっき皮膜をめっきすることによって、熱処理を施さなくても容易に冷間塑性加工できる展延性に富んだカーボン複合めっき皮膜を得ることができる。そのため、製造工程中にノウハウを有する作業が無く、歩留まり向上等の改善が図られコストを極力押さえることが可能となる。 A particularly preferable carbon composite plating solution is a copper sulfate plating solution. As plating conditions, copper sulfate 220 g / L, sulfuric acid 55 g / L, hydrochloric acid 50 mg / L, carbon material (Showa Denko KK, vapor grown carbon fiber, trade name: VGCF, fiber diameter 150 nm, fiber length 10 to 20 μm) 0 0.5 to 2.0 g / L, a plating solution containing 0.1 g / L of a surfactant (Wako Pure Chemical Industries, Ltd., trade name: PA5000), a liquid temperature of 30 ° C., a cathode current density of 2 to 4 A / L it is preferred to electroplating in the range of dm 2. By plating the carbon composite plating film under such conditions, it is possible to obtain a carbon composite plating film rich in spreadability that can be easily cold plastic processed without heat treatment. For this reason, there is no work having know-how during the manufacturing process, and improvement such as improvement in yield can be achieved and costs can be suppressed as much as possible.

カーボン複合めっき皮膜が製品線径に塑性加工された後の中心導体上に形成される場合には、上記範囲内のめっき厚を形成するだけの電気量を通電させればよいが、めっき後の複合被覆銅線を塑性加工により細径化して製造する場合には、細径化した後のめっき厚が上記範囲内となるように所定厚さのめっき厚を形成することが必要である。なお、得られためっき線には必要に応じてアニールを施してもよい。   When the carbon composite plating film is formed on the center conductor after being plastically processed to the product wire diameter, it is sufficient to energize an amount of electricity sufficient to form a plating thickness within the above range. When the composite coated copper wire is manufactured by reducing the diameter by plastic working, it is necessary to form a plating thickness of a predetermined thickness so that the plating thickness after the diameter reduction is within the above range. The obtained plated wire may be annealed as necessary.

めっき装置については特に限定されないが、連続生産可能なめっき装置であることが好ましい。例えば、めっき液循環タンクを備えたオーバーフロー型のめっき槽を好ましく用いることができる。こうしためっき槽は、中心導体を連続して走らせることができると共に、分散材料であるカーボン材料の撹拌効果もあり、めっき液中のカーボンの分散状態を常に均一にすることができる。また、めっき液循環タンクに、連続製造中に徐々に減少するカーボン材料を、容易に補給することができる。なお、電解脱脂や酸洗い等の前処理工程や後処理工程についても、オーバーフロー型の処理槽とすることが便利である。   Although it does not specifically limit about a plating apparatus, It is preferable that it is a plating apparatus which can be continuously produced. For example, an overflow type plating tank provided with a plating solution circulation tank can be preferably used. Such a plating tank can run the central conductor continuously and also has an agitation effect of the carbon material that is the dispersion material, so that the dispersion state of the carbon in the plating solution can always be made uniform. In addition, the plating solution circulation tank can be easily replenished with a carbon material that gradually decreases during continuous production. In addition, it is convenient to set it as an overflow type processing tank also about pre-processing processes and post-processing processes, such as electrolytic degreasing and pickling.

(はんだ付け可能なめっき皮膜)
はんだ付け可能なめっき皮膜13は複合被覆銅線10の最外層に形成されるが、その具体例としては、銅、金、銀、錫等を好ましく挙げることができる。これらの金属は、はんだやエナメル塗料に対する濡れ性がよいので、はんだ付けやエナメル塗料の塗布を不具合なく行うことができる。
(Solderable plating film)
The solderable plating film 13 is formed on the outermost layer of the composite coated copper wire 10, and preferred examples thereof include copper, gold, silver, and tin. Since these metals have good wettability with respect to solder and enamel paint, soldering and application of enamel paint can be performed without problems.

また、そのはんだ付け可能なめっき皮膜13が銅、金、銀、錫等のように塑性加工が容易で炭素との親和力が低い金属(すなわち、炭化物生成反応の標準自由エネルギーが低い金属)である場合には、本発明の複合被覆銅線10を塑性加工により細径化して製造することができる。こうした金属でめっき皮膜13が形成されることにより、例えばダイヤモンド製のダイを用いて塑性加工を施した際に、ダイ孔が簡単には磨耗せず、線引き加工中の断線、仕上がり外径の変動、線材の外形変形等のトラブルが生じ難いという効果がある。   Further, the solderable plating film 13 is a metal such as copper, gold, silver, tin, etc., which is easily plastically processed and has a low affinity for carbon (that is, a metal having a low standard free energy of carbide generation reaction). In this case, the composite coated copper wire 10 of the present invention can be manufactured by reducing the diameter by plastic working. By forming the plating film 13 with such a metal, for example, when plastic working is performed using a diamond die, the die hole is not easily worn, and disconnection during the drawing process, variation in the finished outer diameter. There is an effect that troubles such as external deformation of the wire hardly occur.

はんだ付け可能なめっき皮膜13の厚さは特に限定されないが、塑性加工によって製造された複合被覆銅線の場合も含め、最終的な厚さとして、0.1〜1.0μmの範囲内であることが好ましい。はんだ付け可能なめっき皮膜13の厚さが0.1μm未満の場合は、はんだ付けの際の濡れ性が不十分になる場合がある。また、はんだ付け可能なめっき皮膜13の厚さが1.0μmを超えると、無駄なコストがかかるという問題が生じる。   Although the thickness of the plating film 13 that can be soldered is not particularly limited, the final thickness is in the range of 0.1 to 1.0 μm including the case of a composite coated copper wire manufactured by plastic working. It is preferable. When the thickness of the solderable plating film 13 is less than 0.1 μm, the wettability during soldering may be insufficient. Moreover, when the thickness of the plating film 13 that can be soldered exceeds 1.0 μm, there arises a problem that useless cost is required.

はんだ付け可能なめっき皮膜を形成するためのめっき液及びめっき条件は特に限定されず、上記の金属塩を含む市販の各種めっき液又は公知の組成に調整しためっき液及びそれぞれの最適なめっき条件を用いることができる。例えば、硫酸銅めっき液、シアン化金めっき液、シアン化銀めっき液、酸性錫めっき液等を例示できる。   The plating solution and plating conditions for forming a solderable plating film are not particularly limited, and various commercially available plating solutions containing the above metal salts or plating solutions adjusted to known compositions and the optimum plating conditions for each. Can be used. Examples thereof include a copper sulfate plating solution, a gold cyanide plating solution, a silver cyanide plating solution, and an acidic tin plating solution.

(複合被覆銅線)
こうして得られた本発明の複合被覆銅線は、その切断強度(N)が、複合被覆銅線の中心導体と同じ種類の導体からなる同一径の銅線又は銅合金線と比較して、1.1倍を超え、1.3倍未満であることが好ましい。切断強度の上昇は、マグネットワイヤとした後にコイル部品に巻線加工する際に、工程中の断線を低減できると共に、はんだ付け部の接合強度を向上させることができる。その結果、完成部品のはんだ付け部の信頼性を高めることができる。なお、切断強度が極度に高すぎると、コイル巻線中にスプリングバック現象が生じて巻線不良が発生し易いので、その上限値を設定することが好ましい。
(Composite coated copper wire)
The composite coated copper wire of the present invention thus obtained has a cutting strength (N) of 1 as compared with a copper wire or copper alloy wire of the same diameter made of the same type of conductor as the central conductor of the composite coated copper wire. More than 1 time and less than 1.3 times are preferable. The increase of the cutting strength can reduce the disconnection during the process when winding the coil component after forming the magnet wire, and can improve the bonding strength of the soldered portion. As a result, the reliability of the soldered part of the finished part can be increased. In addition, if the cutting strength is extremely high, a springback phenomenon occurs in the coil winding and winding failure is likely to occur. Therefore, it is preferable to set the upper limit.

なお、本発明の複合被覆銅線は、カーボン複合めっき皮膜を有し、はんだ付け可能なめっき皮膜を最外層となるように形成すれば、非磁性材料からなるその他のめっき層を形成してもよい。例えば、中心導体とカーボン複合めっき皮膜との間に密着性を向上させることを目的とした層を形成してもよいし、カーボン複合めっき皮膜とはんだ付け可能なめっき皮膜との間に密着性を向上させることを目的とした層を形成してもよい。   The composite coated copper wire of the present invention has a carbon composite plating film, and if a solderable plating film is formed to be the outermost layer, other plating layers made of a nonmagnetic material may be formed. Good. For example, a layer intended to improve adhesion between the central conductor and the carbon composite plating film may be formed, or adhesion between the carbon composite plating film and the solderable plating film may be increased. A layer intended to improve may be formed.

以上、本発明の複合被覆銅線は、特に無鉛はんだでのはんだ付け時のはんだ細り現象を抑制することができるので、はんだ付け時の工程歩留まりや製品の信頼性を向上させることができるコストパフォーマンスの優れた線材である。また、最外層のはんだ付け可能なめっき皮膜が銅、金、銀、錫等である場合は、はんだやエナメル塗料に対する濡れ性がよいので、はんだ付けやエナメル塗料の塗布を不具合なく行うことができる。そして、こうした本発明の複合被覆銅線は、全て非磁性材料で構成されているので、コイルの動作特性を向上させるはんだ細りのない線材として極めて有用である。   As described above, the composite coated copper wire of the present invention can suppress the solder thinning phenomenon particularly when soldering with lead-free solder, so that it is possible to improve the process yield and product reliability during soldering. It is an excellent wire rod. Also, when the outermost solderable plating film is copper, gold, silver, tin, etc., it has good wettability to solder and enamel paint, so soldering and enamel paint can be applied without any problems. . And since such a composite covering copper wire of this invention is comprised with all nonmagnetic materials, it is very useful as a wire material without the solder thinness which improves the operating characteristic of a coil.

本発明の複合被覆銅線は、(1)最終製品線径に線引きした後の中心導体上に、少なくともカーボン複合めっき皮膜とはんだ付け可能なめっき皮膜とを形成する方法、又は、(2)太めの中心導体の外周にカーボン複合めっき皮膜と塑性加工が容易な金属からなるめっき皮膜を形成して複合被覆銅母材を作製し、その後、その複合被覆銅母材を塑性加工により細径化する方法、のいずれかによって製造できる。すなわち、(1)の製造方法は、銅及び銅合金からなる中心導体の外周にカーボン複合めっき皮膜を形成する工程と、はんだ付け可能なめっき皮膜を最外層に形成する工程とを少なくとも有する方法であり、(2)の製造方法は、銅及び銅合金からなる中心導体の外周にカーボン複合めっき皮膜を形成する工程と、塑性加工が容易で炭素との親和力が低い金属からなるめっき皮膜(はんだ付け可能なめっき皮膜)を最外層に形成して複合被覆銅母材を作製する工程と、その複合被覆銅母材を塑性加工して所定の線径に細径化する工程とを少なくとも有する方法である。   The composite coated copper wire of the present invention can be obtained by (1) a method of forming at least a carbon composite plating film and a solderable plating film on the center conductor after drawing to the final product wire diameter, or (2) thickening A composite coating copper base material is produced by forming a carbon composite plating film and a plating film made of a metal that can be easily plastically processed on the outer periphery of the center conductor of the metal, and then reducing the diameter of the composite coating copper base material by plastic processing. Can be produced by any of the methods. That is, the production method (1) is a method having at least a step of forming a carbon composite plating film on the outer periphery of a central conductor made of copper and a copper alloy and a step of forming a solderable plating film on the outermost layer. The manufacturing method (2) includes a step of forming a carbon composite plating film on the outer periphery of a central conductor made of copper and a copper alloy, and a plating film (soldering) made of a metal that is easily plastically processed and has a low affinity for carbon. A method of having at least a step of forming a composite coated copper base material by forming a composite coated copper base material on the outermost layer and a step of plastically processing the composite coated copper base material to reduce the diameter to a predetermined wire diameter. is there.

こうした製造方法により、はんだ細りの抑制に効果のある複合被覆銅線を低コストに製造することができる。また、複合被覆銅母材を塑性加工して所定の線径に細径化する製造方法では、例えばダイヤモンド製のダイを用いて塑性加工を施した際に、ダイ孔が簡単には磨耗せず、線引き加工中の断線、仕上がり外径の変動、線材の外形変形等のトラブルが生じ難い。   With such a manufacturing method, a composite coated copper wire effective in suppressing solder thinning can be manufactured at low cost. Further, in the manufacturing method in which the composite coated copper base material is plastically processed to reduce the diameter to a predetermined wire diameter, for example, when plastic processing is performed using a diamond die, the die hole is not easily worn. Troubles such as wire breakage during wire drawing, variation in the finished outer diameter, and deformation of the outer shape of the wire are unlikely to occur.

(複合被覆エナメル銅線)
図2は、はんだ付け可能な絶縁エナメル被膜が形成された本発明の複合被覆エナメル銅線の一例を示す断面図であり、図3は、はんだ付け可能な絶縁エナメル被膜と融着エナメル被膜が形成された本発明の複合被覆エナメル銅線の一例を示す断面図である。本発明の複合被覆エナメル銅線20,30は、上記本発明の複合被覆銅線10の外周に、はんだ付け可能な絶縁エナメル被膜21、又は、はんだ付け可能な絶縁エナメル被膜21と融着エナメル被膜31が塗布焼付けされていることを特徴とする。はんだ付け可能な絶縁エナメル被膜21は、例えば汎用ポリウレタン、ポリウレタンナイロン等のはんだ付け可能なエナメル塗料を塗布焼付けして形成できる。また、更にその外周に形成する融着エナメル被膜31は、例えばナイロンやエポキシ等の融着エナメル塗料を塗布焼付けして形成できる。
(Composite coated enameled copper wire)
FIG. 2 is a cross-sectional view showing an example of the composite coated enameled copper wire of the present invention on which a solderable insulating enamel coating is formed, and FIG. 3 shows the formation of a solderable insulating enamel coating and a fusion enamel coating. It is sectional drawing which shows an example of the composite-coated enameled copper wire of this invention made. The composite coated enameled copper wires 20, 30 of the present invention are solderable insulating enamel coating 21 or solderable insulating enamel coating 21 and fusion enamel coating on the outer periphery of the composite coated copper wire 10 of the present invention. 31 is coated and baked. The solderable insulating enamel coating 21 can be formed by applying and baking a solderable enamel paint such as general-purpose polyurethane or polyurethane nylon. Further, the fusion enamel coating 31 formed on the outer periphery thereof can be formed by applying and baking a fusion enamel coating such as nylon or epoxy.

絶縁エナメル被膜21と融着エナメル被膜31は、通常のエナメル線の製造装置を用いて製造できる。すなわち、ボビンに巻かれた複合被覆銅線を線材供線装置から繰出し、塗料槽にてエナメル塗料を塗布した後、その直後に設けたダイスやフェルト等の塗料絞り具で線材表面の塗布塗料を略均一厚さに扱き、その後その線材を電熱炉や熱風循環炉等の高温の焼付炉に導入し、炉内で線材上に塗布された塗料中の溶剤を揮発除去して塗料を反応硬化させ、硬化塗膜層を線材表面に形成して焼付炉から導出し、導出された線材を再び塗料槽、塗料絞り具及び焼付炉を通過させる工程を複数回繰り返し、線材表面に所望の厚さの絶縁エナメルを被覆した後、キャプスタン等の引取装置により引取りボビン等の巻取装置に巻き取って、複合被覆エナメル銅線が製造される。   The insulating enamel coating 21 and the fusion enamel coating 31 can be manufactured using a normal enamel wire manufacturing apparatus. In other words, the composite coated copper wire wound around the bobbin is fed out from the wire feeder, and the enamel paint is applied in the paint tank, and then the coated paint on the surface of the wire is applied with a paint squeezing tool such as a die or felt. Handle the wire to a uniform thickness, and then introduce the wire into a high-temperature baking furnace such as an electric heating furnace or hot-air circulating furnace to volatilize and remove the solvent in the paint applied to the wire in the furnace to react and harden the paint. The cured coating layer is formed on the surface of the wire and is led out from the baking furnace, and the process of passing the derived wire through the paint tank, the paint squeezing tool and the baking furnace is repeated a plurality of times to obtain a desired thickness on the wire surface. After covering the insulating enamel, the composite coated enameled copper wire is manufactured by winding it around a winding device such as a take-up bobbin by a pulling device such as a capstan.

こうした複合被覆エナメル銅線20,30は、複合被覆銅線10の外周にはんだ付け可能な絶縁エナメル被膜21が塗布焼付けされているので、端末をはんだ付けすることができるコイル等の製造に好ましく利用できる。また、さらに融着エナメル被膜31が塗布焼付されている場合には、コイル状に捲線した後に溶剤、通電又は熱風等により融着することができるので、自己支持型のコイル用線材として好ましく使用することができる。   These composite coated enameled copper wires 20 and 30 are preferably used for the manufacture of a coil or the like that can solder a terminal because the insulating enamel coating 21 that can be soldered is applied and baked on the outer periphery of the composite coated copper wire 10. it can. Further, when the fusion enamel coating 31 is further applied and baked, it can be fused with a solvent, energization, hot air, or the like after being wound in a coil shape, so that it is preferably used as a self-supporting coil wire. be able to.

以下に、実施例を挙げて本発明を更に具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited to a following example.

(実施例1)
カーボン複合めっき皮膜形成用めっき液として、硫酸銅220g/L、硫酸55g/L、塩酸50mg/L、カーボン材料(昭和電工株式会社、気相法炭素繊維、商品名:VGCF、繊維径150nm、繊維長10〜20μm)10g/L、界面活性剤(和光純薬工業株式会社、商品名:PA5000)0.14g/Lを含有するものを用いた。また、はんだ付け可能なめっき皮膜形成用めっき液として、硫酸銅100g/L、硫酸100g/Lから構成される硫酸銅めっき液を用いた。
Example 1
As a plating solution for forming a carbon composite plating film, copper sulfate 220 g / L, sulfuric acid 55 g / L, hydrochloric acid 50 mg / L, carbon material (Showa Denko KK, vapor grown carbon fiber, trade name: VGCF, fiber diameter 150 nm, fiber 10 to 20 μm in length) 10 g / L and a surfactant (Wako Pure Chemical Industries, Ltd., trade name: PA5000) containing 0.14 g / L were used. In addition, a copper sulfate plating solution composed of 100 g / L of copper sulfate and 100 g / L of sulfuric acid was used as a plating solution for forming a plating film that can be soldered.

中心導体として、直径0.037mmにまで細径化したタフピッチ銅線を用い、その銅線を電解脱脂、酸洗いした後、上記のカーボン複合めっき皮膜形成用めっき液に供してカーボン複合めっきを行った。めっき条件は、4A/dm、30℃、撹拌条件下で、厚さ1.0μmとなるまでカーボン複合めっき皮膜を形成した。水洗後、さらに、上記硫酸銅めっき液に供して銅めっきを行った。めっき条件は、10A/dm、40℃、撹拌条件下で、厚さ0.5μmとなるまで銅めっき皮膜を形成した。その後、超音波洗浄、アルコール洗浄等を行った後に乾燥させて、線径0.040mmの複合被覆銅線を作製した。続いて、その複合被覆銅線にポリウレタンを10μm厚さに塗布焼付けし、実施例1の複合被覆エナメル銅線を作製した。 A tough pitch copper wire having a diameter reduced to 0.037 mm is used as the central conductor. The copper wire is electrolytically degreased and pickled, and then subjected to carbon composite plating by using the above-mentioned plating solution for forming a carbon composite plating film. It was. The plating condition was 4 A / dm 2 , 30 ° C., stirring condition, and a carbon composite plating film was formed until the thickness became 1.0 μm. After washing with water, copper plating was performed using the copper sulfate plating solution. The plating conditions were 10 A / dm 2 , 40 ° C., and stirring conditions, and a copper plating film was formed until the thickness became 0.5 μm. Thereafter, ultrasonic cleaning, alcohol cleaning, and the like were performed, followed by drying to prepare a composite coated copper wire having a wire diameter of 0.040 mm. Subsequently, the composite-coated copper wire was coated and baked with polyurethane to a thickness of 10 μm to produce the composite-coated enameled copper wire of Example 1.

得られた複合被覆銅線の切断強度を引張試験機で測定したところ、その切断強度は0.395Nであり、直径0.040mmのタフピッチ銅線の切断強度0.33Nと比較して1.20倍であった。   When the cutting strength of the obtained composite coated copper wire was measured with a tensile tester, the cutting strength was 0.395 N, which was 1.20 compared to the cutting strength 0.33 N of a tough pitch copper wire having a diameter of 0.040 mm. It was twice.

(実施例2)
カーボン複合めっき皮膜形成用めっき液として、シアン化金カリウム8g/L、シアン化カリウム30g/L、カーボン材料(昭和電工株式会社、気相法炭素繊維、商品名:VGCF、繊維径150nm、繊維長10〜20μm)10g/L、界面活性剤(和光純薬工業株式会社、商品名:PA5000)0.14g/Lを含有するものを用い、0.3A/dm、60℃、撹拌条件下で、厚さ1.5μmとなるまでカーボン複合めっき皮膜を形成した他は、実施例1と同様にして、線径0.041mmの複合被覆銅線を作製した。続いて、その複合被覆銅線にポリウレタンを10μm厚さに塗布焼付けし、実施例2の複合被覆エナメル銅線を作製した。なお、得られた複合被覆銅線の切断強度は0.37Nであり、同一径のタフピッチ銅線の切断強度0.33Nと比較して1.12倍であった。
った。
(Example 2)
As a plating solution for forming a carbon composite plating film, potassium cyanide potassium 8 g / L, potassium cyanide 30 g / L, carbon material (Showa Denko KK, vapor grown carbon fiber, trade name: VGCF, fiber diameter 150 nm, fiber length 10 to 10 20 μm) 10 g / L, a surfactant (Wako Pure Chemical Industries, Ltd., trade name: PA5000) containing 0.14 g / L, 0.3 A / dm 2 , 60 ° C., under stirring conditions, A composite coated copper wire having a wire diameter of 0.041 mm was prepared in the same manner as in Example 1 except that the carbon composite plating film was formed to a thickness of 1.5 μm. Subsequently, polyurethane was applied to the composite coated copper wire to a thickness of 10 μm and baked to produce a composite coated enameled copper wire of Example 2. In addition, the cutting strength of the obtained composite coated copper wire was 0.37N, which was 1.12 times that of the cutting strength 0.33N of the tough pitch copper wire having the same diameter.
It was.

(実施例3)
カーボン複合めっき皮膜形成用めっき液として、シアン化銀カリウム10g/L、シアン化カリウム25g/L、炭酸カリウム10g/L、カーボン材料(昭和電工株式会社、気相法炭素繊維、商品名:VGCF、繊維径150nm、繊維長10〜20μm)10g/L、界面活性剤(和光純薬工業株式会社、商品名:PA5000)0.14g/Lを含有するものを用い、0.3A/dm、30℃、撹拌条件下で、厚さ1.5μmとなるまでカーボン複合めっき皮膜を形成した他は、実施例1と同様にして、線径0.041mmの複合被覆銅線を作製した。続いて、その複合被覆銅線にポリウレタンを10μm厚さに塗布焼付けし、実施例3の複合被覆エナメル銅線を作製した。なお、得られた複合被覆銅線の切断強度は0.38Nであり、同一径のタフピッチ銅線の切断強度0.33Nと比較して1.15倍であった。
(Example 3)
As a plating solution for forming a carbon composite plating film, silver cyanide potassium 10 g / L, potassium cyanide 25 g / L, potassium carbonate 10 g / L, carbon material (Showa Denko KK, vapor grown carbon fiber, trade name: VGCF, fiber diameter 150 nm, fiber length 10-20 μm) 10 g / L, surfactant (Wako Pure Chemical Industries, Ltd., trade name: PA5000) containing 0.14 g / L, 0.3 A / dm 2 , 30 ° C., A composite coated copper wire having a wire diameter of 0.041 mm was produced in the same manner as in Example 1 except that the carbon composite plating film was formed to a thickness of 1.5 μm under stirring conditions. Subsequently, polyurethane was applied to the composite coated copper wire to a thickness of 10 μm and baked to produce a composite coated enameled copper wire of Example 3. In addition, the cutting strength of the obtained composite coated copper wire was 0.38N, which was 1.15 times that of the cutting strength 0.33N of the tough pitch copper wire having the same diameter.

(実施例4)
カーボン複合めっき皮膜の厚さを0.71μmとした以外は、実施例1と同様にして、線径0.039mmの複合被覆銅線を作製した。続いて、その複合被覆銅線にポリウレタンを10μm厚さに塗布焼付けし、実施例4の複合被覆エナメル銅線を作製した。なお、得られた複合被覆銅線の切断強度は0.36Nであり、同一径のタフピッチ銅線の切断強度0.32Nと比較して1.13倍であった。
Example 4
A composite coated copper wire having a wire diameter of 0.039 mm was produced in the same manner as in Example 1 except that the thickness of the carbon composite plating film was changed to 0.71 μm. Subsequently, polyurethane was applied to the composite coated copper wire to a thickness of 10 μm and baked to produce a composite coated enameled copper wire of Example 4. In addition, the cutting strength of the obtained composite coated copper wire was 0.36N, which was 1.13 times that of the cutting strength 0.32N of the tough pitch copper wire having the same diameter.

(実施例5)
カーボン複合めっき皮膜の厚さを1.59μmとした以外は、実施例1と同様にして、線径0.041mmの複合被覆銅線を作製した。続いて、その複合被覆銅線にポリウレタンを10μm厚さに塗布焼付けし、実施例5の複合被覆エナメル銅線を作製した。なお、得られた複合被覆銅線の切断強度は0.43Nであり、同一径のタフピッチ銅線の切断強度0.33Nと比較して1.30倍であった。
(Example 5)
A composite coated copper wire having a wire diameter of 0.041 mm was produced in the same manner as in Example 1 except that the thickness of the carbon composite plating film was 1.59 μm. Subsequently, polyurethane was applied to the composite coated copper wire to a thickness of 10 μm and baked to produce a composite coated enameled copper wire of Example 5. In addition, the cutting strength of the obtained composite coated copper wire was 0.43N, which was 1.30 times that of the cutting strength 0.33N of the tough pitch copper wire having the same diameter.

(実施例6)
はんだ付け可能なめっき皮膜形成用めっき液として、シアン化金カリウム8g/L、シアン化カリウム30g/Lからなるものを用い、0.3A/dm、60℃、撹拌条件下で、厚さ0.5μmとなるまで金めっき皮膜を形成した他は、実施例1と同様にして、線径0.040mmの複合被覆銅線を作製した。続いて、その複合被覆銅線にポリウレタンを10μm厚さに塗布焼付けし、実施例6の複合被覆エナメル銅線を作製した。なお、得られた複合被覆銅線の切断強度は0.38Nであり、同一径のタフピッチ銅線の切断強度0.33Nと比較して1.15倍であった。
(Example 6)
As a plating solution for forming a plating film that can be soldered, a solution comprising potassium gold cyanide 8 g / L and potassium cyanide 30 g / L is used, and the thickness is 0.5 μm under stirring conditions of 0.3 A / dm 2 and 60 ° C. A composite coated copper wire having a wire diameter of 0.040 mm was produced in the same manner as in Example 1 except that the gold plating film was formed until. Subsequently, polyurethane was applied to the composite coated copper wire to a thickness of 10 μm and baked to prepare a composite coated enameled copper wire of Example 6. In addition, the cutting strength of the obtained composite coated copper wire was 0.38N, which was 1.15 times that of the cutting strength 0.33N of the tough pitch copper wire having the same diameter.

(実施例7)
はんだ付け可能なめっき皮膜形成用めっき液として、シアン化銀カリウム10g/L、シアン化カリウム25g/L、炭酸カリウム10g/Lからなるものを用い、0.3A/dm、30℃、撹拌条件下で、厚さ0.5μmとなるまで銀めっき皮膜を形成した他は、実施例1と同様にして、線径0.040mmの複合被覆銅線を作製した。続いて、その複合被覆銅線にポリウレタンを10μm厚さに塗布焼付けし、実施例7の複合被覆エナメル銅線を作製した。なお、得られた複合被覆銅線の切断強度は0.39Nであり、同一径のタフピッチ銅線の切断強度0.33Nと比較して1.18倍であった。
(Example 7)
As a plating solution for forming a plating film that can be soldered, a solution composed of 10 g / L of silver potassium cyanide, 25 g / L of potassium cyanide, and 10 g / L of potassium carbonate is used, and is stirred at 0.3 A / dm 2 at 30 ° C. A composite coated copper wire having a wire diameter of 0.040 mm was prepared in the same manner as in Example 1 except that the silver plating film was formed until the thickness became 0.5 μm. Subsequently, polyurethane was applied to the composite coated copper wire to a thickness of 10 μm and baked to prepare a composite coated enameled copper wire of Example 7. In addition, the cutting strength of the obtained composite coated copper wire was 0.39N, which was 1.18 times that of the cutting strength 0.33N of the tough pitch copper wire having the same diameter.

(実施例8)
中心導体として、直径0.90mmのタフピッチ銅線を用い、その銅線を電解脱脂、酸洗いした後、実施例1のカーボン複合めっき皮膜形成用めっき液に供してカーボン複合めっきを行った。めっき条件は、4A/dm、30℃、撹拌条件下で、厚さ10μmとなるまでカーボン複合めっき皮膜を形成した。水洗後、さらに、実施例1の硫酸銅めっき液に供して銅めっきを行った。めっき条件は、10A/dm、40℃、撹拌条件下で、厚さ5μmとなるまで銅めっき皮膜を形成した。その後、超音波洗浄、アルコール洗浄等を行った後に乾燥させて、線径0.930mmの複合被覆銅母材を作製した。続いて、この複合被覆銅母材を冷間伸線機によってφ0.20mmに線引きし、更にφ0.20mmからφ0.04mmまで熱処理を施すことなく線引きして、複合被覆銅線を得た。その複合被覆銅線にポリウレタンを10μm厚さに塗布焼付けし、実施例6の複合被覆エナメル銅線を作製した。なお、得られたφ0.04mmの複合被覆銅線の切断強度は0.40であり、同一径のタフピッチ銅線の切断強度0.33Nと比較して1.21倍であった。
(Example 8)
A tough pitch copper wire having a diameter of 0.90 mm was used as the central conductor. The copper wire was electrolytically degreased and pickled, and then subjected to carbon composite plating film forming plating solution of Example 1 to perform carbon composite plating. The plating condition was 4 A / dm 2 , 30 ° C., stirring condition, and a carbon composite plating film was formed until the thickness became 10 μm. After washing with water, copper plating was performed using the copper sulfate plating solution of Example 1. The plating conditions were 10 A / dm 2 , 40 ° C., and stirring conditions, and a copper plating film was formed until the thickness became 5 μm. Thereafter, ultrasonic cleaning, alcohol cleaning, and the like were performed, followed by drying to prepare a composite coated copper base material having a wire diameter of 0.930 mm. Subsequently, this composite coated copper base material was drawn to φ0.20 mm with a cold wire drawing machine, and further drawn from φ0.20 mm to φ0.04 mm without being subjected to heat treatment to obtain a composite coated copper wire. Polyurethane was applied to the composite coated copper wire to a thickness of 10 μm and baked to produce a composite coated enameled copper wire of Example 6. The cutting strength of the obtained composite coated copper wire having a diameter of 0.04 mm was 0.40, which was 1.21 times that of the cutting strength 0.33N of the tough pitch copper wire having the same diameter.

(実施例9)
カーボン複合めっき皮膜形成用めっき液として、シアン化金カリウム8g/L、シアン化カリウム30g/L、カーボン材料(昭和電工株式会社、気相法炭素繊維、商品名:VGCF、繊維径150nm、繊維長10〜20μm)10g/L、界面活性剤(和光純薬工業株式会社、商品名:PA5000)0.14g/Lを含有するものを用い、0.3A/dm、30℃、撹拌条件下で、厚さ10μmとなるまでカーボン複合めっき皮膜を形成した他は、実施例8と同様にして実施例9の複合被覆エナメル銅線を作製した。なお、得られた複合被覆銅線の切断強度は0.39Nであり、同一径のタフピッチ銅線の切断強度0.33Nと比較して1.18倍であった。
Example 9
As a plating solution for forming a carbon composite plating film, potassium cyanide potassium 8 g / L, potassium cyanide 30 g / L, carbon material (Showa Denko KK, vapor grown carbon fiber, trade name: VGCF, fiber diameter 150 nm, fiber length 10 to 10 20 μm) 10 g / L, a surfactant (Wako Pure Chemical Industries, Ltd., trade name: PA5000) containing 0.14 g / L, 0.3 A / dm 2 , 30 ° C., under stirring conditions, A composite coated enameled copper wire of Example 9 was produced in the same manner as in Example 8 except that the carbon composite plating film was formed to a thickness of 10 μm. In addition, the cutting strength of the obtained composite coated copper wire was 0.39N, which was 1.18 times that of the cutting strength 0.33N of the tough pitch copper wire having the same diameter.

(実施例10)
はんだ付け可能なめっき皮膜形成用めっき液として、シアン化金カリウム8g/L、シアン化カリウム30g/Lからなるものを用い、0.3A/dm、60℃、撹拌条件下で、厚さ5μmとなるまで金めっき皮膜を形成した他は、実施例8と同様にして実施例10の複合被覆エナメル銅線を作製した。なお、得られた複合被覆銅線の切断強度は0.40Nであり、同一径のタフピッチ銅線の切断強度0.33Nと比較して1.21倍であった。
(Example 10)
As a plating solution for forming a plating film that can be soldered, a solution comprising 8 g / L of potassium gold cyanide and 30 g / L of potassium cyanide is used, and the thickness becomes 5 μm under stirring conditions of 0.3 A / dm 2 and 60 ° C. A composite-coated enameled copper wire of Example 10 was produced in the same manner as Example 8 except that the gold plating film was formed. In addition, the cutting strength of the obtained composite coated copper wire was 0.40 N, which was 1.21 times that of the cutting strength 0.33 N of the tough pitch copper wire having the same diameter.

(比較例1)
φ0.04mmにまで線引きしたタフピッチ銅導体に、ポリウレタンを10μm厚さに塗布焼付けし、比較例1のエナメル銅線を作製した。
(Comparative Example 1)
Polyurethane was applied and baked to a tough pitch copper conductor drawn to φ0.04 mm to a thickness of 10 μm to produce an enameled copper wire of Comparative Example 1.

(比較例2)
カーボン複合めっき皮膜の厚さを0.60μmとした以外は、実施例1と同様にして、線径0.039mmの複合被覆銅線を作製した。続いて、その複合被覆銅線にポリウレタンを10μm厚さに塗布焼付けし、比較例2の複合被覆エナメル銅線を作製した。なお、得られた複合被覆銅線の切断強度は0.35Nであり、同一径のタフピッチ銅線の切断強度0.32Nと比較して1.09倍であった。
(Comparative Example 2)
A composite coated copper wire having a wire diameter of 0.039 mm was produced in the same manner as in Example 1 except that the thickness of the carbon composite plating film was 0.60 μm. Subsequently, the composite-coated copper wire was coated and baked with polyurethane to a thickness of 10 μm to produce a composite-coated enameled copper wire of Comparative Example 2. In addition, the cutting strength of the obtained composite coated copper wire was 0.35N, which was 1.09 times that of the cutting strength 0.32N of the tough pitch copper wire having the same diameter.

(比較例3)
カーボン複合めっき皮膜の厚さを1.70μmとした以外は、実施例1と同様にして、線径0.041mmの複合被覆銅線を作製した。続いて、その複合被覆銅線にポリウレタンを10μm厚さに塗布焼付けし、比較例3の複合被覆エナメル銅線を作製した。なお、得られた複合被覆銅線の切断強度は0.56Nであり、同一径のタフピッチ銅線の切断強度0.33Nと比較して1.69倍であった。
(Comparative Example 3)
A composite coated copper wire having a wire diameter of 0.041 mm was produced in the same manner as in Example 1 except that the thickness of the carbon composite plating film was 1.70 μm. Subsequently, the composite-coated copper wire was coated and baked with polyurethane to a thickness of 10 μm to produce a composite-coated enameled copper wire of Comparative Example 3. In addition, the cutting strength of the obtained composite coated copper wire was 0.56N, which was 1.69 times that of the cutting strength 0.33N of the tough pitch copper wire having the same diameter.

(実験及び結果)
図4は、実施例1の複合被覆エナメル銅線と、比較例1,2のエナメル被膜銅線とのはんだ溶食性について、千住金属工業KK製鉛フリーはんだ商品名:M705(Sn−3.0Ag−0.5Cu)の溶融はんだを400℃に加熱したはんだバス中に任意の時間浸漬させ、その後はんだを除去し、導体の線径をマイクロメーターにて測定し、耐はんだ溶食性を確認した。その結果、本発明に係る複合被覆エナメル銅線は、はんだ細りの抑制効果が顕著であった。また、実施例2〜8の複合被覆エナメル銅線も同様であった。特に、実施例8の複合被覆エナメル銅線は、複合被覆銅線をダイヤモンドダイスで線引き加工したにもかかわらず、ダイの摩耗の程度は通常のタフピッチ銅線を線引きする場合とあまり変わらなかった。
(Experiment and results)
FIG. 4 shows the solder corrosion resistance of the composite-coated enameled copper wire of Example 1 and the enamel-coated copper wires of Comparative Examples 1 and 2, a lead-free solder product name manufactured by Senju Metal Industry KK: M705 (Sn-3.0Ag The -0.5Cu) molten solder was immersed in a solder bath heated to 400 ° C. for an arbitrary period of time, and then the solder was removed, and the conductor wire diameter was measured with a micrometer to confirm solder corrosion resistance. As a result, the composite coated enameled copper wire according to the present invention has a remarkable effect of suppressing solder thinning. The same applies to the composite-coated enameled copper wires of Examples 2 to 8. In particular, in the composite-coated enameled copper wire of Example 8, although the composite-coated copper wire was drawn with a diamond die, the degree of wear of the die was not much different from the case of drawing a normal tough pitch copper wire.

一方、比較例2の複合被覆エナメル銅線は、はんだ細りの抑制効果が十分ではなく、また、比較例3の複合被覆エナメル銅線は、コイル巻線中にスプリングバック現象が生じてコイル巻線に支障が生じた。なお、図5は、実施例1で得られた複合被覆銅線のめっき表面の電子顕微鏡写真であり、(a)はカーボン複合めっき皮膜形成後のめっき表面であり、(b)ははんだ付け可能なめっき皮膜形成後のめっき表面である。このとき、上段は5000倍の電子顕微鏡写真であり、下段は2000倍の電子顕微鏡写真である。   On the other hand, the composite-coated enameled copper wire of Comparative Example 2 does not have a sufficient effect of suppressing solder thinning, and the composite-coated enameled copper wire of Comparative Example 3 causes a springback phenomenon in the coil winding, resulting in coil winding. Troubled. 5 is an electron micrograph of the plated surface of the composite coated copper wire obtained in Example 1, (a) is the plated surface after the carbon composite plating film is formed, and (b) is solderable. It is the plating surface after a plating film formation. At this time, the upper row is an electron micrograph at 5000 times, and the lower row is an electron micrograph at 2000 times.

本発明の複合被覆銅線の一例を示す断面図である。It is sectional drawing which shows an example of the composite covering copper wire of this invention. 本発明の複合被覆エナメル銅線の一例を示す断面図である。It is sectional drawing which shows an example of the composite covering enameled copper wire of this invention. 本発明の複合被覆エナメル銅線の他の一例を示す断面図である。It is sectional drawing which shows another example of the composite covering enameled copper wire of this invention. 実施例1の複合被覆エナメル銅線と比較例1,2のエナメル銅線のはんだ溶食試験結果を示すグラフである。It is a graph which shows the solder corrosion test result of the composite covering enameled copper wire of Example 1, and the enameled copper wire of Comparative Examples 1 and 2. 実施例1で得られた複合被覆銅線のめっき表面の電子顕微鏡写真であり、(a)はカーボン複合めっき皮膜形成後のめっき表面であり、(b)ははんだ付け可能なめっき皮膜形成後のめっき表面である。It is an electron micrograph of the plating surface of the composite covering copper wire obtained in Example 1, (a) is a plating surface after carbon composite plating film formation, (b) is after soldering plating film formation. It is a plating surface.

符号の説明Explanation of symbols

10 複合被覆銅線
11 中心導体
12 カーボン複合めっき皮膜
13 はんだ付け可能なめっき皮膜
20,30 複合被覆エナメル銅線
21 絶縁エナメル被膜
31 融着エナメル被膜
DESCRIPTION OF SYMBOLS 10 Composite coated copper wire 11 Center conductor 12 Carbon composite plating film 13 Solderable plating film 20, 30 Composite coated enameled copper wire 21 Insulating enamel coating 31 Fused enamel coating

Claims (4)

銅又は銅合金からなる中心導体と、当該中心導体の外周上に形成されたカーボン複合めっき皮膜と、最外層に形成されたはんだ付け可能なめっき皮膜とを少なくとも有し、前記カーボン複合めっき皮膜が、カーボンファイバー又はカーボンナノチューブと、銅、金及び銀の群から選ばれる金属とを有する複合めっき皮膜であることを特徴とする複合被覆銅線。 A central conductor made of copper or a copper alloy, and carbon composite coating formed on the outer periphery of the central conductor, at least organic and solderable plating film formed on the outermost layer, the carbon composite plating film A composite coated copper wire comprising a composite plating film comprising carbon fiber or carbon nanotube and a metal selected from the group consisting of copper, gold and silver . 前記カーボン複合めっき皮膜の厚さt(μm)が、0.7<t<1.6の範囲内にあることを特徴とする請求項1に記載の複合被覆銅線。 2. The composite coated copper wire according to claim 1, wherein a thickness t (μm) of the carbon composite plating film is in a range of 0.7 <t <1.6 . 前記はんだ付け可能なめっき皮膜が、塑性加工が容易で炭素との親和力が低い金属からなるものであり、前記複合被覆銅線が、塑性加工により細径化されてなるものであり、前記塑性加工が容易で炭素との親和力が低い金属が、銅、金、銀及び錫の群から選ばれることを特徴とする請求項1又は2に記載の複合被覆銅線。 The solderable plating film, which affinity for easy carbon plastic working is made of a low metal, the composite coated copper wire state, and are not formed by diameter by plastic working, the plastic The composite coated copper wire according to claim 1 or 2 , wherein the metal that can be easily processed and has a low affinity for carbon is selected from the group consisting of copper, gold, silver, and tin . 請求項1〜のいずれかに記載の複合被覆銅線の外周に、はんだ付け可能な絶縁エナメル被膜、又は、はんだ付け可能な絶縁エナメル被膜と融着エナメル被膜が塗布焼付けされていることを特徴とする複合被覆エナメル銅線。 A solderable insulating enamel coating, or a solderable insulating enamel coating and a fusion enamel coating are applied and baked on the outer periphery of the composite coated copper wire according to any one of claims 1 to 3. Composite coated enameled copper wire.
JP2005223731A 2005-08-02 2005-08-02 Composite coated copper wire and composite coated enameled copper wire Expired - Fee Related JP4878452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005223731A JP4878452B2 (en) 2005-08-02 2005-08-02 Composite coated copper wire and composite coated enameled copper wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005223731A JP4878452B2 (en) 2005-08-02 2005-08-02 Composite coated copper wire and composite coated enameled copper wire

Publications (2)

Publication Number Publication Date
JP2007042355A JP2007042355A (en) 2007-02-15
JP4878452B2 true JP4878452B2 (en) 2012-02-15

Family

ID=37800155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005223731A Expired - Fee Related JP4878452B2 (en) 2005-08-02 2005-08-02 Composite coated copper wire and composite coated enameled copper wire

Country Status (1)

Country Link
JP (1) JP4878452B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074554A (en) * 2012-12-27 2013-05-01 昆明贵金属研究所 Novel gold-silver-copper alloy composite wire material and preparation method thereof
CN110296299A (en) * 2018-03-23 2019-10-01 中国石油化工股份有限公司 A kind of pipeline anticorrosion coating and anti-corrosion pipeline

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936114B2 (en) * 2006-09-29 2012-05-23 国立大学法人 熊本大学 Composite plating material and method for producing the same
JP5019591B2 (en) * 2007-03-29 2012-09-05 古河電気工業株式会社 Plating material having lubricating particles, method for producing the same, and electric / electronic component using the same
JP5066743B2 (en) * 2008-01-29 2012-11-07 三菱電機株式会社 Plating method and plated product provided with plating film produced by the method
JP5272933B2 (en) * 2009-07-07 2013-08-28 住友金属鉱山株式会社 Method for manufacturing plated substrate
FI20105841A0 (en) * 2010-08-09 2010-08-09 Spindeco Oy SPIN CIRCUIT IN CARBON COATED WIRES
CN107084752B (en) * 2017-04-20 2020-02-14 电子科技大学 Optical fiber microbubble concentration sensor based on nanogold film and sensing method thereof
CN110296298A (en) * 2018-03-23 2019-10-01 中国石油化工股份有限公司 A kind of pipeline anticorrosion coating and anti-corrosion pipeline
CN111462938B (en) * 2020-04-17 2021-09-14 珠海蓉胜超微线材有限公司 Copper-coated carbon nano composite flat wire and preparation method thereof
CN111599519B (en) * 2020-04-24 2021-09-10 浙江奥霖电工器材有限公司 180-level self-adhesive polyurethane enameled wire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085590A (en) * 2003-09-09 2005-03-31 Totoku Electric Co Ltd Composite coated copper wire, composite coated enamel copper wire, and composite coated fusion enamel copper wire
JP4324434B2 (en) * 2003-09-18 2009-09-02 新光電気工業株式会社 Heat dissipation member and manufacturing method thereof
JP4489561B2 (en) * 2004-06-18 2010-06-23 国立大学法人信州大学 Fibrous nanocarbon / metal composite material and method for producing the same
JP2006265667A (en) * 2005-03-24 2006-10-05 Totoku Electric Co Ltd Carbon composite plated electric wire and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074554A (en) * 2012-12-27 2013-05-01 昆明贵金属研究所 Novel gold-silver-copper alloy composite wire material and preparation method thereof
CN110296299A (en) * 2018-03-23 2019-10-01 中国石油化工股份有限公司 A kind of pipeline anticorrosion coating and anti-corrosion pipeline

Also Published As

Publication number Publication date
JP2007042355A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
JP4878452B2 (en) Composite coated copper wire and composite coated enameled copper wire
JP5319101B2 (en) Sn plating material for electronic parts
JP4372835B1 (en) Conductive member and manufacturing method thereof
JP2003293187A (en) Copper or copper alloy subjected to plating and method for manufacturing the same
JP4955268B2 (en) Fullerene composite plated electric wire, manufacturing method thereof, and fullerene composite plated enameled electric wire
JP3470795B2 (en) Copper coated aluminum wire
JP4368931B2 (en) Male terminal and manufacturing method thereof
WO2017209279A1 (en) Surface treatment material, production method thereof, and component formed using surface treatment material
WO2018124114A1 (en) Surface treatment material and article fabricated using same
JP4522970B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP6452912B1 (en) Plated wire rod and its manufacturing method, and cable, electric wire, coil and spring member formed using the same
JP5692799B2 (en) Sn plating material and method for producing the same
KR100422026B1 (en) Manufacturing method of reflow plating member, reflow plating member obtained by the method
JP5185759B2 (en) Conductive material and manufacturing method thereof
JP6535136B2 (en) SURFACE TREATMENT MATERIAL AND PARTS PRODUCED BY USING THE SAME
JPWO2019022188A1 (en) Tin-plated copper terminal material and terminal and wire end structure
JP7060514B2 (en) Conductive strip
JP5027013B2 (en) Plated square wire material for connectors
JP2005105307A (en) REFLOW-Sn-PLATED MEMBER, METHOD FOR MANUFACTURING THE MEMBER, AND COMPONENT FOR ELECTRICAL AND ELECTRONIC EQUIPMENT USING THE MEMBER
JP3378717B2 (en) Method for manufacturing reflow plated member
JP2010168666A (en) HEAT-RESISTANT TINNED STRIP OF Cu-Zn ALLOY IN WHICH WHISKER IS SUPPRESSED
JP5442385B2 (en) Conductive member and manufacturing method thereof
JP6121836B2 (en) Joining method of Ni plating material
JP2019114447A (en) Compression stranded wire conductor and production method thereof
JP2005085590A (en) Composite coated copper wire, composite coated enamel copper wire, and composite coated fusion enamel copper wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Ref document number: 4878452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees