JP5692799B2 - Sn plating material and method for producing the same - Google Patents

Sn plating material and method for producing the same Download PDF

Info

Publication number
JP5692799B2
JP5692799B2 JP2011068177A JP2011068177A JP5692799B2 JP 5692799 B2 JP5692799 B2 JP 5692799B2 JP 2011068177 A JP2011068177 A JP 2011068177A JP 2011068177 A JP2011068177 A JP 2011068177A JP 5692799 B2 JP5692799 B2 JP 5692799B2
Authority
JP
Japan
Prior art keywords
plating
layer
thickness
plating layer
pure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011068177A
Other languages
Japanese (ja)
Other versions
JP2012201932A (en
Inventor
宏人 成枝
宏人 成枝
暁史 小野寺
暁史 小野寺
達則 村田
達則 村田
章 菅原
章 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2011068177A priority Critical patent/JP5692799B2/en
Publication of JP2012201932A publication Critical patent/JP2012201932A/en
Application granted granted Critical
Publication of JP5692799B2 publication Critical patent/JP5692799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、Snめっき材およびその製造方法に関し、特に、挿抜可能な接続端子などの材料として使用されるSnめっき材およびその製造方法に関する。   The present invention relates to an Sn plating material and a method for manufacturing the same, and more particularly, to an Sn plating material used as a material such as a connection terminal that can be inserted and removed and a method for manufacturing the same.

従来、挿抜可能な接続端子の材料として、銅や銅合金などの導体素材の最外層にSnめっきを施したSnめっき材が使用されている。特に、Snめっき材は、接触抵抗が小さく、接触信頼性、耐食性、はんだ付け性、経済性などの観点から、自動車、携帯電話、パソコンなどの情報通信機器、ロボットなどの産業機器の制御基板、コネクタ、リードフレーム、リレー、スイッチなどの端子やバスバーの材料として使用されている。   Conventionally, an Sn plated material obtained by applying Sn plating to the outermost layer of a conductor material such as copper or copper alloy has been used as a material for a connection terminal that can be inserted and removed. In particular, Sn plating materials have low contact resistance, and from the viewpoints of contact reliability, corrosion resistance, solderability, economy, etc., control boards for industrial equipment such as automobiles, mobile phones, personal computers and other industrial equipment such as robots, Used as a material for terminals and bus bars of connectors, lead frames, relays, switches, etc.

一般に、このようなSnめっきは、電気めっきによって行われており、Snめっき材の内部応力を除去してウイスカの発生を抑制するために、電気めっきの直後にリフロー処理(Sn溶融処理)が行われている。このようにSnめっき後にリフロー処理を行うと、Snの一部が素材や下地成分に拡散して化合物層を形成し、この化合物層の上に柔らかい溶融凝固組織になったSn層(以下「純Sn層」という)が形成される。この純Sn層は、優れた接触信頼性、耐食性およびはんだ付け性を得るために極めて重要な役割を果たす。   In general, such Sn plating is performed by electroplating, and a reflow process (Sn melting process) is performed immediately after electroplating in order to remove internal stress of the Sn plating material and suppress the generation of whiskers. It has been broken. When the reflow treatment is performed after Sn plating in this way, a part of Sn diffuses into the material and the base component to form a compound layer, and a Sn layer (hereinafter referred to as “pure”) having a soft molten and solidified structure on this compound layer. Sn layer ") is formed. This pure Sn layer plays an extremely important role in order to obtain excellent contact reliability, corrosion resistance and solderability.

しかし、純Sn層は軟質で変形し易いため、リフロー処理を施したSnめっき材を挿抜可能な接続端子などの材料として使用すると、接続端子の挿入時に表面が削れて摩擦係数が高くなって挿入力が高くなるという問題がある。また、自動車などの接続端子では、端子の多極化が進んでおり、端子の数に比例して組立て時の挿入力が上昇し、作業負荷が問題になっている。   However, since the pure Sn layer is soft and easily deformed, if the Sn-plated material subjected to reflow processing is used as a material such as a connection terminal that can be inserted and removed, the surface is scraped when the connection terminal is inserted and the friction coefficient is increased. There is a problem that power becomes high. In connection terminals of automobiles and the like, the number of terminals is increasing, and the insertion force at the time of assembly increases in proportion to the number of terminals, and the work load becomes a problem.

このような問題を解消するため、リフロー処理を施したSnめっき材では、軟質層である純Sn層の膜厚を薄くして、リフロー処理により硬質なCu−Sn化合物層などの化合物層を下地に形成することによって、摩擦係数の低減を図っている。しかし、純Sn層を薄くすると、素材や下地の成分が経時変化により最表面に速く拡散して耐熱性や接触信頼性が低下する。そのため、Cu−Sn化合物層の下層に拡散抑制層としてNi層を挿入する方法が提案されている(例えば、特許文献1参照)。   In order to solve such problems, in the Sn plating material subjected to reflow treatment, the film thickness of the pure Sn layer, which is a soft layer, is reduced, and a compound layer such as a hard Cu—Sn compound layer is ground by reflow treatment. Thus, the friction coefficient is reduced. However, when the pure Sn layer is thinned, the material and the base component diffuse quickly to the outermost surface due to changes over time, and heat resistance and contact reliability are lowered. Therefore, a method of inserting a Ni layer as a diffusion suppressing layer under the Cu—Sn compound layer has been proposed (see, for example, Patent Document 1).

また、素材の表面に算術平均粗さRaが0.15μm以上の凹凸を形成して、凸部においてCu−Sn化合物層を露出させることによって、挿入力を低くする方法も提案されている(例えば、特許文献2参照)。   In addition, a method of reducing the insertion force by forming irregularities having an arithmetic average roughness Ra of 0.15 μm or more on the surface of the material and exposing the Cu—Sn compound layer at the convex portions (for example, , See Patent Document 2).

また、Snを含む鋼合金の基材を加熱して酸化処理し、水素イオン濃度を所定の範囲に調整したフッ素化合物溶液に浸した後に、下地用金属をめっきすることにより直径10〜100μmの基材の複数の凹部を形成し、接触用金属をめっきし、潤滑物質を塗布して、充分な耐摩耗性のコンタクトを得る方法も提案されている(例えば、特許文献3参照)。   In addition, a base material having a diameter of 10 to 100 μm is obtained by plating a base metal after heating and oxidizing a base material of a steel alloy containing Sn and immersing it in a fluorine compound solution whose hydrogen ion concentration is adjusted to a predetermined range. There has also been proposed a method in which a plurality of concave portions of a material is formed, a contact metal is plated, and a lubricant is applied to obtain a contact with sufficient wear resistance (see, for example, Patent Document 3).

さらに、Snめっき上にシラン化合物の皮膜を形成することによって、挿入力を低減する方法も提案されている(例えば、特許文献4参照)。   Furthermore, a method of reducing insertion force by forming a silane compound film on Sn plating has been proposed (see, for example, Patent Document 4).

特開2003−147579号公報(段落番号0007)JP 2003-147579 A (paragraph number 0007) 特開2006−183068号公報(段落番号0012−0013)JP 2006-183068 A (paragraph number 0012-0013) 特開2006−202569号公報(段落番号0012、0018)JP 2006-202569 A (paragraph numbers 0012 and 0018) 特開2003−328153号公報(段落番号0005−0006)JP 2003-328153 A (paragraph numbers 0005-0006)

しかし、特許文献1のように、Ni層を挿入する方法では、Niめっきの工程の分だけ工程数が多くなり、めっきラインの管理コストやイニシャルコストが増大する。また、純Sn層を0.2μm以下の薄い層にすると、挿入力を低くすることができるものの、Cu−Sn化合物層が露出する部分が生じて、はんだ付け性や耐食性が劣化する。   However, as in Patent Document 1, in the method of inserting the Ni layer, the number of steps increases by the Ni plating step, and the management cost and initial cost of the plating line increase. Further, when the pure Sn layer is a thin layer having a thickness of 0.2 μm or less, the insertion force can be lowered, but a portion where the Cu—Sn compound layer is exposed is generated, and solderability and corrosion resistance are deteriorated.

また、特許文献2のように、素材の表面に算術平均粗さRaが0.15μm以上の凹凸を形成してCu−Sn化合物層を露出させる方法では、Cu−Sn化合物層の露出により、特許文献1と同様にはんだ付け性や耐食性が劣化する。   In addition, as disclosed in Patent Document 2, in the method of forming irregularities having an arithmetic average roughness Ra of 0.15 μm or more on the surface of the material and exposing the Cu—Sn compound layer, the exposure of the Cu—Sn compound layer causes a patent. Similar to Reference 1, solderability and corrosion resistance deteriorate.

また、特許文献3のように、Snを含む銅合金の基材の表面に凹凸を形成する方法では、基材の種類がSnを含む銅合金に限定され、また、素材の処理に多大なコストがかかり、素材の処理により生産性が低くなる。   Further, as in Patent Document 3, in the method of forming irregularities on the surface of a copper alloy substrate containing Sn, the type of the substrate is limited to the copper alloy containing Sn, and the material processing costs are enormous. And the processing of the material reduces the productivity.

さらに、特許文献4のように、プレス加工時に使用されないシラン化合物のような潤滑材を使用すると、プレス加工により連続的に成形するにつれて、プレス機の油として指定した油以外の物質が混入することになり、プレス成形品の形状や金型の管理面の負荷が増大してコストがかかる。   In addition, when a lubricant such as a silane compound that is not used during press processing is used as in Patent Document 4, substances other than the oil designated as the oil for the press machine are mixed as it is continuously formed by press processing. As a result, the load on the shape of the press-formed product and the control surface of the mold increases and costs increase.

したがって、本発明は、このような従来の問題点に鑑み、摩擦係数が低く、耐食性、はんだ濡れ性および接触信頼性に優れたSnめっき材およびそのSnめっき材を低コストで製造する方法を提供することを目的とする。   Therefore, the present invention provides a Sn plating material having a low coefficient of friction, excellent corrosion resistance, solder wettability, and contact reliability, and a method for producing the Sn plating material at a low cost in view of such conventional problems. The purpose is to do.

本発明者らは、上記課題を解決するために鋭意研究した結果、0.2g/L以上のSn酸化物を含むSnめっき浴を使用して電気めっきにより素材上にSnめっき層を形成し、Snめっき層の表面を乾燥させた後、Snめっき層の表面を加熱してSnを溶融させた後に冷却することにより、摩擦係数が低く、耐食性、はんだ濡れ性および接触信頼性に優れたSnめっき材を低コストで製造することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors formed a Sn plating layer on the material by electroplating using a Sn plating bath containing Sn oxide of 0.2 g / L or more, Sn plating layer with low friction coefficient, corrosion resistance, solder wettability and excellent contact reliability by drying Sn plating layer surface, heating Sn plating layer surface to melt Sn and then cooling The present inventors have found that a material can be manufactured at a low cost and have completed the present invention.

すなわち、本発明によるSnめっき材の製造方法は、0.2g/L以上のSn酸化物を含むSnめっき浴を使用して電気めっきにより素材上にSnめっき層を形成し、Snめっき層の表面を乾燥させた後、Snめっき層の表面を加熱してSnを溶融させた後に冷却することを特徴とする。   That is, the manufacturing method of the Sn plating material by this invention forms an Sn plating layer on a raw material by electroplating using the Sn plating bath containing 0.2 g / L or more of Sn oxide, The surface of Sn plating layer After drying, the surface of the Sn plating layer is heated to melt Sn, and then cooled.

このSnめっき材の製造方法において、Snめっき浴が硫酸錫を含み、Sn酸化物がSnめっき浴を大気と接触させることによって生成されるのが好ましい。また、電気めっきにより形成されたSnめっき層の厚さが0.5μm以上であるのが好ましく、電気めっきにより形成されたSnめっき層の厚さに対する結晶粒度の比(結晶粒度/厚さ)が1.5以下であるのが好ましい。また、素材が銅または銅合金からなるのが好ましい。   In this method for producing a Sn plating material, it is preferable that the Sn plating bath contains tin sulfate and the Sn oxide is generated by bringing the Sn plating bath into contact with the atmosphere. The thickness of the Sn plating layer formed by electroplating is preferably 0.5 μm or more, and the ratio of the crystal grain size to the thickness of the Sn plating layer formed by electroplating (crystal grain size / thickness) is It is preferably 1.5 or less. Moreover, it is preferable that a raw material consists of copper or a copper alloy.

また、上記のSnめっき材の製造方法において、Snめっき層の表面を加熱してSnを溶融させた後に冷却することにより、Snめっき層から最表面の純Sn層とその下層の化合物層を形成することができる。この場合、純Sn層の厚さが0.2μm以上であり、化合物層の厚さが0.4μm以上であるのが好ましい。また、素材が銅または銅合金からなり、化合物層がCu−Sn化合物層であるのが好ましい。   Moreover, in the manufacturing method of said Sn plating material, the surface of Sn plating layer is heated, and after melting Sn, it cools, and the outermost pure Sn layer and the compound layer of the lower layer are formed from Sn plating layer can do. In this case, the thickness of the pure Sn layer is preferably 0.2 μm or more, and the thickness of the compound layer is preferably 0.4 μm or more. Moreover, it is preferable that a raw material consists of copper or a copper alloy, and a compound layer is a Cu-Sn compound layer.

さらに、上記のSnめっき材の製造方法において、Snめっき層の表面を加熱してSnを溶融させた後に冷却したSnめっき材の表面の1575μmの領域に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数が50個以上であるのが好ましい。また、Snめっき層の表面の光学濃度が1.0以下であるのが好ましい。さらに、Snめっき層を加熱してSnを溶融させた後に冷却した後に、Snめっき層の表面に潤滑油を塗布するのが好ましい。この場合、Snめっき層の表面に塗布された潤滑油の量がSnめっき層の表面の面積(表面の粗さを考慮せずに平面としたときの面積)に対して20mg/dm以上であるのが好ましい。 Further, in the above-described method for manufacturing a Sn-plated material, 1575Myuemu region formed area 10 [mu] m 2 or less at a depth of 2 of the surface of the cooled Sn-plated material after heating the surface of the Sn-plated layer is melted Sn It is preferable that the number of minute recesses of 0.1 μm or more is 50 or more. Moreover, it is preferable that the optical density of the surface of Sn plating layer is 1.0 or less. Furthermore, it is preferable to apply a lubricating oil to the surface of the Sn plating layer after cooling the Sn plating layer by heating and melting Sn. In this case, the amount of the lubricating oil applied to the surface of the Sn plating layer is 20 mg / dm 2 or more with respect to the surface area of the Sn plating layer (the area when the surface is flat without considering the surface roughness). Preferably there is.

また、本発明によるSnめっき材は、素材上に形成されたSnめっき層の表面の1575μmの領域に面積10μm以下で深さ0.1μm以上の微小凹部が50個以上形成されていることを特徴とする。 Moreover, Sn-plated material according to the present invention, the depth 0.1μm or more micro-recesses in the area of 10 [mu] m 2 or less in the region of 1575Myuemu 2 of the surface of the Sn-plated layer formed on the material is formed 50 or more It is characterized by.

このSnめっき材において、素材が銅または銅合金からなるのが好ましい。また、Snめっき層が、最表面側の純Sn層と、この純Sn層と素材との間に形成された化合物層とからなるのが好ましい。この場合、純Sn層の厚さが0.2μm以上であり、化合物層の厚さが0.4μm以上であるのが好ましい。また、素材が銅または銅合金からなり、化合物層がCu−Sn化合物層であるのが好ましい。また、Snめっき材の光学濃度が1.0以下であるのが好ましい。   In this Sn plated material, the material is preferably made of copper or a copper alloy. Moreover, it is preferable that the Sn plating layer is composed of a pure Sn layer on the outermost surface side and a compound layer formed between the pure Sn layer and the material. In this case, the thickness of the pure Sn layer is preferably 0.2 μm or more, and the thickness of the compound layer is preferably 0.4 μm or more. Moreover, it is preferable that a raw material consists of copper or a copper alloy, and a compound layer is a Cu-Sn compound layer. Moreover, it is preferable that the optical density of Sn plating material is 1.0 or less.

また、上記のSnめっき材において、微小凹部が形成されたSnめっき層の表面に潤滑油が塗布されているのが好ましい。この場合、Snめっき材の摩擦係数が0.25以下であるのが好ましい。Snめっき層の表面に塗布された潤滑油の量がSnめっき層の表面の面積(表面を平面としたときの面積)に対して20mg/dm以上であるのが好ましい。 Further, in the above Sn plating material, it is preferable that a lubricating oil is applied to the surface of the Sn plating layer in which the minute recesses are formed. In this case, it is preferable that the friction coefficient of the Sn plating material is 0.25 or less. The amount of lubricating oil applied to the surface of the Sn plating layer is preferably 20 mg / dm 2 or more with respect to the surface area of the Sn plating layer (area when the surface is a flat surface).

本発明によれば、摩擦係数が低く、耐食性、はんだ濡れ性および接触信頼性に優れたSnめっき材を低コストで製造することができる。   According to the present invention, a Sn plating material having a low friction coefficient and excellent corrosion resistance, solder wettability, and contact reliability can be produced at low cost.

本発明によるSnめっき材の製造方法の実施の形態では、0.2g/L以上のSn酸化物を含むSnめっき浴を使用して電気めっきにより銅や銅合金などからなる素材上にSnめっき層を形成し、Snめっき層の表面を乾燥させた後、Snめっき層の表面を加熱してSnを溶融させた後に冷却する。   In the embodiment of the method for producing a Sn plating material according to the present invention, a Sn plating layer is formed on a material made of copper, a copper alloy, or the like by electroplating using a Sn plating bath containing Sn oxide of 0.2 g / L or more. After drying the surface of the Sn plating layer, the surface of the Sn plating layer is heated to melt Sn, and then cooled.

このSnめっき材の製造方法において、電気めっきにより素材上にSnめっき層を形成した後に、Snめっき層の表面を乾燥させるのは、表面が濡れたままでは、表面が酸化し難く、Snめっき層の表面を加熱してSnを溶融させる際にSnめっき層が均一に溶けて広がり易くなって、Snめっき層の表面に微小凹部を形成し難くなるからである。   In this manufacturing method of the Sn plating material, after forming the Sn plating layer on the material by electroplating, the surface of the Sn plating layer is dried because the surface is difficult to oxidize when the surface is wet. This is because when the surface is heated to melt Sn, the Sn plating layer is uniformly melted and spreads easily, and it becomes difficult to form minute recesses on the surface of the Sn plating layer.

また、Snめっき浴は、0.2g/L以上のSn酸化物を含み、1g/L以上のSn酸化物を含むのが好ましい。Snめっき浴がSn酸化物を含むと、電気めっきの際にSn酸化物がSn結晶の内部、表面および粒界に巻き込まれて、Snめっき層の表面を加熱してSnを溶融させる際にSnめっき層が均一に溶けて広がるのを抑制すると考えられ、また、Snめっき浴中のSn酸化物の量が0.2g/Lより少ないと、Snを溶融させる際にSnめっき層が均一に溶けて広がり易くなってSnめっき層の表面に微小凹部を形成し難くなるからである。また、Snめっき浴が硫酸錫を含み、Snめっき浴に空気を吹き込んだり、Snめっき浴を攪拌または循環させて大気と接触させることによって、Sn酸化物がSnめっき浴中に生成されるのが好ましい。   The Sn plating bath preferably contains 0.2 g / L or more of Sn oxide, and preferably contains 1 g / L or more of Sn oxide. When the Sn plating bath contains Sn oxide, Sn oxide is caught in the inside, surface and grain boundary of the Sn crystal during electroplating, and Sn is melted by heating the surface of the Sn plating layer to melt Sn. It is considered that the plating layer is prevented from melting and spreading uniformly, and when the amount of Sn oxide in the Sn plating bath is less than 0.2 g / L, the Sn plating layer is uniformly melted when melting Sn. This is because it becomes easy to spread and it becomes difficult to form minute recesses on the surface of the Sn plating layer. Further, the Sn plating bath contains tin sulfate, and Sn oxide is produced in the Sn plating bath by blowing air into the Sn plating bath or by stirring or circulating the Sn plating bath and contacting with the atmosphere. preferable.

また、電気めっきの際の電流密度を3〜12A/dmにするのが好ましく、電気めっきにより形成されるSnめっき層の厚さが0.5μm以上であるのが好ましく、0.8μm以上であるのがさらに好ましい。また、電気めっきにより形成されるSnめっき層の結晶粒度が1.7μm以下であるのが好ましく、1.5μm以下であるのがさらに好ましい。さらに、Snめっき層の厚さに対する結晶粒度の比(結晶粒度/厚さ)が1.5以下であるのが好ましく、1.1以下であるのがさらに好ましい。結晶粒度/厚さが1.5より大きいと、粒界が減少してSnめっき層の表面に微小凹部を形成し難くなるからである。 The current density during electroplating is preferably 3 to 12 A / dm 2. The thickness of the Sn plating layer formed by electroplating is preferably 0.5 μm or more, and is 0.8 μm or more. More preferably. Further, the grain size of the Sn plating layer formed by electroplating is preferably 1.7 μm or less, and more preferably 1.5 μm or less. Furthermore, the ratio of crystal grain size to the thickness of the Sn plating layer (crystal grain size / thickness) is preferably 1.5 or less, and more preferably 1.1 or less. This is because if the crystal grain size / thickness is larger than 1.5, the grain boundary is reduced, and it becomes difficult to form minute recesses on the surface of the Sn plating layer.

また、Snめっき層の表面を加熱してSnを溶融させた後に冷却することにより、Snめっき層から最表面の純Sn層とその下層の化合物層(素材が銅または銅合金の場合にはCu−Sn化合物層)を形成することができる。この場合、純Sn層の厚さが0.2〜1.5μmであるのが好ましく、0.4〜1.5μmであるのがさらに好ましい。純Sn層の厚さが0.2μmより薄いとSnめっきとしての特性を発揮できず、1.5μmより厚いとコストが高くなるからである。また、化合物層の厚さが0.4〜1.5μmであるのが好ましく、0.6〜1.5μmであるのがさらに好ましい。化合物層の厚さが0.4μmより薄いと純Sn層の下に硬質の化合物層を形成して挿入力を低下させる効果を十分に得ることができず、1.5μmより厚いと曲げ加工時にSnめっき材が割れ易くなるからである。   In addition, by heating the surface of the Sn plating layer to melt Sn and then cooling it, the outermost pure Sn layer and the lower compound layer (Cu when the material is copper or copper alloy) are cooled from the Sn plating layer. -Sn compound layer) can be formed. In this case, the thickness of the pure Sn layer is preferably 0.2 to 1.5 μm, and more preferably 0.4 to 1.5 μm. This is because if the thickness of the pure Sn layer is thinner than 0.2 μm, the characteristics as Sn plating cannot be exhibited, and if it is thicker than 1.5 μm, the cost increases. Moreover, it is preferable that the thickness of a compound layer is 0.4-1.5 micrometers, and it is still more preferable that it is 0.6-1.5 micrometers. If the thickness of the compound layer is less than 0.4 μm, the effect of reducing the insertion force by forming a hard compound layer under the pure Sn layer cannot be obtained sufficiently. This is because the Sn plating material is easily broken.

また、Snめっき層の表面を加熱してSnを溶融させた後に冷却したSnめっき材の表面の1575μmの領域に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数が50個以上であるのが好ましい。深さが0.1μmより浅い微小凹部や、微小凹部の数が50個未満では、Snめっき層の表面に潤滑油を十分に保持することができないからである。 Further, the number of cooled Sn 1575Myuemu 2 regions in the formed area 10 [mu] m 2 depth 0.1μm or more micro-recess below the surface of the plated material was melted and Sn by heating the surface of the Sn plated layer The number is preferably 50 or more. This is because the lubricating oil cannot be sufficiently retained on the surface of the Sn plating layer if the depth is less than 0.1 μm or the number of the minute recesses is less than 50.

また、Snめっき層の表面の光学濃度が1.0以下であるのが好ましい。光学濃度が1.0より高いと、Snめっき層の表面に潤滑油を十分に保持して摩擦係数を低下させる効果を発揮することができないからである。   Moreover, it is preferable that the optical density of the surface of Sn plating layer is 1.0 or less. This is because if the optical density is higher than 1.0, the effect of reducing the friction coefficient by sufficiently retaining the lubricating oil on the surface of the Sn plating layer cannot be exhibited.

また、Snめっき層の表面を加熱してSnを溶融させた後に冷却した後に、Snめっき層の表面に潤滑油を塗布するのが好ましい。このように微小凹部が形成されたSnめっき層の表面に潤滑油を塗布すると、微小凹部によって潤滑油が保持されて、Snめっき材の摩擦係数を大幅に低くすることができ、Snめっき材を挿抜可能な接続端子の材料として使用した場合に挿入力を飛躍的に低減することができるからである。この場合、Snめっき層の表面に塗布された潤滑油の量がSnめっき層の表面の面積に対して20mg/dm以上であるのが好ましい。潤滑油の量が20mg/dm未満であると、潤滑油が不足して摩擦係数を低下させる効果を発揮することができないからである。 Moreover, it is preferable to apply the lubricating oil to the surface of the Sn plating layer after cooling the surface of the Sn plating layer by heating it and then melting Sn. When lubricating oil is applied to the surface of the Sn plating layer in which the minute recesses are formed in this way, the lubricating oil is held by the minute recesses, and the friction coefficient of the Sn plating material can be greatly reduced. This is because the insertion force can be drastically reduced when used as a material for a connectable connection terminal. In this case, the amount of lubricating oil applied to the surface of the Sn plating layer is preferably 20 mg / dm 2 or more with respect to the surface area of the Sn plating layer. This is because if the amount of the lubricating oil is less than 20 mg / dm 2 , the lubricating oil is insufficient and the effect of reducing the friction coefficient cannot be exhibited.

また、本発明によるSnめっき材は、銅や銅合金などからなる素材上に形成されたSnめっき層の表面の1575μmの領域に面積10μm以下で深さ0.1μm以上の微小凹部が50個以上形成されている。 Moreover, Sn-plated material according to the present invention, the depth 0.1μm or more micro-recesses in the area of 10 [mu] m 2 or less in the region of 1575Myuemu 2 of the surface of the copper or copper alloy Sn-plated layer formed on the material consisting of a 50 More than one is formed.

このSnめっき材において、Snめっき層が、最表面側の純Sn層と、この純Sn層と素材との間に形成された化合物層(素材が銅または銅合金の場合にはCu−Sn化合物層)とからなるのが好ましい。この場合、純Sn層の厚さが0.2μm以上であり、化合物層の厚さが0.4μm以上であるのが好ましい。   In this Sn plating material, the Sn plating layer is composed of a pure Sn layer on the outermost surface side, and a compound layer formed between the pure Sn layer and the material (Cu—Sn compound when the material is copper or a copper alloy). Layer). In this case, the thickness of the pure Sn layer is preferably 0.2 μm or more, and the thickness of the compound layer is preferably 0.4 μm or more.

また、上記のSnめっき材において、Snめっき材の光学濃度が1.0以下であるのが好ましい。また、微小凹部が形成されたSnめっき層の表面に潤滑油が塗布されているのが好ましい。この場合、Snめっき材の摩擦係数が0.25以下であるのが好ましい。また、Snめっき層の表面に塗布された潤滑油の量がSnめっき層の表面の面積に対して20mg/dm以上であるのが好ましい。 Moreover, in said Sn plating material, it is preferable that the optical density of Sn plating material is 1.0 or less. Moreover, it is preferable that lubricating oil is apply | coated to the surface of Sn plating layer in which the micro recessed part was formed. In this case, it is preferable that the friction coefficient of the Sn plating material is 0.25 or less. Moreover, it is preferable that the amount of the lubricating oil applied to the surface of the Sn plating layer is 20 mg / dm 2 or more with respect to the surface area of the Sn plating layer.

なお、潤滑油として、パラフィン系鉱油、ナフテン系鉱油、合成油などの基油に各種の添加物が添加された潤滑油を使用することができるが、端子やバスバーをプレス成形する際に使用するプレス油を使用するのが管理面から好ましい。   As lubricating oil, lubricating oil in which various additives are added to base oil such as paraffinic mineral oil, naphthenic mineral oil, synthetic oil can be used, but it is used when press molding terminals and bus bars. Use of press oil is preferable from the viewpoint of management.

以下、本発明によるSnめっき材およびその製造方法の実施例について詳細に説明する。   Hereinafter, examples of the Sn plating material and the manufacturing method thereof according to the present invention will be described in detail.

[実施例1]
まず、素材(被めっき材)として、(ミツトヨ株式会社製のビッカース硬度計により荷重0.5kgfで測定した)ビッカース硬さが105で長さ100mm×幅60mm×厚さ0.4mmの純銅板(無酸素銅C1020)を用意し、前処理として、電解脱脂を行った後に水洗し、その後、酸洗した後に水洗した。
[Example 1]
First, as a material (material to be plated), a pure copper plate having a Vickers hardness of 105 (measured with a load of 0.5 kgf using a Vickers hardness meter manufactured by Mitutoyo Corporation) and having a length of 100 mm × width of 60 mm × thickness of 0.4 mm ( Oxygen-free copper C1020) was prepared, and as a pretreatment, it was washed with water after electrolytic degreasing, and then washed with water after pickling.

また、硫酸Sn(SnSO)60g/Lと硫酸(HSO)75g/Lとクレゾールスルホン酸30g/Lとβナフトール1g/Lを含有する1Lの水溶液に空気を1L/分の流量で150分間吹き込んで酸化Sn1g/Lを生成させてめっき浴を作製した。なお、電子線マイクロアナライザ(EPMA)によって、生成した物質がSnと酸素(O)で構成される物質であることを確認した。また、めっき浴中の酸化Snの生成量は、空気の吹き込み量(L/分)と吹き込み時間(分)を調整して酸化Snを生成させた後に、ろ紙(ADVANTEC社製のGA−100(保留粒子径1.0mm))によりろ過して液中の固体分を採取し、扇風機で24時間乾燥させて重量を測定することによって定量した。 In addition, air is supplied at a flow rate of 1 L / min to 1 L of an aqueous solution containing Sn (SnSO 4 ) 60 g / L, 75 g / L sulfuric acid (H 2 SO 4 ), 30 g / L cresolsulfonic acid, and 1 g / L β-naphthol. It was blown for 150 minutes to produce oxidized Sn 1 g / L to prepare a plating bath. In addition, it confirmed that the produced | generated substance was a substance comprised by Sn and oxygen (O) by the electron beam microanalyzer (EPMA). Further, the amount of oxidized Sn in the plating bath is adjusted by adjusting the air blowing amount (L / min) and blowing time (min) to generate oxidized Sn, and then filter paper (GA-100 manufactured by ADVANTEC Co., Ltd.). The solid content in the liquid was collected by filtration through a retained particle size of 1.0 mm)), dried by a fan for 24 hours, and quantified by measuring the weight.

次に、前処理済の素材とSn板を40mm離間させて1Lビーカーに配置し、作製しためっき浴1Lをビーカーに入れ、ビーカー中のスターラーを300rpmで回転させてめっき浴を攪拌し、液温20℃に制御し、素材およびSn板をそれぞれ陰極および陽極として、電流密度7A/dmで43秒間通電して、素材の両面のそれぞれ長さ50mm×幅60mmの領域にSnめっき層を形成した。 Next, the pre-processed material and the Sn plate are spaced apart by 40 mm and placed in a 1 L beaker, the prepared plating bath 1 L is placed in the beaker, the stirrer in the beaker is rotated at 300 rpm, the plating bath is stirred, and the liquid temperature The temperature was controlled at 20 ° C., and the material and the Sn plate were used as a cathode and an anode, respectively, and current was applied at a current density of 7 A / dm 2 for 43 seconds to form Sn plating layers on both sides of the material with a length of 50 mm × width of 60 mm. .

このように素材上にSnめっき層を形成したSnめっき材を水洗し、Snめっき材の表面をドライヤーで50℃に加熱して1分間乾燥させた後、1分以内にSnめっき材のリフロー処理を行った。このリフロー処理(Sn溶融処理)は、近赤外線ヒーター(ハイベック社製)によって大気雰囲気においてSnめっき材を加熱して、Snめっき層の表面が溶融した後、10秒以内に温度20℃の水槽内に浸漬して冷却した。   The Sn plating material in which the Sn plating layer is formed on the material is washed with water, the surface of the Sn plating material is heated to 50 ° C. with a dryer and dried for 1 minute, and then the reflow treatment of the Sn plating material is performed within 1 minute. Went. This reflow process (Sn melting process) is carried out in a water tank at a temperature of 20 ° C. within 10 seconds after the surface of the Sn plating layer is melted by heating the Sn plating material in the air atmosphere by a near infrared heater (manufactured by Hibeck). It was immersed in and cooled.

このようにリフロー処理を行ったSnめっき材の表面に、プレスや切断加工などの塑性加工に使用する潤滑油(JX日鉱日石エネルギー株式会社製のユニプレスPA5)50mg/dmを塗布した。なお、潤滑油の塗布量は、電子天秤を用いて測定した。 Lubricating oil (Unipress PA5 manufactured by JX Nippon Mining & Energy Corporation) 50 mg / dm 2 used for plastic processing such as pressing and cutting was applied to the surface of the Sn plating material that had been subjected to reflow treatment in this way. The amount of lubricant applied was measured using an electronic balance.

このようにリフロー処理を行った後に潤滑油を塗布したSnめっき材の製造条件を表1に示す。   Table 1 shows the manufacturing conditions of the Sn plating material to which the lubricating oil is applied after the reflow treatment as described above.

Figure 0005692799
Figure 0005692799

リフロー処理前のSnめっき材について、Snめっき層の厚さ(電析厚さ)を測定し、電析Snの結晶粒度を求め、電析結晶粒度/電析厚さを算出した。   About the Sn plating material before a reflow process, the thickness (electrodeposition thickness) of Sn plating layer was measured, the crystal grain size of electrodeposition Sn was calculated | required, and the electrodeposition crystal grain size / electrodeposition thickness was computed.

Snめっき層の厚さ(電析厚さ)は、蛍光X線膜厚計(セイコーインスツル株式会社製)を用いて測定し、電析Snの結晶粒度は、電子線マイクロアナライザ(EPMA)により得られる二次電子像(SEI)を用いてSnめっき層の表面を倍率5000倍に拡大して切断法(JIS H0501)によって求めた。その結果、電析厚さは1.0μm、電析結晶粒度は0.9μmであり、電析結晶粒度/電析厚さは0.9であった。これらの結果を表2に示す。   The thickness (electrodeposition thickness) of the Sn plating layer was measured using a fluorescent X-ray film thickness meter (manufactured by Seiko Instruments Inc.), and the crystal grain size of electrodeposited Sn was measured by an electron beam microanalyzer (EPMA). Using the obtained secondary electron image (SEI), the surface of the Sn plating layer was magnified 5000 times and determined by a cutting method (JIS H0501). As a result, the deposited thickness was 1.0 μm, the deposited crystal grain size was 0.9 μm, and the deposited crystal grain size / deposited thickness was 0.9. These results are shown in Table 2.

Figure 0005692799
Figure 0005692799

また、リフロー処理後のSnめっき材について、表面に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数を計測し、光学濃度を測定し、純Sn層の厚さおよびCu−Sn化合物層の厚さを測定した。 In addition, for the Sn-plated material after the reflow treatment, the number of minute recesses having an area of 10 μm 2 or less and a depth of 0.1 μm or more formed on the surface was measured, the optical density was measured, the thickness of the pure Sn layer and Cu -The thickness of the Sn compound layer was measured.

微小凹部の面積については、電子線マイクロアナライザ(EPMA)により得られる二次電子像(SEI)を用いて表面を倍率3000倍に拡大して、表面に形成された凹部の面積が10μm以下であるか否かを判定した。また、微小凹部の深さは、原子間力顕微鏡(AFM)(日本電子株式会社製のJSPM5400)を用いて計測し、微小凹部の数は、電子線マイクロアナライザ(EPMA)により得られる二次電子像(SEI)を用いて表面を倍率3000倍に拡大して35μm×45μm(=1575μm)の領域で計測した。その結果、表面に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数は200個であった。 About the area of a micro recessed part, the surface is expanded 3000 times using the secondary electron image (SEI) obtained by an electron beam microanalyzer (EPMA), and the area of the recessed part formed in the surface is 10 micrometers 2 or less. It was determined whether there was. The depth of the minute recesses is measured using an atomic force microscope (AFM) (JSPM5400 manufactured by JEOL Ltd.), and the number of minute recesses is secondary electrons obtained by an electron beam microanalyzer (EPMA). Using the image (SEI), the surface was magnified 3000 times and measured in an area of 35 μm × 45 μm (= 1575 μm 2 ). As a result, the number of minute recesses having an area of 10 μm 2 or less and a depth of 0.1 μm or more formed on the surface was 200.

表面の光学濃度は、反射濃度計(マクベス社製のRD918)を用いて測定した。この光学濃度の数値が低い程、表面の光沢度が低いことを意味している。その結果、表面の光学濃度は0.5であった。   The optical density of the surface was measured using a reflection densitometer (RD918 manufactured by Macbeth). A lower numerical value of this optical density means that the glossiness of the surface is lower. As a result, the optical density of the surface was 0.5.

純Sn層の厚さは、電解式膜厚計(中央製作所製のTH11)を用いて測定した。また、Cu−Sn化合物層の厚さは、純Sn層と同様に電解式膜厚計を用いて測定し、純Sn層の厚さの測定後に再測定を行って計測表示される値をCu−Sn化合物層の厚さとした。その結果、純Sn層の厚さは0.6μm、Cu−Sn化合物層の厚さは0.8μmであった。なお、集束イオンビーム(FIB)を用いてめっき断面を露出させ、走査イオン顕微鏡(SIM)で断面観察を行ったところ、純Sn層およびCu−Sn化合物層の厚さはいずれも電解式膜厚計で測定した厚さと同じであった。   The thickness of the pure Sn layer was measured using an electrolytic film thickness meter (TH11 manufactured by Chuo Seisakusho). Further, the thickness of the Cu—Sn compound layer is measured using an electrolytic film thickness meter in the same manner as the pure Sn layer, and the value displayed by measuring again after the measurement of the thickness of the pure Sn layer is expressed as Cu. -The thickness of the Sn compound layer. As a result, the thickness of the pure Sn layer was 0.6 μm, and the thickness of the Cu—Sn compound layer was 0.8 μm. In addition, when the plating cross section was exposed using a focused ion beam (FIB) and the cross section was observed with a scanning ion microscope (SIM), the thicknesses of the pure Sn layer and the Cu—Sn compound layer were both electrolytic film thicknesses. It was the same as the thickness measured by the meter.

これらの結果を表3に示す。なお、表3において、リフロー処理後のSnめっき材の表面に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数が0〜9個の場合を×、10〜49個の場合を△、50〜99個の場合を○、100個以上の場合を◎で示している。 These results are shown in Table 3. In Table 3, the case where the number of minute recesses having an area of 10 μm 2 or less and a depth of 0.1 μm or more formed on the surface of the Sn plating material after the reflow treatment is 0 to 9 ×, 10 to 49 The case is indicated by Δ, the case of 50 to 99 is indicated by ○, and the case of 100 or more is indicated by ◎.

Figure 0005692799
Figure 0005692799

また、潤滑油塗布後のSnめっき材について、表面の摩擦係数を算出し、はんだ濡れ性を評価し、接触信頼性を評価した。   Moreover, about the Sn plating material after lubrication oil application | coating, the friction coefficient of the surface was calculated, solder wettability was evaluated, and contact reliability was evaluated.

雄端子と雌端子の嵌合時の挿入力は、端子接圧が一定の場合に表面の摩擦係数と相関があることから、摩擦係数を測定して挿入力を評価した。摩擦係数(μ)は、リフロー処理後のSnめっき材から切り出した平板状の試験片に潤滑油を塗布して雄端子とし、Cu−1.0質量%Ni−0.9質量%Sn−0.05質量%Pのからなるビッカース硬さ180の銅合金板に厚さ1.0μmのSnめっき層を形成た後にリフロー処理して厚さ0.6μmの純Sn層の下層に厚さ0.8μmのCu−Sn層が形成されたリフローSnめっき材(微小凹部数0個)を卓上プレス機によりインデント加工(R=1.5mm)して(潤滑油を塗布しない)雌端子とし、電気接点シミュレータとステージコントローラとロードセルとロードセルアンプを組み合わせた装置(株式会社山崎精機研究所製)を使用して、ステージに固定した平板状の雄端子にインデント加工した雌端子を負荷荷重300gf、摺動速度60mm/分で7mm滑らせ、摺動距離1mmから5mmまでの4mmの区間でロードセルアンプによって検出された摺動時の力の平均値(F)を負荷荷重(N)で除して、μ=F/Nから算出した。その結果、摩擦係数は0.15であった。   Since the insertion force when the male terminal and the female terminal are fitted has a correlation with the friction coefficient of the surface when the terminal contact pressure is constant, the insertion force was evaluated by measuring the friction coefficient. The coefficient of friction (μ) is Cu-1.0 mass% Ni-0.9 mass% Sn-0 by applying lubricating oil to a flat test piece cut out from the Sn-plated material after the reflow treatment to form a male terminal. A Sn plating layer having a thickness of 1.0 μm is formed on a Vickers hardness 180 copper alloy plate made of 0.05 mass% P, and then subjected to a reflow treatment, and a thickness of 0.05 μm is formed below the pure Sn layer having a thickness of 0.6 μm. Reflow Sn plating material (with 0 micro-recesses) with a Cu-Sn layer of 8 μm is indented (R = 1.5 mm) with a desktop press machine to make female terminals (without applying lubricating oil), and electrical contacts Using a device (manufactured by Yamazaki Seiki Laboratory Co., Ltd.) that combines a simulator, a stage controller, a load cell, and a load cell amplifier, a flat male terminal fixed to the stage is indented into a female terminal with a load of 300 gf, The sliding force average value (F) detected by the load cell amplifier in a section of 4 mm from a sliding distance of 1 mm to 5 mm is divided by the load load (N) by sliding 7 mm at a moving speed of 60 mm / min. Calculated from μ = F / N. As a result, the friction coefficient was 0.15.

はんだ濡れ性の評価は、潤滑油塗布後のSnめっき材から幅10mm、長さ60mmの試験片をプレスで打ち抜いて、ソルダーチェッカ(株式会社レスカ製のSAT−5200)を用いて、85℃で相対湿度85%の環境下に24時間放置した後に、非活性フラックスを塗布し、260℃に保持したPbフリーはんだ(Sn−3質量%Ag−0.5質量%Cu)槽に浸漬速度4mm/sで長さ4mmの部分を10秒間浸漬して、めっき面を外観観察することにより、試験片のはんだに浸漬した表面積に対するはんだで濡れた部分の面積(はんだ濡れ率)を求めることによって行った。その結果、はんだ濡れ率は95%であり、はんだ濡れ性は良好であった。   Evaluation of solder wettability is performed by punching out a test piece having a width of 10 mm and a length of 60 mm from the Sn plating material after applying the lubricating oil with a press, and using a solder checker (SAT-5200 manufactured by Reska Co., Ltd.) at 85 ° C. After leaving in an environment with a relative humidity of 85% for 24 hours, an inactive flux was applied and immersed in a Pb-free solder (Sn-3 mass% Ag-0.5 mass% Cu) bath at a rate of 4 mm / This was done by immersing a portion of 4 mm in length for 10 seconds and observing the appearance of the plated surface to obtain the area of the portion wetted with solder (solder wetting ratio) relative to the surface area immersed in the solder of the test piece. . As a result, the solder wettability was 95% and the solder wettability was good.

接触信頼性の評価は、潤滑油塗布後のSnめっき材から切り出した試験片を大気雰囲気下において120℃の恒温槽内に120時間保持した後に恒温槽から取り出し、20℃の測定室において試験片の表面の接触抵抗値を(高温放置後の接触抵抗値)測定することによって行った。接触抵抗値の測定は、マイクロオームメータ(株式会社山崎精機研究所製)を使用して、開放電圧20mV、電流10mA、直径0.5mmのU型金線プローブ、最大荷重100gf、摺動有り(1mm/100gf)の条件で5回測定して、(最大荷重100gfが加えられたときの)平均値を求めた。その結果、高温放置後の接触抵抗値は1.0mΩで接触信頼性が良好であった。   The contact reliability was evaluated by holding a test piece cut out from the Sn-plated material after application of the lubricating oil in a constant temperature bath at 120 ° C. for 120 hours in the air atmosphere and then taking it out from the constant temperature bath and then testing the test piece in a 20 ° C. measurement chamber. The contact resistance value of the surface of (contact resistance value after being left at high temperature) was measured. The contact resistance value was measured using a micro-ohm meter (manufactured by Yamazaki Seiki Laboratory Co., Ltd.), an open-circuit voltage of 20 mV, a current of 10 mA, a U-shaped wire probe with a diameter of 0.5 mm, a maximum load of 100 gf, and sliding ( Measurement was performed 5 times under the condition of 1 mm / 100 gf) to obtain an average value (when a maximum load of 100 gf was applied). As a result, the contact resistance value after leaving at high temperature was 1.0 mΩ, and the contact reliability was good.

これらの結果を表4に示す。なお、表4において、はんだ濡れ率が90%以上ではんだ濡れ性が良好な場合を○、はんだ濡れ率が90%未満ではんだ濡れ性が良好でない場合を×で示し、高温放置後の接触抵抗値が2mΩ以下で接触信頼性が良好な場合を○、高温放置後の接触抵抗値が2mΩより高く接触信頼性が良好でない場合を×で示している。   These results are shown in Table 4. In Table 4, the case where the solder wettability is 90% or more and the solder wettability is good is indicated by ◯, the case where the solder wettability is less than 90% and the solder wettability is not good is indicated by x, and the contact resistance after being left at high temperature The case where the value is 2 mΩ or less and the contact reliability is good is indicated by ○, and the case where the contact resistance value after standing at high temperature is higher than 2 mΩ and the contact reliability is not good is indicated by ×.

Figure 0005692799
Figure 0005692799

[実施例2]
Snめっき層を形成する際の通電時間を34秒間としてSnめっき層を薄くした以外は、実施例1と同様の方法により、Snめっき材を作製した。このSnめっき材の製造条件を表1に示す。
[Example 2]
An Sn plating material was produced in the same manner as in Example 1 except that the energization time for forming the Sn plating layer was 34 seconds and the Sn plating layer was thinned. Table 1 shows the production conditions of the Sn plating material.

また、リフロー処理前のSnめっき材について、実施例1と同様の方法により、Snめっき層の厚さ(電析厚さ)を測定し、電析Snの結晶粒度を求め、電析結晶粒度/電析厚さを算出した。その結果、電析厚さは0.8μm、電析結晶粒度は0.8μmであり、電析結晶粒度/電析厚さは1.0であった。これらの結果を表2に示す。   Further, with respect to the Sn plating material before the reflow treatment, the thickness (electrodeposition thickness) of the Sn plating layer was measured by the same method as in Example 1 to obtain the crystal grain size of the electrodeposited Sn. The electrodeposition thickness was calculated. As a result, the deposited thickness was 0.8 μm, the deposited crystal grain size was 0.8 μm, and the deposited crystal grain size / deposited thickness was 1.0. These results are shown in Table 2.

また、リフロー処理後のSnめっき材について、実施例1と同様の方法により、表面に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数を計測し、光学濃度を測定し、純Sn層の厚さおよびCu−Sn化合物層の厚さを測定した。その結果、微小凹部の数は220個、表面の光学濃度は0.5、純Sn層の厚さは0.4μm、Cu−Sn化合物層の厚さは0.6μmであった。これらの結果を表3に示す。 Further, for the Sn-plated material after the reflow treatment, the optical density was measured by measuring the number of minute recesses having an area of 10 μm 2 or less and a depth of 0.1 μm or more formed on the surface in the same manner as in Example 1. The thickness of the pure Sn layer and the thickness of the Cu—Sn compound layer were measured. As a result, the number of minute recesses was 220, the optical density of the surface was 0.5, the thickness of the pure Sn layer was 0.4 μm, and the thickness of the Cu—Sn compound layer was 0.6 μm. These results are shown in Table 3.

また、潤滑油塗布後のSnめっき材について、実施例1と同様の方法により、表面の摩擦係数を算出し、はんだ濡れ性を評価し、接触信頼性を評価した。その結果、摩擦係数は0.14、はんだ濡れ率は90%ではんだ濡れ性が良好であり、高温放置後の接触抵抗値は1.2mΩで接触信頼性が良好であった。これらの結果を表4に示す。   Further, for the Sn plated material after applying the lubricating oil, the surface friction coefficient was calculated by the same method as in Example 1, the solder wettability was evaluated, and the contact reliability was evaluated. As a result, the coefficient of friction was 0.14, the solder wettability was 90%, and the solder wettability was good. The contact resistance value after standing at high temperature was 1.2 mΩ, and the contact reliability was good. These results are shown in Table 4.

[実施例3]
Snめっき層を形成する際の通電時間を64秒間としてSnめっき層を厚くした以外は、実施例1と同様の方法により、Snめっき材を作製した。このSnめっき材の製造条件を表1に示す。
[Example 3]
An Sn plating material was produced in the same manner as in Example 1 except that the energization time for forming the Sn plating layer was 64 seconds and the Sn plating layer was thickened. Table 1 shows the production conditions of the Sn plating material.

また、リフロー処理前のSnめっき材について、実施例1と同様の方法により、Snめっき層の厚さ(電析厚さ)を測定し、電析Snの結晶粒度を求め、電析結晶粒度/電析厚さを算出した。その結果、電析厚さは1.5μm、電析結晶粒度は1.5μmであり、電析結晶粒度/電析厚さは1.0であった。これらの結果を表2に示す。   Further, with respect to the Sn plating material before the reflow treatment, the thickness (electrodeposition thickness) of the Sn plating layer was measured by the same method as in Example 1 to obtain the crystal grain size of the electrodeposited Sn. The electrodeposition thickness was calculated. As a result, the deposited thickness was 1.5 μm, the deposited crystal grain size was 1.5 μm, and the deposited crystal grain size / deposited thickness was 1.0. These results are shown in Table 2.

また、リフロー処理後のSnめっき材について、実施例1と同様の方法により、表面に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数を計測し、光学濃度を測定し、純Sn層の厚さおよびCu−Sn化合物層の厚さを測定した。その結果、微小凹部の数は120個、表面の光学濃度は0.7、純Sn層の厚さは1.0μm、Cu−Sn化合物層の厚さは1.0μmであった。これらの結果を表3に示す。 Further, for the Sn-plated material after the reflow treatment, the optical density was measured by measuring the number of minute recesses having an area of 10 μm 2 or less and a depth of 0.1 μm or more formed on the surface in the same manner as in Example 1. The thickness of the pure Sn layer and the thickness of the Cu—Sn compound layer were measured. As a result, the number of minute recesses was 120, the optical density of the surface was 0.7, the thickness of the pure Sn layer was 1.0 μm, and the thickness of the Cu—Sn compound layer was 1.0 μm. These results are shown in Table 3.

また、潤滑油塗布後のSnめっき材について、実施例1と同様の方法により、表面の摩擦係数を算出し、はんだ濡れ性を評価し、接触信頼性を評価した。その結果、摩擦係数は0.19、はんだ濡れ率は95%ではんだ濡れ性が良好であり、高温放置後の接触抵抗値は0.9mΩで接触信頼性が良好であった。これらの結果を表4に示す。   Further, for the Sn plated material after applying the lubricating oil, the surface friction coefficient was calculated by the same method as in Example 1, the solder wettability was evaluated, and the contact reliability was evaluated. As a result, the coefficient of friction was 0.19, the solder wettability was 95%, and the solder wettability was good. The contact resistance value after standing at high temperature was 0.9 mΩ, and the contact reliability was good. These results are shown in Table 4.

[実施例4]
潤滑油の塗布量を20mg/dmと少なくした以外は、実施例1と同様の方法により、Snめっき材を作製した。このSnめっき材の製造条件を表1に示す。
[Example 4]
An Sn plating material was produced in the same manner as in Example 1 except that the amount of the lubricating oil applied was reduced to 20 mg / dm 2 . Table 1 shows the production conditions of the Sn plating material.

また、リフロー処理前のSnめっき材について、実施例1と同様の方法により、Snめっき層の厚さ(電析厚さ)を測定し、電析Snの結晶粒度を求め、電析結晶粒度/電析厚さを算出した。その結果、電析厚さは1.0μm、電析結晶粒度は0.9μmであり、電析結晶粒度/電析厚さは0.9であった。これらの結果を表2に示す。   Further, with respect to the Sn plating material before the reflow treatment, the thickness (electrodeposition thickness) of the Sn plating layer was measured by the same method as in Example 1 to obtain the crystal grain size of the electrodeposited Sn. The electrodeposition thickness was calculated. As a result, the deposited thickness was 1.0 μm, the deposited crystal grain size was 0.9 μm, and the deposited crystal grain size / deposited thickness was 0.9. These results are shown in Table 2.

また、リフロー処理後のSnめっき材について、実施例1と同様の方法により、表面に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数を計測し、光学濃度を測定し、純Sn層の厚さおよびCu−Sn化合物層の厚さを測定した。その結果、微小凹部の数は200個、表面の光学濃度は0.5、純Sn層の厚さは0.6μm、Cu−Sn化合物層の厚さは0.8μmであった。これらの結果を表3に示す。 Further, for the Sn-plated material after the reflow treatment, the optical density was measured by measuring the number of minute recesses having an area of 10 μm 2 or less and a depth of 0.1 μm or more formed on the surface in the same manner as in Example 1. The thickness of the pure Sn layer and the thickness of the Cu—Sn compound layer were measured. As a result, the number of minute recesses was 200, the optical density of the surface was 0.5, the thickness of the pure Sn layer was 0.6 μm, and the thickness of the Cu—Sn compound layer was 0.8 μm. These results are shown in Table 3.

また、潤滑油塗布後のSnめっき材について、実施例1と同様の方法により、表面の摩擦係数を算出し、はんだ濡れ性を評価し、接触信頼性を評価した。その結果、摩擦係数は0.19、はんだ濡れ率は95%ではんだ濡れ性が良好であり、高温放置後の接触抵抗値は1.0mΩで接触信頼性が良好であった。これらの結果を表4に示す。   Further, for the Sn plated material after applying the lubricating oil, the surface friction coefficient was calculated by the same method as in Example 1, the solder wettability was evaluated, and the contact reliability was evaluated. As a result, the coefficient of friction was 0.19, the solder wettability was 95%, and the solder wettability was good. The contact resistance value after standing at high temperature was 1.0 mΩ, and the contact reliability was good. These results are shown in Table 4.

[実施例5]
潤滑油の塗布量を300mg/dmと多くした以外は、実施例1と同様の方法により、Snめっき材を作製した。このSnめっき材の製造条件を表1に示す。
[Example 5]
An Sn plating material was produced by the same method as in Example 1 except that the amount of the lubricating oil applied was increased to 300 mg / dm 2 . Table 1 shows the production conditions of the Sn plating material.

また、リフロー処理前のSnめっき材について、実施例1と同様の方法により、Snめっき層の厚さ(電析厚さ)を測定し、電析Snの結晶粒度を求め、電析結晶粒度/電析厚さを算出した。その結果、電析厚さは1.0μm、電析結晶粒度は0.9μmであり、電析結晶粒度/電析厚さは0.9であった。これらの結果を表2に示す。   Further, with respect to the Sn plating material before the reflow treatment, the thickness (electrodeposition thickness) of the Sn plating layer was measured by the same method as in Example 1 to obtain the crystal grain size of the electrodeposited Sn. The electrodeposition thickness was calculated. As a result, the deposited thickness was 1.0 μm, the deposited crystal grain size was 0.9 μm, and the deposited crystal grain size / deposited thickness was 0.9. These results are shown in Table 2.

また、リフロー処理後のSnめっき材について、実施例1と同様の方法により、表面に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数を計測し、光学濃度を測定し、純Sn層の厚さおよびCu−Sn化合物層の厚さを測定した。その結果、微小凹部の数は200個、表面の光学濃度は0.5、純Sn層の厚さは0.6μm、Cu−Sn化合物層の厚さは0.8μmであった。これらの結果を表3に示す。 Further, for the Sn-plated material after the reflow treatment, the optical density was measured by measuring the number of minute recesses having an area of 10 μm 2 or less and a depth of 0.1 μm or more formed on the surface in the same manner as in Example 1. The thickness of the pure Sn layer and the thickness of the Cu—Sn compound layer were measured. As a result, the number of minute recesses was 200, the optical density of the surface was 0.5, the thickness of the pure Sn layer was 0.6 μm, and the thickness of the Cu—Sn compound layer was 0.8 μm. These results are shown in Table 3.

また、潤滑油塗布後のSnめっき材について、実施例1と同様の方法により、表面の摩擦係数を算出し、はんだ濡れ性を評価し、接触信頼性を評価した。その結果、摩擦係数は0.14、はんだ濡れ率は95%ではんだ濡れ性が良好であり、高温放置後の接触抵抗値は1.0mΩで接触信頼性が良好であった。これらの結果を表4に示す。   Further, for the Sn plated material after applying the lubricating oil, the surface friction coefficient was calculated by the same method as in Example 1, the solder wettability was evaluated, and the contact reliability was evaluated. As a result, the coefficient of friction was 0.14, the solder wettability was 95%, and the solder wettability was good. The contact resistance value after standing at high temperature was 1.0 mΩ, and the contact reliability was good. These results are shown in Table 4.

[実施例6]
空気の吹き込み時間を30分間としてめっき浴中の酸化Snの生成量を0.2g/Lと少なくした以外は、実施例1と同様の方法により、Snめっき材を作製した。このSnめっき材の製造条件を表1に示す。
[Example 6]
An Sn plating material was produced in the same manner as in Example 1 except that the air blowing time was 30 minutes and the amount of Sn oxide produced in the plating bath was reduced to 0.2 g / L. Table 1 shows the production conditions of the Sn plating material.

また、リフロー処理前のSnめっき材について、実施例1と同様の方法により、Snめっき層の厚さ(電析厚さ)を測定し、電析Snの結晶粒度を求め、電析結晶粒度/電析厚さを算出した。その結果、電析厚さは1.0μm、電析結晶粒度は1.1μmであり、電析結晶粒度/電析厚さは1.1であった。これらの結果を表2に示す。   Further, with respect to the Sn plating material before the reflow treatment, the thickness (electrodeposition thickness) of the Sn plating layer was measured by the same method as in Example 1 to obtain the crystal grain size of the electrodeposited Sn. The electrodeposition thickness was calculated. As a result, the electrodeposition thickness was 1.0 μm, the electrodeposition crystal grain size was 1.1 μm, and the electrodeposition crystal grain size / electrodeposition thickness was 1.1. These results are shown in Table 2.

また、リフロー処理後のSnめっき材について、実施例1と同様の方法により、表面に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数を計測し、光学濃度を測定し、純Sn層の厚さおよびCu−Sn化合物層の厚さを測定した。その結果、微小凹部の数は80個、表面の光学濃度は0.8、純Sn層の厚さは0.6μm、Cu−Sn化合物層の厚さは0.8μmであった。これらの結果を表3に示す。 Further, for the Sn-plated material after the reflow treatment, the optical density was measured by measuring the number of minute recesses having an area of 10 μm 2 or less and a depth of 0.1 μm or more formed on the surface in the same manner as in Example 1. The thickness of the pure Sn layer and the thickness of the Cu—Sn compound layer were measured. As a result, the number of minute recesses was 80, the optical density of the surface was 0.8, the thickness of the pure Sn layer was 0.6 μm, and the thickness of the Cu—Sn compound layer was 0.8 μm. These results are shown in Table 3.

また、潤滑油塗布後のSnめっき材について、実施例1と同様の方法により、表面の摩擦係数を算出し、はんだ濡れ性を評価し、接触信頼性を評価した。その結果、摩擦係数は0.24、はんだ濡れ率は95%ではんだ濡れ性が良好であり、高温放置後の接触抵抗値は1.0mΩで接触信頼性が良好であった。これらの結果を表4に示す。   Further, for the Sn plated material after applying the lubricating oil, the surface friction coefficient was calculated by the same method as in Example 1, the solder wettability was evaluated, and the contact reliability was evaluated. As a result, the coefficient of friction was 0.24, the solder wettability was 95%, and the solder wettability was good. The contact resistance value after standing at high temperature was 1.0 mΩ, and the contact reliability was good. These results are shown in Table 4.

[実施例7]
空気の吹き込み時間を600分間としてめっき浴中の酸化Snの生成量を4g/Lと多くした以外は、実施例1と同様の方法により、Snめっき材を作製した。このSnめっき材の製造条件を表1に示す。
[Example 7]
An Sn plating material was produced in the same manner as in Example 1 except that the air blowing time was 600 minutes and the amount of Sn oxide produced in the plating bath was increased to 4 g / L. Table 1 shows the production conditions of the Sn plating material.

また、リフロー処理前のSnめっき材について、実施例1と同様の方法により、Snめっき層の厚さ(電析厚さ)を測定し、電析Snの結晶粒度を求め、電析結晶粒度/電析厚さを算出した。その結果、電析厚さは1.0μm、電析結晶粒度は0.9μmであり、電析結晶粒度/電析厚さは0.9であった。これらの結果を表2に示す。   Further, with respect to the Sn plating material before the reflow treatment, the thickness (electrodeposition thickness) of the Sn plating layer was measured by the same method as in Example 1 to obtain the crystal grain size of the electrodeposited Sn. The electrodeposition thickness was calculated. As a result, the deposited thickness was 1.0 μm, the deposited crystal grain size was 0.9 μm, and the deposited crystal grain size / deposited thickness was 0.9. These results are shown in Table 2.

また、リフロー処理後のSnめっき材について、実施例1と同様の方法により、表面に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数を計測し、光学濃度を測定し、純Sn層の厚さおよびCu−Sn化合物層の厚さを測定した。その結果、微小凹部の数は240個、表面の光学濃度は0.4、純Sn層の厚さは0.6μm、Cu−Sn化合物層の厚さは0.8μmであった。これらの結果を表3に示す。 Further, for the Sn-plated material after the reflow treatment, the optical density was measured by measuring the number of minute recesses having an area of 10 μm 2 or less and a depth of 0.1 μm or more formed on the surface in the same manner as in Example 1. The thickness of the pure Sn layer and the thickness of the Cu—Sn compound layer were measured. As a result, the number of minute recesses was 240, the optical density of the surface was 0.4, the thickness of the pure Sn layer was 0.6 μm, and the thickness of the Cu—Sn compound layer was 0.8 μm. These results are shown in Table 3.

また、潤滑油塗布後のSnめっき材について、実施例1と同様の方法により、表面の摩擦係数を算出し、はんだ濡れ性を評価し、接触信頼性を評価した。その結果、摩擦係数は0.15、はんだ濡れ率は95%ではんだ濡れ性が良好であり、高温放置後の接触抵抗値は1.0mΩで接触信頼性が良好であった。これらの結果を表4に示す。   Further, for the Sn plated material after applying the lubricating oil, the surface friction coefficient was calculated by the same method as in Example 1, the solder wettability was evaluated, and the contact reliability was evaluated. As a result, the coefficient of friction was 0.15, the solder wettability was 95%, and the solder wettability was good. The contact resistance value after standing at high temperature was 1.0 mΩ, and the contact reliability was good. These results are shown in Table 4.

[実施例8]
Snめっき層を形成する際の電流密度を3A/dmと低くし且つ通電時間を100秒間と長くした以外は、実施例1と同様の方法により、Snめっき材を作製した。このSnめっき材の製造条件を表1に示す。
[Example 8]
An Sn plating material was produced in the same manner as in Example 1 except that the current density when forming the Sn plating layer was reduced to 3 A / dm 2 and the energization time was increased to 100 seconds. Table 1 shows the production conditions of the Sn plating material.

また、リフロー処理前のSnめっき材について、実施例1と同様の方法により、Snめっき層の厚さ(電析厚さ)を測定し、電析Snの結晶粒度を求め、電析結晶粒度/電析厚さを算出した。その結果、電析厚さは1.0μm、電析結晶粒度は1.3μmであり、電析結晶粒度/電析厚さは1.3であった。これらの結果を表2に示す。   Further, with respect to the Sn plating material before the reflow treatment, the thickness (electrodeposition thickness) of the Sn plating layer was measured by the same method as in Example 1 to obtain the crystal grain size of the electrodeposited Sn. The electrodeposition thickness was calculated. As a result, the deposited thickness was 1.0 μm, the deposited crystal grain size was 1.3 μm, and the deposited crystal grain size / deposited thickness was 1.3. These results are shown in Table 2.

また、リフロー処理後のSnめっき材について、実施例1と同様の方法により、表面に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数を計測し、光学濃度を測定し、純Sn層の厚さおよびCu−Sn化合物層の厚さを測定した。その結果、微小凹部の数は60個、表面の光学濃度は0.8、純Sn層の厚さは0.6μm、Cu−Sn化合物層の厚さは0.8μmであった。これらの結果を表3に示す。 Further, for the Sn-plated material after the reflow treatment, the optical density was measured by measuring the number of minute recesses having an area of 10 μm 2 or less and a depth of 0.1 μm or more formed on the surface in the same manner as in Example 1. The thickness of the pure Sn layer and the thickness of the Cu—Sn compound layer were measured. As a result, the number of minute recesses was 60, the optical density of the surface was 0.8, the thickness of the pure Sn layer was 0.6 μm, and the thickness of the Cu—Sn compound layer was 0.8 μm. These results are shown in Table 3.

また、潤滑油塗布後のSnめっき材について、実施例1と同様の方法により、表面の摩擦係数を算出し、はんだ濡れ性を評価し、接触信頼性を評価した。その結果、摩擦係数は0.24、はんだ濡れ率は95%ではんだ濡れ性が良好であり、高温放置後の接触抵抗値は1.0mΩで接触信頼性が良好であった。これらの結果を表4に示す。   Further, for the Sn plated material after applying the lubricating oil, the surface friction coefficient was calculated by the same method as in Example 1, the solder wettability was evaluated, and the contact reliability was evaluated. As a result, the coefficient of friction was 0.24, the solder wettability was 95%, and the solder wettability was good. The contact resistance value after standing at high temperature was 1.0 mΩ, and the contact reliability was good. These results are shown in Table 4.

[実施例9]
Snめっき層を形成する際の電流密度を12A/dmと高くし且つ通電時間を25秒間と短くした以外は、実施例1と同様の方法により、Snめっき材を作製した。このSnめっき材の製造条件を表1に示す。
[Example 9]
An Sn plating material was produced in the same manner as in Example 1 except that the current density when forming the Sn plating layer was increased to 12 A / dm 2 and the energization time was shortened to 25 seconds. Table 1 shows the production conditions of the Sn plating material.

また、リフロー処理前のSnめっき材について、実施例1と同様の方法により、Snめっき層の厚さ(電析厚さ)を測定し、電析Snの結晶粒度を求め、電析結晶粒度/電析厚さを算出した。その結果、電析厚さは1.0μm、電析結晶粒度は0.8μmであり、電析結晶粒度/電析厚さは0.8であった。これらの結果を表2に示す。   Further, with respect to the Sn plating material before the reflow treatment, the thickness (electrodeposition thickness) of the Sn plating layer was measured by the same method as in Example 1 to obtain the crystal grain size of the electrodeposited Sn. The electrodeposition thickness was calculated. As a result, the electrodeposition thickness was 1.0 μm, the electrodeposition crystal grain size was 0.8 μm, and the electrodeposition crystal grain size / electrodeposition thickness was 0.8. These results are shown in Table 2.

また、リフロー処理後のSnめっき材について、実施例1と同様の方法により、表面に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数を計測し、光学濃度を測定し、純Sn層の厚さおよびCu−Sn化合物層の厚さを測定した。その結果、微小凹部の数は260個、表面の光学濃度は0.4、純Sn層の厚さは0.6μm、Cu−Sn化合物層の厚さは0.8μmであった。これらの結果を表3に示す。 Further, for the Sn-plated material after the reflow treatment, the optical density was measured by measuring the number of minute recesses having an area of 10 μm 2 or less and a depth of 0.1 μm or more formed on the surface in the same manner as in Example 1. The thickness of the pure Sn layer and the thickness of the Cu—Sn compound layer were measured. As a result, the number of minute recesses was 260, the optical density of the surface was 0.4, the thickness of the pure Sn layer was 0.6 μm, and the thickness of the Cu—Sn compound layer was 0.8 μm. These results are shown in Table 3.

また、潤滑油塗布後のSnめっき材について、実施例1と同様の方法により、表面の摩擦係数を算出し、はんだ濡れ性を評価し、接触信頼性を評価した。その結果、摩擦係数は0.14、はんだ濡れ率は95%ではんだ濡れ性が良好であり、高温放置後の接触抵抗値は1.0mΩで接触信頼性が良好であった。これらの結果を表4に示す。   Further, for the Sn plated material after applying the lubricating oil, the surface friction coefficient was calculated by the same method as in Example 1, the solder wettability was evaluated, and the contact reliability was evaluated. As a result, the coefficient of friction was 0.14, the solder wettability was 95%, and the solder wettability was good. The contact resistance value after standing at high temperature was 1.0 mΩ, and the contact reliability was good. These results are shown in Table 4.

[比較例1]
めっき浴中に酸化Snを生成させず、Snめっき層を形成する際の電流密度を2A/dmと低くし且つ通電時間を150秒間と長くし、リフロー処理前にSnめっき材の表面を乾燥しないで表面が濡れたまま1分以内にリフロー処理を行い、潤滑油を塗布しなかった以外は、実施例1と同様の方法により、Snめっき材を作製した。このSnめっき材の製造条件を表1に示す。
[Comparative Example 1]
Sn oxide is not generated in the plating bath, the current density when forming the Sn plating layer is reduced to 2 A / dm 2 and the energization time is increased to 150 seconds, and the surface of the Sn plating material is dried before the reflow treatment. An Sn plated material was prepared in the same manner as in Example 1 except that the reflow treatment was performed within 1 minute while the surface was wet and no lubricating oil was applied. Table 1 shows the production conditions of the Sn plating material.

また、リフロー処理前のSnめっき材について、実施例1と同様の方法により、Snめっき層の厚さ(電析厚さ)を測定し、電析Snの結晶粒度を求め、電析結晶粒度/電析厚さを算出した。その結果、電析厚さは1.0μm、電析結晶粒度は1.8μmであり、電析結晶粒度/電析厚さは1.8であった。これらの結果を表2に示す。   Further, with respect to the Sn plating material before the reflow treatment, the thickness (electrodeposition thickness) of the Sn plating layer was measured by the same method as in Example 1 to obtain the crystal grain size of the electrodeposited Sn. The electrodeposition thickness was calculated. As a result, the electrodeposition thickness was 1.0 μm, the electrodeposition crystal grain size was 1.8 μm, and the electrodeposition crystal grain size / electrodeposition thickness was 1.8. These results are shown in Table 2.

また、リフロー処理後のSnめっき材について、実施例1と同様の方法により、表面に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数を計測し、光学濃度を測定し、純Sn層の厚さおよびCu−Sn化合物層の厚さを測定した。その結果、微小凹部の数は0個、表面の光学濃度は1.4、純Sn層の厚さは0.6μm、Cu−Sn化合物層の厚さは0.8μmであった。これらの結果を表3に示す。 Further, for the Sn-plated material after the reflow treatment, the optical density was measured by measuring the number of minute recesses having an area of 10 μm 2 or less and a depth of 0.1 μm or more formed on the surface in the same manner as in Example 1. The thickness of the pure Sn layer and the thickness of the Cu—Sn compound layer were measured. As a result, the number of minute recesses was 0, the surface optical density was 1.4, the thickness of the pure Sn layer was 0.6 μm, and the thickness of the Cu—Sn compound layer was 0.8 μm. These results are shown in Table 3.

また、リフロー処理後のSnめっき材について、実施例1と同様の方法により、表面の摩擦係数を算出し、はんだ濡れ性を評価し、接触信頼性を評価した。その結果、摩擦係数は0.36、はんだ濡れ率は95%ではんだ濡れ性が良好であり、高温放置後の接触抵抗値は1.0mΩで接触信頼性が良好であった。これらの結果を表4に示す。   For the Sn-plated material after the reflow treatment, the surface friction coefficient was calculated by the same method as in Example 1, the solder wettability was evaluated, and the contact reliability was evaluated. As a result, the coefficient of friction was 0.36, the solder wettability was 95%, and the solder wettability was good. The contact resistance value after standing at high temperature was 1.0 mΩ, and the contact reliability was good. These results are shown in Table 4.

[比較例2]
めっき浴中に酸化Snを生成させず、Snめっき層を形成する際の電流密度を2A/dmと低くし且つ通電時間を150秒間と長くし、リフロー処理前にSnめっき材の表面を乾燥しないで表面が濡れたまま1分以内にリフロー処理を行った以外は、実施例1と同様の方法により、Snめっき材を作製した。このSnめっき材の製造条件を表1に示す。
[Comparative Example 2]
Sn oxide is not generated in the plating bath, the current density when forming the Sn plating layer is reduced to 2 A / dm 2 and the energization time is increased to 150 seconds, and the surface of the Sn plating material is dried before the reflow treatment. The Sn plating material was produced by the method similar to Example 1 except having performed the reflow process within 1 minute, without the surface getting wet. Table 1 shows the production conditions of the Sn plating material.

また、リフロー処理前のSnめっき材について、実施例1と同様の方法により、Snめっき層の厚さ(電析厚さ)を測定し、電析Snの結晶粒度を求め、電析結晶粒度/電析厚さを算出した。その結果、電析厚さは1.0μm、電析結晶粒度は1.8μmであり、電析結晶粒度/電析厚さは1.8であった。これらの結果を表2に示す。   Further, with respect to the Sn plating material before the reflow treatment, the thickness (electrodeposition thickness) of the Sn plating layer was measured by the same method as in Example 1 to obtain the crystal grain size of the electrodeposited Sn. The electrodeposition thickness was calculated. As a result, the electrodeposition thickness was 1.0 μm, the electrodeposition crystal grain size was 1.8 μm, and the electrodeposition crystal grain size / electrodeposition thickness was 1.8. These results are shown in Table 2.

また、リフロー処理後のSnめっき材について、実施例1と同様の方法により、表面に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数を計測し、光学濃度を測定し、純Sn層の厚さおよびCu−Sn化合物層の厚さを測定した。その結果、微小凹部の数は0個、表面の光学濃度は1.4、純Sn層の厚さは0.6μm、Cu−Sn化合物層の厚さは0.8μmであった。これらの結果を表3に示す。 Further, for the Sn-plated material after the reflow treatment, the optical density was measured by measuring the number of minute recesses having an area of 10 μm 2 or less and a depth of 0.1 μm or more formed on the surface in the same manner as in Example 1. The thickness of the pure Sn layer and the thickness of the Cu—Sn compound layer were measured. As a result, the number of minute recesses was 0, the surface optical density was 1.4, the thickness of the pure Sn layer was 0.6 μm, and the thickness of the Cu—Sn compound layer was 0.8 μm. These results are shown in Table 3.

また、潤滑油塗布後のSnめっき材について、実施例1と同様の方法により、表面の摩擦係数を算出し、はんだ濡れ性を評価し、接触信頼性を評価した。その結果、摩擦係数は0.28、はんだ濡れ率は95%ではんだ濡れ性が良好であり、高温放置後の接触抵抗値は1.0mΩで接触信頼性が良好であった。これらの結果を表4に示す。   Further, for the Sn plated material after applying the lubricating oil, the surface friction coefficient was calculated by the same method as in Example 1, the solder wettability was evaluated, and the contact reliability was evaluated. As a result, the coefficient of friction was 0.28, the solder wettability was 95%, and the solder wettability was good. The contact resistance value after standing at high temperature was 1.0 mΩ, and the contact reliability was good. These results are shown in Table 4.

[比較例3]
潤滑油を塗布しなかった以外は、実施例1と同様の方法により、Snめっき材を作製した。このSnめっき材の製造条件を表1に示す。
[Comparative Example 3]
An Sn plated material was produced in the same manner as in Example 1 except that the lubricating oil was not applied. Table 1 shows the production conditions of the Sn plating material.

また、リフロー処理前のSnめっき材について、実施例1と同様の方法により、Snめっき層の厚さ(電析厚さ)を測定し、電析Snの結晶粒度を求め、電析結晶粒度/電析厚さを算出した。その結果、電析厚さは1.0μm、電析結晶粒度は0.9μmであり、電析結晶粒度/電析厚さは0.9であった。これらの結果を表2に示す。   Further, with respect to the Sn plating material before the reflow treatment, the thickness (electrodeposition thickness) of the Sn plating layer was measured by the same method as in Example 1 to obtain the crystal grain size of the electrodeposited Sn. The electrodeposition thickness was calculated. As a result, the deposited thickness was 1.0 μm, the deposited crystal grain size was 0.9 μm, and the deposited crystal grain size / deposited thickness was 0.9. These results are shown in Table 2.

また、リフロー処理後のSnめっき材について、実施例1と同様の方法により、表面に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数を計測し、光学濃度を測定し、純Sn層の厚さおよびCu−Sn化合物層の厚さを測定した。その結果、微小凹部の数は200個、表面の光学濃度は0.5、純Sn層の厚さは0.6μm、Cu−Sn化合物層の厚さは0.8μmであった。これらの結果を表3に示す。 Further, for the Sn-plated material after the reflow treatment, the optical density was measured by measuring the number of minute recesses having an area of 10 μm 2 or less and a depth of 0.1 μm or more formed on the surface in the same manner as in Example 1. The thickness of the pure Sn layer and the thickness of the Cu—Sn compound layer were measured. As a result, the number of minute recesses was 200, the optical density of the surface was 0.5, the thickness of the pure Sn layer was 0.6 μm, and the thickness of the Cu—Sn compound layer was 0.8 μm. These results are shown in Table 3.

また、リフロー処理後のSnめっき材について、実施例1と同様の方法により、表面の摩擦係数を算出し、はんだ濡れ性を評価し、接触信頼性を評価した。その結果、摩擦係数は0.36、はんだ濡れ率は95%ではんだ濡れ性が良好であり、高温放置後の接触抵抗値は1.0mΩで接触信頼性が良好であった。これらの結果を表4に示す。   For the Sn-plated material after the reflow treatment, the surface friction coefficient was calculated by the same method as in Example 1, the solder wettability was evaluated, and the contact reliability was evaluated. As a result, the coefficient of friction was 0.36, the solder wettability was 95%, and the solder wettability was good. The contact resistance value after standing at high temperature was 1.0 mΩ, and the contact reliability was good. These results are shown in Table 4.

[比較例4]
Snめっき層を形成する際の通電時間を17秒間としてSnめっき層を非常に薄くした以外は、実施例1と同様の方法により、Snめっき材を作製した。このSnめっき材の製造条件を表1に示す。
[Comparative Example 4]
An Sn plating material was produced in the same manner as in Example 1 except that the energization time for forming the Sn plating layer was 17 seconds and the Sn plating layer was very thin. Table 1 shows the production conditions of the Sn plating material.

また、リフロー処理前のSnめっき材について、実施例1と同様の方法により、Snめっき層の厚さ(電析厚さ)を測定し、電析Snの結晶粒度を求め、電析結晶粒度/電析厚さを算出した。その結果、電析厚さは0.4μm、電析結晶粒度は0.4μmであり、電析結晶粒度/電析厚さは1.0であった。これらの結果を表2に示す。   Further, with respect to the Sn plating material before the reflow treatment, the thickness (electrodeposition thickness) of the Sn plating layer was measured by the same method as in Example 1 to obtain the crystal grain size of the electrodeposited Sn. The electrodeposition thickness was calculated. As a result, the deposited thickness was 0.4 μm, the deposited crystal grain size was 0.4 μm, and the deposited crystal grain size / deposited thickness was 1.0. These results are shown in Table 2.

また、リフロー処理後のSnめっき材について、実施例1と同様の方法により、表面に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数を計測し、光学濃度を測定し、純Sn層の厚さおよびCu−Sn化合物層の厚さを測定した。その結果、微小凹部の数は0個、表面の光学濃度は1.2、純Sn層の厚さは0.1μm、Cu−Sn化合物層の厚さは0.5μmであった。これらの結果を表3に示す。 Further, for the Sn-plated material after the reflow treatment, the optical density was measured by measuring the number of minute recesses having an area of 10 μm 2 or less and a depth of 0.1 μm or more formed on the surface in the same manner as in Example 1. The thickness of the pure Sn layer and the thickness of the Cu—Sn compound layer were measured. As a result, the number of minute recesses was 0, the surface optical density was 1.2, the thickness of the pure Sn layer was 0.1 μm, and the thickness of the Cu—Sn compound layer was 0.5 μm. These results are shown in Table 3.

また、潤滑油塗布後のSnめっき材について、実施例1と同様の方法により、表面の摩擦係数を算出し、はんだ濡れ性を評価し、接触信頼性を評価した。その結果、摩擦係数は0.22、はんだ濡れ率は70%ではんだ濡れ性が悪く、高温放置後の接触抵抗値は5.5mΩで接触信頼性が良好でなかった。これらの結果を表4に示す。   Further, for the Sn plated material after applying the lubricating oil, the surface friction coefficient was calculated by the same method as in Example 1, the solder wettability was evaluated, and the contact reliability was evaluated. As a result, the coefficient of friction was 0.22, the solder wettability was 70%, the solder wettability was poor, the contact resistance value after standing at high temperature was 5.5 mΩ, and the contact reliability was not good. These results are shown in Table 4.

[比較例5]
リフロー処理前にSnめっき材の表面を乾燥しないで表面が濡れたまま1分以内にリフロー処理を行った以外は、実施例1と同様の方法により、Snめっき材を作製した。このSnめっき材の製造条件を表1に示す。
[Comparative Example 5]
An Sn plating material was produced in the same manner as in Example 1 except that the surface of the Sn plating material was not dried before the reflow treatment and the reflow treatment was performed within 1 minute while the surface was wet. Table 1 shows the production conditions of the Sn plating material.

また、リフロー処理前のSnめっき材について、実施例1と同様の方法により、Snめっき層の厚さ(電析厚さ)を測定し、電析Snの結晶粒度を求め、電析結晶粒度/電析厚さを算出した。その結果、電析厚さは1.0μm、電析結晶粒度は0.9μmであり、電析結晶粒度/電析厚さは0.9であった。これらの結果を表2に示す。   Further, with respect to the Sn plating material before the reflow treatment, the thickness (electrodeposition thickness) of the Sn plating layer was measured by the same method as in Example 1 to obtain the crystal grain size of the electrodeposited Sn. The electrodeposition thickness was calculated. As a result, the deposited thickness was 1.0 μm, the deposited crystal grain size was 0.9 μm, and the deposited crystal grain size / deposited thickness was 0.9. These results are shown in Table 2.

また、リフロー処理後のSnめっき材について、実施例1と同様の方法により、表面に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数を計測し、光学濃度を測定し、純Sn層の厚さおよびCu−Sn化合物層の厚さを測定した。その結果、微小凹部の数は10個、表面の光学濃度は1.2、純Sn層の厚さは0.6μm、Cu−Sn化合物層の厚さは0.8μmであった。これらの結果を表3に示す。 Further, for the Sn-plated material after the reflow treatment, the optical density was measured by measuring the number of minute recesses having an area of 10 μm 2 or less and a depth of 0.1 μm or more formed on the surface in the same manner as in Example 1. The thickness of the pure Sn layer and the thickness of the Cu—Sn compound layer were measured. As a result, the number of minute recesses was 10, the optical density of the surface was 1.2, the thickness of the pure Sn layer was 0.6 μm, and the thickness of the Cu—Sn compound layer was 0.8 μm. These results are shown in Table 3.

また、潤滑油塗布後のSnめっき材について、実施例1と同様の方法により、表面の摩擦係数を算出し、はんだ濡れ性を評価し、接触信頼性を評価した。その結果、摩擦係数は0.27、はんだ濡れ率は95%ではんだ濡れ性が良好であり、高温放置後の接触抵抗値は1.0mΩで接触信頼性が良好であった。これらの結果を表4に示す。   Further, for the Sn plated material after applying the lubricating oil, the surface friction coefficient was calculated by the same method as in Example 1, the solder wettability was evaluated, and the contact reliability was evaluated. As a result, the coefficient of friction was 0.27, the solder wettability was 95%, and the solder wettability was good. The contact resistance value after standing at high temperature was 1.0 mΩ, and the contact reliability was good. These results are shown in Table 4.

[比較例6]
空気を吹き込まないでめっき浴中に酸化Snを生成させなかった以外は、実施例1と同様の方法により、Snめっき材を作製した。このSnめっき材の製造条件を表1に示す。
[Comparative Example 6]
An Sn plating material was produced in the same manner as in Example 1 except that no oxidized Sn was generated in the plating bath without blowing air. Table 1 shows the production conditions of the Sn plating material.

また、リフロー処理前のSnめっき材について、実施例1と同様の方法により、Snめっき層の厚さ(電析厚さ)を測定し、電析Snの結晶粒度を求め、電析結晶粒度/電析厚さを算出した。その結果、電析厚さは1.0μm、電析結晶粒度は1.4μmであり、電析結晶粒度/電析厚さは1.4であった。これらの結果を表2に示す。   Further, with respect to the Sn plating material before the reflow treatment, the thickness (electrodeposition thickness) of the Sn plating layer was measured by the same method as in Example 1 to obtain the crystal grain size of the electrodeposited Sn. The electrodeposition thickness was calculated. As a result, the deposited thickness was 1.0 μm, the deposited crystal grain size was 1.4 μm, and the deposited crystal grain size / deposited thickness was 1.4. These results are shown in Table 2.

また、リフロー処理後のSnめっき材について、実施例1と同様の方法により、表面に形成された面積10μm以下で深さ0.1μm以上の微小凹部の数を計測し、光学濃度を測定し、純Sn層の厚さおよびCu−Sn化合物層の厚さを測定した。その結果、微小凹部の数は30個、表面の光学濃度は1.1、純Sn層の厚さは0.6μm、Cu−Sn化合物層の厚さは0.8μmであった。これらの結果を表3に示す。 Further, for the Sn-plated material after the reflow treatment, the optical density was measured by measuring the number of minute recesses having an area of 10 μm 2 or less and a depth of 0.1 μm or more formed on the surface in the same manner as in Example 1. The thickness of the pure Sn layer and the thickness of the Cu—Sn compound layer were measured. As a result, the number of minute recesses was 30, the surface optical density was 1.1, the thickness of the pure Sn layer was 0.6 μm, and the thickness of the Cu—Sn compound layer was 0.8 μm. These results are shown in Table 3.

また、潤滑油塗布後のSnめっき材について、実施例1と同様の方法により、表面の摩擦係数を算出し、はんだ濡れ性を評価し、接触信頼性を評価した。その結果、摩擦係数は0.27、はんだ濡れ率は95%ではんだ濡れ性が良好であり、高温放置後の接触抵抗値は1.0mΩで接触信頼性が良好であった。これらの結果を表4に示す。   Further, for the Sn plated material after applying the lubricating oil, the surface friction coefficient was calculated by the same method as in Example 1, the solder wettability was evaluated, and the contact reliability was evaluated. As a result, the coefficient of friction was 0.27, the solder wettability was 95%, and the solder wettability was good. The contact resistance value after standing at high temperature was 1.0 mΩ, and the contact reliability was good. These results are shown in Table 4.

Claims (19)

0.2g/L以上のSn酸化物を含むSnめっき浴を使用して電気めっきにより素材上に厚さ0.5μm以上のSnめっき層を形成し、Snめっき層の表面を乾燥させた後、Snめっき層の表面を加熱してSnを溶融させた後に冷却して、表面の1575μm の領域に形成される面積10μm 以下で深さ0.1μm以上の微小凹部の数が50個以上になるように微小凹部を形成し、その後、Snめっき層の表面に潤滑油を塗布することを特徴とする、Snめっき材の製造方法。 After forming a Sn plating layer having a thickness of 0.5 μm or more on the material by electroplating using a Sn plating bath containing 0.2 g / L or more of Sn oxide, and drying the surface of the Sn plating layer, heating the surface of the Sn-plated layer is cooled after melting the Sn, the number of depth 0.1μm or more micro-recesses in the area of 10 [mu] m 2 or less formed in the region of 1575Myuemu 2 of the surface to 50 or more A method for producing a Sn-plated material, comprising forming a minute recess so as to be , and then applying a lubricating oil to the surface of the Sn plating layer. 0.2g/L以上のSn酸化物を含むSnめっき浴を使用して電気めっきにより素材上に厚さ0.5μm以上のSnめっき層を形成し、Snめっき層の表面を乾燥させた後、Snめっき層の表面を加熱してSnを溶融させた後に冷却して、Snめっき層の表面の光学濃度を1.0以下にし、その後、Snめっき層の表面に潤滑油を塗布することを特徴とする、Snめっき材の製造方法。After forming a Sn plating layer having a thickness of 0.5 μm or more on the material by electroplating using a Sn plating bath containing 0.2 g / L or more of Sn oxide, and drying the surface of the Sn plating layer, The surface of the Sn plating layer is heated to melt Sn, and then cooled to reduce the optical density of the surface of the Sn plating layer to 1.0 or less, and then a lubricant is applied to the surface of the Sn plating layer. The manufacturing method of Sn plating material. 0.2g/L以上のSn酸化物を含むSnめっき浴を使用して電気めっきにより素材上にSnめっき層を形成し、Snめっき層の表面を乾燥させた後、Snめっき層の表面を加熱してSnを溶融させた後に冷却して、表面の1575μmの領域に形成される面積10μm以下で深さ0.1μm以上の微小凹部の数が50個以上になるように微小凹部を形成し、その後、Snめっき層の表面に潤滑油を塗布することを特徴とする、Snめっき材の製造方法。 Using an Sn plating bath containing Sn oxide of 0.2 g / L or more, an Sn plating layer is formed on the material by electroplating, and after drying the surface of the Sn plating layer, the surface of the Sn plating layer is heated. and then cooled to melt the Sn and, form fine recesses as the number of depth 0.1μm or more micro-recesses in the area of 10 [mu] m 2 or less formed in the region of 1575Myuemu 2 surface is 50 or more And then, applying a lubricating oil to the surface of the Sn plating layer. 0.2g/L以上のSn酸化物を含むSnめっき浴を使用して電気めっきにより素材上にSnめっき層を形成し、Snめっき層の表面を乾燥させた後、Snめっき層の表面を加熱してSnを溶融させた後に冷却して、Snめっき層の表面の光学濃度を1.0以下にし、その後、Snめっき層の表面に潤滑油を塗布することを特徴とする、Snめっき材の製造方法。 Using an Sn plating bath containing Sn oxide of 0.2 g / L or more, an Sn plating layer is formed on the material by electroplating, and after drying the surface of the Sn plating layer, the surface of the Sn plating layer is heated. The Sn plating material is characterized in that after Sn is melted and cooled, the optical density of the surface of the Sn plating layer is reduced to 1.0 or less, and then a lubricating oil is applied to the surface of the Sn plating layer. Production method. 前記Snめっき浴が硫酸錫を含み、前記Sn酸化物がSnめっき浴に空気を吹き込むことによって生成されることを特徴とする、請求項1乃至4のいずれかに記載のSnめっき材の製造方法。 The method for producing a Sn plating material according to any one of claims 1 to 4, wherein the Sn plating bath contains tin sulfate, and the Sn oxide is generated by blowing air into the Sn plating bath. . 前記電気めっきにより形成されたSnめっき層の厚さに対する結晶粒度の比(結晶粒度/厚さ)が1.5以下であることを特徴とする、請求項1乃至5のいずれかに記載のSnめっき材の製造方法。 Wherein the grain size of the ratio of the thickness of the Sn plating layer formed by the electroplating (grain size / thickness) of 1.5 or less, Sn according to any one of claims 1 to 5 Manufacturing method of plating material. 前記Snめっき層の表面を加熱してSnを溶融させた後に冷却することにより、前記Snめっき層から最表面の純Sn層とその下層の化合物層を形成することを特徴とする、請求項1乃至のいずれかに記載のSnめっき材の製造方法。 The surface of the Sn plating layer is heated to melt Sn, and then cooled to form an outermost pure Sn layer and a compound layer therebelow from the Sn plating layer. The manufacturing method of Sn plating material in any one of thru | or 6 . 前記純Sn層の厚さが0.2μm以上であり、前記化合物層の厚さが0.4μm以上であることを特徴とする、請求項に記載のSnめっき材の製造方法。 The method for producing an Sn plating material according to claim 7 , wherein the thickness of the pure Sn layer is 0.2 µm or more, and the thickness of the compound layer is 0.4 µm or more. 前記素材が銅または銅合金からなり、前記化合物層がCu−Sn化合物層であることを特徴とする、請求項またはに記載のSnめっき材の製造方法。 The method for producing a Sn plating material according to claim 7 or 8 , wherein the material is made of copper or a copper alloy, and the compound layer is a Cu-Sn compound layer. 前記素材が銅または銅合金からなることを特徴とする、請求項1乃至のいずれかに記載のSnめっき材の製造方法。 The method for producing a Sn-plated material according to any one of claims 1 to 8 , wherein the material is made of copper or a copper alloy. 前記Snめっき層の表面に塗布された潤滑油の量が前記Snめっき層の表面の面積に対して20mg/dm以上であることを特徴とする、請求項1乃至10のいずれかに記載のSnめっき材の製造方法。 The amount of lubricating oil applied to the surface of the Sn plating layer is 20 mg / dm 2 or more with respect to the area of the surface of the Sn plating layer, according to any one of claims 1 to 10 . Manufacturing method of Sn plating material. 請求項1乃至11のいずれかに記載のSnめっき材の製造方法によって製造され、素材上に形成されたSnめっき層の表面の1575μmの領域に面積10μm以下で深さ0.1μm以上の微小凹部が50個以上形成され、Snめっき層の表面に潤滑油が塗布されていることを特徴とする、Snめっき材。 Produced by the production method of the Sn-plated material according to any one of claims 1 to 11, the 1575Myuemu 2 of the surface of the Sn-plated layer formed on the material region area 10μm depth 0.1μm or more in 2 below An Sn plating material, wherein 50 or more minute recesses are formed, and a lubricating oil is applied to the surface of the Sn plating layer. 前記Snめっき層が、最表面側の純Sn層と、この純Sn層と素材との間に形成された化合物層とからなることを特徴とする、請求項12に記載のSnめっき材。 The Sn plating material according to claim 12 , wherein the Sn plating layer is composed of a pure Sn layer on the outermost surface side and a compound layer formed between the pure Sn layer and the material. 前記純Sn層の厚さが0.2μm以上であり、前記化合物層の厚さが0.4μm以上であることを特徴とする、請求項13に記載のSnめっき材。 The Sn plated material according to claim 13 , wherein the thickness of the pure Sn layer is 0.2 µm or more, and the thickness of the compound layer is 0.4 µm or more. 前記素材が銅または銅合金からなり、前記化合物層がCu−Sn化合物層であることを特徴とする、請求項13または14に記載のSnめっき材。 The Sn plating material according to claim 13 or 14 , wherein the material is made of copper or a copper alloy, and the compound layer is a Cu-Sn compound layer. 前記素材が銅または銅合金からなることを特徴とする、請求項12乃至14のいずれかに記載のSnめっき材。 The Sn plated material according to any one of claims 12 to 14 , wherein the material is made of copper or a copper alloy. 前記Snめっき材の光学濃度が1.0以下であることを特徴とする、請求項12乃至16のいずれかに記載のSnめっき材。 The Sn plating material according to any one of claims 12 to 16 , wherein the optical density of the Sn plating material is 1.0 or less. 前記Snめっき層の表面に塗布された潤滑油の量が前記Snめっき層の表面の面積に対して20mg/dm以上であることを特徴とする、請求項12乃至17のいずれかに記載のSnめっき材。 The amount of lubricating oil applied to the surface of the Sn plating layer is 20 mg / dm 2 or more with respect to the area of the surface of the Sn plating layer, according to any one of claims 12 to 17 . Sn plating material. 前記Snめっき材の摩擦係数が、Cu−1.0質量%Ni−0.9質量%Sn−0.05質量%Pのからなるビッカース硬さ180の銅合金板に厚さ1.0μmのSnめっき層を形成た後にリフロー処理して厚さ0.6μmの純Sn層の下層に厚さ0.8μmのCu−Sn層が形成されたリフローSnめっき材に対して0.25以下であることを特徴とする、請求項12乃至18のいずれかに記載のSnめっき材。 The Sn plating material has a friction coefficient of Cu-1.0 mass% Ni-0.9 mass% Sn-0.05 mass% P and a Vickers hardness 180 copper alloy plate having a thickness of 1.0 [mu] m. It is 0.25 or less with respect to the reflow Sn plating material by which the reflow process was performed after forming a plating layer, and the 0.8-micrometer-thick Cu-Sn layer was formed in the lower layer of the 0.6-micrometer-thick pure Sn layer The Sn-plated material according to any one of claims 12 to 18 , wherein:
JP2011068177A 2011-03-25 2011-03-25 Sn plating material and method for producing the same Active JP5692799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011068177A JP5692799B2 (en) 2011-03-25 2011-03-25 Sn plating material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011068177A JP5692799B2 (en) 2011-03-25 2011-03-25 Sn plating material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012201932A JP2012201932A (en) 2012-10-22
JP5692799B2 true JP5692799B2 (en) 2015-04-01

Family

ID=47183243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011068177A Active JP5692799B2 (en) 2011-03-25 2011-03-25 Sn plating material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5692799B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004034427A2 (en) 2002-10-08 2004-04-22 Honeywell International Inc. Semiconductor packages, lead-containing solders and anodes and methods of removing alpha-emitters from materials
CN104126033B (en) * 2013-02-24 2017-08-01 古河电气工业株式会社 Hardware, terminal, the manufacture method of wire connecting fabric body and terminal
JP6134557B2 (en) * 2013-03-29 2017-05-24 Jx金属株式会社 Copper strip or copper alloy strip and heat dissipating part provided with the strip
JP6543216B2 (en) * 2016-05-19 2019-07-10 Dowaメタルテック株式会社 Sn plated material and method of manufacturing the same
CN109715864B (en) * 2016-10-17 2021-06-25 古河电气工业株式会社 Conductive strip
CN110744161B (en) * 2019-09-30 2021-07-13 上海航天设备制造总厂有限公司 Automatic tin machine that wards off of electric connector based on three-dimensional laser scanning
JP2023147774A (en) * 2022-03-30 2023-10-13 株式会社オートネットワーク技術研究所 Connection module of terminal and terminal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183882A (en) * 2001-12-11 2003-07-03 Kobe Steel Ltd Tinned electronic material
JP4231936B2 (en) * 2003-11-06 2009-03-04 Dowaメタルテック株式会社 Method for producing Sn-coated copper
JP4916379B2 (en) * 2007-05-15 2012-04-11 Dowaメタルテック株式会社 Male terminal for PCB connector and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012201932A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
JP5692799B2 (en) Sn plating material and method for producing the same
JP5319101B2 (en) Sn plating material for electronic parts
TWI489002B (en) Surface treatment plating material and manufacturing method thereof, and electronic parts
WO2017199664A1 (en) Sn-plated article and method for manufacturing same
JP2010265542A (en) Conductive member and manufacturing method thereof
KR20140051408A (en) Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics
CN101426961B (en) Heat-resistant Sn-plated Cu-Zn alloy strip suppressed in whiskering
WO2016178305A1 (en) Sn plating material and method for producing same
JP2008248332A (en) Tin-plated strip and its production method
JP4489738B2 (en) Cu-Ni-Si-Zn alloy tin plating strip
JP5442316B2 (en) Manufacturing method of conductive member
JP5419275B2 (en) Reflow Sn plating material
JP2005154819A (en) Fitting type connection terminal
JP7335679B2 (en) conductive material
JP5714465B2 (en) Sn plating material and method for producing the same
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP6793618B2 (en) Sn plating material and its manufacturing method
JP5442385B2 (en) Conductive member and manufacturing method thereof
WO2022219904A1 (en) Male pin for connector and manufacturing method of male pin for connector
JP4804191B2 (en) Cu-Zn alloy tin plating strip
JP2023061782A (en) Plated materials and electronic component
JP2022182670A (en) Conductive member and method for manufacturing conductive member
JP2021169643A (en) Metallic material and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150129

R150 Certificate of patent or registration of utility model

Ref document number: 5692799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250