JP4324434B2 - Heat dissipation member and manufacturing method thereof - Google Patents

Heat dissipation member and manufacturing method thereof Download PDF

Info

Publication number
JP4324434B2
JP4324434B2 JP2003325859A JP2003325859A JP4324434B2 JP 4324434 B2 JP4324434 B2 JP 4324434B2 JP 2003325859 A JP2003325859 A JP 2003325859A JP 2003325859 A JP2003325859 A JP 2003325859A JP 4324434 B2 JP4324434 B2 JP 4324434B2
Authority
JP
Japan
Prior art keywords
plating film
plating
film layer
metal
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003325859A
Other languages
Japanese (ja)
Other versions
JP2005089836A (en
Inventor
豊明 酒井
信一 若林
克哉 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2003325859A priority Critical patent/JP4324434B2/en
Publication of JP2005089836A publication Critical patent/JP2005089836A/en
Application granted granted Critical
Publication of JP4324434B2 publication Critical patent/JP4324434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は放熱部材及びその製造方法に関し、更に詳細には金属部品の表面にカーボンナノファイバとめっき金属とから成る複合めっき皮膜が形成された放熱部材及びその製造方法に関する。   The present invention relates to a heat radiating member and a method for manufacturing the heat radiating member, and more particularly to a heat radiating member in which a composite plating film composed of carbon nanofibers and a plated metal is formed on the surface of a metal part and a method for manufacturing the heat radiating member.

半導体装置が搭載された小型電子機器では、半導体素子から発生する熱を速やかに外部に放熱することが、電子機器の性能を保持するうえで大切である。
従来は、電子機器内に装着したファン等の排熱装置によって強制的に熱を外部に排出していた。
しかし、電子機器の小型化、薄型化に伴なって、電子機器内に排熱装置を設置できるスペースの確保が極めて困難になりつつあること、排熱装置の騒音解消の要望が強いこと等のため、電子機器の密閉化等が考えられている。
一方、電子機器を密閉化した場合には、半導体素子から発生する熱を速やかに外部に放熱する放熱部材としてのヒートシンクの性能が重要である。
かかるヒートシンクとしては、下記特許文献1に、金属板の表面にカーボンブラックとチタニア(TiO2)とが配合された塗膜を形成したヒートシンクが提案されている。
特開2002−226783号公報(特許請求の範囲)
In a small electronic device in which a semiconductor device is mounted, it is important for maintaining the performance of the electronic device to quickly dissipate heat generated from the semiconductor element to the outside.
Conventionally, heat is forcibly discharged to the outside by a heat exhausting device such as a fan installed in the electronic device.
However, with the downsizing and thinning of electronic devices, it is becoming extremely difficult to secure a space for installing a heat exhaust device in the electronic device, and there is a strong demand for eliminating noise from the heat exhaust device. For this reason, sealing of electronic devices is considered.
On the other hand, when the electronic device is sealed, the performance of the heat sink as a heat radiating member that quickly radiates the heat generated from the semiconductor element to the outside is important.
As such a heat sink, a heat sink in which a coating film in which carbon black and titania (TiO 2 ) are blended is formed on the surface of a metal plate is proposed in Patent Document 1 below.
Japanese Patent Laid-Open No. 2002-226783 (Claims)

特許文献1の記載によれば、金属板の表面にカーボンブラックのみが配合された塗膜を形成したヒートシンクでは、図11(a)に示す様に、波長が6μm以下では黒体に近似した良好な放射強度を呈するものの、波長が6μmを越え、特に12μm以上では黒体の放射強度に比較して劣っている。これに対し、金属板の表面にチタニアのみが配合された塗膜を形成したヒートシンクでは、図11(b)に示す様に、波長が6μm以下では黒体の放射強度に比較して劣っているものの、波長が6μmを越え、12μm以上では黒体に近似した良好な放射強度を呈する。
この様に、短波長側の放射強度が良好のカーボンブラックと、長波長側の放射強度が良好のチタニアとが配合された塗膜を形成したヒートシンクでは、カーボンブラックとチタニアとの各々の放射強度が劣る部分を補うことができる結果、幅広い波長での放射強度を向上でき、放熱性を向上できるというものである。
According to the description of Patent Document 1, in a heatsink in which a coating film containing only carbon black is formed on the surface of a metal plate, as shown in FIG. However, the wavelength is inferior to that of a black body when the wavelength exceeds 6 μm, and particularly 12 μm or more. On the other hand, in the heat sink in which the coating film in which only titania is blended is formed on the surface of the metal plate, as shown in FIG. 11B, the wavelength is 6 μm or less, which is inferior to the radiant intensity of the black body. However, when the wavelength exceeds 6 μm and is 12 μm or more, a good radiation intensity approximating that of a black body is exhibited.
In this way, in the heat sink that forms a coating film containing carbon black with good radiant intensity on the short wavelength side and titania with good radiant intensity on the long wavelength side, each radiant intensity of carbon black and titania. As a result of being able to compensate for the inferior part, the radiation intensity in a wide range of wavelengths can be improved, and the heat dissipation can be improved.

しかし、特許文献1のヒートシンクでは、金属板の表面にカーボンブラックとチタニアとが配合された塗膜を形成しているため、バインダーとしての有機樹脂を用いることを要する。かかる有機樹脂は、一般的に金属に比較して熱伝導率等の熱特性が劣るものである。この様に、熱特性が金属よりも劣る有機樹脂を用いることから、カーボンブラックとチタニアとの配合量を塗膜の乾燥質量に対して合計で5質量%以上とすることを必要とする。
また、二種の熱放射材を用いることは、その均一混合等に多大の注意を払うことを要するため、一種の熱放射材を用いることによって熱放射特性が向上されたヒートシンクが望まれている。
そこで、本発明の課題は、金属部品の表面に、一種類の熱放射材を金属マトリックス中に配合された皮膜を形成した放熱部材及びその製造方法を提供とすることにある。
However, in the heat sink of Patent Document 1, since a coating film in which carbon black and titania are blended is formed on the surface of a metal plate, it is necessary to use an organic resin as a binder. Such organic resins are generally inferior in thermal properties such as thermal conductivity compared to metals. As described above, since an organic resin having a thermal property inferior to that of metal is used, it is necessary that the total amount of carbon black and titania is 5% by mass or more based on the dry mass of the coating film.
In addition, since using two kinds of heat radiation materials requires great attention to the uniform mixing and the like, a heat sink having improved heat radiation characteristics by using one kind of heat radiation material is desired. .
Therefore, an object of the present invention is to provide a heat dissipating member in which a film in which one kind of heat radiation material is blended in a metal matrix is formed on the surface of a metal part, and a method for manufacturing the same.

本発明者等は、前記課題を達成すべく検討を重ねた結果、カーボンナノファイバを分散した電解めっき液を用い、金属板の表面に電解めっきによって複合めっき皮膜層を形成した放熱部材によれば、熱放射特性を向上できることを見出し、本発明に到達した。
すなわち、本発明は、カーボンナノファイバが分散されためっき液を用いためっきによって形成された、前記カーボンナノファイバとめっき金属とから成る複合めっき皮膜層が、金属部品の表面に形成されている放熱部材であって、前記複合めっき皮膜層の表面を形成するカーボンナノファイバには、前記めっき金属で覆われている部分と前記カーボンナノファイバの表面が露出している部分とが併存し、且つ前記複合めっき皮膜層の波長3〜30μmの領域における熱放射率が、黒体の波長3〜30μmの領域における熱放射率に対して0.3以上となるように、前記カーボンナノファイバの表面が露出していることを特徴とする放熱部材にある。
また、本発明は、カーボンナノファイバが分散された電解めっき液を用いた電解めっきによって、前記カーボンナノファイバとめっき金属とから成る複合めっき皮膜層が金属部品の表面に形成された放熱部材を製造する際に、前記電解めっき液には、カーボンナノファイバを分散する分散剤として、アルキンジオール分子中にオキシエチレン側鎖を有するアルキンジオール化合物であって、前記アルキンジオール化合物の分子量の少なくとも20重量%をオキシエチレン側鎖が占める分散剤を用い、且つ陰極に接続された金属部品のめっき面を電解めっき液の液面に対して水平に載置すると共に、前記金属部品のめっき面の上方に陽極を配設し、前記金属部品及び陽極を上下方向に揺動しつつ、電解めっき液を攪拌して、前記金属部品に電解めっきを施すことを特徴とする放熱部材の製造方法でもある。
As a result of repeated studies to achieve the above-mentioned problems, the present inventors have used an electroplating solution in which carbon nanofibers are dispersed, and according to a heat dissipation member in which a composite plating film layer is formed by electrolytic plating on the surface of a metal plate. The present inventors have found that the heat radiation characteristics can be improved and have reached the present invention.
That is, the present invention provides a heat dissipation method in which a composite plating film layer composed of the carbon nanofibers and the plating metal formed by plating using a plating solution in which carbon nanofibers are dispersed is formed on the surface of a metal component. a member, the carbon nano fibers forming the surface of the composite plating film layer, a portion where the surface of the portion covered by the plating metal the carbon nanofibers is exposed coexist, and the The surface of the carbon nanofiber is exposed so that the thermal emissivity in the region of 3-30 μm wavelength of the composite plating film layer is 0.3 or more with respect to the thermal emissivity in the region of 3-30 μm wavelength of the black body. It exists in the heat radiating member characterized by having carried out .
Further, the present invention produces a heat radiating member in which a composite plating film layer composed of the carbon nanofiber and the plating metal is formed on the surface of the metal component by electrolytic plating using an electrolytic plating solution in which carbon nanofibers are dispersed. In this case, the electrolytic plating solution includes an alkynediol compound having an oxyethylene side chain in an alkynediol molecule as a dispersant for dispersing carbon nanofibers, and at least 20% by weight of the molecular weight of the alkynediol compound. And a plating surface of the metal part connected to the cathode is placed horizontally with respect to the surface of the electrolytic plating solution, and the anode is disposed above the plating surface of the metal part. The electroplating solution is stirred while the metal part and the anode are swung up and down, and the metal part is electrolyzed. Is also a method for producing a heat radiation member, characterized in that the applied Kki.

かかる本発明において、露出するカーボンナノファイバの投影面積を、複合めっき皮膜層の表面に対して3%以上とすることによって、放熱部材の波長3〜30μmの領域における熱放射率を向上できる。
この様に、複合めっき皮膜層の表面を形成するカーボンナノファイバに、めっき金属で覆われている部分と露出している部分とを併存させるには、複合めっき被膜に配されたカーボンナノファイバを、前記複合めっき皮膜の表面に対して横向きに配することが有利である。
また、めっき液中のカーボンナノファイバの混合量を、100ppm以上とすることによって、所望の熱放射率の複合めっき皮膜を容易に形成できる。
更に、カーボンナノファイバとして、径が100〜300nmで且つ長さが1〜20μmのカーボンナノファイバを好適に用いることができる。
尚、金属部品のめっき面に電解めっきを施して複合めっき皮膜を形成した後、前記複合めっき皮膜にエッチングを施すことによっても、前記複合めっき皮膜層の表面を形成するカーボンナノファイバに、前記めっき金属で覆われている部分と露出している部分とを併存させることができる
In such present invention, the projected area of the carbon nanofibers to be out dew, by 3% or more with respect to the surface of the composite coating layer, it is possible to improve the thermal emissivity in the wavelength region of 3~30μm heat radiation member.
Thus, the carbon nanofibers to form a surface of the composite plating film layer, the coexist and a portion exposed and the portion covered with the plating metal, mosquitoes Bon'nano arranged on the composite plating film Advantageously, the fiber is arranged transversely to the surface of the composite plating film .
Moreover, a composite plating film having a desired thermal emissivity can be easily formed by setting the mixing amount of the carbon nanofibers in the plating solution to 100 ppm or more.
Furthermore, as the carbon nanofiber, a carbon nanofiber having a diameter of 100 to 300 nm and a length of 1 to 20 μm can be suitably used.
In addition, after the electrolytic plating is performed on the plating surface of the metal part to form a composite plating film, the plating is also applied to the carbon nanofibers that form the surface of the composite plating film layer by etching the composite plating film. The part covered with metal and the exposed part can coexist .

本発明で用いるカーボンナノファイバは、波長3〜30μmの領域における熱放射率が黒体に近似し且つ熱伝導率も優れている。かかるカーボンナノファイバが、本発明に係る放熱部材を形成するめっき金属から成る金属マトリックス中に配合されている。このため、金属板の表面から複合めっき皮膜層の表面に熱が迅速に伝達される。
更に、カーボンナノファイバとめっき金属とから成る複合めっき皮膜層の表面には、放熱特性に優れたカーボンナノファイバの一部が露出し、複合めっき皮膜の表面に到達した熱を迅速に外部に放熱できるため、放熱部材の放熱性を向上できる。
しかも、複合めっき皮膜層の波長3〜30μmの領域における熱放射率が、黒体の波長3〜30μmの領域における熱放射率に対して0.3以上となるように、カーボンナノファイバの表面が露出しているため、放熱部材の放熱性を更に向上できる。
その結果、放熱性が向上された放熱部材としてのヒートシンクを具備する筐体内に、半導体素子等を密閉化した電子機器では、半導体素子等から発生する熱を速やかに筐体外に放熱でき、電子機器の更なる小型化、薄肉化を図ることができる。
尚、半導体素子等を密閉する筐体自体を、本発明に係る放熱部材で形成することによっても、半導体素子等から発生する熱を速やかに筐体外に放熱できる。
The carbon nanofibers used in the present invention have a thermal emissivity in the wavelength region of 3 to 30 μm, which is close to that of a black body and is excellent in thermal conductivity. Such carbon nanofibers are blended in a metal matrix made of plated metal that forms the heat dissipation member according to the present invention. For this reason, heat is rapidly transferred from the surface of the metal plate to the surface of the composite plating film layer.
Further, the surface of the composite coating layer composed of the carbon nanofibers with the plated metal, rapidly radiated to the outside part of the superior carbon nanofibers in heat dissipation characteristics is exposed and reaches the surface of the composite plating film heat Therefore, the heat dissipation of the heat dissipation member can be improved.
In addition, the surface of the carbon nanofiber is adjusted so that the thermal emissivity in the region of the composite plating film layer with a wavelength of 3 to 30 μm is 0.3 or more with respect to the thermal emissivity of the black body with a wavelength of 3 to 30 μm. Since it is exposed, the heat dissipation of the heat dissipation member can be further improved.
As a result, in an electronic device in which a semiconductor element or the like is sealed in a housing having a heat sink as a heat radiating member with improved heat dissipation, heat generated from the semiconductor element or the like can be quickly radiated to the outside of the housing. Can be further reduced in size and thickness.
Note that the heat generated from the semiconductor element or the like can be quickly radiated out of the case by forming the casing itself for sealing the semiconductor element or the like with the heat radiating member according to the present invention.

本発明に係る放熱部材では、カーボンナノファイバ(以下、CNFと称することがある)が分散されためっき液を用いて金属部品の表面にめっきを施し、カーボンナノファイバとめっき金属とから成る平滑な表面の複合めっき皮膜層を形成する。
この金属部品としては、熱伝導率が良好な金属、例えば銅、鉄又はこれらの合金から成る金属部品を好適に用いることができる。かかる金属部品の全表面に、金属部品を形成する金属よりも熱伝導率が良好な金属、例えば銅、ニッケル、銀、すず等の金属から成る金属層をめっきによって形成してもよい。
また、CNFとしては、中実体のカーボンナノファイバ、或いはカーボンナノチューブを用いることができ、両者を混合してもよい。このCNFとしては、径が100〜300nmで且つ長さが1〜20μmのCNFを好適に用いることができる。
尚、CNFに代えて汎用されているPAN系炭素繊維やピッチ系炭素繊維を用いた場合には、複合めっき被膜の表面を平滑面に形成することが困難である。
In the heat dissipating member according to the present invention, the surface of the metal part is plated using a plating solution in which carbon nanofibers (hereinafter may be referred to as CNF) are dispersed, and the smoothness composed of the carbon nanofibers and the plated metal is provided. A composite plating film layer on the surface is formed.
As this metal part, a metal part made of a metal having good thermal conductivity, for example, copper, iron, or an alloy thereof can be suitably used. A metal layer made of a metal having better thermal conductivity than the metal forming the metal part, for example, a metal such as copper, nickel, silver, tin, etc. may be formed on the entire surface of the metal part by plating.
Moreover, as CNF, a solid carbon nanofiber or a carbon nanotube can be used, and both may be mixed. As this CNF, CNF having a diameter of 100 to 300 nm and a length of 1 to 20 μm can be suitably used.
In addition, when the PAN-type carbon fiber and pitch-type carbon fiber which are used widely instead of CNF are used, it is difficult to form the surface of a composite plating film in a smooth surface.

かかるCNFが分散されためっき液としては、電解めっきによってめっき金属から成るめっき皮膜層を金属部材の表面に形成し得る電解めっき液が好ましい。このめっき金属としては、熱伝導率が良好で且つ錆び難い金属、例えばニッケル、銅、金、銀から成るめっき金属が好ましい。
かかる電解めっき液には、カーボンナノファイバを分散する分散剤としてのアルカンジオール化合物、アルケンジオール化合物又はアルキンジオール化合物が配合されている。特に、アルキンジオール分子中にオキシエチレン側鎖を有するアルキンジオールであって、このアルキンジオール化合物の分子量の少なくとも20重量%をオキシエチレン側鎖が占める分散剤を好適に用いることができる。このオキシエチレン側鎖が占める割合を85重量%以下とすることが好ましい。
更に、電解めっき液には、界面活性剤としてのケトン基、アルデヒド基又はカルボン酸基を有する有機化合物、カーボンモノオキサイド化合物、クマリン誘導体、アリルアルデヒドのスルホン化物、アリル基を有するスルホン化合物、アルキレンカルボキシエステル、アルキレンアルデヒド、アセチレン誘導体、ピリジウム化合物、アルカンスルホン化合物又はアゾ化合物が配合されていてもよい。
かかる電解めっき液にCNFを分散するには、予め分散剤溶液に浸漬して分散性を向上したCNFを電解めっき液に混合することが好ましい。
The plating solution in which CNF is dispersed is preferably an electrolytic plating solution that can form a plating film layer made of a plating metal on the surface of the metal member by electrolytic plating. As the plating metal, a metal having good thermal conductivity and hardly rusting, for example, a plating metal made of nickel, copper, gold or silver is preferable.
Such an electrolytic plating solution contains an alkanediol compound, alkenediol compound or alkynediol compound as a dispersant for dispersing the carbon nanofibers. In particular, a alkyne diol having an oxyethylene side chain in the alkyne diol molecule, and a dispersant in which the oxyethylene side chain accounts for at least 20% by weight of the molecular weight of the alkyne diol compound can be suitably used. The proportion of the oxyethylene side chain is preferably 85% by weight or less.
Further, the electrolytic plating solution includes an organic compound having a ketone group, an aldehyde group or a carboxylic acid group as a surfactant, a carbon monooxide compound, a coumarin derivative, a sulfonated product of allyl aldehyde, a sulfone compound having an allyl group, alkylene carboxy. An ester, an alkylene aldehyde, an acetylene derivative, a pyridium compound, an alkanesulfone compound, or an azo compound may be blended.
In order to disperse CNF in such an electrolytic plating solution, it is preferable to mix CNF, which has been previously immersed in a dispersant solution and has improved dispersibility, into the electrolytic plating solution.

電解めっき液に混合するCNFの混合量は、100ppm以上が好ましく、更に好ましくは500ppm以上、特に好ましくは1000ppm以上である。CNFの混合量の上限は1重量%程度である。CNFの混合量が1重量%を越えると、CNFの分散が困難となる傾向にある。
この様にCNFが分散された電解めっき液を用いて電解めっきを施す際には、CNFの分散状態を維持するため、電解めっき液を攪拌しつつ、電流密度を3A/dm2以下で施すことが好ましい。電流密度を3A/dm2を越える条件で電解めっきを施すと、形成される複合めっき皮膜層の表面が凹凸面になり易い傾向にある。
更に、直流電源の陰極に接続されて電解めっき液の液面に対して水平に載置した金属部品のめっき面の上方に直流電源の陽極に接続された陽極板を載置し、金属部品と陽極板とを上下方向に揺動させつつ電解めっきを施すことによって、CNFを金属部品のめっき面に均一に配設できる。
かかる電解めっきによって、金属部品の表面には、CNFとめっき金属とから成る複合めっき皮膜層を形成できる。この複合めっき被膜層は、その表面が平滑であって、CNFの多数本が複合めっき皮膜の表面に対して横向きに配されている。
The amount of CNF mixed in the electrolytic plating solution is preferably 100 ppm or more, more preferably 500 ppm or more, and particularly preferably 1000 ppm or more. The upper limit of the mixing amount of CNF is about 1% by weight. When the mixing amount of CNF exceeds 1% by weight, dispersion of CNF tends to be difficult.
When electrolytic plating is performed using an electrolytic plating solution in which CNF is dispersed in this way, in order to maintain the dispersed state of CNF, the electrolytic plating solution is stirred and applied at a current density of 3 A / dm 2 or less. Is preferred. When electrolytic plating is performed under a condition where the current density exceeds 3 A / dm 2 , the surface of the formed composite plating film layer tends to be uneven.
Furthermore, an anode plate connected to the anode of the DC power source is placed above the plating surface of the metal component that is connected to the cathode of the DC power source and placed horizontally with respect to the liquid level of the electrolytic plating solution. By performing electrolytic plating while swinging the anode plate in the vertical direction, CNF can be uniformly disposed on the plating surface of the metal part.
By such electrolytic plating, a composite plating film layer made of CNF and plating metal can be formed on the surface of the metal part. The composite plating film layer has a smooth surface, and a large number of CNFs are arranged laterally with respect to the surface of the composite plating film .

この様に、金属板の表面に形成された複合めっき皮膜層では、CNFが複合めっき皮膜の表面に対して横向きに配されているため、その表面を形成するCNFには、めっき金属で覆われている部分と露出している部分とが併存する
の露出するCNFの露出面積を、電子顕微鏡の顕微鏡写真から投影面積として算出すると、露出するCNFの投影面積は、複合めっき皮膜層の表面に対して3%以上となる。
かかる複合めっき皮膜層が金属板の表面に形成された放熱部材では、波長3〜30μmの領域における熱放射率を、黒体の波長3〜30μmの領域における熱放射率に対して0.3以上とすることができる。
つまり、複合部材を構成する金属部品の表面に形成された複合めっき皮膜では、熱伝導率等の熱特性に優れたCNFが、熱伝導率等の熱特性に優れためっき金属から成る金属マトリックス中に横向きに配されているため、金属部材の表面から複合めっき皮膜層の表面に熱が迅速に伝達される。
更に、複合めっき皮膜層の表面に、めっき金属で覆われている部分と露出している部分とが併存するCNFが存在しており、かかるCNFの露出面からは、めっき金属から伝熱された熱が直ちに放熱されるため、複合めっき皮膜層の放熱性を向上できるものと考えられる。
尚、金属部品のめっき面に電解めっきを施して複合めっき皮膜を形成した後、この複合めっき皮膜にエッチングを施すことによっても、複合めっき皮膜層の表面に、めっき金属で覆われている部分と露出している部分とが併存するCNFを存在させることができる。
In this way, in the composite plating film layer formed on the surface of the metal plate, CNF is disposed laterally with respect to the surface of the composite plating film, so that the CNF forming the surface is covered with the plating metal. The exposed part and the exposed part coexist .
The exposed area of CNF to output dew this, when calculated as the projected area of the microscope photograph of an electron microscope, the projected area of the CNF to leave exposed, is 3% or more with respect to the surface of the composite plating film layer.
In the heat radiating member in which the composite plating film layer is formed on the surface of the metal plate, the thermal emissivity in the wavelength region of 3 to 30 μm is 0.3 or more than the thermal emissivity in the black body wavelength region of 3 to 30 μm. It can be.
In other words, in the composite plating film formed on the surface of the metal part constituting the composite member, CNF excellent in thermal characteristics such as thermal conductivity is contained in a metal matrix composed of a plating metal excellent in thermal characteristics such as thermal conductivity. Therefore, heat is quickly transferred from the surface of the metal member to the surface of the composite plating film layer.
Furthermore, CNF in which the part covered with the plating metal and the exposed part coexist exists on the surface of the composite plating film layer, and heat was transferred from the plating metal from the exposed surface of the CNF. Since heat is immediately radiated, it is considered that the heat dissipation of the composite plating film layer can be improved.
In addition, after forming the composite plating film by performing electrolytic plating on the plating surface of the metal part, the surface of the composite plating film layer is also covered with the plated metal by etching the composite plating film. There can be CNF coexisting with the exposed part .

電解めっき液として、硫酸ニッケル・6水和物(100g/L)、塩化ニッケル・6水和物(45g/L)、ホウ酸(30g/L)、界面活性剤としての2−ブチン−1,4−ジオール(0.01wt%)及びアルキンジオール分子中にオキシエチレン側鎖を有するアルキンジオール化合物であって、このアルキンジオール化合物の分子量の85重量%をオキシエチレン側鎖が占める分散剤(1.0 wt%)を添加した電解めっき液を用いた。
この電解めっき液には、径が100〜300nmで且つ長さが10〜20μmのCNFを、100ppmとなるように混合した。
かかるCNFが混合された電解めっき液は、図1に示す様に、めっき槽10に貯留される。この電解めっき液12には、めっき面にマスキングテープによって有効面積が18cm2となるように面積規制された金属部品としての銅板14を、このめっき面と電解めっき液12の液面とが平行となるように浸漬すると共に、銅板14のめっき面の上方にニッケル板18を浸漬する。その後、直流電源16の陰極に銅板14を接続すると共に、直流電源16の陽極にニッケル板18を接続し、電流密度を1A/dm2に調整しつつ、電解ニッケルめっきを施した。この電解ニッケルめっきの際には、めっき液温度を50℃に維持しつつ、電解めっき液に攪拌機19によって攪拌を施すと共に、銅板14とニッケル板18とを上下方向(矢印A方向)に揺動した。
かかる電解ニッケルめっきは、銅板14のめっき面に厚さ20μmの複合めっき皮膜層が形成されるまで継続した。
銅板14のめっき面に所定厚さの複合めっき皮膜層が形成されて放熱部材としてのヒートシンクが得られたとき、電解めっきを終了した。めっき液から取り出して洗浄したヒートシンクの複合めっき被覆層の表面が平滑であった。
かかる複合めっき皮膜層の表面を電子顕微鏡で約5000倍に拡大して観察した。この電子顕微鏡による拡大写真を図2に示す。図2からも判る様に、複合めっき皮膜層の表面には、複合めっき皮膜層の表面に対して多数本の横向きに配設されたCNFが存在している。この様に、複合めっき皮膜層の表面に配設されたCNFには、めっき金属としてのニッケルが析出して覆われている部分と露出している部分とが併存するCNFが存在している
図2に示す露出するCNFの投影面積を、図2に示す電子顕微鏡写真から測定すると、複合めっき皮膜層の表面に対して3%であった。
As an electroplating solution, nickel sulfate hexahydrate (100 g / L), nickel chloride hexahydrate (45 g / L), boric acid (30 g / L), 2-butyne-1 as a surfactant, 4-Diol (0.01 wt%) and an alkyne diol compound having an oxyethylene side chain in the alkyne diol molecule, wherein the oxyethylene side chain accounts for 85 wt% of the molecular weight of the alkyne diol compound (1.0 wt%) %) Was used.
In this electrolytic plating solution, CNF having a diameter of 100 to 300 nm and a length of 10 to 20 μm was mixed so as to be 100 ppm.
The electrolytic plating solution mixed with such CNF is stored in a plating tank 10 as shown in FIG. The electrolytic plating solution 12 includes a copper plate 14 as a metal part whose area is regulated to 18 cm 2 by a masking tape on the plating surface, and the plating surface and the electrolytic plating solution 12 are parallel to each other. Then, the nickel plate 18 is immersed above the plated surface of the copper plate 14. Thereafter, the copper plate 14 was connected to the cathode of the DC power supply 16 and the nickel plate 18 was connected to the anode of the DC power supply 16, and electrolytic nickel plating was performed while adjusting the current density to 1 A / dm 2 . During the electrolytic nickel plating, the electrolytic plating solution is agitated by the agitator 19 while maintaining the plating solution temperature at 50 ° C., and the copper plate 14 and the nickel plate 18 are swung in the vertical direction (arrow A direction). did.
Such electrolytic nickel plating was continued until a 20 μm thick composite plating film layer was formed on the plated surface of the copper plate 14.
When a composite plating film layer having a predetermined thickness was formed on the plated surface of the copper plate 14 and a heat sink as a heat radiating member was obtained, the electrolytic plating was finished. The surface of the composite plating coating layer of the heat sink that was removed from the plating solution and washed was smooth.
The surface of the composite plating film layer was observed with an electron microscope at a magnification of about 5000 times. An enlarged photograph of this electron microscope is shown in FIG. As can be seen from FIG. 2 , a large number of CNFs are provided on the surface of the composite plating film layer so as to be laterally arranged with respect to the surface of the composite plating film layer . As described above, CNF disposed on the surface of the composite plating film layer includes CNF in which nickel as a plating metal is deposited and covered and exposed .
The projected area of CNF to leave exposed are shown in FIG. 2, as measured from the electron micrograph shown in FIG. 2, it was 3% relative to the surface of the composite plating film layer.

実施例1において、CNFの混合量を500ppmとした他は、実施例1と同様に、電解ニッケルめっきを施し、銅板の表面に厚さ20μmの複合めっき皮膜層が形成されたヒートシンクを得た。この複合めっき皮膜層は平滑であって、その表面を電子顕微鏡で約5000倍に拡大して観察した。
電子顕微鏡による拡大写真を図3に示す。図3からも判る様に、複合めっき皮膜層の表面には、複合めっき皮膜層の表面に対して多数本の横向きに配設されたCNFが存在している。この様に、複合めっき皮膜層の表面に配設されたCNFの露出部分が、図2に示す複合めっき皮膜層の表面に比較して拡大されている。
図3に示す露出するCNFの投影面積を、図3に示す電子顕微鏡写真から測定すると、複合めっき皮膜層の表面に対して7%であった。
In Example 1, except that the mixing amount of CNF was 500 ppm, electrolytic nickel plating was performed in the same manner as in Example 1 to obtain a heat sink in which a composite plating film layer having a thickness of 20 μm was formed on the surface of the copper plate. This composite plating film layer was smooth, and its surface was magnified about 5000 times with an electron microscope and observed.
An enlarged photograph by an electron microscope is shown in FIG. As can be seen from FIG. 3, the surface of the composite plating film layer has a large number of CNFs arranged in the lateral direction with respect to the surface of the composite plating film layer . Thus, the exposed portion of CNF disposed on the surface of the composite plating film layer is enlarged as compared with the surface of the composite plating film layer shown in FIG.
The projected area of CNF to leave exposed are shown in FIG. 3, as measured from the electron micrograph shown in FIG. 3, it was 7% with respect to the surface of the double coupling plating film layer.

実施例1において、CNFの混合量を1000ppmとした他は、実施例1と同様に、電解ニッケルめっきを施し、銅板の表面に厚さ20μmの複合めっき皮膜層が形成されたヒートシンクを得た。この複合めっき皮膜層は平滑であって、その表面を電子顕微鏡で約5000倍に拡大して観察した。
電子顕微鏡による拡大写真を図4に示す。図4からも判る様に、複合めっき皮膜層の表面には、複合めっき皮膜層の表面に対して多数本の横向きに配設されたCNFが存在している。この様に、複合めっき皮膜層の表面に配設されたCNFの露出部分が、図2及び図3に示す複合めっき皮膜層の表面に比較して拡大されている。
図4に示す露出するCNFの投影面積を、図4に示す電子顕微鏡写真から測定すると、複合めっき皮膜層の表面に対して10%であった。
In Example 1, except that the mixing amount of CNF was 1000 ppm, electrolytic nickel plating was performed in the same manner as in Example 1 to obtain a heat sink in which a composite plating film layer having a thickness of 20 μm was formed on the surface of the copper plate. This composite plating film layer was smooth, and its surface was magnified about 5000 times with an electron microscope and observed.
An enlarged photograph by an electron microscope is shown in FIG. As can be seen from FIG. 4, there are a large number of CNFs arranged laterally with respect to the surface of the composite plating film layer on the surface of the composite plating film layer . Thus, the exposed part of CNF arranged on the surface of the composite plating film layer is enlarged as compared with the surface of the composite plating film layer shown in FIGS.
The projected area of CNF to leave exposed are shown in FIG. 4, as measured from the electron micrograph shown in FIG. 4, it was 10% with respect to the surface of the composite plating film layer.

実施例3で得られたヒートシンクをエッチング液に浸漬し、複合めっき被膜にエッチングを施した。エッチングを施したヒートシンクの複合めっき被膜の表面を電子顕微鏡で約5000倍に拡大して観察した。
電子顕微鏡による拡大写真を図5に示す。図5からも判る様に、エッチングが施された複合めっき皮膜層の表面にも、図4に示す複合めっき被膜層の表面と同様に、CNFは複合めっき皮膜層の表面に対して横向きに配設されているものである。
The heat sink obtained in Example 3 was immersed in an etching solution, and the composite plating film was etched. The surface of the composite plating film of the etched heat sink was observed with an electron microscope at a magnification of about 5000 times.
An enlarged photograph taken with an electron microscope is shown in FIG. As seen from FIG. 5, also the surface of the etching is performed composite coating layer, similar to the surface of the composite plating film layer shown in FIG. 4, C NF is transverse to the surface of the composite coating layer It is arranged.

実施例1において、CNFの混合量を1000ppmとした他は、実施例1と同様に、電解ニッケルめっきを施し、銅板の表面に厚さ5μmの複合めっき皮膜層が形成されたヒートシンクを得た。この複合めっき皮膜層は平滑であって、その表面を電子顕微鏡で約5000倍に拡大して観察した。電子顕微鏡による拡大写真を図6に示す。
図6に示す厚さ5μmの複合めっき皮膜層の表面状態は、実施例3で得た厚さ20μmの複合めっき皮膜層の表面状態(図4)と同様に、複合めっき皮膜層の表面に対して多数本のCNFは横向きに配設されているものである。
In Example 1, except that the mixing amount of CNF was 1000 ppm, electrolytic nickel plating was performed in the same manner as in Example 1 to obtain a heat sink in which a composite plating film layer having a thickness of 5 μm was formed on the surface of the copper plate. This composite plating film layer was smooth, and its surface was magnified about 5000 times with an electron microscope and observed. An enlarged photograph by an electron microscope is shown in FIG.
Surface conditions of the composite plating film layer having a thickness of 5μm shown in FIG. 6, like the surface state of the composite coating layer having a thickness of 20μm was obtained in Example 3 (FIG. 4), to the surface of the composite coating layer A large number of CNFs are arranged horizontally.

実施例1〜3において得られた、銅板の表面にCNFとニッケルとから成る複合めっき皮膜層が形成されたヒートシンクの各々について、その示差放射スペクトルを測定した結果を図7に示す。かかる示差放射スペクトルの測定には、光学的零位方式によるダブルビームの赤外分光光度計を用いた放射特性試験器を使用した。
更に、実施例4において得られた、銅板の表面に形成したCNFとニッケルとから成る複合めっき皮膜層にエッチングを施して得たヒートシンクについても、その示差放射スペクトルを図8に示した。この図8には、実施例4において得られたヒートシンクの示差放射スペクトルも併せて示した。
また、比較例1として、実施例1において、CNFを混合しなかった他は、実施例1と同様に電解ニッケルめっきを施し、銅板14のめっき面に厚さ20μmのニッケルめっき皮膜層が形成されたヒートシンクについても、その示差放射スペクトルを図7に併せて示した。
図7及び図8から明らかな様に、CNFを100ppm以上混合しためっき液を用いて電解めっきを施した実施例1〜4のニッケルとCNFとから成る複合めっき皮膜層が銅板14のめっき面に形成されたヒートシンクでは、波長3〜30μmの領域における熱放射率は、黒体の波長3〜30μmの領域における熱放射率に対して0.3以上となり、比較例1の銅板14のめっき面にニッケルめっき皮膜層が形成されたヒートシンクに比較して、放熱性に優れていることが判る。
尚、図8に示す実施例4で得たヒートシンクの熱放射率は、実施例3で得たヒートシンクの熱放射率よりも低い値を示したが、エッチングによっては、CNFの一部が脱落したことによるものと考えられる。
FIG. 7 shows the result of measuring the differential emission spectrum of each of the heat sinks obtained in Examples 1 to 3 in which the composite plating film layer made of CNF and nickel was formed on the surface of the copper plate. For the measurement of the differential radiation spectrum, a radiation characteristic tester using a double beam infrared spectrophotometer by an optical nulling method was used.
Further, the differential radiation spectrum of the heat sink obtained by etching the composite plating film layer made of CNF and nickel formed on the surface of the copper plate obtained in Example 4 is shown in FIG. In FIG. 8, the differential radiation spectrum of the heat sink obtained in Example 4 is also shown.
Further, as Comparative Example 1, electrolytic nickel plating was performed in the same manner as in Example 1 except that CNF was not mixed in Example 1, and a nickel plating film layer having a thickness of 20 μm was formed on the plated surface of the copper plate 14. The differential radiation spectrum of the heat sink was also shown in FIG.
As apparent from FIGS. 7 and 8, the composite plating film layer composed of nickel and CNF of Examples 1 to 4 subjected to electrolytic plating using a plating solution in which 100 ppm or more of CNF is mixed is formed on the plated surface of the copper plate 14. In the formed heat sink, the thermal emissivity in the wavelength region of 3 to 30 μm is 0.3 or more with respect to the thermal emissivity of the black body in the wavelength region of 3 to 30 μm, and on the plated surface of the copper plate 14 of Comparative Example 1 It can be seen that the heat dissipation is superior to the heat sink on which the nickel plating film layer is formed.
In addition, although the heat emissivity of the heat sink obtained in Example 4 shown in FIG. 8 showed a value lower than the heat emissivity of the heat sink obtained in Example 3, a part of CNF dropped out by etching. This is probably due to this.

比較例2Comparative Example 2

実施例1において、CNFに代えてカーボンブラックを1000ppm混合した他は、実施例1と同様に、電解ニッケルめっきを施し、銅板14の表面に厚さ20μmの複合めっき皮膜層を形成したヒートシンクを得た。このヒートシンクの示差放射スペクトルを、実施例4と同様にして測定し、その結果を図9に示す。図9には、実施例3のヒートシンクについての示差放射スペクトルも併せて示す。
図9から明らかな様に、比較例2のヒートシンクは、実施例3のヒートシンクに比較して、長波長側での放熱性が劣ることが判る。
In Example 1, except that 1000 ppm of carbon black was mixed instead of CNF, electrolytic nickel plating was performed in the same manner as in Example 1 to obtain a heat sink in which a composite plating film layer having a thickness of 20 μm was formed on the surface of the copper plate 14. It was. The differential radiation spectrum of this heat sink was measured in the same manner as in Example 4, and the results are shown in FIG. In FIG. 9, the differential radiation spectrum about the heat sink of Example 3 is also shown collectively.
As can be seen from FIG. 9, the heat sink of Comparative Example 2 is inferior in heat dissipation on the long wavelength side as compared with the heat sink of Example 3.

図10(a)に示す放熱性評価装置を用い、銅板の表面に形成した複合めっき皮膜層の相異に因る筐体内の温度変化を測定した。図10(a)の放熱性評価装置には、横断面形状がコ字状のフッ素樹脂から成る断熱性筐体20の底面に温度が50℃に維持されるヒータ22を設置し、断熱性筐体20の開口部には、銅板14の表面に複合めっき皮膜層を形成したヒートシンク24を設置した。このヒートシンク24には、ヒータ22から断熱性筐体20の壁部を熱伝導する熱は実質的に零である。
また、ヒートシンク24の下方10mmの箇所に、温度測定装置26の熱センサを挿入して断熱性筐体20内の温度を測定した。
ここで、銅板の表面にCNFとニッケルとから成る複合めっき皮膜層を形成したヒートシンク24(実施例3)を用いた場合の断熱性筐体20内の温度変化を図10(b)に示す。
更に、銅板の表面に厚さ20μmのニッケルめっき皮膜層を形成したヒートシンク(比較例1)を用いた場合の断熱性筐体20内の温度変化も図10(b)に併せて示す。
図10(b)から明らかな様に、銅板の表面にCNFとニッケルとから成る複合めっき皮膜層が形成されたヒートシンク24(実施例3)を用いることによって、銅板の表面に厚さ20μmのニッケルめっき皮膜層を形成したヒートシンク24(比較例1)に比較して、放熱性が向上されていることが判る。
Using the heat dissipation evaluation apparatus shown in FIG. 10 (a), the temperature change in the housing due to the difference in the composite plating film layer formed on the surface of the copper plate was measured. In the heat dissipation evaluation apparatus shown in FIG. 10A, a heater 22 whose temperature is maintained at 50 ° C. is installed on the bottom surface of a heat insulating casing 20 made of a fluororesin having a U-shaped cross section. A heat sink 24 in which a composite plating film layer was formed on the surface of the copper plate 14 was installed in the opening of the body 20. In the heat sink 24, the heat conducted from the heater 22 to the wall portion of the heat insulating casing 20 is substantially zero.
In addition, a temperature sensor 26 was inserted into a portion 10 mm below the heat sink 24 to measure the temperature in the heat insulating casing 20.
Here, FIG. 10B shows a temperature change in the heat insulating casing 20 when the heat sink 24 (Example 3) in which the composite plating film layer made of CNF and nickel is formed on the surface of the copper plate is used.
Furthermore, the temperature change in the heat insulation housing | casing 20 at the time of using the heat sink (comparative example 1) which formed the 20-micrometer-thick nickel plating film layer on the surface of a copper plate is also shown in FIG.10 (b).
As is clear from FIG. 10B, by using the heat sink 24 (Example 3) in which the composite plating film layer made of CNF and nickel is formed on the surface of the copper plate, nickel having a thickness of 20 μm is formed on the surface of the copper plate. It can be seen that the heat dissipation is improved as compared with the heat sink 24 (Comparative Example 1) on which the plating film layer is formed.

電解めっき装置について説明する概略図である。It is the schematic explaining an electroplating apparatus. CNFを100ppm混合した電解めっき液を用いて銅板に電解めっきを施して得た複合めっき皮膜層の表面の電子顕微鏡写真である。It is an electron micrograph of the surface of the composite plating film layer obtained by electroplating a copper plate using the electroplating liquid which mixed CNF with 100 ppm. CNFを500ppm混合した電解めっき液を用いて銅板に電解めっきを施して得た複合めっき皮膜層の表面の電子顕微鏡写真である。It is an electron micrograph of the surface of the composite plating film layer obtained by electroplating a copper plate using the electroplating liquid which mixed CNF with 500 ppm. CNFを1000ppm混合した電解めっき液を用いて銅板に電解めっきを施して得た複合めっき皮膜層の表面の電子顕微鏡写真である。It is an electron micrograph of the surface of the composite plating film layer obtained by electroplating a copper plate using the electrolytic plating solution which mixed 1000 ppm of CNF. 図4に示す複合めっき皮膜層にエッチングを施した後の複合めっき被膜層の表面の電子顕微鏡写真である。It is an electron micrograph of the surface of the composite plating film layer after etching the composite plating film layer shown in FIG. CNFを1000ppm混合した電解めっき液を用いて銅板に電解めっきを施して得た、図4に示す複合めっき皮膜層よりも薄い複合めっき皮膜層の表面の電子顕微鏡写真である。It is an electron micrograph of the surface of the composite plating film layer thinner than the composite plating film layer shown in FIG. 4 obtained by performing electrolytic plating on the copper plate using an electrolytic plating solution in which 1000 ppm of CNF is mixed. 実施例1〜3及び比較例1において得た、複合めっき皮膜層が銅板の表面に形成されたヒートシンクの各々についての示差放射スペクトルを示すグラフである。It is a graph which shows the differential radiation spectrum about each of the heat sink with which the composite plating film layer obtained in Examples 1-3 and the comparative example 1 was formed in the surface of the copper plate. 実施例4において得た、複合めっき皮膜層が銅板の表面に形成されたヒートシンクについての示差放射スペクトルを示すグラフである。It is a graph which shows the differential radiation spectrum about the heat sink with which the composite plating film layer obtained in Example 4 was formed in the surface of the copper plate. 実施例3において得たCNFとニッケルとから成る複合めっき皮膜層が銅板の表面に形成されたヒートシンクと、比較例2において得たカーボンブラックとニッケルとから成る複合めっき皮膜層が銅板の表面に形成されたヒートシンクとについての示差放射スペクトルを示すグラフである。The composite plating film layer made of CNF and nickel obtained in Example 3 was formed on the surface of the copper plate, and the composite plating film layer made of carbon black and nickel obtained in Comparative Example 2 was formed on the surface of the copper plate. It is a graph which shows the differential emission spectrum about the heat sink made. 放熱性評価装置を説明する説明図及びヒートシンクの放熱性評価結果を示すグラフである。It is explanatory drawing explaining a heat dissipation evaluation apparatus, and a graph which shows the heat dissipation evaluation result of a heat sink. 金属板の表面にカーボンブラックのみが配合された塗膜を形成したヒートシンクの放射強度と、チタニアのみが配合された塗膜を形成したヒートシンクの放射強度とを示すグラフである。It is a graph which shows the radiation intensity of the heat sink which formed the coating film with which only the carbon black was mix | blended on the surface of the metal plate, and the radiation intensity of the heat sink which formed the coating film with which only the titania was mix | blended.

10 槽
12 電解めっき液
14 銅板(金属部品)
16 直流電源
18 ニッケル板
19 攪拌機
20 断熱性筐体
22 ヒータ
24 ヒートシンク
26 温度測定装置
10 Tank 12 Electrolytic plating solution 14 Copper plate (metal parts)
16 DC power supply 18 Nickel plate 19 Stirrer 20 Heat insulating housing 22 Heater 24 Heat sink 26 Temperature measuring device

Claims (9)

カーボンナノファイバが分散されためっき液を用いためっきによって形成された、前記カーボンナノファイバとめっき金属とから成る複合めっき皮膜層が、金属部品の表面に形成されている放熱部材であって、
前記複合めっき皮膜層の表面を形成するカーボンナノファイバには、前記めっき金属で覆われている部分と前記カーボンナノファイバの表面が露出している部分とが併存し、
且つ前記複合めっき皮膜層の波長3〜30μmの領域における熱放射率が、黒体の波長3〜30μmの領域における熱放射率に対して0.3以上となるように、前記カーボンナノファイバの表面が露出していることを特徴とする放熱部材。
A composite plating film layer composed of the carbon nanofibers and a plating metal formed by plating using a plating solution in which carbon nanofibers are dispersed is a heat dissipation member formed on the surface of a metal component,
The carbon nanofiber forming the surface of the composite plating film layer has a portion covered with the plating metal and a portion where the surface of the carbon nanofiber is exposed,
And the surface of the carbon nanofiber so that the thermal emissivity in the wavelength region of 3 to 30 μm of the composite plating film layer is 0.3 or more with respect to the thermal emissivity in the wavelength range of 3 to 30 μm of the black body. A heat dissipating member characterized by being exposed.
露出するカーボンナノファイバの投影面積が、複合めっき皮膜層の表面に対して3%以上である請求項1記載の放熱部材。   The heat radiating member according to claim 1, wherein a projected area of the exposed carbon nanofiber is 3% or more with respect to a surface of the composite plating film layer. 複合めっき皮膜に配されたカーボンナノファイバが、前記複合めっき皮膜の表面に対して横向きに配されている請求項1又は請求項2記載の放熱部材。   The heat radiating member according to claim 1 or 2, wherein the carbon nanofibers arranged on the composite plating film are arranged sideways with respect to the surface of the composite plating film. めっきが、電解めっきである請求項1〜3のいずれか一項記載の放熱部材。   The heat radiating member according to claim 1, wherein the plating is electrolytic plating. カーボンナノファイバが、径が100〜300nmで且つ長さが1〜20μmのカーボンナノファイバである請求項1〜4のいずれか一項記載の放熱部材。 The heat radiating member according to claim 1 , wherein the carbon nanofiber is a carbon nanofiber having a diameter of 100 to 300 nm and a length of 1 to 20 μm . カーボンナノファイバが分散された電解めっき液を用いた電解めっきによって、前記カーボンナノファイバとめっき金属とから成る複合めっき皮膜層が金属部品の表面に形成された放熱部材を製造する際に、
前記電解めっき液には、カーボンナノファイバを分散する分散剤として、アルキンジオール分子中にオキシエチレン側鎖を有するアルキンジオール化合物であって、前記アルキンジオール化合物の分子量の少なくとも20重量%をオキシエチレン側鎖が占める分散剤を用い、
且つ陰極に接続された金属部品のめっき面を電解めっき液の液面に対して水平に載置すると共に、前記金属部品のめっき面の上方に陽極を配設し、
前記金属部品及び陽極を上下方向に揺動しつつ、電解めっき液を攪拌して、前記金属部品に電解めっきを施すことを特徴とする放熱部材の製造方法
When producing a heat radiating member in which a composite plating film layer composed of the carbon nanofiber and the plating metal is formed on the surface of the metal part by electrolytic plating using an electrolytic plating solution in which carbon nanofibers are dispersed,
The electrolytic plating solution includes an alkynediol compound having an oxyethylene side chain in an alkynediol molecule as a dispersant for dispersing carbon nanofibers, and at least 20% by weight of the molecular weight of the alkynediol compound is on the oxyethylene side. Using a dispersant occupied by the chain,
And while placing the plating surface of the metal part connected to the cathode horizontally with respect to the surface of the electrolytic plating solution, the anode is disposed above the plating surface of the metal part,
A method of manufacturing a heat radiating member, wherein the metal component and the anode are subjected to electrolytic plating while the electrolytic plating solution is stirred while swinging the metal component and the anode in the vertical direction .
電解めっき液中のカーボンナノファイバの混合量を、100ppm以上とする請求項6記載の放熱部材の製造方法。 The manufacturing method of the heat radiating member of Claim 6 which makes the mixing amount of the carbon nanofiber in an electroplating liquid 100 ppm or more . 金属部品のめっき面に電解めっきを施して複合めっき皮膜を形成した後、前記複合めっき皮膜層の表面を形成するカーボンナノファイバに、前記めっき金属で覆われている部分と露出している部分とが併存するように、前記複合めっき皮膜にエッチングを施す請求項6又は請求項7記載の放熱部材の製造方法。 After the electrolytic plating is performed on the plating surface of the metal part to form a composite plating film, the carbon nanofiber forming the surface of the composite plating film layer is covered with the exposed part and the exposed part. The manufacturing method of the heat radiating member of Claim 6 or Claim 7 which etches the said composite plating film so that may coexist . カーボンナノファイバとして、径が100〜300nmで且つ長さが1〜20μmのカーボンナノファイバを用いる請求項6〜8のいずれか一項記載の放熱部材の製造方法。 The manufacturing method of the heat radiating member as described in any one of Claims 6-8 using a carbon nanofiber with a diameter of 100-300 nm and a length of 1-20 micrometers as a carbon nanofiber .
JP2003325859A 2003-09-18 2003-09-18 Heat dissipation member and manufacturing method thereof Expired - Fee Related JP4324434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003325859A JP4324434B2 (en) 2003-09-18 2003-09-18 Heat dissipation member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003325859A JP4324434B2 (en) 2003-09-18 2003-09-18 Heat dissipation member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005089836A JP2005089836A (en) 2005-04-07
JP4324434B2 true JP4324434B2 (en) 2009-09-02

Family

ID=34456193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003325859A Expired - Fee Related JP4324434B2 (en) 2003-09-18 2003-09-18 Heat dissipation member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4324434B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320579A (en) * 2004-05-07 2005-11-17 Shinko Electric Ind Co Ltd Lumpy granule, linear granule and method for producing granule

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169402A (en) * 2005-04-28 2008-07-24 Tokyo Univ Of Agriculture & Technology Electrochemical reaction process
JP4878452B2 (en) * 2005-08-02 2012-02-15 東京特殊電線株式会社 Composite coated copper wire and composite coated enameled copper wire
JP4719646B2 (en) * 2006-08-25 2011-07-06 日精樹脂工業株式会社 Manufacturing method of composite plating products
US8846201B2 (en) 2009-03-05 2014-09-30 Nissei Industrial Plastic Co., Ltd. Composite plated product
JP5736270B2 (en) 2010-09-14 2015-06-17 新光電気工業株式会社 Heat dissipation component and manufacturing method thereof
JP5631775B2 (en) 2011-02-24 2014-11-26 新光電気工業株式会社 Composite plating solution
JP2014033104A (en) * 2012-08-03 2014-02-20 Shinko Electric Ind Co Ltd Heat radiation component and manufacturing method of the same
JP6118540B2 (en) 2012-11-08 2017-04-19 新光電気工業株式会社 Heat dissipation component and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320579A (en) * 2004-05-07 2005-11-17 Shinko Electric Ind Co Ltd Lumpy granule, linear granule and method for producing granule

Also Published As

Publication number Publication date
JP2005089836A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
KR101300442B1 (en) Enhanced transparent conductive coatings and methods for making them
JP4324434B2 (en) Heat dissipation member and manufacturing method thereof
KR101035279B1 (en) Resin Composition for Surface-treated Steel Sheet and Surface-treated Steel Sheet Using the Same
US9476138B2 (en) Composite plating liquid
US9136200B2 (en) Heat radiating component and method of producing same
JP2004156074A (en) Plated structure and manufacturing method therefor
CN1297992C (en) Transparent conductive film, coating liquid for forming the transparent conductive film, transparent conductive multilayer structure, and display
US11515055B2 (en) Composite sheet for shielding electromagnetic and radiating heat including graphene sheet
JP4599565B2 (en) Electrolytic plating method and electrolytic plating solution
TW201016920A (en) Fibers including nanoparticles and a method of producing the nanoparticles
CN1665863A (en) Ion exchange polymer dispersion, process for its production and its use
Wang et al. A bio-inspired MXene/quaternary chitosan membrane with a “brick-and-mortar” structure towards high-performance photothermal conversion
WO2006118006A1 (en) Electrochemical reaction process and method for forming composite material
CN111777777A (en) Preparation method and application of carbon nano composite film
Lu et al. Characterization of polypyrrole-CdSe/CdTe nanocomposite films prepared with an all electrochemical deposition process
JPH07157664A (en) Thermally conductive silicone rubber sheet and its production
JP5453605B2 (en) Electroless Cu plating solution and electroless Cu plating method
JP2014025100A (en) Electroless plating film containing phosphorus, boron and carbon nanotube
KR102221095B1 (en) Manufacturing method of graphene-filler composite thermally conductive material and graphene-filler composite thermally conductive material manu factured by the same
JP4392506B2 (en) Radiator
Peddamallu et al. Understanding the fundamental properties of epoxy molybdenum disulfide nanocomposites
CN108102381B (en) High-thermal-conductivity silicone rubber composite material and preparation method thereof
Gao et al. Investigation of ethylene glycol, α-terpineol, and polyethylene glycol 400 on the sintering properties of Cu–Ag core–shell micro/nano-mixed paste
Jiang Electrochemical co-deposition of metal-nanoparticle composites for microsystem applications
JP5760915B2 (en) Dispersion liquid for anode of organic electroluminescence device and method for producing anode of organic electroluminescence device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Ref document number: 4324434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees