JP5442385B2 - Conductive member and manufacturing method thereof - Google Patents

Conductive member and manufacturing method thereof Download PDF

Info

Publication number
JP5442385B2
JP5442385B2 JP2009233806A JP2009233806A JP5442385B2 JP 5442385 B2 JP5442385 B2 JP 5442385B2 JP 2009233806 A JP2009233806 A JP 2009233806A JP 2009233806 A JP2009233806 A JP 2009233806A JP 5442385 B2 JP5442385 B2 JP 5442385B2
Authority
JP
Japan
Prior art keywords
layer
plating
alloy
conductive member
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009233806A
Other languages
Japanese (ja)
Other versions
JP2011080117A (en
Inventor
健 櫻井
誠一 石川
賢治 久保田
隆士 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2009233806A priority Critical patent/JP5442385B2/en
Publication of JP2011080117A publication Critical patent/JP2011080117A/en
Application granted granted Critical
Publication of JP5442385B2 publication Critical patent/JP5442385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電気接続用コネクタ等に用いられ、Cu又はCu合金からなる基材の表面に複数のめっき層を形成した導電部材及びその製造方法に関する。   The present invention relates to a conductive member used for an electrical connection connector or the like, in which a plurality of plating layers are formed on the surface of a base material made of Cu or Cu alloy, and a method for manufacturing the same.

自動車の電気接続用コネクタやプリント基板の接続端子等に用いられる導電部材として、電気接続特性の向上等のために、Cu又はCu合金からなるCu系基材の表面にSn系金属のめっきを施したものが多く使用されている。
そのような導電部材として、例えば特許文献1から特許文献3記載のものがあり、Cu又はCu合金からなる基材の表面にNi、Cu、Snを順にめっきして3層のめっき層を形成した後に、加熱してリフロー処理することにより、最表面層にSn層が形成され、Ni層とSn層との間にCu−Sn金属間化合物層(例えばCuSn)が形成された構成とされている。
As a conductive member used for automobile electrical connectors and printed circuit board connection terminals, Sn-based metal plating is applied to the surface of a Cu-based substrate made of Cu or a Cu alloy for the purpose of improving electrical connection characteristics. Many of them have been used.
As such a conductive member, for example, there are ones described in Patent Document 1 to Patent Document 3, and Ni, Cu, and Sn are sequentially plated on the surface of a base material made of Cu or a Cu alloy to form three plating layers. Later, by heating and reflowing, a Sn layer was formed on the outermost surface layer, and a Cu—Sn intermetallic compound layer (for example, Cu 6 Sn 5 ) was formed between the Ni layer and the Sn layer. Has been.

なかでも、Ni或いはNi合金層は基本的に母材CuのSn層中への拡散を抑制するバリアー層として機能しており、特にホウ素を含有するNi合金層に関し、2層のめっき層ではあるが、特許文献4は、銅又は銅合金の母材に対し,ビッカース硬さ450〜750HVでかつ厚み0.3〜2μmのニッケル合金めっきの中間層と、同中間層と拡散により形成されたSn−Niを主成分とする厚みが0.05〜2μm、かつ、Sn−Ni化合物の平均粒径が0.05〜1μmの合金層、ならびに、リフロー処理されたSnまたはSn合金めっき表層とからなる挿抜性に優れたコネクタ用めっき材料を開示し、特許文献5には、銅又は銅合金の母材に対し、ニッケルを10%〜50%含有し、残部が錫および不可避不純物からなる合金めっき中間層と、錫又は錫合金めっきの表層とを備えた自動車のエンジン回り等での高温環境下の経時劣化と挿抜抵抗の両方を改善し、さらに長期間保管してもはんだ付け性等の特性が劣化しないという性能を併せ持った金属材料を開示している。   Among these, the Ni or Ni alloy layer basically functions as a barrier layer that suppresses the diffusion of the base material Cu into the Sn layer, and is a two-layered plating layer particularly with respect to the Ni alloy layer containing boron. However, Patent Document 4 discloses a nickel alloy plating intermediate layer having a Vickers hardness of 450 to 750 HV and a thickness of 0.3 to 2 μm, and Sn formed by diffusion and diffusion with respect to a base material of copper or a copper alloy. -It consists of an alloy layer having a Ni-based thickness of 0.05 to 2 µm and an Sn-Ni compound average particle size of 0.05 to 1 µm, and a reflow-treated Sn or Sn alloy plating surface layer. Disclosed is a connector plating material having excellent insertability, and Patent Document 5 discloses an alloy plating intermediate containing 10% to 50% of nickel and the balance of tin and inevitable impurities with respect to the base material of copper or copper alloy. In addition, it improves both aging and insertion / removal resistance under high temperature environment around automobile engines with tin or tin alloy plating surface layer, and further deteriorates solderability and other characteristics even after long-term storage Disclosed are metal materials that have the ability to not.

特許第3880877号公報Japanese Patent No. 3880877 特許第4090488号公報Japanese Patent No. 4090488 特開2009−97050号公報JP 2009-97050 A 特開2001−59197号公報JP 2001-59197 A 特開2002−194464号公報JP 2002-194464 A

Cu又はCu合金からなる基材の表面にNi、Cu、Snを順にめっきして3層のめっき層を形成した後に、加熱してリフロー処理することにより、最表面層にSn層が形成され、Ni層とSn層との間にCu−Sn金属間化合物層(例えばCuSn)が形成された構成の3層めっき品において、そのバリアーとしての下地層に0.05〜20wt%のホウ素を含有するNi合金を使用することにより、Ni合金層の硬度をあげ、Niの上層への拡散を防ぎ、Ni合金層内部の酸化を防ぎことが可能となり、3層めっき品としての耐熱性、挿抜性、耐摩耗性の向上に寄与することが知られている。
しかし、コネクタ雌端子等の高い曲げ加工性を必要とする用途には高い硬度が不具合になることも多く、最小限の硬度を有し、Niの上層への拡散を防ぎ、Ni合金層内部の酸化を防ぎ、更に、高い曲げ加工性を有するNi下地層に対する需要が最近強くなっている。
After forming Ni, Cu, Sn on the surface of the base material made of Cu or Cu alloy in order to form a three-layer plating layer, by heating and reflowing, a Sn layer is formed on the outermost surface layer, In a three-layer plated product having a structure in which a Cu—Sn intermetallic compound layer (for example, Cu 6 Sn 5 ) is formed between a Ni layer and a Sn layer, 0.05 to 20 wt% boron is used as an underlayer as a barrier. By using a Ni alloy containing Ni, it is possible to increase the hardness of the Ni alloy layer, prevent diffusion of Ni into the upper layer, prevent oxidation inside the Ni alloy layer, heat resistance as a three-layer plated product, It is known that it contributes to the improvement of insertability / removability and wear resistance.
However, high hardness often becomes a problem for applications that require high bending workability such as connector female terminals, etc., which has minimum hardness, prevents diffusion to the upper layer of Ni, Recently, there is an increasing demand for Ni underlayers that prevent oxidation and have high bending workability.

本発明はこのような事情に鑑みてなされたものであり、最低限の硬度を保持し、Niの上層への拡散を防ぎ、Ni系下地層内部の酸化を防ぎ、高い曲げ加工性を有するNi下地層を備え、良好な接触抵抗性、耐摩耗性を維持しながら、曲げ加工性に優れた導電部材及びその製造方法を提供する。   The present invention has been made in view of such circumstances, Ni that retains a minimum hardness, prevents diffusion to the upper layer of Ni, prevents oxidation inside the Ni-based underlayer, and has high bending workability. Provided is an electrically conductive member having an underlayer and having excellent bending workability while maintaining good contact resistance and wear resistance, and a method for producing the same.

本発明者らは、3層めっき品の下地Ni層中のホウ素含有量につき鋭意検討を行った結果、下地Ni層中のホウ素含有量が100〜500ppmであると、バリアー層として最低限の硬さ及び拡散防止効果を保ちながら、曲げ加工性が最大限に発揮できることを見出した。 As a result of intensive studies on the boron content in the underlying Ni layer of the three-layer plated product, the inventors have found that the boron content in the underlying Ni layer is 100 to 500 ppm, which is the minimum barrier layer. It has been found that bending workability can be maximized while maintaining hardness and anti-diffusion effect.

本発明の導電部材は、Cu系基材の表面に、平均厚みが0.1〜3.0μmであるNi系下地層を介して、平均厚みが0.05〜1.5μmであるCu−Sn金属間化合物層、平均厚みが0.05〜2.0μmであるSn系表面層がこの順に形成されるとともに、Cu−Sn金属間化合物層はさらに、前記Ni系下地層の上に配置されるCu Sn層と、該Cu Sn層の上に配置されるCuSn層とからなり、前記Ni系下地層のホウ素含有量が100〜500ppm(ただし500ppmを除く)であることを特徴とする。
The conductive member of the present invention has Cu—Sn having an average thickness of 0.05 to 1.5 μm on the surface of the Cu-based substrate with a Ni-based underlayer having an average thickness of 0.1 to 3.0 μm. An intermetallic compound layer and an Sn-based surface layer having an average thickness of 0.05 to 2.0 μm are formed in this order, and the Cu—Sn intermetallic compound layer is further disposed on the Ni-based underlayer. and Cu 3 Sn layer composed of a Cu 6 Sn 5 layer disposed on the said Cu 3 Sn layer, characterized in that the boron content of the Ni-based base layer is 100 to 500 ppm (except for 500 ppm) And

本発明のNi系下地層は、最低限の硬さ及び拡散防止効果を保ちながら、曲げ加工性を最大限に発揮できるホウ素を含有量していることであり、ホウ素含有量が800ppmを超えると硬度が出過ぎて曲げ加工性が悪くなり、50ppm未満では最低減の硬さ及び拡散防止効果が発揮出来なくなる。含有量は100ppm〜500ppmであることがより好ましい。曲げ加工性が良くなる副次効果として、Ni下地層を3.0μmまで厚くすることが可能となり、拡散防止効果が大きくなり、バリアー層としてより強固な下地層を作ることが出来る。Ni系下地層の厚みが3.0μmを超えても拡散防止効果が飽和し不必要な厚みとなる。   The Ni-based underlayer of the present invention contains boron capable of maximizing bending workability while maintaining the minimum hardness and diffusion preventing effect, and when the boron content exceeds 800 ppm. Hardness is excessively increased and bending workability is deteriorated, and if it is less than 50 ppm, the minimum reduction in hardness and the effect of preventing diffusion cannot be exhibited. The content is more preferably 100 ppm to 500 ppm. As a secondary effect of improving the bending workability, the Ni underlayer can be thickened to 3.0 μm, the diffusion preventing effect is increased, and a stronger underlayer can be formed as a barrier layer. Even if the thickness of the Ni-based underlayer exceeds 3.0 μm, the diffusion preventing effect is saturated and becomes an unnecessary thickness.

また、本発明の導電部材の製造方法は、Ni系下地層を形成するためのNiめっきは、ホウ酸を含む無機酸を主成分とするめっき浴中にて、浴温45〜55℃、pH1.0〜2.0、電流密度20〜50A/dm、レイノルズ数2×10〜4×10なる電解めっきにより行うことを特徴とする。 In the method for producing a conductive member of the present invention, the Ni plating for forming the Ni-based underlayer is performed in a plating bath mainly composed of an inorganic acid containing boric acid, with a bath temperature of 45 to 55 ° C., pH 1. 0.0 to 2.0, current density 20 to 50 A / dm 2 , and Reynolds number 2 × 10 4 to 4 × 10 5 .

Ni系下地層のホウ素含有量を微量の50〜800ppmとするには、特に、めっき浴中の被めっき物とめっき液の流れの場のレイノルズ数を2×10〜4×10とすることが重要であり、レイノルズ数がこの範囲内であると、めっき液成分中のホウ素が均質に50〜800ppmの含有量にてNiめっき中に分散される。ホウ素はめっき液成分中に含まれており、Niが電解めっきにてCu合金基材に付着する際、めっき層の表面に微量が取り込まれる。このNiめっき層と電解めっき液との界面の流れ場のレイノルズ数を2×10〜4×10とすることにより、50〜800ppmのホウ素がNiめっき層表面に取り込まれるのである。レイノルズ数が2×10未満では攪拌効果が弱く含有量が少なくなり、レイノルズ数が4×10を超えると含有量が多くなり過ぎ、特に好ましい範囲は2.5×10〜3.5×10である。 In order to set the boron content of the Ni-based underlayer to a very small amount of 50 to 800 ppm, the Reynolds number in the flow field of the plating object and the plating solution in the plating bath is particularly set to 2 × 10 4 to 4 × 10 5 . When the Reynolds number is within this range, boron in the plating solution component is uniformly dispersed in the Ni plating at a content of 50 to 800 ppm. Boron is contained in the plating solution component, and a small amount is taken into the surface of the plating layer when Ni adheres to the Cu alloy substrate by electrolytic plating. By setting the Reynolds number of the flow field at the interface between the Ni plating layer and the electrolytic plating solution to 2 × 10 4 to 4 × 10 5 , 50 to 800 ppm of boron is taken into the Ni plating layer surface. When the Reynolds number is less than 2 × 10 4 , the stirring effect is weak and the content decreases, and when the Reynolds number exceeds 4 × 10 5 , the content increases excessively, and a particularly preferable range is 2.5 × 10 4 to 3.5. × 10 5

また、浴温45〜55℃にて、Niめっきの電流密度を20A/dm以上とすることにより、結晶粒が微細化し、リフローや製品化された後の加熱時にNi原子がSnや金属間化合物に拡散し難くなり、Niめっき欠損が減り、カーケンダルボイドの発生を防ぐことができる。電流密度が50A/dmを超えると、電解時のめっき表面での水素発生が激しくなり、気泡付着により皮膜にピンホールが発生し、これを起点として下地のCu系基材が拡散しカーケンダルボイドが発生し易くなる。このため、Niめっきの電流密度を20〜50A/dmとするのが望ましい。
また、Niめっき浴のpHを1.0〜2.0とすることにより、めっき時の水素発生により生成する水酸化ニッケルを溶解し、次のCu,Snめっきの付着性を良くすることができる。
Also, by setting the Ni plating current density to 20 A / dm 2 or more at a bath temperature of 45 to 55 ° C., the crystal grains are refined, and during heating after reflow or commercialization, Ni atoms become Sn or between metals. Difficult to diffuse into the compound, Ni plating defects are reduced, and generation of Kirkendall void can be prevented. When the current density exceeds 50 A / dm 2 , hydrogen generation on the plating surface during electrolysis becomes intense, and pinholes are generated in the film due to bubbles adhering. Void easily occurs. For this reason, it is desirable that the current density of Ni plating be 20 to 50 A / dm 2 .
Further, by setting the pH of the Ni plating bath to 1.0 to 2.0, it is possible to dissolve nickel hydroxide generated by hydrogen generation during plating and improve the adhesion of the next Cu and Sn plating. .

本発明によれば、Cu系基材の表面にNi、Cu、Snを順にめっきして3層のめっき層を形成した後に、加熱してリフロー処理することにより、最表面層にSn層が形成され、Ni層とSn層との間にCu−Sn金属間化合物層が形成された構成の3層めっき品のNi系下地層に100〜500ppmのホウ素を含有することにより、最低限の硬度を有し、Niの上層への拡散を防ぎ、Ni系下地層内部の酸化を防ぎ、高い曲げ加工性を有するNi系下地層を得ることが可能となり、良好な接触抵抗性、耐摩耗性を維持しながら、曲げ加工性に優れた導電部材を提供することが出来る。
According to the present invention, the surface of the Cu-based substrate is plated with Ni, Cu, and Sn in order to form a three-layered plating layer, and then heated and reflowed to form a Sn layer on the outermost surface layer. By adding 100 to 500 ppm of boron to the Ni-based underlayer of the three-layer plated product having a structure in which a Cu—Sn intermetallic compound layer is formed between the Ni layer and the Sn layer, the minimum hardness is achieved. It is possible to prevent Ni from being diffused into the upper layer, to prevent oxidation inside the Ni-based underlayer, and to obtain a Ni-based underlayer having high bending workability, which has good contact resistance and wear resistance. A conductive member excellent in bending workability can be provided while maintaining.

本発明に係る導電部材の一実施形態の表層部分をモデル化して示した断面図である。It is sectional drawing which modeled and showed the surface layer part of one Embodiment of the electrically-conductive member which concerns on this invention. 導電部材の動摩擦係数を測定するための装置を概念的に示す正面図である。It is a front view which shows notionally the apparatus for measuring the dynamic friction coefficient of an electrically-conductive member.

以下、本発明の実施形態を説明する。
この実施形態の導電部材10は、例えば自動車の車載用コネクタの雌端子に用いられるものであり、図1に示すように、Cu系基材1の表面に、Ni系下地層2を介して、Cu−Sn金属間化合物層3、Sn系表面層4がこの順に形成されるとともに、Cu−Sn金属間化合物層3はさらに、CuSn層5とCuSn層6とから構成されている。
Cu系基材1は、Cu又はCu合金から構成された例えば板状のものである。Cu合金としては、その材質は必ずしも限定されないが、Cu−Zn系合金、Cu−Ni−Si系(コルソン系)合金、Cu−Cr−Zr系合金、Cu−Mg−P系合金、Cu−Fe−P
系合金、Cu−Sn−P系合金が好適であり、例えば、三菱伸銅株式会社製MSP1、MZC1、MAX251C、MAX375、MAX126が好適に用いられる。
Embodiments of the present invention will be described below.
The conductive member 10 of this embodiment is used for a female terminal of an in-vehicle connector of an automobile, for example, and as shown in FIG. The Cu—Sn intermetallic compound layer 3 and the Sn-based surface layer 4 are formed in this order, and the Cu—Sn intermetallic compound layer 3 further includes a Cu 3 Sn layer 5 and a Cu 6 Sn 5 layer 6. Yes.
The Cu-based substrate 1 is, for example, a plate-like one made of Cu or a Cu alloy. The material of the Cu alloy is not necessarily limited, but Cu—Zn alloy, Cu—Ni—Si (Corson) alloy, Cu—Cr—Zr alloy, Cu—Mg—P alloy, Cu—Fe -P
An alloy based on Cu and Sn—P based alloy is suitable, for example, MSP1, MZC1, MAX251C, MAX375, and MAX126 manufactured by Mitsubishi Shindoh Co., Ltd. are preferably used.

Ni系下地層2は、Cu系基材1の表面に、例えば0.1〜3.0μmの厚さにNi又はNi合金を電解めっきして形成されたものであり、TEM−EDSによる定量分析にて測定したホウ素の含有量が50〜800ppmである。含有量がこの範囲であることにより、最低限の硬度を有し、Niの上層への拡散を防ぎ、Ni系下地層2内部の酸化を防ぎ、更に、高い曲げ加工性を有するNi系下地層2を得ることが可能となる。ホウ素含有量が800ppmを超えると硬度が出過ぎて曲げ加工性が悪くなり、50ppm未満では最低限の硬さ及び拡散防止効果が発揮出来なくなる。含有量は特に100ppm〜500ppmであることが好ましい。
また、曲げ加工性が良くなる副次効果として、Ni系下地層2を3.0μmまで厚くすることが可能であり、拡散防止効果が大きくなり、バリアー層としてより強固な下地層となる。Ni系下地層2の厚みが3.0μmを超えると、拡散防止効果が飽和し不必要な厚みとなり、0.1μm未満であると、Cu系基材1のCuの拡散防止機能が不十分となる。
The Ni-based underlayer 2 is formed by electrolytically plating Ni or a Ni alloy to a thickness of, for example, 0.1 to 3.0 μm on the surface of the Cu-based substrate 1, and is quantitatively analyzed by TEM-EDS. The boron content measured in step # 50 is 50 to 800 ppm. When the content is within this range, Ni base layer having minimum hardness, preventing diffusion to the upper layer of Ni, preventing oxidation inside Ni base layer 2, and having high bending workability 2 can be obtained. When the boron content exceeds 800 ppm, the hardness is excessively increased and the bending workability is deteriorated, and when it is less than 50 ppm, the minimum hardness and the diffusion preventing effect cannot be exhibited. The content is particularly preferably 100 ppm to 500 ppm.
Further, as a secondary effect of improving the bending workability, the Ni-based underlayer 2 can be thickened to 3.0 μm, the diffusion preventing effect is increased, and the underlayer becomes stronger as a barrier layer. When the thickness of the Ni-based underlayer 2 exceeds 3.0 μm, the diffusion preventing effect is saturated and becomes an unnecessary thickness, and when it is less than 0.1 μm, the Cu diffusion preventing function of the Cu-based substrate 1 is insufficient. Become.

Cu−Sn金属間化合物層3は、Ni系下地層2の上にめっきしたCuと表面のSnとがリフロー処理によって拡散して形成された厚みが0.05〜1.5μmの合金層である。このCu−Sn金属間化合物層3は、さらに、Ni系下地層2の上に配置されるCuSn層5と、該CuSn層5の上に配置されるCuSn層6とから構成されている。Cu−Sn金属間化合物層は硬質であり、0.05μm以上の厚さであると、コネクタ等の使用時の挿入力の低減に寄与するが、厚さが1.5μmを超えると、曲げ加工にて割れ発生の原因となる。
なお、このCu−Sn金属間化合物層3は、Ni系下地層2の上にめっきしたCuと表面のSnとが拡散することにより合金化したものであるから、リフロー処理等の条件によっては下地となったCuめっき層の全部が拡散してCu−Sn金属間化合物層3となる場合もあるが、そのCuめっき層が残る場合もある。このCuめっき層が残る場合は、そのCuめっき層は例えば0.01〜0.1μmの厚さとされる。
The Cu—Sn intermetallic compound layer 3 is an alloy layer having a thickness of 0.05 to 1.5 μm formed by diffusing Cu plated on the Ni-based underlayer 2 and Sn on the surface by reflow treatment. . The Cu—Sn intermetallic compound layer 3 further includes a Cu 3 Sn layer 5 disposed on the Ni-based underlayer 2, and a Cu 6 Sn 5 layer 6 disposed on the Cu 3 Sn layer 5. It is composed of The Cu—Sn intermetallic compound layer is hard, and if it has a thickness of 0.05 μm or more, it contributes to a reduction in insertion force when using a connector, etc., but if the thickness exceeds 1.5 μm, bending work Cause cracking.
In addition, since this Cu-Sn intermetallic compound layer 3 is alloyed by diffusion of Cu plated on the Ni-based underlayer 2 and Sn on the surface, depending on conditions such as reflow processing, In some cases, the entire Cu plating layer is diffused to form the Cu—Sn intermetallic compound layer 3, but the Cu plating layer may remain. When this Cu plating layer remains, the Cu plating layer has a thickness of 0.01 to 0.1 μm, for example.

最表面のSn系表面層4は、Sn又はSn合金を電解めっきした後にリフロー処理することによって形成されたものであり、0.05〜2.0μmの厚さに形成される。このSn系表面層4の厚さが0.05μm未満であると、高温時にCuが拡散して表面にCuの酸化物が形成され易くなることから接触抵抗が増加し、また、はんだ付け性や耐食性も低下する。一方、2.0μmを超えると、柔軟なSn系表面層4の下層に存在するCu−Sn金属間化合物層3による表面の下地を硬くする効果が薄れ、コネクタとしての使用時の挿抜力が増大し、コネクタの多ピン化に伴う挿抜力の低減を図り難い。   The outermost Sn-based surface layer 4 is formed by subjecting Sn or Sn alloy to electroplating and then reflow treatment, and is formed to a thickness of 0.05 to 2.0 μm. When the thickness of the Sn-based surface layer 4 is less than 0.05 μm, Cu diffuses at high temperatures and Cu oxide is easily formed on the surface, so that contact resistance increases, solderability and Corrosion resistance also decreases. On the other hand, if it exceeds 2.0 μm, the effect of hardening the surface base by the Cu—Sn intermetallic compound layer 3 existing in the lower layer of the flexible Sn-based surface layer 4 is weakened, and the insertion / extraction force during use as a connector increases However, it is difficult to reduce the insertion / extraction force associated with the increase in the number of pins of the connector.

次に、このような導電部材を製造する方法について説明する。
まず、Cu系基材1を脱脂、酸洗等によって表面を清浄にした後、Niめっき、Cuめっき、Snめっきをこの順序で順次行う。また、各めっき処理の間には、酸洗又は水洗処理を行う。
Next, a method for manufacturing such a conductive member will be described.
First, after the surface of the Cu-based substrate 1 is cleaned by degreasing, pickling, etc., Ni plating, Cu plating, and Sn plating are sequentially performed in this order. In addition, pickling or rinsing is performed between the plating processes.

Niめっきの条件としては、めっき浴に、硫酸ニッケル(NiSO)、ホウ酸(HBO)を主成分としたホウ酸浴が用いられる。酸化反応を起こし易くする塩類として塩化ニッケル(NiCl)などが加えられる場合もある。また、めっき温度は45〜55℃、電流密度は20〜50A/dm、pH1.0〜2.0、レイノルズ数2×10〜4×10とされる。
Ni系下地層2のホウ素含有量を微量の50〜800ppmとするには、特に、めっき浴中の被めっき物とめっき液の流れの場のレイノルズ数を2×10〜4×10とすることが重要であり、レイノルズ数がこの範囲内であると、めっき液成分中のホウ素が均質に50〜800ppmの含有量にてNiめっき中に分散される。ホウ素はホウ酸としてめっき液成分中に含まれており、Niが電解めっきにてCu系基材1に付着する際、Niめっき層の表面に微量が取り込まれる。このCu系基材1と電解めっき液との界面の流れ場のレイノルズ数を2×10〜4×10とすることにより、50〜800ppmのホウ素がNiめっき層表面に均質に取り込まれるのである。レイノルズ数が2×10未満では攪拌効果が弱く含有量が少なくなり、レイノルズ数が4×10を超えると含有量が多くなり過ぎる。特に好ましい範囲は2.5×10〜3.5×10である。
レイノルズ数は、めっき液粘度、めっき流路径、めっき液と被めっき物との間の相対流速の3要素で決定される無次元数であり、状況に応じ3要素を適宜変更することにより最適値を得ることが出来る。
As a condition for Ni plating, a boric acid bath containing nickel sulfate (NiSO 4 ) and boric acid (H 3 BO 3 ) as main components is used for the plating bath. In some cases, nickel chloride (NiCl 2 ) or the like is added as a salt that easily causes an oxidation reaction. The plating temperature is 45 to 55 ° C., the current density is 20 to 50 A / dm 2 , the pH is 1.0 to 2.0, and the Reynolds number is 2 × 10 4 to 4 × 10 5 .
In order to set the boron content of the Ni-based underlayer 2 to a very small amount of 50 to 800 ppm, the Reynolds number in the flow field of the plating object and the plating solution in the plating bath is particularly set to 2 × 10 4 to 4 × 10 5 . When the Reynolds number is within this range, boron in the plating solution component is uniformly dispersed in the Ni plating at a content of 50 to 800 ppm. Boron is contained in the plating solution component as boric acid, and when Ni adheres to the Cu-based substrate 1 by electrolytic plating, a trace amount is taken into the surface of the Ni plating layer. By setting the Reynolds number of the flow field at the interface between the Cu-based substrate 1 and the electrolytic plating solution to 2 × 10 4 to 4 × 10 5 , 50 to 800 ppm of boron is uniformly incorporated into the Ni plating layer surface. is there. When the Reynolds number is less than 2 × 10 4 , the stirring effect is weak and the content decreases, and when the Reynolds number exceeds 4 × 10 5 , the content increases excessively. A particularly preferable range is 2.5 × 10 4 to 3.5 × 10 5 .
The Reynolds number is a dimensionless number determined by the three factors of plating solution viscosity, plating channel diameter, and relative flow velocity between the plating solution and the object to be plated. The optimum value is obtained by appropriately changing the three factors according to the situation. Can be obtained.

また、浴温45〜55℃にて、Niめっきの電流密度を20A/dm以上とすることにより、結晶粒が微細化しリフローや製品化された後の加熱時にNi原子がSnや金属間化合物に拡散し難くなり、Niめっき欠損が減り、カーケンダルボイドの発生を防ぐことができる。一方、電流密度が50A/dmを超えると、電解時のめっき表面での水素発生が激しくなり、気泡付着により皮膜にピンホールが発生し、これを起点として下地のCu系基材が拡散しカーケンダルボイドが発生し易くなる。このため、Niめっきの電流密度を20〜50A/dmとするのが望ましい。
また、Niめっき浴のpHを1.0〜2.0とすることにより、めっき時の水素発生により生成する水酸化ニッケルを溶解し、次のCu,Snめっきの付着性を良くすることができる。
Further, by setting the current density of Ni plating to 20 A / dm 2 or more at a bath temperature of 45 to 55 ° C., Ni atoms are converted to Sn and intermetallic compounds during heating after the crystal grains are refined and reflowed or commercialized. It is difficult to diffuse to Ni, the Ni plating defects are reduced, and the generation of Kirkendall voids can be prevented. On the other hand, when the current density exceeds 50 A / dm 2 , hydrogen generation on the plating surface during electrolysis becomes intense, and pinholes are generated in the film due to air bubbles adhering, and the underlying Cu-based substrate diffuses starting from this. Kirkendall void is likely to occur. For this reason, it is desirable that the current density of Ni plating be 20 to 50 A / dm 2 .
Further, by setting the pH of the Ni plating bath to 1.0 to 2.0, it is possible to dissolve nickel hydroxide generated by hydrogen generation during plating and improve the adhesion of the next Cu and Sn plating. .

Cuめっきの条件としては、めっき浴に硫酸銅(CuSO)及び硫酸(HSO)を主成分とした硫酸銅浴が用いられ、レベリングのために塩素イオン(Cl)が添加される。めっき温度は35〜55℃、電流密度は20〜60A/dmとされる。
Snめっきの条件としては、めっき浴に硫酸(HSO)と硫酸第一錫(SnSO)を主成分とした硫酸浴が用いられ、めっき温度は15〜35℃、電流密度は10〜30A/dmとされる。
As the conditions for Cu plating, a copper sulfate bath containing copper sulfate (CuSO 4 ) and sulfuric acid (H 2 SO 4 ) as main components is used in the plating bath, and chlorine ions (Cl ) are added for leveling. . The plating temperature is 35 to 55 ° C., and the current density is 20 to 60 A / dm 2 .
As the conditions for Sn plating, a sulfuric acid bath mainly composed of sulfuric acid (H 2 SO 4 ) and stannous sulfate (SnSO 4 ) is used as a plating bath, the plating temperature is 15 to 35 ° C., and the current density is 10 to 10. 30 A / dm 2 .

いずれのめっき処理も、一般的なめっき技術よりも高い電流密度で行われる。その場合に、めっき液の攪拌技術が重要となるが、めっき液を処理板に向けて高速で噴きつける方法やめっき液を処理板と平行に流す方法などとすることにより、処理板の表面に新鮮なめっき液を速やかに供給し、高電流密度によって均質なめっき層を短時間で形成することができる。また、この従来技術よりも一桁高い電流密度でのめっき処理を可能とするために、陽極には、アノード限界電流密度の高い酸化イリジウム(IrO)を被覆したTi板等の不溶性陽極を用いることが望ましい。
これらの各めっき条件をまとめると、以下の表1〜表3に示す通りとなる。
All the plating processes are performed at a higher current density than a general plating technique. In this case, the plating solution agitation technology is important. However, by using a method of spraying the plating solution at a high speed toward the processing plate or a method of flowing the plating solution in parallel with the processing plate, A fresh plating solution can be supplied quickly, and a uniform plating layer can be formed in a short time with a high current density. In addition, in order to enable the plating process at a current density that is an order of magnitude higher than that of the prior art, an insoluble anode such as a Ti plate coated with iridium oxide (IrO 2 ) having a high anode limit current density is used as the anode. It is desirable.
These plating conditions are summarized as shown in Tables 1 to 3 below.

Figure 0005442385
Figure 0005442385

Figure 0005442385
Figure 0005442385

Figure 0005442385
Figure 0005442385

そして、この三種類のめっき処理を施した後、加熱してリフロー処理を行う。例えば、そのリフロー処理は、CO還元性雰囲気にした加熱炉内でめっき後の処理材を20〜75℃/秒の昇温速度で240〜300℃のピーク温度まで2.9〜11秒間加熱する加熱工程と、そのピーク温度に達した後、30℃/秒以下の冷却速度で2〜10秒間冷却する一次冷却工程と、一次冷却後に100〜250℃/秒の冷却速度で0.5〜5秒間冷却する二次冷却工程とを有する処理とする。一次冷却工程は空冷により、二次冷却工程は10〜90℃の水を用いた水冷により行われる。   And after giving these three types of plating processes, it heats and performs a reflow process. For example, in the reflow process, the treated material after plating is heated to a peak temperature of 240 to 300 ° C. for 2.9 to 11 seconds at a temperature rising rate of 20 to 75 ° C./second in a heating furnace having a CO reducing atmosphere. A heating step, a primary cooling step of cooling for 2 to 10 seconds at a cooling rate of 30 ° C./second or less after reaching the peak temperature, and a cooling rate of 100 to 250 ° C./second after the primary cooling of 0.5 to 5 And a secondary cooling step of cooling for 2 seconds. The primary cooling step is performed by air cooling, and the secondary cooling step is performed by water cooling using 10 to 90 ° C. water.

このリフロー処理を還元性雰囲気で行うことによりSnめっき表面に溶融温度の高いすず酸化物皮膜が生成するのを防ぎ、より低い温度かつより短い時間でリフロー処理を行うことが可能となり、所望の金属間化合物構造を作製することが容易となる。また、冷却工程を二段階とし、冷却速度の小さい一次冷却工程を設けることにより、Cu原子がSn粒内に穏やかに拡散し、所望の金属間化合物構造で成長する。そして、その後に急冷を行うことにより金属間化合物層の成長を止め、所望の構造で固定化することができる。   By performing this reflow treatment in a reducing atmosphere, it is possible to prevent the formation of a tin oxide film having a high melting temperature on the surface of the Sn plating, and to perform the reflow treatment at a lower temperature and in a shorter time. It becomes easy to produce an intermetallic compound structure. Further, by providing a cooling process in two stages and providing a primary cooling process with a low cooling rate, Cu atoms diffuse gently in the Sn grains and grow with a desired intermetallic compound structure. Then, by performing rapid cooling after that, the growth of the intermetallic compound layer can be stopped and fixed in a desired structure.

以上のように、Cu系基材1の表面に表1〜表3に示すめっき条件により三層のめっきを施した後、上述のリフロー処理することにより、図1に示すように、Cu系基材1の表面に形成したNi系下地層2がCuSn層5によって覆われ、その上にさらにCuSn層6が形成され、最表面にSn系表面層4が形成される。
この様に形成された導電部材10は、最低限の硬度を有し、Niの上層への拡散を防ぎ、Ni系下地層2内部の酸化を防ぎ、更に、高い曲げ加工性を有するNi系下地層2を備え、良好な接触抵抗性及び耐摩耗性を有し、曲げ加工性に優れた導電部材となる。
As described above, after the three-layer plating is performed on the surface of the Cu-based substrate 1 under the plating conditions shown in Tables 1 to 3, the above-described reflow treatment is performed to obtain a Cu-based substrate as shown in FIG. The Ni-based underlayer 2 formed on the surface of the material 1 is covered with the Cu 3 Sn layer 5, and the Cu 6 Sn 5 layer 6 is further formed thereon, and the Sn-based surface layer 4 is formed on the outermost surface.
The conductive member 10 thus formed has a minimum hardness, prevents diffusion to the upper layer of Ni, prevents oxidation inside the Ni-based underlayer 2, and further has a Ni-based lower layer having high bending workability. The conductive layer is provided with the base layer 2, has good contact resistance and wear resistance, and is excellent in bending workability.

次に本発明の実施例を説明する。
Cu合金板(Cu系基材)として、厚さ0.25mmの三菱伸銅株式会社製MAX251C材を用い、これにNi、Cu、Snの各めっき処理を順次行った。この場合、Cuめっきは表2に示す条件にて、Snめっきは表3に示す条件にてめっきを行い、Niめっきは、硫酸ニッケルを300g/L、ホウ酸を30g/L含有するホウ酸浴を使用し、表4に示す条件にて、浴温、pH、電流密度、レイノルズ数を変更してめっきを行い、複数の試料を作成した。各めっき層の目標厚さについては、Niめっき層の厚さは0.3μm、Cuめっき層の厚さは0.3μm、Snめっき層の厚さは1.5μmとした。また、これら三種類の各めっき工程間には、処理材表面からめっき液を洗い流すための水洗工程を入れた。本実施例におけるめっき処理では、Cu合金板にめっき液を高速で噴きつけ、なおかつ酸化イリジウムを被覆したTi板の不溶性陽極を用いた。
Next, examples of the present invention will be described.
As the Cu alloy plate (Cu-based substrate), a MAX251C material manufactured by Mitsubishi Shindoh Co., Ltd. having a thickness of 0.25 mm was used, and Ni, Cu, and Sn plating treatments were sequentially performed thereon. In this case, Cu plating is performed under the conditions shown in Table 2, Sn plating is performed under the conditions shown in Table 3, and Ni plating is a boric acid bath containing 300 g / L of nickel sulfate and 30 g / L of boric acid. Was used under the conditions shown in Table 4 to change the bath temperature, pH, current density, and Reynolds number, and a plurality of samples were prepared. Regarding the target thickness of each plating layer, the thickness of the Ni plating layer was 0.3 μm, the thickness of the Cu plating layer was 0.3 μm, and the thickness of the Sn plating layer was 1.5 μm. Further, a water washing step for washing the plating solution from the surface of the treatment material was inserted between these three types of plating steps. In the plating treatment in this example, an insoluble anode of a Ti plate coated with iridium oxide was sprayed on the Cu alloy plate at a high speed.

上記の三種類のめっき処理を行った後、その処理材に対してリフロー処理を行った。このリフロー処理は、CO還元性雰囲気にした加熱炉内でめっき後の処理材を20〜75℃/秒の昇温速度で240〜300℃のピーク温度まで2.9〜11秒間加熱する加熱工程と、そのピーク温度に達した後、30℃/秒以下の冷却速度で2〜10秒間冷却する一次冷却工程と、一次冷却後に100〜250℃/秒の冷却速度で0.5〜5秒間冷却する二次冷却工程とを有する処理とする。一次冷却工程は空冷により、二次冷却工程は10〜90℃の水を用いた水冷により行った。   After performing the above three types of plating treatments, a reflow treatment was performed on the treated material. This reflow treatment is a heating step of heating the treated material after plating in a heating furnace having a CO reducing atmosphere to a peak temperature of 240 to 300 ° C. at a temperature rising rate of 20 to 75 ° C./second for 2.9 to 11 seconds. And a primary cooling step of cooling for 2 to 10 seconds at a cooling rate of 30 ° C./second or less after reaching the peak temperature, and cooling for 0.5 to 5 seconds at a cooling rate of 100 to 250 ° C./second after the primary cooling. And a secondary cooling step. The primary cooling step was performed by air cooling, and the secondary cooling step was performed by water cooling using 10 to 90 ° C water.

以上のように製造された試料につき、Ni系下地層の厚み及びホウ素含有量、Cu−Sn金属間化合物層(表4ではCu−Sn層と表す)の厚み、Sn系表面層の厚み、接触抵抗、動摩擦係数、曲げ加工性を測定し、その結果を表4に示す。
各めっき層の厚みは、TEM−EDS分析により測定した。
ホウ素含有量は、TEM−EDSによる定量分析にて測定した。
接触抵抗は、試料を175℃×1000時間放置した後、山崎精機株式会社製電気接点シミュレーターを用い荷重0.49N(50gf)摺動有りの条件で測定した。
About the sample manufactured as described above, the thickness of the Ni-based underlayer and the boron content, the thickness of the Cu-Sn intermetallic compound layer (referred to as Cu-Sn layer in Table 4), the thickness of the Sn-based surface layer, the contact Resistance, dynamic friction coefficient, and bending workability were measured, and the results are shown in Table 4.
The thickness of each plating layer was measured by TEM-EDS analysis.
The boron content was measured by quantitative analysis with TEM-EDS.
The contact resistance was measured under the condition of sliding with a load of 0.49 N (50 gf) using an electrical contact simulator manufactured by Yamazaki Seiki Co., Ltd. after the sample was left at 175 ° C. for 1000 hours.

動摩擦係数は、動摩擦係数については、嵌合型のコネクタのオス端子とメス端子の接点部を模擬するように、各試料によって板状のオス試験片と内径1.5mmの半球状としたメス試験片とを作成し、アイコーエンジニアリング株式会社製の横型荷重測定器(Model−2152NRE)を用い、両試験片間の摩擦力を測定して動摩擦係数を求めた。図2により説明すると、水平な台21上にオス試験片22を固定し、その上にメス試験片23の半球凸面を置いてめっき面どうしを接触させ、メス試験片23に錘24によって4.9N(500gf)の荷重Pをかけてオス試験片22を押さえた状態とする。この荷重Pをかけた状態で、オス試験片22を摺動速度80mm/分で矢印で示す水平方向に10mm引っ張ったときの摩擦力Fをロードセル25によって測定した。その摩擦力Fの平均値Favと荷重Pより動摩擦係数(=Fav/P)を求めた。
曲げ加工性は、試料の圧延方向と直角に90°曲げ(曲げ半径R=0.2mm)を施し、曲げ部におけるめっき皮膜の割れにより評価した。曲げ部について500倍でSEM観察し、めっき皮膜に割れが見られないものを○、割れが見られたものを×として評価した。
As for the dynamic friction coefficient, a female test with a plate-shaped male test piece and a hemisphere with an inner diameter of 1.5 mm was used for each sample so as to simulate the contact part of the male terminal and female terminal of the fitting type connector. A piece was made, and the frictional force between the two test pieces was measured using a horizontal load measuring device (Model-2152NRE) manufactured by Aiko Engineering Co., Ltd. to obtain a dynamic friction coefficient. 2, a male test piece 22 is fixed on a horizontal base 21, a hemispherical convex surface of a female test piece 23 is placed on the male test piece 22, and the plating surfaces are brought into contact with each other. The load P of 9N (500 gf) is applied and the male test piece 22 is pressed. With the load P applied, the frictional force F when the male test piece 22 was pulled 10 mm in the horizontal direction indicated by the arrow at a sliding speed of 80 mm / min was measured by the load cell 25. A dynamic friction coefficient (= Fav / P) was obtained from the average value Fav of the friction force F and the load P.
The bending workability was evaluated by bending 90 ° (bending radius R = 0.2 mm) perpendicular to the rolling direction of the sample and cracking the plating film at the bent portion. SEM observation was performed at 500 times with respect to the bent portion, and the case where no crack was observed in the plating film was evaluated as “◯”, and the case where the crack was observed was evaluated as “X”.

Figure 0005442385
Figure 0005442385

表4より、本発明の導電部材は、Cu又はCu合金からなる基材の表面にNi、Cu、Snを順にめっきして3層のめっき層を形成した後に、加熱してリフロー処理することにより、最表面層にSn層が形成され、Ni層とSn層との間にCu−Sn金属間化合物層が形成された構成の3層めっき品の下地層に50〜400ppm、特に、100〜500ppmのホウ素を含有するNi系下地層を形成することにより、良好な接触抵抗性、耐摩耗性を有し、優れた曲げ加工性を有することがわかる。   From Table 4, the conductive member of the present invention is formed by sequentially plating Ni, Cu, and Sn on the surface of the base material made of Cu or Cu alloy to form a three-layered plating layer, and then heating and performing a reflow treatment. 50 to 400 ppm, particularly 100 to 500 ppm for the underlayer of the three-layer plating product in which the Sn layer is formed on the outermost surface layer and the Cu-Sn intermetallic compound layer is formed between the Ni layer and the Sn layer. It can be seen that by forming a Ni-based underlayer containing boron, the film has good contact resistance and wear resistance, and has excellent bending workability.

1 Cu系基材
2 Ni系下地層
3 Cu−Sn金属間化合物層
4 Sn系表面層
5 CuSn層
6 CuSn
10 導電部材
DESCRIPTION OF SYMBOLS 1 Cu type | system | group base material 2 Ni type | system | group base layer 3 Cu-Sn intermetallic compound layer 4 Sn type | system | group surface layer 5 Cu 3 Sn layer 6 Cu 6 Sn 5 layer 10 Conductive member

Claims (2)

Cu系基材の表面に、平均厚みが0.1〜3.0μmであるNi系下地層を介して、平均厚みが0.05〜1.5μmであるCu−Sn金属間化合物層、平均厚みが0.05〜2.0μmであるSn系表面層がこの順に形成されるとともに、Cu−Sn金属間化合物層はさらに、前記Ni系下地層の上に配置されるCu Sn層と、該Cu Sn層の上に配置されるCuSn層とからなり、前記Ni系下地層のホウ素含有量が100〜500ppm(ただし500ppmを除く)であることを特徴とする導電部材。 A Cu—Sn intermetallic compound layer having an average thickness of 0.05 to 1.5 μm and an average thickness on the surface of the Cu-based substrate with a Ni-based underlayer having an average thickness of 0.1 to 3.0 μm. Are formed in this order, and the Cu—Sn intermetallic compound layer further includes a Cu 3 Sn layer disposed on the Ni-based underlayer, Cu 3 consists of a Cu 6 Sn 5 layer disposed on the Sn layer, the conductive member, characterized in that boron content of the Ni-based base layer is 100 to 500 ppm (except for 500 ppm). 請求項1記載の導電部材を製造する方法であって、前記Ni系下地層を形成するためのNiめっきは、ホウ酸を含む無機酸を主成分とするめっき浴中にて、浴温45〜55℃、pH1.0〜2.0、電流密度20〜50A/dm、レイノルズ数2×10〜4×10なる電解めっきにより行うことを特徴とする導電部材の製造方法。 The method for producing a conductive member according to claim 1, wherein the Ni plating for forming the Ni-based underlayer is performed at a bath temperature of 45 to 45 in a plating bath mainly composed of an inorganic acid containing boric acid. The manufacturing method of the electrically-conductive member characterized by performing by 55 degreeC, pH 1.0-2.0, current density 20-50 A / dm < 2 >, Reynolds number 2 * 10 < 4 > -4 * 10 < 5 > electrolytic plating.
JP2009233806A 2009-10-07 2009-10-07 Conductive member and manufacturing method thereof Active JP5442385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009233806A JP5442385B2 (en) 2009-10-07 2009-10-07 Conductive member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009233806A JP5442385B2 (en) 2009-10-07 2009-10-07 Conductive member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011080117A JP2011080117A (en) 2011-04-21
JP5442385B2 true JP5442385B2 (en) 2014-03-12

Family

ID=44074447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009233806A Active JP5442385B2 (en) 2009-10-07 2009-10-07 Conductive member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5442385B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5278630B1 (en) * 2012-01-26 2013-09-04 三菱マテリアル株式会社 Tin-plated copper alloy terminal material excellent in insertion / extraction and manufacturing method thereof
JP6606001B2 (en) * 2016-03-30 2019-11-13 古河電気工業株式会社 Sn coating material

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4489232B2 (en) * 1999-06-14 2010-06-23 日鉱金属株式会社 Plating material for connectors
JP3353744B2 (en) * 1999-06-23 2002-12-03 日本電気株式会社 Pattern formation method
JP2002194464A (en) * 2000-12-26 2002-07-10 Nippon Mining & Metals Co Ltd Metallic material, terminal and connector
JP4090488B2 (en) * 2001-07-31 2008-05-28 株式会社神戸製鋼所 Conductive material plate for connecting part forming process and manufacturing method thereof
JP3880877B2 (en) * 2002-03-29 2007-02-14 Dowaホールディングス株式会社 Plated copper or copper alloy and method for producing the same
US7391116B2 (en) * 2003-10-14 2008-06-24 Gbc Metals, Llc Fretting and whisker resistant coating system and method
JP4524483B2 (en) * 2004-04-28 2010-08-18 石原薬品株式会社 Tin or tin alloy plating method
JP4653133B2 (en) * 2006-03-17 2011-03-16 古河電気工業株式会社 Plating material and electric / electronic component using the plating material
EP2157668B9 (en) * 2007-04-09 2016-02-17 Furukawa Electric Co., Ltd. Connector and metallic material for connector
JP5101235B2 (en) * 2007-10-18 2012-12-19 Jx日鉱日石金属株式会社 Sn plating material for electronic parts and electronic parts
JP5319101B2 (en) * 2007-10-31 2013-10-16 Jx日鉱日石金属株式会社 Sn plating material for electronic parts
JP5410154B2 (en) * 2008-12-24 2014-02-05 三菱伸銅株式会社 Method and apparatus for producing plated copper strip
JP4319247B1 (en) * 2009-01-20 2009-08-26 三菱伸銅株式会社 Conductive member and manufacturing method thereof
JP5498710B2 (en) * 2009-02-23 2014-05-21 三菱伸銅株式会社 Conductive member and manufacturing method thereof
JP4372835B1 (en) * 2009-04-14 2009-11-25 三菱伸銅株式会社 Conductive member and manufacturing method thereof
JP5442316B2 (en) * 2009-05-12 2014-03-12 三菱伸銅株式会社 Manufacturing method of conductive member
JP5280957B2 (en) * 2009-07-28 2013-09-04 三菱伸銅株式会社 Conductive member and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011080117A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
JP5280957B2 (en) Conductive member and manufacturing method thereof
US8981233B2 (en) Conductive member and method for producing the same
EP2620275B1 (en) Tin-plated copper-alloy material for terminal and method for producing the same
JP5498710B2 (en) Conductive member and manufacturing method thereof
JP4319247B1 (en) Conductive member and manufacturing method thereof
US8101285B2 (en) Metallic material for a connecting part and a method of producing the same
JP4372835B1 (en) Conductive member and manufacturing method thereof
JP5355935B2 (en) Metal materials for electrical and electronic parts
KR101682791B1 (en) A copper alloy sheet with sn coating layer for a fitting type connection terminal and a fitting type connection terminal
WO2010119489A1 (en) Conductive member and manufacturing method thereof
WO2009123144A1 (en) Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance
JP2008285729A (en) REFLOW Sn-PLATED MATERIAL AND ELECTRONIC PARTS USING THE SAME
JP5313773B2 (en) Plated copper strip and method for producing the same
JP5325734B2 (en) Conductive member and manufacturing method thereof
JP2007291457A (en) HEAT-RESISTANT Sn SOLDERED STRIP OF Cu-Zn ALLOY WITH SUPPRESSED GENERATION OF WHISKER
KR20150050397A (en) Tin-plated copper alloy terminal member
JP2008248332A (en) Tin-plated strip and its production method
US20170076834A1 (en) Electrical contact material, method of producing an electrical contact material, and terminal
JP5635794B2 (en) Conductive member and manufacturing method thereof
JP5442385B2 (en) Conductive member and manufacturing method thereof
JP2009263785A (en) Connecting component metal material and method of manufacturing the same
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP2000169996A (en) Metallic material
JP7302364B2 (en) Connector terminal materials and connector terminals
JP2014084476A (en) Surface treatment plated material and production method of the same, and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131218

R150 Certificate of patent or registration of utility model

Ref document number: 5442385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250