JP4862327B2 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP4862327B2
JP4862327B2 JP2005265726A JP2005265726A JP4862327B2 JP 4862327 B2 JP4862327 B2 JP 4862327B2 JP 2005265726 A JP2005265726 A JP 2005265726A JP 2005265726 A JP2005265726 A JP 2005265726A JP 4862327 B2 JP4862327 B2 JP 4862327B2
Authority
JP
Japan
Prior art keywords
trench
isolation region
element isolation
oxide film
locos oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005265726A
Other languages
English (en)
Other versions
JP2007081056A (ja
Inventor
宏幸 山根
満孝 堅田
浩 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005265726A priority Critical patent/JP4862327B2/ja
Publication of JP2007081056A publication Critical patent/JP2007081056A/ja
Application granted granted Critical
Publication of JP4862327B2 publication Critical patent/JP4862327B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明は、トレンチゲート構造のMOSトランジスタを含む複数の素子と、素子間を絶縁分離する素子分離領域とを有する半導体装置及びその製造方法に関するものである。
従来、トレンチゲート構造のMOSトランジスタにおいては、曲率半径の小さいトレンチの開孔角部(肩部)においてゲート絶縁膜に電界集中が生じるので、これによるゲート絶縁膜の耐圧低下を回避するために、例えば熱酸化により曲率半径を大きくする(開孔角部を丸みを帯びた緩やかな形状とする)ことが提案されている(例えば非特許文献1、特許文献1参照)。
IEEE TRANSACTIONS ON ELECTRON DEVICES,VOL.ED−34,NO.8,AUGUST 1987,p1681−1687 特許第3396553号
ところで、半導体装置においては、1つの半導体基板にMOSトランジスタ等の素子が複数設けられ、各素子は素子分離領域(例えばLOCOS酸化膜やSTI)によって絶縁分離されている。すなわち、MOSトランジスタのトレンチ近傍に素子分離領域が設けられている。
本発明者が確認したところ、トレンチの開孔角部を丸みを帯びた緩やかな形状に加工したにも関わらず、素子分離領域とトレンチの位置関係によっては、ゲート絶縁膜に電界集中が生じたり、半導体装置のコストが増加したりすることが明らかとなった。
本発明は上記問題点に鑑み、ゲート絶縁膜の信頼性向上とコスト低減を両立した半導体装置及びその製造方法を提供することを目的としている。
本発明者が確認したところ、トレンチの開孔角部が丸みを帯びた緩やかな形状に加工されているにも関わらず、開孔角部と素子分離領域が重複する(言い換えれば、開孔角部の端部が素子分離領域内にある)場合、素子分離領域の端部と開孔角部との繋ぎ部位が角張った形状となるため、開孔角部におけるゲート絶縁膜の電界強度が、平坦部におけるゲート絶縁膜の電界強度に比べて著しく大きな値となることが明らかとなった。また、トレンチと素子分離領域とを離間すると、電界集中を抑制することはできるが、離間しすぎても素子面積が増大するので、コストが増加することとなる。したがって、トレンチと素子分離領域を所定の位置関係とすることが好ましい。
それに対し、請求項1に記載の発明は、トレンチゲート構造のMOSトランジスタを含む複数の素子と、素子間を絶縁分離する素子分離領域とを有する半導体装置であって、MOSトランジスタのトレンチの開孔角部は丸みを帯びた緩やかな形状に加工されており、半導体基板表面におけるトレンチの開孔角部の端部と、MOSトランジスタに隣接する素子分離領域のトレンチ側の端部との間の間隔をXcとするとXc=0を満たすように構成したことを特徴とする。尚、上記において、トレンチの開孔角部とは、トレンチの側壁の平坦部と基板表面の平坦部とを繋ぐ、丸みを帯びた緩やかな形状を有する部位を示し、開孔角部の端部とは、基板表面の平坦部との境界部位を示す。
このように本発明によると、Xc=0であるので、開孔角部と素子分離領域が重複することがない(端部同士が一致する)。従って、開孔角部のゲート絶縁膜における電界集中を抑制し、ゲート絶縁膜の信頼性を向上することができる。また、Xc=0であるので、トレンチから素子分離領域までの距離を短くして、素子面積を小さくすることができる。したがって、本発明によれば、ゲート絶縁膜の信頼性向上とコスト低減(小型化)を両立することができる。
次に請求項2に記載の発明は、請求項1に記載の半導体装置を製造するための製造方法に関し、トレンチゲート構造のMOSトランジスタを含む複数の素子と、素子間を絶縁分離する素子分離領域とを有する半導体装置の製造方法であって、半導体基板に素子分離領域を形成する素子分離領域形成工程と、半導体基板の素子分離領域近傍にトレンチを形成するトレンチ形成工程と、トレンチの少なくとも開孔角部の曲率半径をトレンチ形成時よりも大きくし、開孔角部を丸みを帯びた緩やかな形状とする曲大化工程と、トレンチ表面にゲート絶縁膜を形成し、ゲート絶縁膜を介してトレンチにゲート電極を形成するゲート形成工程とを備え、半導体基板表面におけるトレンチの開孔角部の端部と、MOSトランジスタに隣接する素子分離領域のトレンチ側の端部との間の間隔をXcとすると、素子分離領域形成工程、トレンチ形成工程、及び曲大化工程において、Xc=0を満たすように、素子分離領域及びトレンチを形成することを特徴とする。
本発明の作用効果は、請求項1に記載の発明の作用効果と同様であるので、その記載を省略する。
以下、本発明の実施の形態を図に基づいて説明する。
(第1の実施の形態)
図1は、本実施形態に係る半導体装置の概略構成を示す図であり、(a)は平面図、(b)は(a)のA−A断面における断面図である。図1(a),(b)に示すように、本実施形態に係る半導体装置100は、半導体基板10にトレンチゲート構造のMOSトランジスタ20を含む複数の素子と、素子間を絶縁分離する素子分離領域としてのLOCOS酸化膜30とを有する半導体装置であり、図1においては、便宜上、一部のみを図示する。
半導体基板10は、特に限定されるものではない。例えばシリコンからなる基板でも良いし、内部に絶縁膜を埋め込んだSOI(Silicon On Insulator)基板でも良い。
トレンチゲート構造のMOSトランジスタ20は、例えばN導電型領域をソースおよびドレインとする縦型のNチャネルトランジスタとして構成されている。MOSトランジスタ20は、半導体基板10上に形成されたドレイン領域であるn−型の拡散領域(図示略)、この拡散領域の表層部に選択的に形成されたベース領域であるp型の拡散領域(pウェル)、この拡散領域の表層部に選択的に形成されたソース領域であるn+型の拡散領域、ソース領域である拡散領域とベース領域である拡散領域を貫通し、ドレイン領域である拡散領域に達するように形成されたトレンチ21(図1(a)においては一点鎖線で囲まれる領域)、ゲート絶縁膜22を介してトレンチ21に埋め込み形成されたゲート電極23、及び図示されない層間絶縁膜、ソース電極、ドレイン電極、配線等により構成されている。
トレンチ21は、トレンチ21の側壁の平坦部と基板表面の平坦部とを繋ぐ開孔角部(肩部)の形状が、電解集中を抑制するために丸みを帯びた緩やかな形状となっている。そしてMOSトランジスタ20の周囲には、素子分離領域としてのLOCOS酸化膜30が形成されている。本実施形態においては、LOCOS酸化膜30にて囲まれる領域内に、3つのトレンチ21が形成されている。尚、図1中において、符号21aは、トレンチ21の開孔角部の端部(言い換えれば、基板表面の平坦部との境界部位或いは丸みを帯びた緩やかな形状の終端部位)を示し、符号30aは、トレンチ21側のLOCOS酸化膜30の端部を示している。また、符号40は、ソース領域及びドレイン領域をそれぞれソース電極及びドレイン電極と接続するコンタクトを示している。
ここで、上記構成の半導体装置100において、本発明者はトレンチ21とLOCOS酸化膜30との位置関係と、トレンチ21の開孔角部における電界集中との関係について調査した。その結果を図2に示す。図2は、トレンチ21の開孔角部の端部21cとLOCOS酸化膜30の端部30aとの間の距離をXc(図1(b)参照)とした際の、基板表面の平坦部におけるゲート絶縁膜22に対する開孔角部のゲート絶縁膜22の電界強度比とXcとの関係を示すシミュレーション結果である。また、図3は、トレンチ21(開孔角部の端部21a)とLOCOS酸化膜30(端部30a)との位置関係を示す図であり、(a)はXc>0、(b)はXc=0、(c)はXc<0の場合を示している。
図3(a)に示すように、Xc>0、すなわち、開孔角部の端部21aとLOCOS酸化膜30の端部30aとの間に繋ぎの平坦部を有する構成においては、図2に示すように開孔角部におけるゲート絶縁膜22の電界強度は平坦部におけるゲート絶縁膜22の電界強度の略1.2倍であった。また、図3(b)に示すように、Xc=0、すなわち、開孔角部の端部21aとLOCOS酸化膜30の端部30aとが一致する構成においても同様であった。
ところが、図3(c)に示すように、Xc<0、すなわち、トレンチ21の開孔角部とLOCOS酸化膜30が一部重複した構成(言い換えれば、開孔角部の端部21aがLOCOS酸化膜30内にある構成)においては、図2に示すように、開孔角部におけるゲート絶縁膜22の電界強度が平坦部におけるゲート絶縁膜22の電界強度に比べて著しく大きな値となり、電界強度比が略1.2よりも大きくなった。
これは、LOCOS酸化膜30の端部30aとトレンチ21の開孔角部との繋ぎ部位が角張った形状となるため、開孔角部におけるゲート絶縁膜22の電界強度が、平坦部におけるゲート絶縁膜22の電界強度に比べて著しく大きな値となるものと考えられる。
実際、図3(a)に示す構成と図3(c)に示す構成のMOSトランジスタを形成し、ゲート電圧とゲート電流を測定したところ、図4に示すように、Xc<0となるように構成したトランジスタの方が、Xc>0となるように構成したトランジスタよりも大きなゲート電流が流れた。従って、Xc<0において、電界集中が生じていることが明らかである。このように電界集中が生じると、ゲート絶縁膜22に過大な電界が加わり、信頼性が低下することとなる。すなわち、ゲート絶縁膜22の経時破壊現象に対する寿命が著しく短くなってしまう。図4は、ゲート電圧とゲート電流との関係を示す図である。
電界集中を抑制するためには、Xc≧0とすることが好ましい。しかしながら、トレンチ21と素子分離領域であるLOCOS酸化膜30との間隔を大きくしすぎても素子面積が増大するので、コストが増加することとなる。したがって、ゲート絶縁膜22の信頼性向上とコスト低減を両立するように、トレンチ21とLOCOS酸化膜30を所定の位置関係とする必要がある。
そこで本実施形態においては、上記した半導体装置100(図1参照)において、Xcが次式を満たすように構成した。
(式1)0≦Xc≦ΔWi+ΔWt+2Xa
尚、ΔWiはLOCOS酸化膜30の加工ばらつき(加工精度)を許容する許容幅、ΔWtはトレンチ21の加工ばらつき(加工精度)を許容する許容幅、XaはLOCOS酸化膜30に対するトレンチ21の位置ばらつき(位置決め精度)を許容する許容幅である。本実施形態においては、上記許容幅ΔWi、ΔWt、許容幅Xaとして、それぞれのばらつきの値(精度)に所定のマージンを加味した値を採用している。しかしながら、上記許容幅ΔWi、ΔWt、Xaとして、それぞれのばらつきの値(精度)そのものを採用しても良い。
次に、式1について、図5(a),(b)を用いて説明する。図5は式1を説明するための図であり、(a)は平面図、(b)は(a)のB−B断面における断面図である。図5は図1に対応している。
上記したように、本実施形態に係る半導体装置100においては、MOSトランジスタ20の周囲がLOCOS酸化膜30によって囲まれている。そこで、図5(a)に示すように、トレンチ21の長手方向において、トレンチ21の両端部21a間の距離をWtとし、両端部21aとそれぞれ対向するLOCOS酸化膜30の端部30a間の距離をWiとする。Wt、Wiは、ともにそれぞれの形成工程において加工ばらつきを持っており、加工ばらつきが生じても所定範囲の長さとなるように設定されている。ここで、それぞれの狙い値(加工中心値)をWtc、Wicとし、加工ばらつき(加工精度)をそれぞれ上記したΔWt、ΔWiとすると、Wt、Wiをそれぞれ式2,3で示すことができる。
(式2)Wt=Wtc±ΔWt
(式3)Wi=Wic±ΔWi
さらに、本実施形態においては、後述するようにLOCOS酸化膜30の形成後に、形LOCOS酸化膜30を位置決め基準としてトレンチ21を形成するが、LOCOS酸化膜30に対してトレンチ21の位置ばらつき(位置決め精度)が生じる。そこで、上記したXaをこの位置ばらつきを許容する許容幅Xaとする。
例えば、式2,3に示すWt,Wiが加工中心値(すなわち加工ばらつきなし)で形成され、LOCOS酸化膜30に対するトレンチ21の位置ずれが0の場合、Xcは式4で示され、LOCOS酸化膜30に対するトレンチ21の位置ずれがXa(最大)の場合、位置ずれして間隔が狭くなった方のXcは式5、位置ずれして間隔が広くなった方のXcは式6で示される。
(式4)Xc=1/2×ΔWi+1/2×ΔWt+Xa
(式5)Xc=1/2×ΔWi+1/2×ΔWt
(式6)Xc=1/2×ΔWi+1/2×ΔWt+2Xa
また、Wtが最大値,Wiが最小値であり、LOCOS酸化膜30に対するトレンチ21の位置ずれが0の場合、Xcは式7で示され、LOCOS酸化膜30に対するトレンチ21の位置ずれがXa(最大)の場合、位置ずれして間隔が狭くなった方のXcは式8、位置ずれして間隔が広くなった方のXcは式9で示される
(式7)Xc=Xa
(式8)Xc=0
(式9)Xc=2Xa
さらには、Wtが最小値,Wiが最大値であり、LOCOS酸化膜30に対するトレンチ21の位置ずれが0の場合、Xcは式10で示され、LOCOS酸化膜30に対するトレンチ21の位置ずれがXa(最大)の場合、位置ずれして間隔が狭くなった方のXcは式11、位置ずれして間隔が広くなった方のXcは式12で示される。
(式10)Xc=ΔWi+ΔWt+Xa
(式11)Xc=ΔWi+ΔWt
(式12)Xc=ΔWi+ΔWt+2Xa
従って、式4〜12に示した結果から分かるように、Xcを上記式1に示す範囲内で設定すれば、加工ばらつき及び位置(決め)ばらつきを考慮したうえで、トレンチ21の開孔角部を丸みを帯びた緩やかな形状としたトレンチゲート構造のMOSトランジスタ20を有する半導体装置100において、ゲート絶縁膜22の信頼性向上とコスト低減を両立することができる。
特に、上記した式12が最大であるので、式12を満たすようにXc(すなわち、それぞれの加工中心値Wtc、Wic)を設定しても良い。この場合、加工ばらつき及び位置(決め)ばらつきが生じる恐れがある場合に、安定してゲート絶縁膜22の信頼性向上とコスト低減を両立することができる。尚、式12の右辺(ΔWi+ΔWt+2Xa)の値は、一般的に0.5μm程度である。従って、Xcの値を無駄に大きくすることなく、素子面積を必要最小限とする(コスト低減する)ことができる。
次に、式1を満たす半導体装置100の製造方法について以下にその一例を説明する。尚、半導体装置100を製造する各工程は、公知の半導体製造技術を適用することができる。先ず、半導体基板10に素子分離領域であるLOCOS酸化膜30を形成し、各拡散領域形成後、形成されたLOCOS酸化膜30を位置決め基準として、LOCOS酸化膜30の近傍にトレンチ21を形成する。トレンチ21形成後、例えば熱酸化による犠牲酸化膜の形成と当該膜の除去により、トレンチ21の少なくとも開孔角部の曲率半径をトレンチ形成時よりも大きくし、開孔角部を丸みを帯びた緩やかな形状とする。
ここで、上記LOCOS酸化膜30の形成工程、トレンチ21の形成工程、及び開孔角部の曲率を大きくする曲大化工程において、上記した式1(又は式12)を満たすように、LOCOS酸化膜30とトレンチ21を形成すれば良い。
そして、トレンチ21の表面にゲート絶縁膜22を熱酸化法、気相成長法等により形成し、ゲート絶縁膜22を介してトレンチ21内にゲート電極材料を埋め込んでゲート電極23を形成する。その後、層間絶縁膜、ソース電極、ドレイン電極、配線等を形成して、式1を満たす構成の図1に示す半導体装置100が製造される。
以上本発明の好ましい実施形態について説明したが、本発明は上述の実施形態のみに限定されず、種々変更して実施することができる。
本実施形態においては、素子分離領域としてLOCOS酸化膜30を有する例を示した。しかしながら、LOCOS酸化膜30に限定されるものではない。例えば、STI酸化膜でも良いし、トレンチ分離領域でも良い。また、それらの組合せでも良い。
例えば、素子分離領域として、トレンチ分離領域が形成され、トレンチ分離領域を基準としてLOCOS酸化膜30が形成され、トレンチ分離領域を基準としてトレンチ21が形成されてなる構成の場合、LOCOS酸化膜30とトレンチ21との位置関係は、トレンチ分離領域を介して間接的に位置決めされた位置関係となる。この場合、本実施形態に示したように、LOCOS酸化膜30に対して間接的にトレンチ21の位置決めすることによるばらつき(位置決め精度)Xa‘を位置ばらつきを許容する許容幅Xaとして適用すれば良い。
また、本実施形態においては、素子(MOSトランジスタ20)を取り囲むようにLOCOS酸化膜30が設けられ、トレンチ21の長手方向において、トレンチ21の両端部21aとそれぞれ対向するLOCOS酸化膜30の端部30a間の距離をWiとし、その加工ばらつきをΔWiとする例を示した。しかしながら、素子分離領域の加工ばらつきの基準となる部位(長さ)は上記例に限定されるものではない。例えば、図6に示すように、トレンチ21の長手方向において、一方の端部30a側にのみLOCOS酸化膜30が設けられる場合、LOCOS酸化膜30の幅をWi、その加工ばらつきをΔWiとしても良い。その場合も、本実施形態に示す式1(又は式12)を満たすようにXcを設定することで、ゲート絶縁膜22の信頼性向上とコスト低減を両立することができる。図6は、本実施形態の変形例を示す図である。
また、本実施形態においては、トレンチ21の長手方向において、両側にLOCOS酸化膜30が設けられ、Xcを考慮する例を示した。しかしながら、短手方向においても、同様である。例えば、長手方向と、短手方向の両方向に形成されたLOCOS酸化膜30とトレンチ21との位置関係を考慮する必要がある場合(長手方向と短手方向で加工ばらつき、位置ばらつきが異なる場合)には、それぞれの方向において、式1(又は式12)を満たすように個別にXcを設定すれば良い。これにより、ゲート絶縁膜22の信頼性向上とコスト低減を両立することができる。
第1の実施形態に係る半導体装置の概略構成を示す図であり、(a)は平面図、(b)は(a)のA−A断面における断面図である。 基板表面の平坦部におけるゲート絶縁膜に対する開孔角部のゲート絶縁膜の電界強度比とXcとの関係を示すシミュレーション結果である。 トレンチとLOCOS酸化膜との位置関係を示す図であり、(a)はXc>0、(b)はXc=0、(c)はXc<0の場合を示している。 ゲート電圧とゲート電流との関係を示す図である。 式1を説明するための図であり、(a)は平面図、(b)は(a)のB−B断面における断面図である。 変形例を示す図である。
符号の説明
10・・・半導体基板
20・・・MOSトランジスタ(素子)
21・・・トレンチ
21a・・・開孔角部の端部
22・・・ゲート絶縁膜
23・・・ゲート電極
30・・・LOCOS酸化膜(素子分離領域)
30a・・・LOCOS酸化膜の端部
100・・・半導体装置

Claims (2)

  1. トレンチゲート構造のMOSトランジスタを含む複数の素子と、前記素子間を絶縁分離する素子分離領域とを有する半導体装置であって、
    前記MOSトランジスタのトレンチの開孔角部は丸みを帯びた緩やかな形状に加工されており、
    半導体基板表面における前記トレンチの開孔角部の端部と、前記MOSトランジスタに隣接する前記素子分離領域の前記トレンチ側の端部との間の間隔をXcとするとXc=0を満たすように構成したことを特徴とする半導体装置。
  2. トレンチゲート構造のMOSトランジスタを含む複数の素子と、前記素子間を絶縁分離する素子分離領域とを有する半導体装置の製造方法であって、
    半導体基板に前記素子分離領域を形成する素子分離領域形成工程と、
    前記半導体基板の前記素子分離領域近傍にトレンチを形成するトレンチ形成工程と、
    前記トレンチの少なくとも開孔角部の曲率半径をトレンチ形成時よりも大きくし、前記開孔角部を丸みを帯びた緩やかな形状とする曲大化工程と、
    前記トレンチ表面にゲート絶縁膜を形成し、前記ゲート絶縁膜を介して前記トレンチにゲート電極を形成するゲート形成工程とを備え、
    前記半導体基板表面における前記トレンチの開孔角部の端部と、前記MOSトランジスタに隣接する前記素子分離領域の前記トレンチ側の端部との間の間隔をXcとすると
    前記素子分離領域形成工程、前記トレンチ形成工程、及び前記曲大化工程において、Xc=0を満たすように、前記素子分離領域及び前記トレンチを形成することを特徴とする半導体装置の製造方法。
JP2005265726A 2005-09-13 2005-09-13 半導体装置及びその製造方法 Expired - Fee Related JP4862327B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005265726A JP4862327B2 (ja) 2005-09-13 2005-09-13 半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265726A JP4862327B2 (ja) 2005-09-13 2005-09-13 半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2007081056A JP2007081056A (ja) 2007-03-29
JP4862327B2 true JP4862327B2 (ja) 2012-01-25

Family

ID=37941048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265726A Expired - Fee Related JP4862327B2 (ja) 2005-09-13 2005-09-13 半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP4862327B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129775A (ja) * 1989-07-11 1991-06-03 Seiko Epson Corp 半導体装置およびその製造方法
JPH07106557A (ja) * 1993-10-04 1995-04-21 Hitachi Ltd 半導体装置およびその製造方法
JP3788971B2 (ja) * 1994-02-04 2006-06-21 三菱電機株式会社 半導体装置
JP4479276B2 (ja) * 2004-02-25 2010-06-09 株式会社デンソー 横型mosトランジスタの製造方法

Also Published As

Publication number Publication date
JP2007081056A (ja) 2007-03-29

Similar Documents

Publication Publication Date Title
JP2009239111A (ja) 半導体装置
US8076720B2 (en) Trench gate type transistor
TWI590449B (zh) Silicon carbide semiconductor device, method of manufacturing the silicon carbide semiconductor device, and method of designing the silicon carbide semiconductor device
JP2007088010A (ja) 半導体装置およびその製造方法
KR20090122136A (ko) 반도체 디바이스 및 그 제조 방법
JP5498107B2 (ja) 半導体装置およびその製造方法
JP2006059841A (ja) 半導体装置及び半導体装置の製造方法
JP2021145146A (ja) 半導体装置
JP2006303323A (ja) 半導体装置およびその製造方法
JP2008300420A (ja) 半導体装置及び半導体装置の製造方法
TWI574405B (zh) Silicon carbide semiconductor device, method for manufacturing silicon carbide semiconductor device, and design method of silicon carbide semiconductor device
JP4623294B2 (ja) 半導体装置の製造方法
JP5378925B2 (ja) 半導体装置およびその製造方法
JP4862327B2 (ja) 半導体装置及びその製造方法
JP2000216385A (ja) トレンチゲ―ト型半導体装置
JP5502468B2 (ja) 半導体装置の製造方法および半導体装置
JP5003856B2 (ja) 半導体装置
JP2006190966A (ja) 半導体装置およびその製造方法
JP4784739B2 (ja) 半導体装置
JP4784738B2 (ja) 半導体装置
JP2007123729A (ja) 半導体装置
JP3750627B2 (ja) 半導体装置及び半導体装置の製造方法
KR20110030078A (ko) 반도체 소자 및 그 제조 방법
JP4784737B2 (ja) 半導体装置
JP2009117412A (ja) 絶縁ゲート型半導体装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4862327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees