JP2010261085A - Method for producing graphite-coated metal nanoparticle, and method for thin-filming graphite-coated metal nanoparticle - Google Patents

Method for producing graphite-coated metal nanoparticle, and method for thin-filming graphite-coated metal nanoparticle Download PDF

Info

Publication number
JP2010261085A
JP2010261085A JP2009114033A JP2009114033A JP2010261085A JP 2010261085 A JP2010261085 A JP 2010261085A JP 2009114033 A JP2009114033 A JP 2009114033A JP 2009114033 A JP2009114033 A JP 2009114033A JP 2010261085 A JP2010261085 A JP 2010261085A
Authority
JP
Japan
Prior art keywords
metal
graphite
complex
coated
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009114033A
Other languages
Japanese (ja)
Other versions
JP5397602B2 (en
Inventor
Masamitsu Yamada
真実 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2009114033A priority Critical patent/JP5397602B2/en
Publication of JP2010261085A publication Critical patent/JP2010261085A/en
Application granted granted Critical
Publication of JP5397602B2 publication Critical patent/JP5397602B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To mass-produce graphite-coated metal nanoparticles in which the precise control of a metallic composition is possible, and which is also provided with oxidization resistance and chemical resistance using a general material by a simple apparatus. <P>SOLUTION: The graphite-coated metal nanoparticles are produced through: a stage where a solution comprising an anionic metal complex with a metal atom M<SB>1</SB>as a center metal and a solution comprising the metal cations of a metal atom M<SB>2</SB>are mixed so as to precipitate the crystals of a metal complex similar to prussian blue composed of the metal atom M<SB>1</SB>and the metal atom M<SB>2</SB>; a stage where the crystals of the obtained complex and a hydrocarbon compound having ligands are mixed in a solvent so as to be a dispersion, and the solvent is separated from the dispersion so as to obtain the fine particles of the metal complex; and a stage where the fine particles of the metal complex are subjected to reduction firing. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、グラファイト被覆された金属ナノ粒子の製造方法及びグラファイト被覆金属ナノ粒子の薄膜化方法に関する。   The present invention relates to a method for producing graphite-coated metal nanoparticles and a method for thinning graphite-coated metal nanoparticles.

金属ナノ粒子は、触媒をはじめ、光学材料、電子材料、センサー用の磁気材料や抗菌材料など非常に幅広い分野で利用されている。   Metal nanoparticles are used in a very wide range of fields including catalysts, optical materials, electronic materials, magnetic materials for sensors, and antibacterial materials.

金属ナノ粒子は、特定の金属種の組み合わせにより多様な特性を持たせることができ、光特性や磁性特性を有する金属ナノ粒子などが知られている。磁性ナノ粒子は空間を隔てて磁気力で分離、輸送、回収が可能であり、DNA精製や細胞分離といったバイオ分野、さらに、磁性体の電磁的な応答による検出、標識、誘導過熱などが可能であり、医療・バイオ分野での活躍が期待されている。また、磁性ナノ粒子分散液は、磁性流体(磁気インク)としてトナー原料や磁気記録、磁気カードとして使用され、また、次世代の磁気デバイスと期待されているスピントロニクス材料としても期待され、現在および将来におけるその材料の重要性は計り知れないものがある。   Metal nanoparticles can be given various properties by a combination of specific metal species, and metal nanoparticles having optical properties and magnetic properties are known. Magnetic nanoparticles can be separated, transported and recovered by magnetic force across a space, and can be used for biotechnology such as DNA purification and cell separation, as well as detection, labeling and induction overheating by electromagnetic response of magnetic materials. Yes, it is expected to play an active role in the medical and bio fields. In addition, magnetic nanoparticle dispersions are used as magnetic materials (magnetic inks) as toner raw materials, magnetic recording, and magnetic cards, and are also expected as next-generation magnetic devices and spintronic materials. The importance of the material in it is immeasurable.

金属ナノ粒子の製造方法には大きく分けて、金属バルクを細かく砕くブレークダウン法と金属原子から製造するビルドアップ法の二つがあるが、金属バルクを単に微細化するだけでなく、さらに、高い特性を付与するために、クロム・鉄・コバルト・ニッケル・白金やそれらの合金といった遷移金属系のナノ粒子との組み合わせが求められおり、これまでにビルドアップ法に分類される製造方法が提案されている。   There are two main methods for producing metal nanoparticles: a breakdown method that breaks down the metal bulk into finely and a build-up method that produces from metal atoms. In combination with transition metal-based nanoparticles such as chromium, iron, cobalt, nickel, platinum and their alloys, so far, manufacturing methods classified as build-up methods have been proposed. Yes.

また、ビルドアップ法はナノスケールの均一粒径を有する合金微粒子を製造することができる点でブレークダウン法に比べて有利である。なかでも実用的な合金ナノ粒子製造方法として注目されているのが金属錯体を微粒子とする方法である。例えば、光学特性を有するプルシアンブルー型金属錯体の超微粒子の製造方法が非特許文献1や特許文献1に記載されている。   In addition, the build-up method is advantageous over the breakdown method in that it can produce fine alloy particles having a nano-scale uniform particle size. Among them, a method that uses metal complexes as fine particles is attracting attention as a practical method for producing alloy nanoparticles. For example, Non-Patent Document 1 and Patent Document 1 describe a method of producing ultrafine particles of Prussian blue-type metal complex having optical characteristics.

これら酸化物ナノ粒子や合金ナノ粒子は、ナノ粒子を構成する金属が空気中で酸化され、その特性が徐々に劣化することが一つの問題点として指摘されている。例えば磁性を有するナノ粒子では、磁性の経時的な劣化への対応が求められている。   These oxide nanoparticles and alloy nanoparticles have been pointed out as one problem that the metal constituting the nanoparticles is oxidized in the air and the characteristics gradually deteriorate. For example, in the case of nanoparticles having magnetism, it is required to cope with the deterioration of magnetism over time.

磁性特性の劣化を防ぐために、金属磁性ナノ粒子を高分子で被覆すること(非特許文献2)や酸化物による被覆(非特許文献3)、アルキル鎖による被覆(非特許文献4)、グラファイト層による被覆(非特許文献5〜8)が知られている。   In order to prevent deterioration of magnetic properties, metal magnetic nanoparticles are coated with a polymer (Non-Patent Document 2), an oxide coating (Non-Patent Document 3), an alkyl chain coating (Non-Patent Document 4), a graphite layer The coating by (Non-patent documents 5 to 8) is known.

特開2006−256954号公報JP 2006-256594 A

Mami Yamada et al. J. Am. Chem. Soc., 126, (2004)9482-9483Mami Yamada et al. J. Am. Chem. Soc., 126, (2004) 9482-9483 Ref. 1. H. Srikanth, R. Hajndl, C. Chirinos, J. Sanders, A.Sampath, and T. S. Sudarshan, Appl. Phys. Lett. 79(2001)3503.Ref. 1. H. Srikanth, R. Hajndl, C. Chirinos, J. Sanders, A. Sampath, and T. S. Sudarshan, Appl. Phys. Lett. 79 (2001) 3503. G. Wang and A. Harrison, J. Colloid Interface Sci. 217 (1999)203.G. Wang and A. Harrison, J. Colloid Interface Sci. 217 (1999) 203. Gi. Chaubey, et at. J. Am. Chem. Soc., 129, (2007)7214-.Gi. Chaubey, et at. J. Am. Chem. Soc., 129, (2007) 7214-. Z. Turgut et al. J. Appl. Phys. 83 (1998), 6468.Z. Turgut et al. J. Appl. Phys. 83 (1998), 6468. C. Desvaux, et al. Nature Mat. 4 (2005), 750.C. Desvaux, et al. Nature Mat. 4 (2005), 750. W. S. Seo et al. Nature Mat. 5(2006), 971W. S. Seo et al. Nature Mat. 5 (2006), 971 所 久人ら, 日立金属技報Vol. 25(2009), 22.Hisato Tokoro, Hitachi Metals Technical Report Vol. 25 (2009), 22.

しかしながら、金属磁性ナノ粒子を高分子やアルキル鎖で被覆しただけでは、金属ナノ粒子の表面の被覆に欠陥が多く生じること、酸化物層による被覆では酸素が徐々に浸透することから、これらの被覆では酸化に対して十分な安定性を確保することができていない。   However, simply coating metal magnetic nanoparticles with a polymer or alkyl chain causes many defects on the surface of the metal nanoparticles, and oxygen coating gradually penetrates the coating with an oxide layer. However, sufficient stability against oxidation cannot be ensured.

非特許文献5〜8に記載されたグラファイトによる被覆は、高分子、アルキル鎖又は酸化物層による被覆に比べ、酸化に対する耐性は解決されるが、例えば非特許文献5に記載されたプラズマ放電法においては、装置が大型であること、得られる粒子径が大きいこと、収率が低いという問題が指摘されている。   Although the coating with graphite described in Non-Patent Documents 5 to 8 is more resistant to oxidation than the coating with a polymer, an alkyl chain or an oxide layer, for example, the plasma discharge method described in Non-Patent Document 5 In US, there are problems that the apparatus is large, the particle diameter obtained is large, and the yield is low.

非特許文献6の手法は、合成プロセスで高圧力を必要とすること、別途合成が必要な特殊なコバルト原料を使用しており一般的な試薬でないこと、グラファイト層に欠陥であるアモルファスが多く生じることが指摘されている。   The technique of Non-Patent Document 6 requires a high pressure in the synthesis process, uses a special cobalt raw material that requires a separate synthesis, is not a general reagent, and many amorphous amorphous defects are generated in the graphite layer. It has been pointed out.

非特許文献7のCVD(Chemical Vapor Deposition)法では、気体で炭素源を供給する大型装置を必要とし、800度の高温での反応系では材料転換率(収率)が悪く、精密な金属組成制御もなされないという問題がある。   The CVD (Chemical Vapor Deposition) method of Non-Patent Document 7 requires a large apparatus for supplying a carbon source in the form of a gas. The reaction system at a high temperature of 800 ° C has a poor material conversion rate (yield), and a precise metal composition. There is a problem that control is not performed.

非特許文献8では、磁性ナノ粒子は、FeCoやFeNiという種々の金属組成で制御されているが、原料として金属酸化物固体とカーボンを物理的に粉砕・混合した粉末を用いるトップダウン法であり、微粒子化には限界がある。実際に、得られる磁性粒子も50〜100nmと磁性ナノ粒子としてはサイズが大きくかつ大きさが不均一、また反応に1000℃近くでの高温処理を必要とする。   In Non-Patent Document 8, magnetic nanoparticles are controlled by various metal compositions such as FeCo and FeNi, but this is a top-down method using a powder obtained by physically pulverizing and mixing a metal oxide solid and carbon as raw materials. There is a limit to micronization. Actually, the obtained magnetic particles have a size of 50 to 100 nm, which is large and non-uniform as magnetic nanoparticles, and the reaction requires high-temperature treatment at about 1000 ° C.

本発明は、簡便にかつ大量にグラファイトされた被覆金属ナノ粒子(本明細書において「グラファイト被覆金属ナノ粒子」ということもある。)を製造する方法及びグラファイト被覆金属ナノ粒子の薄膜化方法を提供することを目的とする。   The present invention provides a method for producing a coated metal nanoparticle (in this specification, sometimes referred to as “graphite-coated metal nanoparticle”) easily and in large quantities, and a method for thinning the graphite-coated metal nanoparticle. The purpose is to do.

本発明は、金属原子Mを中心金属とする陰イオン性金属錯体を含有する溶液と、金属原子Mの金属陽イオンを含有する溶液とを混合し、金属原子M及び金属原子Mからなるプルシアンブルー類似型金属錯体の結晶を析出させる工程と、得られた錯体の結晶と配位子を有する炭化水素化合物とを溶媒中で混合して分散液とし、分散液から溶媒を分離して金属錯体の微粒子を得る工程と、金属錯体の微粒子を還元焼成する工程と、を含む、グラファイト被覆金属ナノ粒子の製造方法である。 In the present invention, a solution containing an anionic metal complex having a metal atom M 1 as a central metal and a solution containing a metal cation of the metal atom M 2 are mixed, and the metal atom M 1 and the metal atom M 2 are mixed. The process of precipitating Prussian blue-like metal complex crystals consisting of the above and the complex crystals obtained and the hydrocarbon-containing hydrocarbon compound are mixed in a solvent to form a dispersion, and the solvent is separated from the dispersion. A method of producing graphite-coated metal nanoparticles, comprising: obtaining fine particles of a metal complex; and reducing and firing the fine particles of the metal complex.

本発明はさらに、金属原子Mを中心金属とする陰イオン性金属錯体を含有する溶液と、金属原子Mの金属陽イオンを含有する溶液とを混合し、金属原子M及び金属原子Mからなる金属錯体の結晶を析出させる工程と、得られた金属錯体の結晶と配位子を有する炭化水素化合物とを溶媒中で混合して、プルシアンブルー類似型金属錯体微粒子の分散液とし、分散液から溶媒を分離して金属錯体の微粒子を得る工程と、金属錯体の微粒子を製膜化する工程と、製膜化した金属錯体の微粒子を還元焼成する工程と、を含む、グラファイト被覆金属ナノ粒子の薄膜化方法を提供する。 The present invention further mixes a solution containing an anionic metal complex having the metal atom M 1 as a central metal with a solution containing a metal cation of the metal atom M 2 , so that the metal atom M 1 and the metal atom M are mixed. A step of precipitating a metal complex crystal consisting of 2 and a mixture of the obtained metal complex crystal and a hydrocarbon-containing hydrocarbon compound in a solvent to obtain a dispersion of Prussian blue-like metal complex fine particles, A graphite-coated metal comprising: a step of obtaining a metal complex fine particle by separating a solvent from a dispersion; a step of forming a metal complex fine particle; and a step of reducing and firing the formed metal complex fine particle. A method for thinning nanoparticles is provided.

本発明によるグラファイト被覆金属ナノ粒子の製造方法によれば、簡便にかつ大量にグラファイト被覆で保護された金属ナノ粒子を得ることができ、得られたグラファイト被覆金属ナノ粒子は、サイズが小さく粒径が揃いかつ整った球形を有し、各種溶媒への分散安定性、特性の持続性がよい。
本発明によるグラファイト被覆金属ナノ粒子の薄膜化方法により得られる薄膜は、グラファイト被覆金属ナノ粒子が粒径の単一性がよいため、グラファイト層への化学修飾が容易であり、高品質のデバイス素材となる。また、酸化されにくく保磁力の高い磁性ナノ粒子薄膜を、数nmの超膜膜からミクロン程度の膜厚で制御できる。
According to the method for producing graphite-coated metal nanoparticles according to the present invention, it is possible to easily and in large quantities obtain metal nanoparticles protected with a graphite coating. The obtained graphite-coated metal nanoparticles have a small size and a small particle size. Has a uniform and well-formed spherical shape, and has good dispersion stability in various solvents and good durability.
The thin film obtained by the method of thinning a graphite-coated metal nanoparticle according to the present invention is a high-quality device material that is easy to chemically modify the graphite layer because the graphite-coated metal nanoparticles have a good particle size uniformity. It becomes. In addition, a magnetic nanoparticle thin film that is not easily oxidized and has a high coercive force can be controlled to a thickness of about a micron from a super-film of several nm.

プルシアンブルー型金属錯体結晶の構造を示す概念図である。It is a conceptual diagram which shows the structure of a Prussian blue type metal complex crystal. 金属錯体結晶と配位子を有する炭化水素化合物との結合を示す概念図である。It is a conceptual diagram which shows the coupling | bonding of the metal complex crystal and the hydrocarbon compound which has a ligand. 本発明のグラファイト被覆金属ナノ粒子の模式図であり、Aはグラファイト被覆された金属ナノ粒子の模式図、Bは金属ナノ粒子の金属元素の配置の模式図である。It is a schematic diagram of the graphite coating metal nanoparticle of this invention, A is a schematic diagram of the metal nanoparticle by which graphite coating was carried out, B is a schematic diagram of arrangement | positioning of the metal element of a metal nanoparticle. 実施例1で得られたグラファイト被覆FeCo(Fe/Co=1.0)ナノ粒子の高性能透過型電子顕微鏡像(HRTEM像)を示す図である。1 is a diagram showing a high-performance transmission electron microscope image (HRTEM image) of graphite-coated FeCo (Fe / Co = 1.0) nanoparticles obtained in Example 1. FIG. 実施例1で得られたグラファイト被覆FeCo(Fe/Co=1.5)ナノ粒子の高性能透過型電子顕微鏡像(HRTEM像)を示す図である。1 is a diagram showing a high-performance transmission electron microscope image (HRTEM image) of graphite-coated FeCo (Fe / Co = 1.5) nanoparticles obtained in Example 1. FIG. 実施例1で得られたグラファイト被覆FeCo(Fe/Co=2.0)ナノ粒子の高性能透過型電子顕微鏡像(HRTEM像)を示す図である。1 is a diagram showing a high-performance transmission electron microscope image (HRTEM image) of graphite-coated FeCo (Fe / Co = 2.0) nanoparticles obtained in Example 1. FIG. 実施例1で得られたグラファイト被覆FeCo(Fe/Co=2.5)ナノ粒子の高性能透過型電子顕微鏡像(HRTEM像)を示す図である。2 is a diagram showing a high-performance transmission electron microscope image (HRTEM image) of graphite-coated FeCo (Fe / Co = 2.5) nanoparticles obtained in Example 1. FIG. 実施例1で得られたグラファイト被覆FeCo(Fe/Co=1.0〜2.5)ナノ粒子のX線解析(XRD)を示す図である。1 is a diagram showing an X-ray analysis (XRD) of graphite-coated FeCo (Fe / Co = 1.0 to 2.5) nanoparticles obtained in Example 1. FIG. 実施例1で得られたグラファイト被覆FeCo(Fe/Co=1.0)ナノ粒子の高性能透過型電子顕微鏡像(HRTEM像)を示す図である。1 is a diagram showing a high-performance transmission electron microscope image (HRTEM image) of graphite-coated FeCo (Fe / Co = 1.0) nanoparticles obtained in Example 1. FIG. 実施例1で得られたグラファイト被覆FeCo(Fe/Co=1.0)ナノ粒子の高性能透過型電子顕微鏡像(HRTEM像)を示す図である。1 is a diagram showing a high-performance transmission electron microscope image (HRTEM image) of graphite-coated FeCo (Fe / Co = 1.0) nanoparticles obtained in Example 1. FIG. 実施例1で得られたグラファイト被覆FeCo(Fe/Co=1.0)ナノ粒子の高性能透過型電子顕微鏡像(HRTEM像)を示す図である。1 is a diagram showing a high-performance transmission electron microscope image (HRTEM image) of graphite-coated FeCo (Fe / Co = 1.0) nanoparticles obtained in Example 1. FIG. 実施例1で得られたグラファイト被覆FeCoナノ粒子の磁化−外部磁場曲線を示すグラフである。2 is a graph showing a magnetization-external magnetic field curve of the graphite-coated FeCo nanoparticles obtained in Example 1. FIG. 実施例1で得られたグラファイト被覆FeCoナノ粒子のFe/Co比と飽和磁化の相関を示すグラフである。3 is a graph showing the correlation between the Fe / Co ratio and saturation magnetization of the graphite-coated FeCo nanoparticles obtained in Example 1. FIG. 実施例1で得られたグラファイト被覆FeCoナノ粒子の励起波長360nmの発光スペクトルである。2 is an emission spectrum of an excitation wavelength of 360 nm of the graphite-coated FeCo nanoparticles obtained in Example 1. 実施例1で得られたグラファイト被覆FeCoナノ粒子のラマンスペクトルである。2 is a Raman spectrum of graphite-coated FeCo nanoparticles obtained in Example 1. FIG. 実施例1で焼成温度を変えた場合のグラファイト被覆FeCoナノ粒子のX線解析(XRD)を示す図である。FIG. 3 is a diagram showing an X-ray analysis (XRD) of graphite-coated FeCo nanoparticles when the firing temperature is changed in Example 1. 焼成温度が700℃の透過型電子顕微鏡像(TEM像、左側)及び高性能透過型電子顕微鏡像(HRTEM像、右側)を示す図である。It is a figure which shows the transmission electron microscope image (TEM image, left side) and the high performance transmission electron microscope image (HRTEM image, right side) whose baking temperature is 700 degreeC. 焼成温度が900℃の透過型電子顕微鏡像(TEM像、左側)及び高性能透過型電子顕微鏡像(HRTEM像、右側)を示す図である。It is a figure which shows the transmission electron microscope image (TEM image, left side) and the high performance transmission electron microscope image (HRTEM image, right side) whose baking temperature is 900 degreeC. 実施例1で得られたグラファイト被覆FeCoナノ粒子の磁気光学特性を示す図である。2 is a diagram showing magneto-optical properties of graphite-coated FeCo nanoparticles obtained in Example 1. FIG. 実施例2で得られたグラファイト被覆FeCoナノ粒子薄膜の電子間力顕微鏡像(AFM)を示す図である。FIG. 3 is an electron force microscope image (AFM) of the graphite-coated FeCo nanoparticle thin film obtained in Example 2. 実施例2で得られたグラファイト被覆FeCoナノ粒子のX線解析(XRD)を示す図である。3 is a diagram showing an X-ray analysis (XRD) of graphite-coated FeCo nanoparticles obtained in Example 2. FIG. 実施例3で得られたステアリルアミン保護Fe−CN−Coナノ粒子の透過型電子顕微鏡像(TEM像)を示す図である。4 is a diagram showing a transmission electron microscope image (TEM image) of stearylamine-protected Fe—CN—Co nanoparticles obtained in Example 3. FIG. 実施例3で得られたグラファイト被覆Fe−CN−Coナノ粒子の透過型電子顕微鏡像(TEM像)を示す図である。4 is a view showing a transmission electron microscope image (TEM image) of graphite-coated Fe—CN—Co nanoparticles obtained in Example 3. FIG.

以下、本発明のグラファイト被覆金属ナノ粒子の製造方法について詳細に説明する。   Hereinafter, the manufacturing method of the graphite covering metal nanoparticle of this invention is demonstrated in detail.

〔グラファイト被覆金属ナノ粒子の製造方法の第1の実施形態〕
この実施形態のグラファイト被覆金属ナノ粒子の製造方法は、金属原子Mを中心金属とする陰イオン性金属錯体を含有する溶液と、金属原子Mの金属陽イオンを含有する溶液とを混合し、金属原子M及び金属原子Mからなるプルシアンブルー類似型金属錯体の結晶を析出させる工程と、得られた錯体の結晶と配位子を有する炭化水素化合物とを溶媒中で混合して分散液とし、分散液から溶媒を分離して金属錯体の微粒子を得る工程と、金属錯体の微粒子を不活性条件下で加熱する工程とを含む製造方法である。
[First Embodiment of Manufacturing Method of Graphite-Coated Metal Nanoparticle]
In the method for producing graphite-coated metal nanoparticles of this embodiment, a solution containing an anionic metal complex having a metal atom M 1 as a central metal and a solution containing a metal cation of a metal atom M 2 are mixed. , A step of precipitating a crystal of a Prussian blue-like metal complex composed of metal atom M 1 and metal atom M 2 , and mixing and dispersing the obtained complex crystal and a hydrocarbon compound having a ligand in a solvent And a step of separating the solvent from the dispersion to obtain fine particles of the metal complex, and a step of heating the fine particles of the metal complex under inert conditions.

この実施形態のグラファイト被覆金属ナノ粒子の製造方法において、まず、金属原子Mを中心金属とする陰イオン性金属錯体を含有する溶液と、金属原子Mの金属陽イオンを含有する溶液とを混合し、金属原子M及び金属原子Mからなるプルシアンブルー類似型金属錯体の結晶を析出させる。本明細書において、プルシアンブルー類似型金属錯体とは、NaCl型格子を組んだ二種類の金属原子M、金属原子Mの間が、炭素原子及び窒素原子からなるシアノ基により三次元的に架橋された構造のプルシアンブルー型金属錯体と類似する骨格を有するものを意味する。プルシアンブルー型金属錯体の結晶は、図1に示すように、基本骨格M−CN−Mを有するものである。プルシアンブルー類似型金属錯体は、シアノ基以外の官能基、例えば、ビピリジン、オキサラト、エチレンジアミン、マロネート、ピラジン、トリアゾール等を含むものを意味する。 In the method for producing graphite-coated metal nanoparticles of this embodiment, first, a solution containing an anionic metal complex having the metal atom M 1 as a central metal and a solution containing a metal cation of the metal atom M 2 are prepared. By mixing, crystals of Prussian blue-like metal complex composed of metal atom M 1 and metal atom M 2 are precipitated. In the present specification, the Prussian blue-like metal complex is three-dimensionally defined by a cyano group consisting of a carbon atom and a nitrogen atom between two kinds of metal atoms M 1 and M 2 that form a NaCl-type lattice. It means one having a skeleton similar to a Prussian blue type metal complex having a crosslinked structure. The crystal of the Prussian blue type metal complex has a basic skeleton M 1 -CN-M 2 as shown in FIG. The Prussian blue-like metal complex means a functional group other than a cyano group, for example, containing bipyridine, oxalato, ethylenediamine, malonate, pyrazine, triazole and the like.

金属原子M、金属原子Mは金属種を変えることにより、金属ナノ粒子や金属錯体の微粒子の特性、例えば磁性や光学特性などを変えられることが知られている。金属原子Mは、バナジウム、クロム、モリブデン、タングステン、マンガン、鉄、ルテニウム、コバルト、ニッケル、白金および銅から選ばれる少なくとも一つであり、金属原子Mはバナジウム、クロム、マンガン、鉄、ルテニウム、コバルト、ロジウム、ニッケル、パラジウム、白金、銅、銀、亜鉛、ランタン、ユーロピウム、ガドリニウム、ルテチウム、バリウム、ストロンチウムおよびカルシウムから選ばれる少なくとも一つである。 It is known that the metal atom M 1 and the metal atom M 2 can change the properties of metal nanoparticles and metal complex particles, such as magnetism and optical properties, by changing the metal species. The metal atom M 1 is at least one selected from vanadium, chromium, molybdenum, tungsten, manganese, iron, ruthenium, cobalt, nickel, platinum and copper, and the metal atom M 2 is vanadium, chromium, manganese, iron, ruthenium. , Cobalt, rhodium, nickel, palladium, platinum, copper, silver, zinc, lanthanum, europium, gadolinium, lutetium, barium, strontium and calcium.

金属原子M、Mはそれぞれ2種以上の金属を組み合わせてもよい。二種類の金属の組み合わせとして例えば、金属ナノ粒子に光特性の変化を求める場合には、金属原子Mについては、鉄とクロム、鉄とコバルト、クロムとコバルトとの組み合わせが好ましく、鉄とクロムとの組み合わせがより好ましい。金属原子Mについては、鉄とニッケルとの組み合わせ、鉄とコバルトとの組み合わせ、ニッケルとコバルトとの組み合わせが好ましく、鉄とニッケルとの組み合わせがより好ましい。MとMの比率は、陰イオン性金属シアノ錯体と金属陽イオンの混合比がモル比で1:1〜1:5が好ましい。 Each of the metal atoms M 1 and M 2 may be a combination of two or more metals. As a combination of two kinds of metals, for example, when a change in optical properties is required for metal nanoparticles, the metal atom M 1 is preferably a combination of iron and chromium, iron and cobalt, chromium and cobalt, and iron and chromium. The combination with is more preferable. For the metal atom M 2, a combination of iron and nickel, a combination of iron and cobalt, preferably a combination of nickel and cobalt, a combination of iron and nickel is more preferable. As for the ratio of M 1 and M 2, the molar ratio of the mixing ratio of the anionic metal cyano complex and the metal cation is preferably 1: 1 to 1: 5.

磁性を有する金属ナノ粒子の場合には、Mを鉄、Mをコバルトとすることが好ましい。磁性を有する金属ナノ粒子を製造する場合、金属原子Mの金属陽イオンを含有する溶液を二種類の金属イオンを含有する溶液としてもよい。この場合Mを鉄、Mの金属陽イオンを含有する溶液は、鉄、クロム、コバルト、ニッケルの組み合わせをベースにした遷移金属種との組み合わせであればよく、鉄イオンとコバルトイオンの組み合わせが好ましい。この場合も、MとMの比率は、陰イオン性金属錯体と金属陽イオンの混合比がモル比で1:1〜1:5が好ましい。 In the case of the metal nanoparticles with magnetism, it is preferable to iron M 1, the M 2 and cobalt. When producing metal nanoparticles having magnetism, a solution containing a metal cation of the metal atom M 2 may be a solution containing two types of metal ions. In this case iron M 1, a solution containing a metal cation M 2 is iron, chromium, cobalt, may be a combination of a transition metal species which is based on a combination of nickel, a combination of iron ions and cobalt ions Is preferred. Also in this case, the ratio of M 1 and M 2 is preferably 1: 1 to 1: 5 in terms of the molar ratio of the anionic metal complex to the metal cation.

配位子を有する炭化水素化合物の配位子は、金属に配位する官能基を有するものであればよく、例えば、アミノ、ピリジン、カルボン酸、チオール、アミド等を挙げることができる。炭化水素化合物は飽和又は不飽和の脂肪族炭化水素化合物又は複素環を含む芳香族炭化水素物であればよい。炭素数は特に限定されるものではない。また、炭化水素化合物の水素は、本発明の効果を妨げなければ置換基により置換されていてもよい。このような化合物して好ましいものは、オレイルアミン、ステアリルアミン、2−アミノエタノール、ドデシルアミン、ヘキシルアミン、2−オクタデシルアミノピリジンを挙げることができる。   The ligand of the hydrocarbon compound having a ligand is not particularly limited as long as it has a functional group coordinated to a metal, and examples thereof include amino, pyridine, carboxylic acid, thiol, and amide. The hydrocarbon compound may be a saturated or unsaturated aliphatic hydrocarbon compound or an aromatic hydrocarbon containing a heterocyclic ring. The number of carbon atoms is not particularly limited. Moreover, hydrogen of the hydrocarbon compound may be substituted with a substituent as long as the effect of the present invention is not hindered. Preferred examples of such a compound include oleylamine, stearylamine, 2-aminoethanol, dodecylamine, hexylamine, and 2-octadecylaminopyridine.

プルシアンブルー類似型金属錯体の結晶は、配位子を有する炭化水素化合物が溶解された溶媒中に添加して分散される。この溶媒は、配位子を有する炭化水素化合物が十分に溶解されるものを選択することが好ましい。有機溶媒を用いる場合には、トルエン、ジクロロメタン、クロロホルム、ヘキサン、エーテル等を用いることができる。配位子を有する炭化水素化合物が水溶性の場合には水あるいはアルコールを用いてもよい。   The crystals of the Prussian blue-like metal complex are added and dispersed in a solvent in which a hydrocarbon compound having a ligand is dissolved. It is preferable to select a solvent in which the hydrocarbon compound having a ligand is sufficiently dissolved. When an organic solvent is used, toluene, dichloromethane, chloroform, hexane, ether or the like can be used. When the hydrocarbon compound having a ligand is water-soluble, water or alcohol may be used.

溶媒の量は特に限定されないが、例えば、質量比で「配位子を有する炭化水素化合物:溶媒」を1:5〜1:50とすることが好ましい。また混合するに際に攪拌することが好ましく、それによりプルシアンブルー型金属錯体の超微粒子が有機溶媒中に十分に分散した分散液が得られる。また、配位子を有する炭化水素化合物の添加量は、プルシアンブルー型金属錯体の微結晶に含まれる金属イオン(金属原子M及びMの総量)に対して、モル比で1:0.2〜1:2程度であることが好ましい。 The amount of the solvent is not particularly limited. For example, it is preferable that the ratio of “hydrocarbon compound having a ligand: solvent” is 1: 5 to 1:50 by mass ratio. Moreover, it is preferable to stir when mixing, whereby a dispersion in which the ultrafine particles of Prussian blue type metal complex are sufficiently dispersed in an organic solvent is obtained. Moreover, the addition amount of the hydrocarbon compound having a ligand is 1: 0. In a molar ratio with respect to the metal ions (total amount of metal atoms M 1 and M 2 ) contained in the microcrystal of the Prussian blue type metal complex. It is preferably about 2 to 1: 2.

図2に示すように、溶媒中でプルシアンブルー類似型金属錯体の表面には、配位子Aを介して炭化水素鎖Bが結合され溶媒中に分散している。配位子を有する炭化水素化合物の量は特に限定されるものではないが、例えば、金属M1,の総量に対してモル比で5〜30%程度である。 As shown in FIG. 2, a hydrocarbon chain B is bonded to the surface of a Prussian blue-like metal complex in a solvent via a ligand A and dispersed in the solvent. The amount of the hydrocarbon compound having a ligand is not particularly limited, for example, about 5-30% by molar ratio relative to the total amount of the metal M 1, M 2.

分散溶液から溶媒を除去することにより、炭化水素化合物で保護されたプルシアンブルー類似型金属錯体をナノサイズ微粒子として得ることができる。   By removing the solvent from the dispersion solution, a Prussian blue-like metal complex protected with a hydrocarbon compound can be obtained as nano-sized fine particles.

プルシアンブルー類似型金属錯体の微粒子を還元焼成する。還元焼成は、水素、アルゴンやネオン、窒素等の不活性ガス雰囲気下で500〜1000℃で加熱することにより行う。還元焼成により、金属錯体は、金属錯体の金属比を反映したbcc構造を有する合金に変換される。また、還元焼成に伴い、金属錯体を被覆する炭化水素化合物を炭素源としたグラファイト皮膜構造が生成する。得られた微粒子はグラファイト層が3nm程度、粒子径は50nm程度でサイズが揃った球形の金属ナノ粒子である。図3にグラファイト被覆金属ナノ粒子の模式図を示す。bcc構造を有する合金1はグラファイト層2で覆われている。Bは合金1のbcc構造の模式図を示す。   Fine particles of Prussian blue-like metal complex are reduced and fired. The reduction firing is performed by heating at 500 to 1000 ° C. in an inert gas atmosphere such as hydrogen, argon, neon, or nitrogen. By reduction firing, the metal complex is converted into an alloy having a bcc structure reflecting the metal ratio of the metal complex. In addition, a graphite film structure using a hydrocarbon compound covering a metal complex as a carbon source is generated with reduction firing. The obtained fine particles are spherical metal nanoparticles having a uniform graphite layer size of about 3 nm and a particle size of about 50 nm. FIG. 3 shows a schematic diagram of graphite-coated metal nanoparticles. The alloy 1 having a bcc structure is covered with a graphite layer 2. B shows a schematic diagram of the bcc structure of Alloy 1.

この実施形態の方法により、簡便にかつ大量にグラファイト被覆で保護された粒子径が小さく、サイズが揃った金属ナノ粒子を得ることができる。本実施形態の方法で製造されたグラファイト被覆金属ナノ粒子は、トルエン、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)等の溶媒に高い分散性を示し、耐酸化性、耐薬品性が向上している。磁気性を有するナノ粒子である場合には、磁気性は数か月変化しない。   According to the method of this embodiment, metal nanoparticles having a small particle diameter and a uniform particle size protected by a graphite coating in a large amount can be obtained. The graphite-coated metal nanoparticles produced by the method of this embodiment exhibit high dispersibility in solvents such as toluene, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and have improved oxidation resistance and chemical resistance. Yes. In the case of nanoparticles having magnetic properties, the magnetic properties do not change for several months.

〔グラファイト被覆金属ナノ粒子の製造方法の第2の実施形態〕
この実施形態は、プルシアンブルー類似型金属錯体の結晶を析出させる工程において、金属原子Mを中心金属とする陰イオン性金属シアノ錯体を含有する溶液と、金属原子Mの金属陽イオンを含有する溶液とを混合し、金属原子M及び金属原子Mからなるプルシアンブルー型金属錯体の結晶を析出させる点で第1の実施形態と異なる。
[Second Embodiment of Method for Producing Graphite-Coated Metal Nanoparticles]
This embodiment includes a solution containing an anionic metal cyano complex having a metal atom M 1 as a central metal and a metal cation of a metal atom M 2 in the step of precipitating a Prussian blue-like metal complex crystal. This is different from the first embodiment in that a Prussian blue-type metal complex crystal composed of metal atoms M 1 and metal atoms M 2 is precipitated.

基本骨格がM−CN−Mである金属錯体、すなわちプルシアンブルー型金属錯体の結晶は、配位子を有する炭化水素化合物が溶解された溶媒中に添加して分散される。金属M、Mの炭化水素化合物、溶媒、還元焼成等条件、は実施形態1と同じである。 A metal complex whose basic skeleton is M 1 -CN-M 2 , that is, a crystal of a Prussian blue-type metal complex, is added and dispersed in a solvent in which a hydrocarbon compound having a ligand is dissolved. The metal M 1 , M 2 hydrocarbon compound, solvent, reduction firing and other conditions are the same as in the first embodiment.

〔グラファイト被覆金属ナノ粒子の製造方法の第3の実施形態〕
この実施形態は、プルシアンブルー類似型金属錯体の結晶を析出させる工程において、逆ミセル法によりプルシアンブルー類似型金属錯体の結晶を析出させる点で第1の実施形態と異なる。
[Third Embodiment of Method for Producing Graphite-Coated Metal Nanoparticles]
This embodiment is different from the first embodiment in that the Prussian blue-like metal complex crystal is precipitated by the reverse micelle method in the step of depositing the Prussian blue-like metal complex crystal.

プルシアンブルー類似型金属錯体の結晶の析出は、例えば、(i)金属シアノ錯体(陰イオン)を含む第一逆ミセル溶液と、金属陽イオンを含む第二逆ミセル溶液とをそれぞれ調製し、(ii)第一逆ミセル溶液と第二逆ミセル溶液とを混合しプルシアンブルー類似型金属錯体の結晶を析出させる操作によって行うことができる。第3の実施形態において、金属シアノ錯体を用いる場合、その条件は実施形態2と同じであり、金属イオンの金属原子、配位子を有する炭化水素化合物、溶媒、還元焼成等の条件は第1の実施形態と同じである。   For example, (i) first reverse micelle solution containing a metal cyano complex (anion) and second reverse micelle solution containing a metal cation are prepared, respectively. ii) The first reverse micelle solution and the second reverse micelle solution can be mixed to precipitate a Prussian blue-like metal complex crystal. In the third embodiment, when the metal cyano complex is used, the conditions are the same as those in the second embodiment, and the conditions such as the metal atom of the metal ion, the hydrocarbon compound having a ligand, the solvent, reduction firing are the first. This is the same as the embodiment.

第一逆ミセル溶液にはイオン性界面活性剤、例えば、ジ(2−エチルヘキシル)スルホコハク酸ナトリウムや臭化エチルトリメチルアンモニウムを、第二逆ミセル溶液にはソルビタン系界面活性剤を用いることができる。   An ionic surfactant such as sodium di (2-ethylhexyl) sulfosuccinate or ethyltrimethylammonium bromide can be used for the first reverse micelle solution, and a sorbitan surfactant can be used for the second reverse micelle solution.

〔グラファイト被覆金属ナノ粒子の薄膜化方法の第1の実施形態〕
この実施形態のグラファイト被覆金属ナノ粒子の薄膜化方法は、金属原子Mを中心金属とする陰イオン性金属錯体を含有する溶液と、金属原子Mの金属陽イオンを含有する溶液とを混合し、金属原子M及び金属原子Mからなる金属錯体の結晶を析出させる工程と、金属錯体の結晶と配位子を有する炭化水素化合物とを溶媒中で混合して、プルシアンブルー類似型金属錯体微粒子の分散液とし、分散液から溶媒を分離して金属錯体の微粒子を得る工程と、金属錯体の微粒子を製膜化する工程と、製膜化した金属錯体の微粒子を還元焼成する工程と、を含む、薄膜化方法である。この実施形態においても金属錯体、金属イオンの金属原子、配位子を有する炭化水素化合物等の条件はグラファイト被覆金属ナノ粒子の製造方法の第1の実施形態と同じである。
[First Embodiment of Thinning Method of Graphite-Coated Metal Nanoparticle]
Thinning method of the graphite-coated metal nanoparticles of this embodiment, mixing a solution containing an anionic metal complex, of which central metal is a metal atom M 1, and a solution containing metal cations of the metal atom M 2 and a step of precipitating crystals of a metal complex comprising a metal atom M 1 and metal atom M 2, and a hydrocarbon compound having a crystal and the ligand of the metal complex was mixed in a solvent, Prussian blue similar type metal Forming a dispersion of complex fine particles, separating the solvent from the dispersion to obtain metal complex fine particles, forming a metal complex fine particle into a film, and reducing and firing the formed metal complex fine particles; , Including a thin film forming method. Also in this embodiment, conditions such as a metal complex, a metal atom of a metal ion, and a hydrocarbon compound having a ligand are the same as those in the first embodiment of the method for producing graphite-coated metal nanoparticles.

製膜はスピンコート法等、公知の製膜化技術を用いて行うことができる。プルシアンブルー類似型金属錯体微粒子が粒子径の単一性がよく、形状も整っているので、製膜操作に困難性や制約が少ない。   Film formation can be performed using a known film formation technique such as spin coating. Since Prussian blue-like metal complex fine particles have good particle size uniformity and shape, the film forming operation is less difficult and less restrictive.

〔グラファイト被覆金属ナノ粒子の薄膜化方法の第2の実施形態〕
この実施形態は、プルシアンブルー類似型金属錯体の結晶を析出させる工程において、金属原子Mを中心金属とする陰イオン性金属シアノ錯体を含有する溶液と、金属原子Mの金属陽イオンを含有する溶液とを混合し、金属原子M及び金属原子Mからなるプルシアンブルー型金属錯体の結晶を析出させる点でグラファイト被覆金属ナノ粒子の薄膜化方法の第1の実施形態と異なる。この実施形態においても金属シアノ錯体、金属イオンの金属原子、配位子を有する炭化水素化合物等の条件はグラファイト被覆金属ナノ粒子の製造方法の第2の実施形態と同じである。
[Second Embodiment of Thinning Method of Graphite-Coated Metal Nanoparticle]
This embodiment comprises in the step of precipitating crystals of Prussian blue similar type metal complex, a solution containing an anionic metal cyanide complex, of which central metal is a metal atom M 1, the metal cation of the metal atom M 2 a solution is mixed, different from the first embodiment of the thinning process of graphite-coated metal nanoparticles in that to precipitate crystals of Prussian blue-type metal complex comprising a metal atom M 1 and metal atom M 2. Also in this embodiment, conditions such as a metal cyano complex, a metal atom of a metal ion, and a hydrocarbon compound having a ligand are the same as those in the second embodiment of the method for producing graphite-coated metal nanoparticles.

0.14Mの K3[Fe(CN)6]水溶液8mLにx M Fe(NO3)2+y M Co(NO3)2混合溶液(ここでx + y=0.28)10mLをFe/Co=1.0,1.5,2.0,2.5の比率で加え、Fe−CN−Co/Feバルク結晶を合成した。
各々のバルク結晶体0.20gに0.16Mオレイルアミン(OA)トルエン溶液3mLを加えて有機層に抽出して濾過後、溶媒を留去し、オレイルアミンで保護したFe−CN−Co/Feナノ粒子を得た。
得られたナノ粒子を水素雰囲気下(H2/N2=0.1)にて10°C/minで500°Cまで昇温し、還元分解反応を行った。
生成物を透過型電子顕微鏡像(TEM)、高性能透過型電子顕微鏡像(HRTEM)、X線解析(XRD)、フーリエ変換型赤外分光(FT-IR)、紫外可視分光光度(UV-Vis)、エネルギー分散型X線分光(EDX)および超伝導量子干渉計(SQUID)で評価した。
10 mL of a mixed solution of x M Fe (NO 3 ) 2 + y M Co (NO 3 ) 2 (where x + y = 0.28) was added to 8 mL of a 0.14 M aqueous K 3 [Fe (CN) 6 ] solution. = 1.0, 1.5, 2.0, and 2.5, and Fe-CN-Co / Fe bulk crystals were synthesized.
0.16M oleylamine (OA) toluene solution (3 mL) was added to 0.20 g of each bulk crystal, extracted into an organic layer, filtered, the solvent was distilled off, and Fe-CN-Co / Fe nanoparticles protected with oleylamine Got.
The obtained nanoparticles were heated to 500 ° C. at 10 ° C./min in a hydrogen atmosphere (H 2 / N 2 = 0.1) to carry out a reductive decomposition reaction.
Transmission product electron microscope image (TEM), high performance transmission electron microscope image (HRTEM), X-ray analysis (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-visible spectrophotometry (UV-Vis) ), Energy dispersive X-ray spectroscopy (EDX) and superconducting quantum interferometer (SQUID).

得られた生成物のTEM像を図4(Fe/Co=1.0)、図5(Fe/Co=1.5)、図6(Fe/Co=2.0)、図7(Fe/Co=2.5)に示す。   TEM images of the obtained product are shown in FIG. 4 (Fe / Co = 1.0), FIG. 5 (Fe / Co = 1.5), FIG. 6 (Fe / Co = 2.0), and FIG. Co = 2.5).

図8に(Fe/Co=1.0〜2.5)ナノ粒子のX線解析(XRD)を示す。図9〜図11に拡大倍数を変えたFeCo(Fe/Co=1.0)ナノ粒子の高性能透過型電子顕微鏡像(HRTEM像)を示す。中心にFeCo(110)の格子間隔2.0nmが観測された。   FIG. 8 shows the X-ray analysis (XRD) of the nanoparticles (Fe / Co = 1.0 to 2.5). 9 to 11 show high-performance transmission electron microscope images (HRTEM images) of FeCo (Fe / Co = 1.0) nanoparticles with different magnifications. A lattice spacing of 2.0 nm of FeCo (110) was observed at the center.

TEM像によりFe/Co比に依存せず平均粒子径(dav)がほぼ10nm〜20nm程度の球形Fe−CN−Co/Feナノ粒子が確認された。XRDパターン(図8参照)は全てプルシアンブルー類似体由来のfcc構造を有し、EDXから求めた錯体粒子中の金属組成は、合成溶液の原料比にほぼ一致した。還元焼成後のXRDパターンでは、bcc構造を有するFeCo合金相が確認され、算出した格子定数とEDXによる組成分析により、錯体前駆体の金属比を反映したFeCo合金ナノ粒子へ変換されることが明らかとなった。得られたFeCoナノ粒子はTEM像からdav =11nm〜19nmの比較的サイズ単一性が高い球形粒子で、Fe/Co比の増加により粒子径は減少した。HRTEM像では、FeCoナノ粒子表面に平行なグラファイト(002)面間隔0.33nmに一致する格子縞が確認され、還元分解反応に伴いOAを炭素源としたグラファイト被覆構造が自発的に構築されることがわかった。SQUID測定からFeCoナノ粒子は室温強磁性を示し(図12参照)、Co導入により70−85emu/gの高い飽和磁化を示した(図13参照)。 A TEM image confirmed spherical Fe—CN—Co / Fe nanoparticles having an average particle diameter (d av ) of about 10 nm to 20 nm regardless of the Fe / Co ratio. All XRD patterns (see FIG. 8) have an fcc structure derived from a Prussian blue analog, and the metal composition in the complex particles determined from EDX almost coincided with the raw material ratio of the synthesis solution. In the XRD pattern after reduction firing, the FeCo alloy phase having a bcc structure is confirmed, and it is clear that the calculated lattice constant and composition analysis by EDX are converted into FeCo alloy nanoparticles reflecting the metal ratio of the complex precursor. It became. The resulting FeCo nanoparticles are relatively sized unity high spherical particles d av = 11nm~19nm from TEM images, the particle diameters by increasing the Fe / Co ratio was decreased. In the HRTEM image, lattice fringes corresponding to 0.33 nm of graphite (002) plane spacing parallel to the FeCo nanoparticle surface are confirmed, and a graphite coating structure using OA as a carbon source is spontaneously constructed along with the reductive decomposition reaction. I understood. From the SQUID measurement, the FeCo nanoparticles showed room temperature ferromagnetism (see FIG. 12), and showed a high saturation magnetization of 70-85 emu / g by introducing Co (see FIG. 13).

グラファイト保護FeCoナノ粒子(Fe/Co=1.0)はトルエン、DMF、DMSO等の溶媒に高い分散性を示し、分散した粒子は磁石によって集積された。溶液分散系(磁性流体)材料であり、室温強磁性を有する材料である。磁気特性は数ヶ月後も変化が無く、酸化安定性が高いことが確認された。   Graphite-protected FeCo nanoparticles (Fe / Co = 1.0) showed high dispersibility in solvents such as toluene, DMF, DMSO, and the dispersed particles were collected by a magnet. It is a solution dispersion (magnetic fluid) material and a material having room temperature ferromagnetism. The magnetic properties did not change after several months, and it was confirmed that the oxidation stability was high.

また、グラファイト保護FeCoナノ粒子(Fe/Co=1.0)は蛍光体であることが判明した。図14に励起波長360nmの発光スペクトルを示す。さらに、図15に励起波長532nmのラマンスペクトルを示す。1600カイザー付近にグラファイトカーボンの二本のバンドが観察される。   Moreover, it turned out that the graphite protection FeCo nanoparticle (Fe / Co = 1.0) is a fluorescent substance. FIG. 14 shows an emission spectrum at an excitation wavelength of 360 nm. FIG. 15 shows a Raman spectrum with an excitation wavelength of 532 nm. Two bands of graphite carbon are observed near 1600 Kaiser.

実施例1のグラファイト保護FeCoナノ粒子(Fe/Co=1.0)に関し、焼成温度を500℃〜900℃の範囲で100℃毎に変えた場合のX線解析(XRD)を図16に示す。500℃以上であれば、グラファイト保護膜が形成されることが分かる。
また、図17の左側に焼成温度が700℃の透過型電子顕微鏡像(TEM像)及び右側に高性能透過型電子顕微鏡像(HRTEM像)を、図18の左側に焼成温度が900℃の透過型電子顕微鏡像(TEM像)及び右側に高性能透過型電子顕微鏡像(HRTEM像)を示す。
FIG. 16 shows an X-ray analysis (XRD) of the graphite-protected FeCo nanoparticles (Fe / Co = 1.0) of Example 1 when the firing temperature is changed every 100 ° C. in the range of 500 ° C. to 900 ° C. . If it is 500 degreeC or more, it turns out that a graphite protective film is formed.
Further, a transmission electron microscope image (TEM image) having a baking temperature of 700 ° C. is shown on the left side of FIG. 17, a high-performance transmission electron microscope image (HRTEM image) is shown on the right side, and a transmission temperature of 900 ° C. is shown on the left side of FIG. A scanning electron microscope image (TEM image) and a high-performance transmission electron microscope image (HRTEM image) are shown on the right side.

さらに、実施例1のグラファイト保護FeCoナノ粒子(Fe/Co=1.0)の磁気光学特性(測定波長λ=670nm)を図20に示す。   Furthermore, the magneto-optical characteristics (measurement wavelength λ = 670 nm) of the graphite-protected FeCo nanoparticles (Fe / Co = 1.0) of Example 1 are shown in FIG.

実施例1で得たオレイルアミン保護Fe−CN−Coナノ粒子トルエン分散液(Fe/Co=1.0)をガラス基板上(2×2cm2)に塗布し、基板回転させるスピンコート法により、Fe−CN−Coナノ粒子前駆体薄膜を作製した。実施例1と同じ条件にて水素雰囲気下焼成を行い、グラファイト保護FeCo磁性薄膜を得た。作製したFeCo薄膜のAFM(電子間力顕微鏡)モルフォロジー観察(250×250μm)では、表面平滑性の高い磁性粒子膜が得られていることが確認された。(図20参照)。グラファイト膜厚は10nm〜数100nmで制御可能である。なお、基板はSiでも可能であり、ガラスやSiに限定されるものではない。図21にグラファイト被覆FeCoナノ粒子薄膜のX線解析(XRD)を示す By applying the oleylamine-protected Fe-CN-Co nanoparticle toluene dispersion (Fe / Co = 1.0) obtained in Example 1 on a glass substrate (2 × 2 cm 2 ) and rotating the substrate, a spin coating method is used. A —CN—Co nanoparticle precursor thin film was prepared. Firing was performed in a hydrogen atmosphere under the same conditions as in Example 1 to obtain a graphite-protected FeCo magnetic thin film. AFM (electron force microscope) morphology observation (250 × 250 μm 2 ) of the prepared FeCo thin film confirmed that a magnetic particle film with high surface smoothness was obtained. (See FIG. 20). The film thickness of graphite can be controlled from 10 nm to several 100 nm. The substrate can be made of Si and is not limited to glass or Si. FIG. 21 shows an X-ray analysis (XRD) of the graphite-coated FeCo nanoparticle thin film.

二つの透明逆ミセル溶液を0.4Mポリ(エチレングリコ−ル)モノノニルフェニルエ−テル(NP-5:HO(CH2CH2O)nC6H4C9H19,n=5)/シクロヘキサンの2mLに、0.1M塩化コバルト(CoIICl2)水溶液または0.1Mヘキサシアノ金属塩カリウム(K3C[XIII(CN)6]、X=Feおよび/またはCr;Fe:Cr=1:0(1),3:1(2),2:2(3),1:3(4),0:1(5))水溶液の70μLに添加して合成した。3時間攪拌後、反応混合物にステアリルアミン(SA,全含有金属成分に対して5当量)を加えて1時間激しく攪拌し、試験管の底に遠心分離でスラリ−生成物を沈殿させるのに十分な量のメタノ−ル(約50mL)を加えた。粗試料は少量のヘキサン(約0.5mL)に再溶解し、再び過剰メタノ−ルに分散した。
逆ミセル法により精密サイズ合成したステアリルアミン保護Fe−CN−Coナノ粒子 (6nm)について、実施例1同様の水素下加熱分解を行うと、バルク粉砕法より粒子径の小さい3−5nm程度のグラファイト保護FeCo合金ナノ粒子が生成した。図22にステアリルアミン保護Fe−CN−Coナノ粒子の透過型電子顕微鏡像(TEM像)を示す。さらに、図23にステアリルアミン保護Fe−CN−Coナノ粒子を水素下加熱分解して得られたグラファイト被覆Fe−CN−Coナノ粒子の透過型電子顕微鏡像(TEM像)を示す。逆ミセル手法により得られたグラファイト被覆Fe−CN−Coナノ粒子も室温強磁性で磁石に作用することを確認した。
Two clear reverse micelle solution 0.4M poly (ethylene glycol - Le) monononylphenyl et - ether (NP-5: HO (CH 2 CH 2 O) nC 6 H 4 C 9 H 19, n = 5) / To 2 mL of cyclohexane, 0.1 M cobalt chloride (Co II Cl 2 ) aqueous solution or 0.1 M potassium hexacyano metal salt (K 3 C [X III (CN) 6 ], X = Fe and / or Cr; Fe: Cr = 1: 0 (1), 3: 1 (2), 2: 2 (3), 1: 3 (4), 0: 1 (5)) was added to 70 μL of an aqueous solution for synthesis. After stirring for 3 hours, stearylamine (SA, 5 equivalents relative to all contained metal components) is added to the reaction mixture and stirred vigorously for 1 hour, sufficient to precipitate the slurry product by centrifugation at the bottom of the test tube. A small amount of methanol (about 50 mL) was added. The crude sample was redissolved in a small amount of hexane (about 0.5 mL) and again dispersed in excess methanol.
When stearylamine-protected Fe-CN-Co nanoparticles (6 nm) synthesized precisely by the reverse micelle method are subjected to thermal decomposition under hydrogen as in Example 1, graphite having a particle size of about 3-5 nm, which is smaller than the bulk pulverization method. Protected FeCo alloy nanoparticles were produced. FIG. 22 shows a transmission electron microscope image (TEM image) of stearylamine-protected Fe—CN—Co nanoparticles. Further, FIG. 23 shows a transmission electron microscope image (TEM image) of graphite-coated Fe—CN—Co nanoparticles obtained by thermally decomposing stearylamine-protected Fe—CN—Co nanoparticles under hydrogen. It was confirmed that the graphite-coated Fe-CN-Co nanoparticles obtained by the reverse micelle technique also act on the magnet at room temperature ferromagnetism.

本発明の方法は、一般的な材料を用い、簡便な装置で金属組成の精密制御が可能で、かつ耐酸化性、耐薬品性を備えたグラファイト被覆金属ナノ粒子を大量に製造することができる。また、グラファイト被覆金属ナノ粒子は、グラファイト層への化学修飾によって更なる機能性付与(親水性・疎水性・イオン性、官能基、DNA、たんぱく質、ペプチド等)が可能であり、材料としての応用発展性が高い。   The method of the present invention can produce a large amount of graphite-coated metal nanoparticles using a general material, capable of precise control of the metal composition with a simple apparatus, and having oxidation resistance and chemical resistance. . Graphite-coated metal nanoparticles can be further functionalized (hydrophilic, hydrophobic, ionic, functional groups, DNA, proteins, peptides, etc.) by chemical modification to the graphite layer. Highly developable.

Claims (10)

金属原子Mを中心金属とする陰イオン性金属錯体を含有する溶液と、金属原子Mの金属陽イオンを含有する溶液とを混合し、金属原子M及び金属原子Mからなるプルシアンブルー類似型金属錯体の結晶を析出させる工程と、
該錯体の結晶と配位子を有する炭化水素化合物とを溶媒中で混合して分散液とし、該分散液から上記溶媒を分離して金属錯体の微粒子を得る工程と、
上記金属錯体の微粒子を還元焼成する工程と、
を含む、グラファイト被覆金属ナノ粒子の製造方法。
A solution containing an anionic metal complex, of which central metal is a metal atom M 1, and a solution containing metal cations of the metal atoms M 2 were mixed, Prussian blue consists of a metal atom M 1 and metal atom M 2 Precipitating crystals of similar metal complexes;
Mixing the crystal of the complex and a hydrocarbon compound having a ligand in a solvent to obtain a dispersion, and separating the solvent from the dispersion to obtain fine particles of a metal complex;
Reducing and firing the fine particles of the metal complex;
A method for producing graphite-coated metal nanoparticles, comprising:
前記金属原子Mを中心金属とする陰イオン性金属錯体が金属原子Mを中心金属とする陰イオン性金属シアノ錯体である、請求項1記載のグラファイト被覆金属ナノ粒子の製造方法。 Method for producing a metal atom anionic metal complex of M 1 as a central metal is an anionic metal cyanide complex, of which central metal is a metal atom M 1, graphite coated metal nanoparticles according to claim 1, wherein. 前記金属原子Mを中心金属とする陰イオン性金属シアノ錯体を含有する溶液と前記金属原子Mの金属陽イオンを含有する溶液とがそれぞれ、逆ミセル溶液である、請求項2記載のグラファイト被覆金属ナノ粒子の製造方法。 Respectively solution containing the metal the atoms M 1 as a central metal solutions containing anionic metal-cyano complexes to the metal atom M 2 metal cation, a reversed micelle solution, graphite according to claim 2 A method for producing coated metal nanoparticles. 金属原子Mが鉄、Mがコバルトである、請求項2又は3記載のグラファイト被覆金属ナノ粒子の製造方法。 It is a metal atom M 1 iron, M 2 is cobalt, the manufacturing method of the graphite-coated metal nanoparticles according to claim 2 or 3 wherein. 前記配位子がアミノ基である、請求項2又は3記載のグラファイト被覆金属ナノ粒子の製造方法。   The method for producing graphite-coated metal nanoparticles according to claim 2 or 3, wherein the ligand is an amino group. 前記配位子を有する脂肪族炭化水素がオレイルアミンである、請求項2記載のグラファイト被覆金属ナノ粒子の製造方法。   The method for producing graphite-coated metal nanoparticles according to claim 2, wherein the aliphatic hydrocarbon having a ligand is oleylamine. 前記配位子を有する脂肪族炭化水素がステアリルアミンである、請求項3記載のグラファイト被覆金属ナノ粒子の製造方法。   The method for producing graphite-coated metal nanoparticles according to claim 3, wherein the aliphatic hydrocarbon having a ligand is stearylamine. 金属原子Mを中心金属とする陰イオン性金属錯体を含有する溶液と、金属原子Mの金属陽イオンを含有する溶液とを混合し、金属原子M及び金属原子Mからなる金属錯体の結晶を析出させる工程と、
上記金属錯体の結晶と配位子を有する炭化水素化合物とを溶媒中で混合して、プルシアンブルー類似型金属錯体微粒子の分散液とし、該分散液から上記溶媒を分離して金属錯体の微粒子を得る工程と、
上記金属錯体の微粒子を製膜化する工程と、
製膜化した上記金属錯体の微粒子を還元焼成する工程と、を含む、グラファイト被覆金属ナノ粒子の薄膜化方法。
Metal complex by mixing a solution containing an anionic metal complex, of which central metal is a metal atom M 1, and a solution containing metal cations of the metal atom M 2, made of a metal atom M 1 and metal atom M 2 A step of precipitating crystals of
The metal complex crystals and the ligand-containing hydrocarbon compound are mixed in a solvent to form a dispersion of Prussian blue-like metal complex fine particles, and the solvent is separated from the dispersion to obtain metal complex fine particles. Obtaining a step;
Forming a film of fine particles of the metal complex;
A method for reducing the thickness of the graphite-coated metal nanoparticles, comprising reducing and firing the fine particles of the metal complex formed into a film.
前記金属原子Mを中心金属とする陰イオン性金属錯体が金属原子Mを中心金属とするシアノ錯体である、請求項8記載のグラファイト被覆金属ナノ粒子の薄膜化方法。 The anionic metal complex, of which central metal is a metal atom M 1 is a cyano complex, of which central metal is a metal atom M 1, a thin film method of graphite-coated metal nanoparticles according to claim 8. 前記配位子がアミノ基である、請求項9記載のグラファイト被覆金属ナノ粒子の薄膜化方法。   The method for thinning graphite-coated metal nanoparticles according to claim 9, wherein the ligand is an amino group.
JP2009114033A 2009-05-08 2009-05-08 Method for producing graphite-coated metal nanoparticles and method for thinning graphite-coated metal nanoparticles Expired - Fee Related JP5397602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009114033A JP5397602B2 (en) 2009-05-08 2009-05-08 Method for producing graphite-coated metal nanoparticles and method for thinning graphite-coated metal nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009114033A JP5397602B2 (en) 2009-05-08 2009-05-08 Method for producing graphite-coated metal nanoparticles and method for thinning graphite-coated metal nanoparticles

Publications (2)

Publication Number Publication Date
JP2010261085A true JP2010261085A (en) 2010-11-18
JP5397602B2 JP5397602B2 (en) 2014-01-22

Family

ID=43359418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009114033A Expired - Fee Related JP5397602B2 (en) 2009-05-08 2009-05-08 Method for producing graphite-coated metal nanoparticles and method for thinning graphite-coated metal nanoparticles

Country Status (1)

Country Link
JP (1) JP5397602B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101476612B1 (en) * 2012-11-19 2014-12-24 김용석 Metal powders coated with multilayer graphene and/or nano graphite layer
CN106041126A (en) * 2016-05-25 2016-10-26 哈尔滨工业大学 Method for preparing Fe-encapsulating metal carbon onions with even particle size through macroscopic quantity
CN106966459A (en) * 2017-05-02 2017-07-21 河南师范大学 The method that magnetic nano-catalyst CoFe PBAs@rGO are catalyzed Oxone degrading organic dye waste waters
US9868640B2 (en) 2011-11-25 2018-01-16 Samsung Electronics Co., Ltd. Graphene structure and method of manufacturing the same
KR20220010664A (en) * 2020-07-17 2022-01-26 전남대학교산학협력단 Metal-graphene core-shell composite and manufacturing method thereof
CN113976879A (en) * 2021-10-27 2022-01-28 电子科技大学 Carbon layer coated cobalt-iron alloy nano core-shell structure and preparation method thereof
WO2023219091A1 (en) * 2022-05-11 2023-11-16 国立研究開発法人産業技術総合研究所 Ammonia separation membrane and method for separating ammonia using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223001A (en) * 2004-02-03 2005-08-18 National Institutes Of Natural Sciences Carbon layer coated transition metal nano structure, pattern thereof, and manufacturing methods for both
JP2006256954A (en) * 2005-02-17 2006-09-28 National Institute Of Advanced Industrial & Technology Prussian blue-type metal complex ultrafine particle, and its dispersion liquid, and manufacturing method thereof
JP2008046001A (en) * 2006-08-16 2008-02-28 National Institute Of Advanced Industrial & Technology Sensor-use electrode body, sensor using same, sensing system, and method for manufacturing sensor-use electrode body
WO2008081923A1 (en) * 2006-12-28 2008-07-10 National Institute Of Advanced Industrial Science And Technology Process for producing nanoparticle of prussian blue type metal complex, prussian blue type metal complex nanoparticle obtained by the same, dispersion of the nanoparticles, method of regulating coloration of the nanoparticles, and electrode and transmitted-light regulator both employing the nanoparticles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223001A (en) * 2004-02-03 2005-08-18 National Institutes Of Natural Sciences Carbon layer coated transition metal nano structure, pattern thereof, and manufacturing methods for both
JP2006256954A (en) * 2005-02-17 2006-09-28 National Institute Of Advanced Industrial & Technology Prussian blue-type metal complex ultrafine particle, and its dispersion liquid, and manufacturing method thereof
JP2008046001A (en) * 2006-08-16 2008-02-28 National Institute Of Advanced Industrial & Technology Sensor-use electrode body, sensor using same, sensing system, and method for manufacturing sensor-use electrode body
WO2008081923A1 (en) * 2006-12-28 2008-07-10 National Institute Of Advanced Industrial Science And Technology Process for producing nanoparticle of prussian blue type metal complex, prussian blue type metal complex nanoparticle obtained by the same, dispersion of the nanoparticles, method of regulating coloration of the nanoparticles, and electrode and transmitted-light regulator both employing the nanoparticles

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9868640B2 (en) 2011-11-25 2018-01-16 Samsung Electronics Co., Ltd. Graphene structure and method of manufacturing the same
KR101476612B1 (en) * 2012-11-19 2014-12-24 김용석 Metal powders coated with multilayer graphene and/or nano graphite layer
CN106041126A (en) * 2016-05-25 2016-10-26 哈尔滨工业大学 Method for preparing Fe-encapsulating metal carbon onions with even particle size through macroscopic quantity
CN106041126B (en) * 2016-05-25 2017-11-14 哈尔滨工业大学 A kind of method that magnanimity prepares the interior iron clad metal carbon onion of uniform particle sizes
CN106966459A (en) * 2017-05-02 2017-07-21 河南师范大学 The method that magnetic nano-catalyst CoFe PBAs@rGO are catalyzed Oxone degrading organic dye waste waters
KR20220010664A (en) * 2020-07-17 2022-01-26 전남대학교산학협력단 Metal-graphene core-shell composite and manufacturing method thereof
KR102364353B1 (en) 2020-07-17 2022-02-18 전남대학교산학협력단 Metal-graphene core-shell composite and manufacturing method thereof
CN113976879A (en) * 2021-10-27 2022-01-28 电子科技大学 Carbon layer coated cobalt-iron alloy nano core-shell structure and preparation method thereof
WO2023219091A1 (en) * 2022-05-11 2023-11-16 国立研究開発法人産業技術総合研究所 Ammonia separation membrane and method for separating ammonia using same

Also Published As

Publication number Publication date
JP5397602B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5397602B2 (en) Method for producing graphite-coated metal nanoparticles and method for thinning graphite-coated metal nanoparticles
JP3989868B2 (en) Synthesis of magnetite nanoparticles and method for forming iron-based nanomaterials
Salavati-Niasari et al. A novel precursor in preparation and characterization of nickel oxide nanoparticles via thermal decomposition approach
Salavati-Niasari et al. Synthesis and characterization of cobalt oxide nanoparticles by thermal treatment process
Salavati-Niasari et al. Preparation of cobalt nanoparticles from [bis (salicylidene) cobalt (II)]–oleylamine complex by thermal decomposition
Soltanzadeh et al. Sonochemical synthesis of a new nano-structures bismuth (III) supramolecular compound: new precursor for the preparation of bismuth (III) oxide nano-rods and bismuth (III) iodide nano-wires
Bunge et al. Correlation between synthesis parameters and properties of magnetite clusters prepared by solvothermal polyol method
Liu et al. Characterization of magnetic NiFe nanoparticles with controlled bimetallic composition
Sadeghzadeh et al. Sonochemical synthesis and characterization of nano-belt lead (II) coordination polymer: new precursor to produce pure phase nano-sized lead (II) oxide
Dutta et al. Tannic acid assisted one step synthesis route for stable colloidal dispersion of nickel nanostructures
Salavati-Niasari et al. Synthesis, characterization and optical properties of tin oxide nanoclusters prepared from a novel precursor via thermal decomposition route
WO2006087950A1 (en) Ultrafine particle of prussian blue-type metal complex, dispersion liquid thereof, and their production methods
Elseman et al. Structure, optical and magnetic behavior of nanocrystalline CuO nanopowders synthesized via a new technique using Schiff base complex
TW200408477A (en) Metal nanoparticle and process for producing the same
Akhbari et al. Preparation of silver nanoparticles from silver (I) nano-coordination polymer
Ahmadzadi et al. Structural and X-ray powder diffraction studies of nano-structured lead (II) coordination polymer with η2 Pb⋯ C interactions
Aboutorabi et al. Sonochemical synthesis of a new nano-plate lead (II) coordination polymer constructed of maleic acid
Fard et al. Sonochemical synthesis of new nano-belt one-dimensional double-chain lead (II) coordination polymer; as precursor for preparation of PbBr (OH) nano-structure
Lu et al. Strategies for tailoring the properties of chemically precipitated metal powders
Alikhanzadeh-Arani et al. Morphologies and magnetic properties of FeCo nanoparticles modulated by changing the types of ligands of Co
Lastovina et al. Solvothermal synthesis of Sm3+-doped Fe3O4 nanoparticles
JP4812370B2 (en) Method for producing noble metal nanoparticles
Hou et al. Facile synthesis of Ni/Au, Ni/Ag hybrid magnetic nanoparticles: New active substrates for surface enhanced Raman scattering
Ghanbari et al. Synthesis of a new nano pyridinedicarboxylic acid lead (II) coordination polymer by sonochemical method: A precursor for preparation of PbO nano-structure
Davar et al. Synthesis and characterization manganese oxide nanobundles from decomposition of manganese oxalate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees