JP4852787B2 - Carbon production equipment - Google Patents

Carbon production equipment Download PDF

Info

Publication number
JP4852787B2
JP4852787B2 JP2001004392A JP2001004392A JP4852787B2 JP 4852787 B2 JP4852787 B2 JP 4852787B2 JP 2001004392 A JP2001004392 A JP 2001004392A JP 2001004392 A JP2001004392 A JP 2001004392A JP 4852787 B2 JP4852787 B2 JP 4852787B2
Authority
JP
Japan
Prior art keywords
gas
reactor
carbon
product
thermocompressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001004392A
Other languages
Japanese (ja)
Other versions
JP2002211909A (en
Inventor
修七 吉村
潤一 宗澤
三郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Engineering Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Engineering Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001004392A priority Critical patent/JP4852787B2/en
Publication of JP2002211909A publication Critical patent/JP2002211909A/en
Application granted granted Critical
Publication of JP4852787B2 publication Critical patent/JP4852787B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば二酸化炭素、排水素、バイオガス(二酸化炭素とメタンの混合ガス)などの排出ガスを有効利用して、炭素、水素を生成活用する化学工場、食品工場、排水処理施設、環境・エネルギー分野に適用される。
【0002】
【従来の技術】
1997年12月 地球温暖化防止京都会議でCO2をはじめとした温室効果ガスの排出量を我国が2010年頃までに1990年ベースで6%削減するという京都議定書が策定された。2000年11月オランダ/ハーグでの地球温暖化防止条約締約国会議で、排出権取引や森林、草地の吸収量などについて協議されたが、妥結には至らず2001年の次回に持ち越しと成った。いずれにせよ、我が国に課せられるCO2排出削減量が決まり、今後、企業にかかる負担が増すことは確かである。各企業のCO2排出削減は急務であり、CO2排出抑制、回収方法が検討されている。
【0003】
CO2排出抑制はCO2を生み出す石化原料を使わないでCO2排出量の少ない天然ガスの利用する。太陽電池、風力発電、有機廃棄物からバイオガスを発生させ燃料としての利用など化石燃料のでないエネルギーの利用拡大などの対策が行われている。
また、一方排出したCO2回収方法としては、植林や砂漠緑化などの自然のメカニズムを利用する物と、化学反応などを用いて有効資源に再利用するものとが存在し、二酸化炭素と水素を用いてメタノールなどの有効化学物質を取り出す技術が検討されているが、水素生成コストがかかりすぎるなどの課題が有り、実用化には至っていない。
【0004】
CO2の低減としては水素を利用した燃料電池が有効であるが、この方法では水素の取り出し方法としてメタノールの水蒸気改質等が利用されているので、CO2も生成するためCO2削減の抜本的解決策にはならない。CO2の発生しない方法が待ち望まれている。
【0005】
CO2の発生しない方法として、本件出願人の一人はCO2をメタン、バイオガス(CO2とCH4の混合ガス)等と反応させ、炭素として固定化し、生成する炭素、水素を商品として取り出すことを提案している(特開平−11−322315号)。
本発明は、さらに改良を加え、実用化装置として展開させるために、炭素を要求される純度以上で安定的に生成し、商品として取り出す装置、生成水素を選択分離し、燃料電池等に活用出来る様取り出す装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の炭素製造装置は、メタン含有ガスと炭酸ガス含有ガスとを混合するためのミキサー(1)と、該ミキサー(1)からのガスを加熱するための熱交換器(4)と、該熱交換器(4)からの該ガスを加熱する加熱炉(5)と、該加熱炉(5)からの該ガスが駆動ガスとして通過する、並列設置された第1のサーモコンプレッサー(9a)及び第2のサーモコンプレッサー(9b)と、該第1のサーモコンプレッサー(9a)からのガス及び金属触媒粒子が下部から供給され、内部に噴流層又は流動層が形成され、該触媒粒子表面に炭素が生成した第1の生成物が上部から取り出される第1の反応器(6)と、該第1の反応器(6)からの該第1の生成物が上部から供給され、前記第2のサーモコンプレッサー(9b)からのガスが下部から供給され、このガスと該第1の生成物とが向流接触し、該第1の生成物上に炭素を生成させた第2の生成物が下部から取り出される第2の反応器(7)と、該第1の反応器(6)の上部から取り出されたガスがサイクロン(13)を介して導入されると共に、該第2の反応器(7)の上部から取り出されたガスが導入されるバグフィルター(12)と、該バグフィルター(12)で除塵されたガスの一部を前記第1のサーモコンプレッサー(9a)及び第2のサーモコンプレッサー(9b)に吸引されるように各サーモコンプレッサー(9a,9b)に導くラインと、該バグフィルター(12)で除塵されたガスの残部を前記熱交換器(4)の加熱源側を通過させるラインと、この熱交換器(4)の加熱源側を通過したガスを冷却して水を生成させて分離する冷却器(14)及び生成水分離受器(15)と、該冷却器(14)を通過したガスを前記ミキサーの上流側に戻すラインと、前記バグフィルター(12)の捕集物を前記第1の反応器(6)の上部に戻すラインとを備えてなるものである。
本発明は、上記課題を解決するため、少なくともメタンを含むガスより炭素を製造する装置であって、炭素を触媒粒子表面に生成させるプレ反応器(第1の反応器)と、該プレ反応器にて成長させた炭素を更に成長させる主反応器(第2の反応器)とを備えたことを特徴とする炭素製造装置を提供する。
ここで、プレ反応器は、例えば逆円錐形、逆角錐形、円筒形のいずれかの形状からなり、下部からガスと触媒を入れ、炭素/触媒を噴流層、流動層を形成させながら触媒粒子表面に炭素を生成させる。
なお、「プレ反応」での反応温度は400〜700℃、好ましくは550〜650℃である。また、反応器に入れる触媒は、ニッケル、コバルト、鉄などの金属触媒が好ましい。このプレ反応では、炭素を例えば3〜30g炭素/g触媒、好ましくは15〜25g炭素/g触媒まで成長させる。
【0007】
また、主反応器は、例えば逆円錐形、逆角錐形、円筒形のいずれかの形状からなり、ガスを下部よりフイードし、成長した炭素を下部スクリュコンベアーにて定期的に排出し、反応器内にマスフロー移動床を形成してなるものが好ましいが、特に限定されない。
なお、「主反応」とは、プレ反応器からの、表面に炭素が生成した触媒粒子(第1の生成物)上にさらに炭素を生成させて第2の生成物とする反応で、反応温度は400〜700℃、好ましくは550〜650℃である。この主反応では、炭素を例えば100g炭素/g触媒以上まで成長させる。
また、主反応器は、炭素生産量に応じて器数を増減できる。
【0008】
また、本発明では、プレ反応器及び主反応器を出たガスの微粉捕獲手段を設け、微粉捕獲後、微粉を前記第1の反応器に戻。ここで、微紛捕獲手段としては、サイクロン、高温セラミックバグを用いる。
さらに、ガスをサーモコンプレッサを用いてプレ反応器及び主反応器に循環させ。サーモコンプレッサを用いるのは、循環ガス系を降温熱ロスすること無く昇圧するためで、駆動圧力は、0.15〜0.8MPa、好ましくは0.2〜0.3MPaである。
【0009】
なお、少なくともメタンを含むガスとは、例えば、二酸化炭素にメタンまたはバイオガス(CO2とCH4の混合ガス)を混合したガスを挙げることができるが、これに限定されない。二酸化炭素とメタンを含む混合ガスの場合、二酸化炭素とメタンが等モルでない場合、等モル調節手段を設けてもよい。ここで、等モル調節手段は、例えば、混合ガスに二酸化炭素又はメタンを導入する手段である。
また、少なくともメタンを含むガスが、二酸化炭素がほとんど含まれていない場合、本発明の装置はメタン分解装置として用いることができる。
【0010】
発明は、少なくともメタンを含むガスより炭素を製造する。
ここで、触媒は、ニッケル、コバルト、鉄などの金属触媒が好ましく、反応温度は400〜700℃、好ましくは550〜650℃、圧力は0.001〜0.2MPa、好ましくは0.003〜0.02MPaである
お、本発明により製造される炭素は、中空繊維状の炭素で(カーボンナノチューブ)直径10〜200nm、長さが50nm〜0.1μmのサイズを有する。
【発明の実施の形態】
以下本発明のCO2固定化設備を図1に示すプロセスフローに基づいて詳細に説明する。
原料のメタン、バイオガス(メタン、炭酸ガスの混合ガス)等のガスは例えば3kpa以上(系内加圧、加熱炉内加圧を保持する圧力)で図示の原料ガスポートより受け入れ、一部(原料組成により異なるが5〜10%以下程度)は循環ガス加熱用に消費され、残りは循環戻りガスとミキサ−1にて混合して循環ガスブロワー2にて例えば0.2Mpa(サーモコンプレッサー駆動圧力以上)まで昇圧する。
昇圧したガスは加圧ガスレシーバー3にて蓄圧(触媒投入用駆動ガス、バグフイルター逆洗浄ガスとしてのアキュームレート)し、加熱されている循環戻りガスと熱回収熱交換器4にて昇温熱交換され、更に循環ガス加熱炉5にて反応温度400から700度(ただし原料ガスにより異なる)まで昇温する。
【0011】
昇温したガスは循環用サーモコンプレッサー9の駆動ガスとして送られる。循環ガス量は原料ガス組成にて決まる反応転化率と滞留触媒量にて決定されるが、反応器内での生成炭素、触媒の流動化ガス速度を考慮して通常原料ガス供給量の3〜20倍にて設定する。
サーモコンプレッサー9の採用は熱ロスを生じる事無く(循環ブロワーの場合はガス温度を下げる必要がある。)循環昇圧昇温ガス系を形成する事にある。
【0012】
反応器6、7、8をでた循環ガスはサーモコンプレッサー9(図1の最上側のサーモコンプレッサーが第1のサーモコンプレッサー9aであり、図1の最下側のサーモコンプレッサーが第3のサーモコンプレッサー9cであり、両者の間のサーモコンプレッサーが第2のサーモコンプレッサー9bである。)にて吸引圧縮され再び反応器6、7、8へ戻されるが、循環ガスの一部はサーモコンプレッサー9を通さず、反応生成水を除去するために40度まで降温して冷却分離させる。この冷却器行き循環ガスは熱回収熱交換器4にて循環ガス加熱炉5行きガスと熱交換により熱回収されるが、炭素微粉除去のため高温バグフイルター12(例えば800度耐熱用特殊セラミックフイルター)にて除塵し、集塵した炭素微粉、飛散触媒は第1の反応器6に戻す。熱回収熱交換器4を出たガスは冷却器(生成水凝縮器)14にて生成水を冷却分離除去する。分離された生成水は生成水分離受器15、生成水送りポンプ16にて排出される。生成水分離後のガスは循環戻りガスとして循環ガスブロワー2吸入側に戻る
【0013】
なお、原料組成にメタンが多い場合は循環ガス内に生成水素が余剰となるので、余剰水素を水素分離装置30で分離する。分離した水素は燃料電池等に活用される。
【0014】
第1の反応器6は触媒表面炭素を生成させるためのプレ反応を行わせる物で、噴流層、流動層を形成させながら炭素量を例えば3〜30g−炭素/g−触媒まで成長させる。これが上手く形成されないと次工程の第2の反応器7で炭素が固化し、排出が困難になる。
この反応器6は、例えば図2に示す様に逆円錐形状をしている。図2(a)は全体概略図、図2(b)はA−A’線に沿う断面図である。図2中、61が触媒入口、62が循環ガス入口、63が炭素/触媒出口、64が循環ガス出口、65が炭素/触媒回転掻き取り翼、66は回転攪拌棒である。原料循環ガスは循環ガス入口62からフイードされ、触媒炭素との噴流層又は流動層を形成し、反応器6の中でインジェクター17にて触媒入口61から定期定量フイードされる触媒と混合される。触媒は数回/hrの頻度にて、定期的に生産量に応じてバッチ投入される。触媒は反応器6下部から、炭素を生成させながら反応器上部に移動していく。生成した炭素/触媒は上部棚の開口部より回転掻き取り翼65にて数回/hr定期的に掻き取られ、炭素/触媒出口63から反応器7へ排出される。
【0015】
反応器6へフィードされる循環ガス量は原料組成、滞留触媒量により異なるが、例えば10〜50L/g−触媒を目安とする。循環ガスは反応器6内で炭素、一酸化炭素、水素、水に一部転化され、混合ガス組成として循環ガス出口64から反応器6を出てサイクロン13に送られ微粉/触媒を分離除去し、高温バグフイルター12に送られる。このガスを高温バグフイルター12に直接通さず、サイクロン13にて分離除去するのは活性触媒がセラミックフイルターの濾材内に極力入らない様にするためである。
【0016】
第2の反応器7は図3に示す様に例えば、逆円錐形状をしており、内部にマスフローを形成させるための円錐型内装物72と炭素粒子固化防止の為の回転撹拌棒74、更に循環ガスを下部より吹き込むノズル71を保有している。また、73は循環ガス入口、75は炭素抜き出し口、76は循環ガス出口、77は炭素/触媒入口である。
第1の反応器6から排出された炭素は、第2の反応器7の炭素/触媒入口77上部より投入され、循環ガス入口73からの循環ガスと流接触しながら、炭素量を例えば50〜70g−炭素/g−触媒まで成長させる。反応器7では、炭素は成長しながら凝集固化しないマスフロー移動床を形成する必要があり、炭素は成長度、炭素滞留量、幾何形状が重要な要素となる。従って炭素生産量に応じて反応器7の基数は増減する。
【0017】
また、排出口(炭素抜き出し口75)には凝集破砕、マスフロー排出目的の粉砕排出スクリュウコンベヤー10が設置される。スクリュコンベヤー10から生成炭素は定期定量排出され、第3の反応器8にフィードされる。
循環ガスは、循環ガス出口76から反応器7を出て高温バグフイルター12を通って熱回収熱交換器4及びサーモコンプレッサー9行ラインへ送られる。
【0018】
第3の反応器8は第2の反応器7と同様の形状で炭素量を例えば100〜120g−炭素/g−触媒まで成長させる。生成炭素は定期定量、抜き出しスクリュコンベヤー11にて排出され、気力輸送用ブロアー18にて一酸化炭素除去槽19に送られる。この気力輸送ブロアー18は一酸化炭素をCO2にて置換する事、炭素温度を100℃以下(空気着火防止温度以下)にする事を目的とする。炭素温度の冷却は炭素輸送集塵機20、循環冷却器21を通した二酸化炭素循環系にておこなわれる。冷却された炭素は貯槽22に送られる。
なお、図1中、23〜27はシール用ロータリーバルブ、31は流量コントローラ、32は温度コントローラ、33は液面コントローラ、34は圧力コントローラである。
【0019】
以上の固定化装置において、原料ガスがCH4:CO2=1:1の等モルの場合の反応は、
CH4→C+2H2
2H 2 +CO2→CO+H2+H2
CO+H2+H2O→C+2H2
となるが、実際の反応は複雑で、循環ガス系ではCH4、CO2、CO、H2、H2Oが各々組成の転化率でのガス平衡組成となり、ある気相組成を形成する。また炭素は分解され触媒に生成付着させる。
原料ガス組成が等モルでなくメタンが過剰の場合水素が蓄積される事になる。蓄積される余剰水素は選択的に分離し、系外で排出利用する。水素分離は既存技術(吸着分離、水素分離膜、水素吸蔵合金)にて実現可能であり水素組成要求純度に依り選定される。
例えば水素吸蔵合金を用いる場合、ミッシュメタル−ニッケル系水素吸蔵合金(MmNi4.5Al0.5)に0.8Mpaで水素を吸蔵させ、2塔サーマルスイング方式で水素を分離放出させる方法では純度の高い水素が得られる。
【0020】
また、反応熱収支は等モルの場合、吸熱反応、発熱反応がほぼバランスし、放熱見合いで熱供給を行えば良いが、メタンが過剰の場合は分解反応が多く、吸熱反応が支配するので加熱が必要である。
【0021】
【発明の効果】
本発明は上記の構成であるから下記の利点を有する。
(1)CO2、排H2、バイオガス(CO2とCH4の混合ガス)を固定化して炭素を連続的に生成する。
(2)要求される純度の炭素を安定的に生成する。
(3)CO2とCH4の混合ガスが等モルの場合加熱熱量は初期加熱、冷却ガス再加熱、放熱補充のみとエネルギーが非常に小さい。
(4)バイオガス(CO2とCH4の混合ガス)でのCH4の余剰はメタン分解により水素を生成し、水素分離により水素の利用が可能。
【図面の簡単な説明】
【図1】 本発明CO2固定化装置での炭素生成プロセスフロー図
【図2】 プレ反応器の構造の概略を示す図
【図3】 主反応器の構造の概略を示す図
【符号の説明】
1:原料/循環ガスミキサ
2:循環ガスブロア
3:加圧ガスレシーバ
4:熱回収熱交換器
5:循環ガス加熱炉
6:プレ反応器(第1の反応器)
7:第2の反応
8:第3の反応
9:循環用サーモコンプレッサー
10:破砕排出用スクリュコンベアー
11:抜出しスクリュコンベア-
12:高温バグフィルター
13:サイクロン
14:生成水凝縮器
15:生成水分離受器
16:生成水送りポンプ
17:触媒インジェクター
18:気力輸送用ブロアー
19:一酸化炭素除去槽
20:炭素輸送集塵機
21:循環冷却器
22:貯槽
23〜27:シール用ロータリーバルブ
30:水素分離装置
31:液量コントローラ
32:温度コントローラ
33:液面コントローラ
34:圧力コントローラ
[0001]
BACKGROUND OF THE INVENTION
The present invention, for example, a chemical factory, a food factory, a wastewater treatment facility, an environment that generates and utilizes carbon and hydrogen by effectively using exhaust gas such as carbon dioxide, exhaust hydrogen, and biogas (mixed gas of carbon dioxide and methane).・ Applicable to the energy field.
[0002]
[Prior art]
Kyoto Protocol that the emissions of greenhouse gas, including the CO 2 in the December 1997 global warming prevention Kyoto conference Japan is reduced by 6 percent in 1990 based on until around 2010 was formulated. In November 2000, at the Conference of Parties to the Convention on Global Warming in The Hague, the Netherlands, discussions were made regarding emissions trading, absorption of forests, grassland, etc., but no conclusion was reached and it was carried over to the next time in 2001 . In any case, it is certain that the amount of CO 2 emission reduction imposed on Japan will be decided and the burden on companies will increase in the future. Reduction of CO 2 emissions by each company is an urgent task, and CO 2 emission control and recovery methods are being studied.
[0003]
CO 2 emissions is to use less natural gas CO 2 emissions without petrochemical feedstock produce CO 2. Measures such as the expansion of the use of non-fossil fuels such as biogas generated from solar cells, wind power generation, and organic waste are used.
On the other hand, there are two methods for recovering emitted CO 2 , one using natural mechanisms such as afforestation and desert greening, and the other reusing it as an effective resource using chemical reactions. Although techniques for extracting effective chemical substances such as methanol have been studied, there are problems such as excessive hydrogen generation costs, and they have not been put into practical use.
[0004]
As the reduction of CO 2 is effective fuel cell using hydrogen, the steam reforming of methanol such as extraction method of the hydrogen in this method is utilized, the CO 2 reduction for CO 2 also generates drastic It is not an ideal solution. A method that does not generate CO 2 is awaited.
[0005]
As a method that does not generate CO 2 , one of the applicants reacts CO 2 with methane, biogas (a mixed gas of CO 2 and CH 4 ), etc., immobilizes it as carbon, and extracts the generated carbon and hydrogen as products. This is proposed (Japanese Patent Laid-Open No. 11-322315).
The present invention improves further added, in order to expand the practical apparatus, stably generated above purity required carbon, and selective separation equipment to Eject the trade, the generation of hydrogen, the fuel cell or the like an object of the present invention is to provide equipment to Eject like that can be utilized in.
[0006]
[Means for Solving the Problems]
The carbon production apparatus of the present invention comprises a mixer (1) for mixing a methane-containing gas and a carbon dioxide-containing gas, a heat exchanger (4) for heating the gas from the mixer (1), A heating furnace (5) for heating the gas from the heat exchanger (4), a first thermocompressor (9a) installed in parallel, through which the gas from the heating furnace (5) passes as a driving gas, and The gas from the second thermocompressor (9b), the gas from the first thermocompressor (9a) and the metal catalyst particles are supplied from the lower part to form a spouted bed or fluidized bed inside, and carbon is formed on the surface of the catalyst particles. A first reactor (6) from which the generated first product is taken out from above, and the first product from the first reactor (6) is fed from above, and the second thermostat Is the gas from the compressor (9b) at the bottom? The second reactor (7) in which the gas and the first product are fed in countercurrent contact, and the second product that has produced carbon on the first product is taken out from the bottom. And the gas taken out from the upper part of the first reactor (6) is introduced through the cyclone (13), and the gas taken out from the upper part of the second reactor (7) is introduced. Bag filter (12) and each thermocompressor so that a part of the gas removed by the bag filter (12) is sucked into the first thermocompressor (9a) and the second thermocompressor (9b). A line that leads to (9a, 9b), a line that passes the remainder of the gas removed by the bag filter (12) through the heating source side of the heat exchanger (4), and heating of the heat exchanger (4) Cool the gas that has passed through the source side A cooler (14) and a product water separator (15) for separation by separation, a line for returning the gas that has passed through the cooler (14) to the upstream side of the mixer, and a trap for the bag filter (12). And a line for returning the collection to the top of the first reactor (6).
In order to solve the above-mentioned problems, the present invention is an apparatus for producing carbon from a gas containing at least methane, a pre-reactor (first reactor) for generating carbon on the surface of catalyst particles , and the pre-reactor And a main reactor (second reactor) for further growing the carbon grown in step (1) .
Here, the pre-reactor has, for example, an inverted cone shape, an inverted pyramid shape, or a cylindrical shape, and a catalyst particle is formed while a gas and a catalyst are put from the lower part, and a carbon / catalyst is formed as a spouted bed and a fluidized bed Carbon is generated on the surface.
The reaction temperature in the “pre-reaction” is 400 to 700 ° C., preferably 550 to 650 ° C. Moreover, the catalyst put into the reactor is preferably a metal catalyst such as nickel, cobalt, or iron. In this pre-reaction, carbon is grown to, for example, 3-30 g carbon / g catalyst, preferably 15-25 g carbon / g catalyst.
[0007]
The main reactor, for example, inverted conical, inverse pyramidal consists either in the form of a cylindrical, gas and Fuido lower portion periodically discharged grown carbon by lower screw over conveyor, reaction Although what formed a mass flow moving bed in a vessel is preferred, it is not limited in particular.
The “main reaction” is a reaction from the pre-reactor that produces carbon as a second product by further generating carbon on the catalyst particles (first product) on the surface of which carbon is generated. it is 400 to 700 ° C., preferably from 550 to 650 ° C.. The main reaction of this is grown, for example, on a 100g carbon / g catalyst than or carbon.
Moreover, the number of the main reactors can be increased or decreased according to the carbon production.
[0008]
In the present invention, a fine powder capturing means of the gas leaving the pre-reactor及beauty main reactor provided, after fines capture, to return the fines to the first reactor. Here, as the fine powder capture means, cyclone, Ru using a high-temperature ceramic bug.
Moreover, Ru is circulated gas to the pre-reactor及beauty main reactor using a thermo compressor. The reason why the thermocompressor is used is to increase the pressure of the circulating gas system without causing a temperature drop heat loss, and the driving pressure is 0.15 to 0.8 MPa, preferably 0.2 to 0.3 MPa.
[0009]
Note that the gas containing at least methane includes, for example, a gas obtained by mixing methane or biogas (a mixed gas of CO 2 and CH 4 ) with carbon dioxide, but is not limited thereto. In the case of a mixed gas containing carbon dioxide and methane, an equimolar adjusting means may be provided when carbon dioxide and methane are not equimolar. Here, the equimolar adjusting means is, for example, means for introducing carbon dioxide or methane into the mixed gas.
When the gas containing at least methane contains almost no carbon dioxide, the apparatus of the present invention can be used as a methane decomposition apparatus.
[0010]
The present invention is, you produce carbon from a gas containing at least methane.
Here, the catalyst is preferably a metal catalyst such as nickel, cobalt, or iron, the reaction temperature is 400 to 700 ° C, preferably 550 to 650 ° C, and the pressure is 0.001 to 0.2 MPa, preferably 0.003 to 0. 0.02 MPa .
Contact name carbon produced by the present invention is a hollow fibrous carbon (carbon nanotube) diameter 10 to 200 nm, a length having a size of 50Nm~0.1Myuemu.
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the CO 2 fixing facility of the present invention will be described in detail based on the process flow shown in FIG.
Gases such as raw material methane and biogas (mixed gas of methane and carbon dioxide) are accepted from the raw material gas port shown in the figure at a pressure of 3 kPa or more (pressure for maintaining the pressure in the system and heating furnace), and a part ( (Depending on the raw material composition, about 5 to 10% or less) is consumed for heating the circulating gas, and the remainder is mixed with the circulating return gas in the mixer-1 and then, for example, 0.2Mpa (thermo compressor driving pressure) in the circulating gas blower 2 Pressure up to above).
The pressurized gas is stored in the pressurized gas receiver 3 (accumulation rate as the catalyst driving drive gas and bag filter backwash gas), and the heated circulating return gas and the heat recovery heat exchanger 4 are heated to exchange heat. Further, the temperature is raised from a reaction temperature of 400 to 700 degrees (which differs depending on the raw material gas) in the circulating gas heating furnace 5.
[0011]
The heated gas is sent as a driving gas for the circulation thermocompressor 9. The amount of circulating gas is determined by the reaction conversion rate determined by the raw material gas composition and the amount of staying catalyst, but considering the generated carbon in the reactor and the fluidizing gas speed of the catalyst, the amount of the normal raw material gas supply is 3 to 3. Set at 20 times.
The adoption of the thermocompressor 9 is to form a circulation pressurization temperature raising gas system without causing heat loss (in the case of a circulation blower, it is necessary to lower the gas temperature).
[0012]
The circulating gas discharged from the reactors 6, 7 and 8 is a thermocompressor 9 (the uppermost thermocompressor in FIG. 1 is the first thermocompressor 9a, and the lowermost thermocompressor in FIG. 1 is the third thermocompressor. 9c, and the thermocompressor between them is the second thermocompressor 9b), and is sucked and compressed again to the reactors 6, 7 and 8, but part of the circulating gas passes through the thermocompressor 9. First, in order to remove the reaction product water, the temperature is lowered to 40 degrees and cooled and separated. The circulating gas for the cooler is heat recovered by heat exchange with the gas for the circulating gas heating furnace 5 in the heat recovery heat exchanger 4, but a high-temperature bag filter 12 (for example, a 800 degree heat-resistant special ceramic filter for removing fine carbon powder). ), And the collected fine carbon powder and scattered catalyst are returned to the first reactor 6. The gas discharged from the heat recovery heat exchanger 4 is cooled and removed by a cooler (product water condenser) 14. The separated product water is discharged by a product water separation receiver 15 and a product water feed pump 16. The gas after the product water separation returns to the suction side of the circulation gas blower 2 as a circulation return gas.
In addition, when there is much methane in a raw material composition, since produced hydrogen becomes surplus in circulation gas, surplus hydrogen is isolate | separated with the hydrogen separator 30. FIG. The separated hydrogen is used for fuel cells and the like.
[0014]
The 1st reactor 6 is a thing which performs the pre reaction for producing | generating carbon on the catalyst surface , and grows carbon amount to 3-30 g-carbon / g-catalyst, for example, forming a spouted bed and a fluidized bed. If this is not formed well, the carbon is solidified in the second reactor 7 in the next step, making it difficult to discharge.
The reactor 6 has, for example, an inverted conical shape as shown in FIG. 2 (a) is an overall schematic view, FIG. 2 (b) is a cross sectional view taken along the line A-A '. In FIG. 2, 61 is a catalyst inlet, 62 is a circulating gas inlet, 63 is a carbon / catalyst outlet, 64 is a circulating gas outlet, 65 is a carbon / catalyst rotary scraping blade, and 66 is a rotary stirring rod. Material circulating gas is Fuido from the circulating gas inlet 62, to form a spouted bed or a fluidized bed of catalyst and carbon, catalyst and mixed-from catalyst inlet 61 at the injector 17 in the anti応器6 are periodically quantified Fuido Is done . Catalysts, at a frequency of several times / hr, Ru is batch-up in accordance with the regular production. The catalyst moves from the lower part of the reactor 6 to the upper part of the reactor while generating carbon. The resulting carbon / catalyst number by the rotation scraping blade 65 from the opening of the upper shelf times / hr regularly been scraped taken, and is discharged from the carbon / catalyst outlet 63 to the reactor 7.
[0015]
The amount of circulating gas fed to the reactor 6 varies depending on the raw material composition and the amount of staying catalyst, but for example, 10 to 50 L / g-catalyst is used as a guide. The circulating gas is partially converted into carbon, carbon monoxide, hydrogen, and water in the reactor 6, and the mixed gas composition exits the reactor 6 from the circulating gas outlet 64 and is sent to the cyclone 13 to separate and remove fine powder / catalyst. , And sent to the high-temperature bag filter 12. This gas is not directly passed through the high-temperature bag filter 12 but separated and removed by the cyclone 13 in order to prevent the active catalyst from entering the filter medium of the ceramic filter as much as possible.
[0016]
As shown in FIG. 3, the second reactor 7 has, for example, an inverted conical shape, a conical interior 72 for forming a mass flow therein, a rotary stirring rod 74 for preventing carbon particle solidification, The nozzle 71 which blows in circulating gas from the lower part is held. 73 is a circulating gas inlet, 75 is a carbon outlet, 76 is a circulating gas outlet, and 77 is a carbon / catalyst inlet.
Carbon discharged from the first reactor 6 is introduced from the carbon / catalyst inlet 77 upper portion of the second reactor 7, while contacting the recycle gas and countercurrent from the circulation gas inlet 73, the carbon content, for example, 50 Grow to ~ 70 g-carbon / g-catalyst. In the reactor 7, it is necessary to form a mass flow moving bed in which carbon grows and does not coagulate and solidify, and the degree of growth, carbon retention, and geometry are important factors for carbon. Accordingly, the number of reactors 7 increases or decreases depending on the carbon production.
[0017]
Further, a crushing and discharging screw conveyor 10 for the purpose of coagulation and crushing and mass flow discharging is installed at the discharging port (carbon extracting port 75). Generating carbons screw over conveyor 10 are periodically quantified discharged, is fed to the third reactor 8.
The circulating gas leaves the reactor 7 from the circulating gas outlet 76, passes through the high-temperature bag filter 12, and is sent to the heat recovery heat exchanger 4 and the thermocompressor 9 line.
[0018]
The third reactor 8 has the same shape as the second reactor 7 and grows the amount of carbon to, for example, 100 to 120 g-carbon / g-catalyst. Generating carbon periodically quantified, it is discharged by withdrawal screw over conveyor 11, fed by pneumatic transport for blower 18 to the carbon monoxide removing tank 19. The purpose of this pneumatic transport blower 18 is to replace carbon monoxide with CO 2 and to set the carbon temperature to 100 ° C. or lower (air ignition prevention temperature or lower). The cooling of the carbon temperature is performed in a carbon dioxide circulation system through a carbon transport dust collector 20 and a circulation cooler 21. The cooled carbon is sent to the storage tank 22.
In FIG. 1, 23 to 27 are sealing rotary valves, 31 is a flow rate controller, 32 is a temperature controller, 33 is a liquid level controller, and 34 is a pressure controller.
[0019]
In the above-described immobilization apparatus, the reaction when the raw material gas is equimolar CH 4 : CO 2 = 1: 1
CH 4 → C + 2H 2
2H 2 + CO 2 → CO + H 2 + H 2 O
CO + H 2 + H 2 O → C + 2H 2 0
However, the actual reaction is complicated, and in a circulating gas system, CH 4 , CO 2 , CO, H 2 , and H 2 O each have a gas equilibrium composition at a conversion rate of the composition, and form a certain gas phase composition. Carbon is also decomposed and deposited on the catalyst.
When the source gas composition is not equimolar and methane is excessive, hydrogen is accumulated. The excess hydrogen accumulated is selectively separated and discharged outside the system. Hydrogen separation can be realized by existing technologies (adsorption separation, hydrogen separation membrane, hydrogen storage alloy) and is selected based on the required purity of the hydrogen composition.
For example, when using a hydrogen storage alloy, hydrogen is stored in a mischmetal-nickel-based hydrogen storage alloy (MmNi4.5Al0.5) at 0.8 Mpa, and hydrogen is separated and released by the two-column thermal swing method. can get.
[0020]
If the reaction heat balance is equimolar, the endothermic reaction and exothermic reaction are almost balanced, and heat supply may be performed in proportion to the heat dissipation, but if there is an excess of methane, the decomposition reaction is large and the endothermic reaction dominates. is required.
[0021]
【The invention's effect】
The present invention has the following advantages since it is configured as described above.
(1) Carbon is continuously generated by immobilizing CO 2 , exhaust H 2 , and biogas (a mixed gas of CO 2 and CH 4 ).
(2) Stable production of carbon with the required purity.
(3) When the mixed gas of CO 2 and CH 4 is equimolar, the amount of heating heat is very small with only initial heating, reheating of cooling gas, and replenishment of heat radiation.
(4) The surplus of CH 4 in biogas (mixed gas of CO 2 and CH 4 ) generates hydrogen by methane decomposition, and hydrogen can be used by hydrogen separation.
[Brief description of the drawings]
FIG. 1 is a process flow diagram of carbon generation in the CO 2 fixing device of the present invention. FIG. 2 is a diagram showing an outline of the structure of a pre-reactor. FIG. 3 is a diagram showing an outline of the structure of a main reactor. ]
1: Raw material / circulating gas mixer 2: Circulating gas blower 3: Pressurized gas receiver 4: Heat recovery heat exchanger 5: Circulating gas heating furnace 6: Pre-reactor (first reactor)
7: the second reactor 8: a third reactor 9 for circulation Thermo Compressor 10: crushing the discharge screw over conveyor 11: extraction screw over conveyor -
12: High-temperature bag filter 13: Cyclone 14: Generated water condenser 15: Generated water separator 16: Generated water feed pump 17: Catalyst injector 18: Aerodynamic transport blower 19: Carbon monoxide removal tank 20: Carbon transport dust collector 21 : Circulating cooler 22: Storage tanks 23 to 27: Sealing rotary valve 30: Hydrogen separator 31: Liquid quantity controller 32: Temperature controller 33: Liquid level controller 34: Pressure controller

Claims (6)

メタン含有ガスと炭酸ガス含有ガスとを混合するためのミキサー(1)と、A mixer (1) for mixing a methane-containing gas and a carbon dioxide-containing gas;
該ミキサー(1)からのガスを加熱するための熱交換器(4)と、A heat exchanger (4) for heating the gas from the mixer (1);
該熱交換器(4)からの該ガスを加熱する加熱炉(5)と、A heating furnace (5) for heating the gas from the heat exchanger (4);
該加熱炉(5)からの該ガスが駆動ガスとして通過する、並列設置された第1のサーモコンプレッサー(9a)及び第2のサーモコンプレッサー(9b)と、A first thermocompressor (9a) and a second thermocompressor (9b) installed in parallel through which the gas from the heating furnace (5) passes as a driving gas;
該第1のサーモコンプレッサー(9a)からのガス及び金属触媒粒子が下部から供給され、内部に噴流層又は流動層が形成され、該触媒粒子表面に炭素が生成した第1の生成物が上部から取り出される第1の反応器(6)と、Gas from the first thermocompressor (9a) and metal catalyst particles are supplied from the lower part, a spouted bed or a fluidized bed is formed inside, and a first product in which carbon is generated on the catalyst particle surface is formed from the upper part. A first reactor (6) to be removed;
該第1の反応器(6)からの該第1の生成物が上部から供給され、前記第2のサーモコンプレッサー(9b)からのガスが下部から供給され、このガスと該第1の生成物とが向流接触し、該第1の生成物上に炭素を生成させた第2の生成物が下部から取り出される第2の反応器(7)と、The first product from the first reactor (6) is fed from the top, and the gas from the second thermocompressor (9b) is fed from the bottom, and this gas and the first product A second reactor (7) from which the second product, which is in countercurrent contact with each other and has produced carbon on the first product, is removed from the lower part;
該第1の反応器(6)の上部から取り出されたガスがサイクロン(13)を介して導入されると共に、該第2の反応器(7)の上部から取り出されたガスが導入されるバグフィルター(12)と、Bug in which the gas taken out from the upper part of the first reactor (6) is introduced through the cyclone (13) and the gas taken out from the upper part of the second reactor (7) is introduced A filter (12);
該バグフィルター(12)で除塵されたガスの一部を前記第1のサーモコンプレッサー(9a)及び第2のサーモコンプレッサー(9b)に吸引されるように各サーモコンプレッサー(9a,9b)に導くラインと、A line for guiding a part of the gas removed by the bag filter (12) to each thermocompressor (9a, 9b) so as to be sucked into the first thermocompressor (9a) and the second thermocompressor (9b). When,
該バグフィルター(12)で除塵されたガスの残部を前記熱交換器(4)の加熱源側を通過させるラインと、A line for allowing the remainder of the gas removed by the bag filter (12) to pass through the heating source side of the heat exchanger (4);
この熱交換器(4)の加熱源側を通過したガスを冷却して水を生成させて分離する冷却器(14)及び生成水分離受器(15)と、A cooler (14) and a generated water separation receiver (15) for cooling the gas that has passed through the heat source side of the heat exchanger (4) to produce water and separating the gas;
該冷却器(14)を通過したガスを前記ミキサーの上流側に戻すラインと、A line for returning the gas that has passed through the cooler (14) to the upstream side of the mixer;
前記バグフィルター(12)の捕集物を前記第1の反応器(6)の上部に戻すラインとA line for returning the collected matter of the bag filter (12) to the top of the first reactor (6);
を備えてなる炭素製造装置。A carbon production apparatus comprising:
請求項1において、In claim 1,
前記ガス加熱炉で加熱されたガスが駆動ガスとして通過するように前記第1及び第2のサーモコンプレッサー(9a,9b)と並列に設けられた第3のサーモコンプレッサー(9c)と、A third thermocompressor (9c) provided in parallel with the first and second thermocompressors (9a, 9b) so that the gas heated in the gas heating furnace passes as a driving gas;
前記バグフィルター(12)で除塵されたガスの一部を該第3のサーモコンプレッサー(9c)で吸引されるように該サーモコンプレッサー(9c)に導くラインと、A line for guiding a part of the gas removed by the bag filter (12) to the thermocompressor (9c) so as to be sucked by the third thermocompressor (9c);
前記第2の反応器(7)から取り出された第2の生成物が上部から供給され、該第3のサーモコンプレッサー(9c)からのガスが下部から供給され、このガスと第2の生成物とが向流接触し、該第2の生成物上に炭素を生成させた第3の生成物が下部から取り出される第3の反応器(8)と、The second product taken out from the second reactor (7) is supplied from the upper part, and the gas from the third thermocompressor (9c) is supplied from the lower part, and this gas and the second product are supplied. A third reactor (8) from which the third product, which is in countercurrent contact with each other and has produced carbon on the second product, is removed from the lower part;
該第3の反応器(8)の上部から取り出されたガスを前記バグフィルター(12)に導くラインとA line for guiding the gas extracted from the upper part of the third reactor (8) to the bag filter (12);
をさらに備えたことを特徴とする炭素製造装置。An apparatus for producing carbon, further comprising:
請求項2において、前記第2の反応器(7)からの第2の生成物を破砕しながら第3の反応器(8)に搬送するスクリューコンベアー(10)をさらに備えたことを特徴とする炭素製造装置。The screw conveyor (10) according to claim 2, further comprising a screw conveyor (10) for conveying the second product from the second reactor (7) to the third reactor (8) while crushing the second product. Carbon production equipment. 請求項2又は3において、前記第3の反応器(8)からの第3の生成物を破砕しつつ搬送するスクリューコンベアー(11)と、Screw conveyor (11) according to claim 2 or 3, for conveying the third product from the third reactor (8) while crushing;
該スクリューコンベアー(11)からの第3の生成物が気力搬送用ブロワー(18)からのガスによって気力搬送されて導入される一酸化炭素除去槽(19)と、A carbon monoxide removal tank (19) into which the third product from the screw conveyor (11) is pneumatically conveyed and introduced by the gas from the pneumatic conveying blower (18);
該一酸化炭素除去槽(19)から第3の生成物を受け入れる貯槽(22)と、A reservoir (22) for receiving a third product from the carbon monoxide removal tank (19);
該一酸化炭素除去槽(19)からのガスを除塵する集塵機(20)と、A dust collector (20) for removing dust from the carbon monoxide removal tank (19);
該集塵機(20)で除塵されたガスを冷却する冷却器(21)と、A cooler (21) for cooling the gas removed by the dust collector (20);
該冷却器(21)で冷却されたガスを前記気力搬送用ブロワー(18)の吸込側へ戻すラインとA line for returning the gas cooled by the cooler (21) to the suction side of the pneumatic conveying blower (18);
をさらに備えたことを特徴とする炭素製造装置。An apparatus for producing carbon, further comprising:
請求項1ないし4のいずれか1項において、前記ブロワー(2)から前記熱交換器(4)に向って送り出されたガスを一時的に貯留する加圧ガスレシーバー(3)をさらに備え、該加圧ガスレシーバー(3)からのガスが前記熱交換器(4)に供給されることを特徴とする炭素製造装置。The pressure gas receiver (3) according to any one of claims 1 to 4, further comprising a pressurized gas receiver (3) for temporarily storing a gas sent from the blower (2) toward the heat exchanger (4), A carbon production apparatus, wherein a gas from a pressurized gas receiver (3) is supplied to the heat exchanger (4). 請求項5において、前記ブロワー(2)から前記加圧ガスレシーバー(3)に向って送り出されたガスの一部が導入される水素分離装置(30)をさらに備えたことを特徴とする炭素製造装置。The carbon production according to claim 5, further comprising a hydrogen separator (30) into which a part of the gas sent from the blower (2) toward the pressurized gas receiver (3) is introduced. apparatus.
JP2001004392A 2001-01-12 2001-01-12 Carbon production equipment Expired - Lifetime JP4852787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001004392A JP4852787B2 (en) 2001-01-12 2001-01-12 Carbon production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001004392A JP4852787B2 (en) 2001-01-12 2001-01-12 Carbon production equipment

Publications (2)

Publication Number Publication Date
JP2002211909A JP2002211909A (en) 2002-07-31
JP4852787B2 true JP4852787B2 (en) 2012-01-11

Family

ID=18872587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001004392A Expired - Lifetime JP4852787B2 (en) 2001-01-12 2001-01-12 Carbon production equipment

Country Status (1)

Country Link
JP (1) JP4852787B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284513A (en) * 2001-03-28 2002-10-03 Shimadzu Corp Method for manufacturing carbon
JP4758130B2 (en) * 2005-04-12 2011-08-24 国立大学法人北見工業大学 Method for producing nanocarbon and catalytic reactor for producing nanocarbon
JP5193432B2 (en) * 2006-04-26 2013-05-08 国立大学法人九州工業大学 Method for producing string-like carbon and method for using the same
KR100916330B1 (en) * 2007-08-21 2009-09-11 세메스 주식회사 Method and apparatus of collecting carbon nano tube
KR100977147B1 (en) * 2007-12-31 2010-08-23 세메스 주식회사 Fluidizing bed apparatus for producting carbon nano tube and facility and method producting carbon nano tube
KR20110027715A (en) * 2008-06-30 2011-03-16 쇼와 덴코 가부시키가이샤 Process for producing carbon nanomaterial and system for producing carbon nanomaterial
JP5555944B2 (en) * 2010-11-16 2014-07-23 学校法人早稲田大学 Method for producing carbon nanotube
JP5705068B2 (en) * 2011-08-31 2015-04-22 日立造船株式会社 Manufacturing equipment for fibrous carbon materials
US20150064092A1 (en) * 2012-04-16 2015-03-05 Seerstone Llc Methods and reactors for producing solid carbon nanotubes, solid carbon clusters, and forests
US9796591B2 (en) 2012-04-16 2017-10-24 Seerstone Llc Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products
CN104284861A (en) 2012-04-16 2015-01-14 赛尔斯通股份有限公司 Methods for treating offgas containing carbon oxides
NO2749379T3 (en) 2012-04-16 2018-07-28
TWI627130B (en) 2012-04-18 2018-06-21 美商艾克頌美孚上游研究公司 Removing carbon nanotubes from a continuous reactor effluent
TWI570072B (en) 2012-04-18 2017-02-11 艾克頌美孚上游研究公司 Removing carbon nanotubes from a water stream
WO2018022999A1 (en) 2016-07-28 2018-02-01 Seerstone Llc. Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
KR102308018B1 (en) * 2019-11-14 2021-09-30 주식회사 포스코 Device for manufacturing cabon dust

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829862A (en) * 1981-08-14 1983-02-22 Mitsubishi Chem Ind Ltd Preparation of carbon black
JPS6351467A (en) * 1986-08-21 1988-03-04 Kawasaki Steel Corp Production of high-purity carbon black
JPS63319045A (en) * 1987-06-23 1988-12-27 Masaki Sadakata Production of fine particle by gaseous phase reaction
JPH01298214A (en) * 1988-05-24 1989-12-01 Asahi Chem Ind Co Ltd Production of carbon fiber
JP4187851B2 (en) * 1998-03-13 2008-11-26 株式会社島津製作所 Biomass-based carbon production equipment
JPH11350257A (en) * 1998-06-05 1999-12-21 Nikkiso Co Ltd Gas phase growing carbon fiber production unit
JP3007983B1 (en) * 1998-09-05 2000-02-14 工業技術院長 Manufacturing method of ultra fine carbon tube
JP2000181143A (en) * 1998-12-11 2000-06-30 Shimadzu Corp Production of carbon for electrophotographic toner
JP3055686B1 (en) * 1999-03-15 2000-06-26 川崎重工業株式会社 Method and apparatus for producing activated carbide
JP2000271472A (en) * 1999-03-24 2000-10-03 Shimadzu Corp Carbon dioxide immobilizing device by anaerobic fermentation gas

Also Published As

Publication number Publication date
JP2002211909A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
JP4852787B2 (en) Carbon production equipment
JP6755269B2 (en) A method for producing solid carbon by reducing carbon dioxide
US9994777B2 (en) Integrated biorefinery for production of liquid fuels
CN102459727B (en) Method for producing solid carbon by reducing carbon oxides
US6991769B2 (en) Biomass gasifycation furnace and system for methanol synthesis using gas produced by gasifying biomass
EP2708507B1 (en) Method for manufacturing nanocarbon and manufacturing device
JP6479677B2 (en) Parallel production of hydrogen, carbon monoxide and carbon-containing products
CN104603051B (en) Produce the reactor assembly of carbon allotrope
KR101032168B1 (en) Method for Conversion of Hydrocarbons
US10443005B2 (en) All-steam gasification with carbon capture
WO2008069251A1 (en) Apparatus and process for production of liquid fuel from biomass
US8093306B2 (en) Integrated biorefinery for production of liquid fuels
CN101316650B (en) Methods and apparatus for hydrogen gas production
AU593286B2 (en) Process and apparatus for producing a hydrogen-containing gas
KR101103678B1 (en) Apparatus and process for manufacturing high purity hydrogen by catalytic decomposition of petroleum waste gas
JP2004019018A (en) Method for producing carbonaceous microfibrous material
CN103332650B (en) System and method for simultaneous dry-method hydrogen production from catalytic methane decomposition and carbon dioxide separation
JP4388245B2 (en) Biomass gasifier
KR102193200B1 (en) Thermochemical upgrading system of bio-gas
US9242907B2 (en) Biomass gasification gas purification system and method, and methanol production system and method
KR102117455B1 (en) Energy-independent methane gas production equipment
KR102482738B1 (en) Hydrocarbon pyrolysis apparatus and operation method thereof
KR102118313B1 (en) Energy independence system using pure oxygen combustion power generation and new renewable energy
US20210380417A1 (en) Process and Device for Producing Hydrogen, Carbon Monoxide and a Carbon-Containing Product
JP2954585B1 (en) Hydrogen production method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110404

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4852787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term