JP2002284513A - Method for manufacturing carbon - Google Patents

Method for manufacturing carbon

Info

Publication number
JP2002284513A
JP2002284513A JP2001091923A JP2001091923A JP2002284513A JP 2002284513 A JP2002284513 A JP 2002284513A JP 2001091923 A JP2001091923 A JP 2001091923A JP 2001091923 A JP2001091923 A JP 2001091923A JP 2002284513 A JP2002284513 A JP 2002284513A
Authority
JP
Japan
Prior art keywords
carbon
gas
reaction
catalyst
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001091923A
Other languages
Japanese (ja)
Inventor
Masaaki Ota
昌昭 大田
Yoshifumi Kichise
良文 吉瀬
Tetsuo Nagaso
哲夫 長曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001091923A priority Critical patent/JP2002284513A/en
Publication of JP2002284513A publication Critical patent/JP2002284513A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the amount of generating carbon per a unit weight of catalysts in a method for manufacturing carbon by the reaction of hydrocarbons, e.g. methane, with carbon dioxide and. SOLUTION: In the method for manufacturing carbon from hydrocarbons and carbon dioxide by using catalystic reaction, the raw material is mixed gas of hydrogen and carbon monoxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば二酸化炭
素、低品位天然ガス、バイオガス(二酸化炭素とメタン
の混合ガス)などの排出ガスを有効利用して、炭素を製
造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing carbon by effectively utilizing exhaust gas such as carbon dioxide, low-grade natural gas, and biogas (mixed gas of carbon dioxide and methane). .

【0002】[0002]

【従来の技術】1997年12月 地球温暖化防止京都
会議で二酸化炭素をはじめとした温室効果ガスの排出量
を我国が2010年頃までに1990年ベースで6%削
減するという京都議定書が策定された。2000年11
月オランダ/ハーグでの地球温暖化防止条約締約国会議
で、排出権取引や森林、草地の吸収量などについて協議
されたが、妥結には至らず2001年の次回に持ち越し
と成った。いずれにせよ、我が国に課せられる二酸化炭
素排出削減量が決まり、今後、企業にかかる負担が増す
ことは確かである。各企業の二酸化炭素排出削減は急務
であり、二酸化炭素排出抑制、回収方法が検討されてい
る。
2. Description of the Related Art In December 1997, the Kyoto Protocol was formulated at the Kyoto Conference on Global Warming Prevention to reduce Japan's emissions of carbon dioxide and other greenhouse gases by 6% by around 2010 on a 1990 basis. . 2000 11
At a meeting of the Parties to the Treaty on Climate Change in the Netherlands / The Hague, discussions on emissions trading and the amount of forest and grassland absorbed were not concluded, but were carried over to the next time in 2001. In any case, the amount of carbon dioxide emission reduction imposed on Japan is determined, and it is certain that the burden on companies will increase in the future. There is an urgent need for companies to reduce their carbon dioxide emissions, and ways to reduce and capture carbon dioxide are being studied.

【0003】二酸化炭素排出抑制は二酸化炭素を生み出
す石化原料を使わないで二酸化炭素排出量の少ない天然
ガスの利用、太陽電池、風力発電、有機廃棄物からバイ
オガスを発生させ燃料としての利用など化石燃料でない
エネルギーの利用拡大などの対策が行われている。ま
た、一方排出した二酸化炭素回収方法としては、植林や
砂漠緑化などの自然のメカニズムを利用する物と、化学
反応などを用いて有効資源に再利用するものとが存在
し、二酸化炭素と水素を用いてメタノールなどの有効化
学物質を取り出す技術が検討されているが、水素生成コ
ストがかかりすぎるなどの課題が有り、実用化には至っ
ていない。
[0003] Carbon dioxide emission control uses fossil fuels, such as the use of natural gas, which emits little carbon dioxide without using fossil materials that produce carbon dioxide, solar cells, wind power generation, and the generation of biogas from organic waste as fuel. Measures are being taken to expand the use of non-fuel energy. On the other hand, there are two methods of recovering carbon dioxide emitted: those that use natural mechanisms such as tree planting and desert greening, and those that reuse natural resources through chemical reactions. A technology for extracting an effective chemical substance such as methanol by using the same has been studied, but there are problems such as an excessive cost of hydrogen generation, and it has not been put to practical use.

【0004】さらに従来グラファイトなどの炭素材料の
製造は、有機化合物を常圧下、不活性雰囲気中で加熱し
て炭素化したり、炭化水素ガスを不完全燃焼させること
で製造されているが、原料の炭化水素ガスの不足、製造
時の二酸化炭素放出などが問題になってきている。
Conventionally, carbon materials such as graphite have been produced by heating an organic compound under normal pressure in an inert atmosphere to carbonize or incompletely burning a hydrocarbon gas. Insufficient hydrocarbon gas and emission of carbon dioxide during production have become problems.

【0005】二酸化炭素の発生しない方法として、本件
出願人の一人は二酸化炭素をメタン、バイオガス(二酸
化炭素とメタンの混合ガス)等と反応させ、炭素として
固定化し、生成する炭素、水素を商品として取り出すこ
とを提案している(特開平−11−322315号)。
本発明は、メタンなどの炭化水素と二酸化炭素の反応に
より炭素を製造する方法において、触媒重量当りの炭素
生成量を向上する炭素の製造法を提供することを目的と
する。
As a method that does not generate carbon dioxide, one of the present applicants reacts carbon dioxide with methane, biogas (mixed gas of carbon dioxide and methane) and the like, immobilizes it as carbon, and converts the produced carbon and hydrogen into commercial products. (Japanese Patent Laid-Open No. 11-322315).
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing carbon by reacting a hydrocarbon such as methane with carbon dioxide, in which the amount of carbon produced per catalyst weight is improved.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するため、炭化水素及び二酸化炭素から触媒反応を利
用し炭素を製造する方法において、少なくとも水素及び
一酸化炭素を混合したガスを原料ガスとする炭素製造法
を用いる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method for producing carbon by utilizing a catalytic reaction from hydrocarbons and carbon dioxide. The carbon production method used as gas is used.

【0007】ここで、水素及び一酸化炭素の混合量は、
5〜50%、好ましくは10〜40%である。この範囲
より少ないと効果がなく、多いと目的とする炭化水素と
二酸化炭素の反応が進みにくくなるからである。水素及
び一酸化炭素は、原料ガスとして供給しても、また触媒
反応により生成された水素及び一酸化炭素を反応器に循
環させて用いてもいずれでもよい。また、本発明に用い
られる触媒としてはニッケル、鉄、コバルトを主成分と
した金属触媒が好ましく、炭化水素としてはメタン、エ
タンなどの飽和炭化水素が好ましい。
Here, the mixed amount of hydrogen and carbon monoxide is
It is 5 to 50%, preferably 10 to 40%. If the amount is less than this range, there is no effect, and if it is more than this, the reaction between the target hydrocarbon and carbon dioxide is difficult to proceed. Hydrogen and carbon monoxide may be supplied as a raw material gas, or hydrogen and carbon monoxide generated by a catalytic reaction may be circulated through a reactor for use. The catalyst used in the present invention is preferably a metal catalyst containing nickel, iron and cobalt as main components, and the hydrocarbon is preferably a saturated hydrocarbon such as methane and ethane.

【0008】なお、本発明により製造される炭素は、直
径3〜200nm、長さが0.01〜100μmサイズ
を有する。
The carbon produced according to the present invention has a diameter of 3 to 200 nm and a length of 0.01 to 100 μm.

【0009】また、本発明の炭素製造にかかわる反応条
件は、反応温度は400〜750℃、好ましくは450
〜700℃、圧力は0〜10MPa、好ましくは0〜1
MPaである。このような反応条件下で反応させると炭
化水素と二酸化炭素のみの反応に比べ、触媒重量当りの
炭素生成量は約2倍に向上する。
The reaction conditions for the production of carbon of the present invention are as follows: a reaction temperature of 400 to 750 ° C., preferably 450 ° C.
~ 700 ° C, pressure 0 ~ 10MPa, preferably 0 ~ 1MPa
MPa. When the reaction is carried out under such reaction conditions, the amount of carbon produced per catalyst weight is improved about twice as compared with the reaction of only hydrocarbon and carbon dioxide.

【0010】[0010]

【実施例】図1は、本発明にかかる炭素製造用触媒を充
填して炭素生成能を測定した固定床型流通式反応器を表
す概略図である。ガス供給源として、メタンガスボンベ
2、二酸化炭素ガスボンベ4及び窒素ガスボンベ6が備
えられ、メタンガス、二酸化炭素ガス及び窒素ガスを所
定の比で混合するガス混合器8に接続されている。ガス
混合器8からの混合ガスは、石英製の反応管10に送ら
れる。反応管10には触媒12が充填されており、触媒
12は、反応管10に充填されたガラスビーズやガラス
ウールにより固定されている。反応管10は加熱炉14
により所定の温度に加熱される。反応管10を通過した
ガスはコンデンサー18で水分を除去した後、ガスクロ
マトグラフ16に送られる。ガスクロマトグラフ16で
は、水素、一酸化炭素、二酸化炭素、メタン及び窒素の
濃度が測定される。
FIG. 1 is a schematic view showing a fixed-bed flow reactor in which a carbon production catalyst according to the present invention is packed and carbon production is measured. A methane gas cylinder 2, a carbon dioxide gas cylinder 4, and a nitrogen gas cylinder 6 are provided as gas supply sources, and are connected to a gas mixer 8 for mixing methane gas, carbon dioxide gas, and nitrogen gas at a predetermined ratio. The mixed gas from the gas mixer 8 is sent to a reaction tube 10 made of quartz. The reaction tube 10 is filled with a catalyst 12, and the catalyst 12 is fixed by glass beads or glass wool filled in the reaction tube 10. The reaction tube 10 is a heating furnace 14
Is heated to a predetermined temperature. The gas that has passed through the reaction tube 10 is sent to a gas chromatograph 16 after removing water with a condenser 18. In the gas chromatograph 16, the concentrations of hydrogen, carbon monoxide, carbon dioxide, methane and nitrogen are measured.

【0011】図2は、本発明にかかる炭素製造用触媒を
充填して炭素生成能を測定した固定床型循環式反応器を
表す概略図である。ガス供給源として、メタンガスボン
ベ2、二酸化炭素ガスボンベ4及び窒素ガスボンベ6が
備えられ、メタンガス、二酸化炭素ガス及び窒素ガスを
所定の比で混合するガス混合器8に接続されている。ガ
ス混合器8からの混合ガスは、必要に応じて反応系内に
供給される。反応系内のガスは循環ポンプ20により循
環しており、まず石英製の反応管10に送られる。反応
管10には触媒12が充填されており、触媒12は、反
応管10に充填されたガラスビーズやガラスウールによ
り固定されている。反応管10は加熱炉14により所定
の温度に加熱される。反応管10を通過したガスはコン
デンサー18で水分を除去した後、ガスクロマトグラフ
16に送られる。ガスクロマトグラフ16では、水素、
一酸化炭素、二酸化炭素、メタン及び窒素の濃度が測定
される。ガスクロマトグラフを通過したガスは、循環ポ
ンプ20で繰返し反応管12に送られる。ガス混合器か
らの供給ガス量は、反応系内の圧力を一定に保つように
バルブ22を切り替えることで制御した。
FIG. 2 is a schematic diagram showing a fixed bed circulation type reactor in which the carbon production catalyst according to the present invention is charged and the carbon production capacity is measured. A methane gas cylinder 2, a carbon dioxide gas cylinder 4, and a nitrogen gas cylinder 6 are provided as gas supply sources, and are connected to a gas mixer 8 for mixing methane gas, carbon dioxide gas, and nitrogen gas at a predetermined ratio. The mixed gas from the gas mixer 8 is supplied into the reaction system as needed. The gas in the reaction system is circulated by the circulation pump 20 and is first sent to the reaction tube 10 made of quartz. The reaction tube 10 is filled with a catalyst 12, and the catalyst 12 is fixed by glass beads or glass wool filled in the reaction tube 10. The reaction tube 10 is heated to a predetermined temperature by a heating furnace 14. The gas that has passed through the reaction tube 10 is sent to a gas chromatograph 16 after removing water with a condenser 18. In the gas chromatograph 16, hydrogen,
The concentrations of carbon monoxide, carbon dioxide, methane and nitrogen are measured. The gas that has passed through the gas chromatograph is repeatedly sent to the reaction tube 12 by the circulation pump 20. The amount of gas supplied from the gas mixer was controlled by switching the valve 22 so as to keep the pressure in the reaction system constant.

【0012】次に実施例及び比較例に用いた触媒及びそ
の調製方法を以下に示す。硝酸ニッケル(関東化学社
製、純度99.0%)、水酸化ナトリウム(ナカライテ
スク社製、純度99.0%)、オルト珪酸テトラエチル
(ナカライテスク社製、純度99.0%)、シリカ粒子
担体(富士シリシア製、製品名Q-10)を用いた。
Next, the catalysts used in the examples and comparative examples and the methods for preparing the same are shown below. Nickel nitrate (Kanto Chemical Co., purity 99.0%), sodium hydroxide (Nakarai Tesque, purity 99.0%), tetraethyl orthosilicate (Nakarai Tesque, purity 99.0%), silica particle carrier (Fuji Silysia, product name Q-10) was used.

【0013】(触媒調製例1)30%ニッケル担持触媒
(a) 硝酸ニッケルをガラス容器に適量採取し、脱イオン水を
加えて溶解した。その溶液にシリカ担体を加え、ホット
プレート上120℃以下で乾燥し、触媒重量に対してニ
ッケルを30重量%担持した。その後、乾燥した触媒を
磁製皿に移し、電気炉を用いて空気雰囲気下で焼成温度
が400℃、焼成時間が4時間の条件で焼成を行った。
(Catalyst Preparation Example 1) 30% nickel-supported catalyst (a) An appropriate amount of nickel nitrate was collected in a glass container and dissolved by adding deionized water. A silica carrier was added to the solution, dried on a hot plate at 120 ° C. or lower, and loaded with 30% by weight of nickel based on the weight of the catalyst. Thereafter, the dried catalyst was transferred to a porcelain dish, and baked using an electric furnace in an air atmosphere at a calcination temperature of 400 ° C. and a calcination time of 4 hours.

【0014】(触媒調製例2)10%シリカ添加ニッケ
ル触媒(b) 硝酸ニッケルをガラス容器に適量採取し、脱イオン水を
加えて溶解した。その溶液を撹拌しながら1N水酸化ナ
トリウム水溶液で中和した。生成した水酸化ニッケル沈
殿をろ紙でろ過した後水洗を繰返し、沈殿中のナトリウ
ム分を除去したのち、ホットプレート上120℃以下で
乾燥した。その後、乾燥した触媒を磁製皿に移し、電気
炉を用いて空気雰囲気下で焼成温度が400℃、焼成時間
が4時間の条件で焼成を行った。この触媒のニッケル金
属換算量が重量比で90%、酸化ケイ素換算量が重量比
で10%となるようにオルト珪酸テトラエチルを加え、混
合した後、ドラフト内で風乾した。
(Catalyst Preparation Example 2) 10% silica-added nickel catalyst (b) An appropriate amount of nickel nitrate was collected in a glass container and dissolved by adding deionized water. The solution was neutralized with 1N aqueous sodium hydroxide while stirring. The resulting nickel hydroxide precipitate was filtered through filter paper, and then repeatedly washed with water to remove the sodium content in the precipitate and then dried on a hot plate at 120 ° C. or lower. Thereafter, the dried catalyst was transferred to a porcelain dish, and baked using an electric furnace in an air atmosphere at a calcination temperature of 400 ° C. and a calcination time of 4 hours. Tetraethyl orthosilicate was added and mixed so that the nickel metal equivalent of the catalyst was 90% by weight and the silicon oxide equivalent was 10% by weight, and then air-dried in a fume hood.

【0015】次に30%ニッケル担持触媒(a)、10
%シリカ添加ニッケル触媒(b)のいずれかを用いて炭
素の製造を行った比較例1から2を説明する。 (比較例1)30%ニッケル担持触媒(a)100mg
を図1に示した固定床型流通式反応器の反応管10に触
媒12として充填し、水素雰囲気下、500℃で1時間
還元した後、メタンガス、二酸化炭素ガス及び窒素ガス
の混合ガスを流しながら、反応管10を加熱炉14によ
り加熱し、反応前後の重量変化から生成した炭素量を測
定した。反応条件はメタンガス:二酸化炭素ガス:窒素
ガス=81:9:10、混合ガス流量が200ml/
分、反応温度が550℃、反応時間(反応条件が安定し
ている時間、以下同様)が8時間であった。反応後の重
量測定の結果、炭素生成量3.46g、生成した炭素と
触媒の重量比(炭素wt/触媒wt、以下同様)は3
4.6であった。図3は、比較例1における、反応前の
メタンと二酸化炭素の合計量を100と規定したとき
の、反応時間と各生成物の量を表す図である。図におい
て、横軸は時間(単位は時間h、以下同様)、縦軸は反
応前のメタンと二酸化炭素の合計量を100と規定した
ときの各生成物の量を表す。図から明らかな通り、反応
を開始して7.5時間経過後には炭素は生成しなくなっ
た。
Next, a 30% nickel-supported catalyst (a), 10%
Comparative Examples 1 and 2 in which carbon was produced using any one of the nickel catalysts (b) added with% silica will be described. (Comparative Example 1) 30% nickel-supported catalyst (a) 100 mg
Was filled as a catalyst 12 in a reaction tube 10 of a fixed bed flow type reactor shown in FIG. While heating, the reaction tube 10 was heated by the heating furnace 14, and the amount of carbon generated from the weight change before and after the reaction was measured. The reaction conditions were methane gas: carbon dioxide gas: nitrogen gas = 81: 9: 10, and the mixed gas flow rate was 200 ml /
Minutes, the reaction temperature was 550 ° C., and the reaction time (time during which the reaction conditions were stable, the same applies hereinafter) was 8 hours. As a result of the weight measurement after the reaction, the carbon production amount was 3.46 g, and the weight ratio of the produced carbon to the catalyst (carbon wt / catalyst wt, the same applies hereinafter) was 3
4.6. FIG. 3 is a diagram illustrating the reaction time and the amount of each product when the total amount of methane and carbon dioxide before the reaction is defined as 100 in Comparative Example 1. In the figure, the horizontal axis represents time (the unit is time h, the same applies hereinafter), and the vertical axis represents the amount of each product when the total amount of methane and carbon dioxide before the reaction is defined as 100. As is clear from the figure, no more carbon was produced 7.5 hours after the start of the reaction.

【0016】(比較例2)10%シリカ添加ニッケル触
媒(b)50mgを図1に示した固定床型流通式反応器
の反応管10に触媒12として充填し、メタンガス、二
酸化炭素ガス及び窒素ガスの混合ガスを流しながら、反
応管10を加熱炉14により加熱し、反応前後の重量変
化から生成した炭素量を測定した。反応条件はメタンガ
ス:二酸化炭素ガス:窒素ガス=81:9:10、混合
ガス流量が200ml/分、反応温度が550℃、反応
時間が8.5時間であった。反応後の重量測定の結果、
炭素生成量8.09g、生成した炭素と触媒の重量比は
161.8であった。図4は、実施例2における、反応
前のメタンと二酸化炭素の合計量を100と規定したと
きの、反応時間と各生成物の量を表す図である。図にお
いて、横軸は時間、縦軸は反応前のメタンと二酸化炭素
の合計量を100と規定したときの各生成物の量を表
す。図から明らかな通り、反応を開始して8.25時間
経過後には炭素は生成しなくなった。
COMPARATIVE EXAMPLE 2 50 mg of a 10% silica-added nickel catalyst (b) was charged as a catalyst 12 into a reaction tube 10 of a fixed bed type flow reactor shown in FIG. The reaction tube 10 was heated by the heating furnace 14 while the mixed gas was flowing, and the amount of carbon generated from the weight change before and after the reaction was measured. The reaction conditions were methane gas: carbon dioxide gas: nitrogen gas = 81: 9: 10, the mixed gas flow rate was 200 ml / min, the reaction temperature was 550 ° C., and the reaction time was 8.5 hours. As a result of the weight measurement after the reaction,
The amount of produced carbon was 8.09 g, and the weight ratio of produced carbon to the catalyst was 161.8. FIG. 4 is a diagram showing the reaction time and the amount of each product when the total amount of methane and carbon dioxide before the reaction is defined as 100 in Example 2. In the figure, the horizontal axis represents time, and the vertical axis represents the amount of each product when the total amount of methane and carbon dioxide before the reaction is defined as 100. As is clear from the figure, no carbon was generated after a lapse of 8.25 hours from the start of the reaction.

【0017】次に10%ニッケル担持触媒(a)、10
%シリカ添加ニッケル触媒(b))のいずれかを用いて
炭素の製造を行った実施例1から2を説明する。 (実施例1)10%シリカ添加ニッケル触媒(c)2.
0gを図2に示した固定床型循環式反応器の反応管10
に触媒12として充填し、メタンガス及び二酸化炭素ガ
スの混合ガスで反応系内を置換した後、循環ポンプ22
で反応系内のガスを循環させつつ、反応管10を加熱炉
14により加熱した。反応によってメタンガス及び二酸
化炭素ガスは炭素と水に転換され、反応系内のガス量が
減少し、圧力が低下するため、圧力を一定に保つように
ガス混合器からメタンガス及び二酸化炭素ガスを供給し
た。循環式反応器では、原料として供給する反応ガスは
メタンと二酸化炭素の混合ガスであり、水素と一酸化炭
素は含まれていないが、触媒反応により水素と一酸化炭
素が生成し、これらを含んだガスがリサイクルすること
で、反応系内には常に水素と一酸化炭素が含まれてい
る。反応終了後に炭素を取出し、反応前後の重量変化か
ら生成した炭素量を測定した。反応条件はメタンガス:
二酸化炭素ガス=50:50、循環流量は5リットル/
分、反応温度が600℃、反応時間が24時間であっ
た。反応後の重量測定の結果、炭素生成量145.2
g、生成した炭素と触媒の重量比(炭素wt/触媒w
t、以下同様)は72.6であった。炭素の生成はメタ
ンガス及び二酸化炭素ガスの混合ガスの反応系内への供
給量から計算で求められるが、反応を開始して24時間
後も炭素の生成が認められた。
Next, a 10% nickel-supported catalyst (a), 10%
Examples 1 and 2 in which carbon was produced by using any one of the nickel catalyst (b) containing silica (b). (Example 1) 10% silica-added nickel catalyst (c)
0 g of the reaction tube 10 of the fixed-bed circulation reactor shown in FIG.
Into the reaction system with a mixed gas of methane gas and carbon dioxide gas.
The reaction tube 10 was heated by the heating furnace 14 while the gas in the reaction system was circulated. Methane gas and carbon dioxide gas were converted into carbon and water by the reaction, and the amount of gas in the reaction system decreased, and the pressure dropped. . In a circulating reactor, the reaction gas supplied as a raw material is a mixed gas of methane and carbon dioxide, and does not contain hydrogen and carbon monoxide, but hydrogen and carbon monoxide are generated by the catalytic reaction, and these are contained. Because of the recycling of raw gas, the reaction system always contains hydrogen and carbon monoxide. After the completion of the reaction, carbon was taken out, and the amount of carbon generated was measured from the weight change before and after the reaction. The reaction conditions are methane gas:
Carbon dioxide gas = 50:50, circulation flow rate 5 liters /
The reaction temperature was 600 ° C. and the reaction time was 24 hours. As a result of weight measurement after the reaction, the amount of carbon generated was 145.2.
g, the weight ratio of the produced carbon to the catalyst (carbon wt / catalyst w
t, the same applies hereinafter) was 72.6. The production of carbon can be obtained by calculation from the supply amount of a mixed gas of methane gas and carbon dioxide gas into the reaction system, and production of carbon was recognized 24 hours after the start of the reaction.

【0018】表1は、実施例1における、反応開始後の
反応系内の各ガスの濃度をガスクロマトグラフで測定し
た値を示す表である。
Table 1 is a table showing the values obtained by measuring the concentrations of the respective gases in the reaction system after the start of the reaction in Example 1 by gas chromatography.

【表1】 図5は、比較例1及び実施例1における、反応時間と触
媒1g当りの生成炭素重量の積算値を表す図である。炭
素生成重量は、比較例1ではガスクロマトグラフの測定
値から計算した炭素への転換率より求めた。実施例1で
は反応系に供給したメタンと二酸化炭素の混合ガス量か
ら計算により求めた。
[Table 1] FIG. 5 is a graph showing the reaction time and the integrated value of the weight of carbon produced per 1 g of the catalyst in Comparative Example 1 and Example 1. In Comparative Example 1, the weight of carbon produced was determined from the conversion to carbon calculated from the measured value of the gas chromatograph. In Example 1, it was determined by calculation from the mixed gas amount of methane and carbon dioxide supplied to the reaction system.

【0019】(実施例2)10%シリカ添加ニッケル触
媒(b)1.0gを図2に示した固定床型循環式反応器
の反応管10に触媒12として充填し、メタンガス及び
二酸化炭素ガスの混合ガスで反応系内を置換した後、循
環ポンプ22で反応系内のガスを循環させつつ、反応管
10を加熱炉14により加熱した。反応によってメタン
ガス及び二酸化炭素ガスは炭素と水に転換され、反応系
内のガス量が減少し、圧力が低下するため、圧力を一定
に保つようにガス混合器からメタンガス及び二酸化炭素
ガスを供給した。循環式反応器では、原料として供給す
る反応ガスはメタンと二酸化炭素の混合ガスであり、水
素と一酸化炭素は含まれていないが、触媒反応により水
素と一酸化炭素が生成し、これらを含んだガスがリサイ
クルすることで、反応系内には常に水素と一酸化炭素が
含まれている。反応終了後に炭素を取出し、反応前後の
重量変化から生成した炭素量を測定した。反応条件はメ
タンガス:二酸化炭素ガス=50:50、循環流量は1
0リットル/分、反応温度が550℃、反応時間が3
8.5時間であった。反応後の重量測定の結果、炭素生
成量286.2g、生成した炭素と触媒の重量比(炭素
wt/触媒wt、以下同様)は286.2であった。炭
素の生成はメタンガス及び二酸化炭素ガスの混合ガスの
反応系内への供給量から計算で求められるが、反応を開
始して38.5時間後も炭素の生成が認められた。
Example 2 1.0 g of a 10% silica-added nickel catalyst (b) was charged as a catalyst 12 into a reaction tube 10 of a fixed-bed circulation reactor shown in FIG. After replacing the inside of the reaction system with the mixed gas, the reaction tube 10 was heated by the heating furnace 14 while circulating the gas in the reaction system with the circulation pump 22. Methane gas and carbon dioxide gas were converted into carbon and water by the reaction, and the amount of gas in the reaction system decreased, and the pressure dropped. . In a circulating reactor, the reaction gas supplied as a raw material is a mixed gas of methane and carbon dioxide, and does not contain hydrogen and carbon monoxide, but hydrogen and carbon monoxide are generated by the catalytic reaction, and these are contained. Because of the recycling of raw gas, the reaction system always contains hydrogen and carbon monoxide. After the completion of the reaction, carbon was taken out, and the amount of carbon generated was measured from the weight change before and after the reaction. The reaction conditions were methane gas: carbon dioxide gas = 50: 50, and the circulation flow rate was 1
0 liter / min, reaction temperature 550 ° C, reaction time 3
8.5 hours. As a result of weight measurement after the reaction, the amount of generated carbon was 286.2 g, and the weight ratio of generated carbon to the catalyst (carbon wt / catalyst wt, the same applies hereinafter) was 286.2. The production of carbon can be obtained by calculation from the supply amount of a mixed gas of methane gas and carbon dioxide gas into the reaction system, and production of carbon was recognized 38.5 hours after the start of the reaction.

【0020】表2は、実施例2における、反応開始後の
反応系内の各ガスの濃度をガスクロマトグラフで測定し
た値を示す表である。
Table 2 is a table showing the values obtained by measuring the concentration of each gas in the reaction system after the start of the reaction in Example 2 by gas chromatography.

【表2】 図6は、比較例2及び実施例2における、反応時間と触
媒1g当りの生成炭素重量の積算値を表す図である。炭
素生成重量は、比較例2ではガスクロマトグラフの測定
値から計算した炭素への転換率より求めた。実施例2で
は反応系に供給したメタンと二酸化炭素の混合ガス量か
ら計算により求めた。
[Table 2] FIG. 6 is a graph showing the reaction time and the integrated value of the weight of carbon produced per g of catalyst in Comparative Example 2 and Example 2. In Comparative Example 2, the carbon production weight was determined from the conversion to carbon calculated from the measured value of the gas chromatograph. In Example 2, it was calculated from the mixed gas amount of methane and carbon dioxide supplied to the reaction system.

【0021】これらの結果から、炭化水素及び二酸化炭
素から触媒反応を利用し炭素を製造する方法において、
少なくとも水素及び一酸化炭素を混合したガスを使用す
ることにより炭素生成能が向上することが分かる。本発
明による炭素製造用触媒は、従来の方法に比べて安価に
大量の炭素を製造することができるので、効率よく二酸
化炭素排出量の削減に寄与することができる。
From these results, in the method for producing carbon by utilizing a catalytic reaction from hydrocarbon and carbon dioxide,
It can be seen that the use of a mixed gas of at least hydrogen and carbon monoxide improves the ability to produce carbon. The carbon production catalyst according to the present invention can produce a large amount of carbon at a lower cost than conventional methods, and thus can efficiently contribute to the reduction of carbon dioxide emissions.

【0022】[0022]

【発明の効果】本発明では、炭化水素及び二酸化炭素か
ら触媒反応を利用し炭素を製造する方法において、少な
くとも水素及び一酸化炭素を混合したガスを使用するこ
とにより、炭素生成能を向上させることができる。
According to the present invention, in a method for producing carbon by utilizing a catalytic reaction from hydrocarbons and carbon dioxide, the use of a gas containing a mixture of at least hydrogen and carbon monoxide improves the carbon production ability. Can be.

【0023】[0023]

【図面の簡単な説明】[Brief description of the drawings]

【図1】炭素製造用触媒を充填して炭素生成能を測定し
た固定床流通式反応器を表す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a fixed bed flow reactor in which a carbon production catalyst is filled and a carbon production ability is measured.

【図2】炭素製造用触媒を充填して炭素生成能を測定し
た固定床循環式反応器を表す概略構成図である。
FIG. 2 is a schematic configuration diagram showing a fixed bed circulation type reactor in which a carbon production catalyst is filled and a carbon production ability is measured.

【図3】第1の比較例において、ニッケル金属粉末触媒
(a)を用いたときの、反応時間と各生成物の量を表す
図である。
FIG. 3 is a diagram showing a reaction time and an amount of each product when a nickel metal powder catalyst (a) is used in a first comparative example.

【図4】第2の比較例において、沈殿ニッケル触媒
(b)を用いたときの、反応時間と各生成物の量を表す
図である。
FIG. 4 is a diagram showing the reaction time and the amount of each product when a precipitated nickel catalyst (b) is used in a second comparative example.

【図5】第4の比較例において、沈殿ニッケル触媒
(b)を用いて、メタンと二酸化炭素の比が7:3の混
合ガスを流しながら昇温を行ったときの、触媒温度と各
生成物の量を表す図である。
FIG. 5 shows the catalyst temperature and each generation when the temperature was increased while flowing a mixed gas having a methane / carbon dioxide ratio of 7: 3 using the precipitated nickel catalyst (b) in the fourth comparative example. It is a figure showing the quantity of a thing.

【図6】第1の実施例において、10%シリカ添加ニッ
ケル触媒(c)を用いたときの、反応時間
FIG. 6 shows a reaction time when a nickel catalyst containing 10% silica (c) was used in the first example.

【符号の説明】[Explanation of symbols]

2:メタンガスボンベ 4:二酸化炭素ガスボンベ 6:窒素ガスボンベ 8:ガス混合器 10:反応管 12:触媒 14:加熱炉 16:ガスクロマトグラフ 18:コンデンサー 20:循環ポンプ 22:切り替えバルブ 2: Methane gas cylinder 4: Carbon dioxide gas cylinder 6: Nitrogen gas cylinder 8: Gas mixer 10: Reaction tube 12: Catalyst 14: Heating furnace 16: Gas chromatograph 18: Condenser 20: Circulation pump 22: Switching valve

フロントページの続き (72)発明者 長曽 哲夫 京都市中京区西ノ京桑原町1番地 株式会 社島津製作所内 Fターム(参考) 4G046 CA01 CA02 CC08 Continuation of the front page (72) Inventor Tetsuo Nagaso 1 Nishinokyo Kuwaharacho, Nakagyo-ku, Kyoto F-term in Shimadzu Corporation 4G046 CA01 CA02 CC08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭化水素及び二酸化炭素から触媒反応を利
用し炭素を製造する方法において、少なくとも水素及び
一酸化炭素を混合したガスを原料ガスとする炭素製造
法。
1. A method for producing carbon from a hydrocarbon and carbon dioxide by utilizing a catalytic reaction, wherein a gas obtained by mixing at least hydrogen and carbon monoxide is used as a raw material gas.
【請求項2】水素及び一酸化炭素の混合量が5〜10%
である請求項1記載の炭素製造法。
2. A mixed amount of hydrogen and carbon monoxide is 5 to 10%.
The method for producing carbon according to claim 1, wherein
JP2001091923A 2001-03-28 2001-03-28 Method for manufacturing carbon Pending JP2002284513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001091923A JP2002284513A (en) 2001-03-28 2001-03-28 Method for manufacturing carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001091923A JP2002284513A (en) 2001-03-28 2001-03-28 Method for manufacturing carbon

Publications (1)

Publication Number Publication Date
JP2002284513A true JP2002284513A (en) 2002-10-03

Family

ID=18946470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001091923A Pending JP2002284513A (en) 2001-03-28 2001-03-28 Method for manufacturing carbon

Country Status (1)

Country Link
JP (1) JP2002284513A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514669A (en) * 2012-04-16 2015-05-21 シーアストーン リミテッド ライアビリティ カンパニー Method for producing solid carbon by reducing carbon dioxide
WO2023171466A1 (en) * 2022-03-07 2023-09-14 Jfeスチール株式会社 Method and device for recovering carbon from carbon-containing gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322315A (en) * 1998-03-13 1999-11-24 Shimadzu Corp Carbon production system utilizing biomass
JP2000178005A (en) * 1998-12-18 2000-06-27 Petroleum Energy Center Convertion of carbon dioxide with methane
JP2002191961A (en) * 2000-12-22 2002-07-10 Shimadzu Corp Composite type carbon dioxide fixing apparatus
JP2002211909A (en) * 2001-01-12 2002-07-31 Mitsubishi Chemicals Corp Carbon manufacturing apparatus and manufacturing method using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322315A (en) * 1998-03-13 1999-11-24 Shimadzu Corp Carbon production system utilizing biomass
JP2000178005A (en) * 1998-12-18 2000-06-27 Petroleum Energy Center Convertion of carbon dioxide with methane
JP2002191961A (en) * 2000-12-22 2002-07-10 Shimadzu Corp Composite type carbon dioxide fixing apparatus
JP2002211909A (en) * 2001-01-12 2002-07-31 Mitsubishi Chemicals Corp Carbon manufacturing apparatus and manufacturing method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514669A (en) * 2012-04-16 2015-05-21 シーアストーン リミテッド ライアビリティ カンパニー Method for producing solid carbon by reducing carbon dioxide
WO2023171466A1 (en) * 2022-03-07 2023-09-14 Jfeスチール株式会社 Method and device for recovering carbon from carbon-containing gas

Similar Documents

Publication Publication Date Title
US20220042184A1 (en) Preparation Method and Application of Non-noble Metal Single Atom Catalyst
CN112076777B (en) For CO2Reduced photocatalyst and preparation method thereof
CN107540511A (en) It is a kind of that the method that methane is reclaimed in ethene waste gas is prepared from methane oxidation coupling
WO2012119958A1 (en) Catalytic process for converting carbon dioxide to a liquid fuel or platform chemical
CN113842935B (en) Preparation method and application of carbide modified Ni-based ordered mesoporous silicon catalytic material
CN109999878A (en) For photo catalytic reduction CO2Nonmetal doping Co3O4-CeO2Composite catalyst and preparation method thereof
CN109622009A (en) With Pd@CeO2-CNxThe method of core-shell catalyst catalysis formaldehyde dehydrogenation
GUO et al. Recent advances in integrated carbon dioxide capture and methanation technology
CN114887625A (en) Fe-based metal organic framework material derived catalyst and preparation method and application thereof
CN106975486A (en) A kind of catalyst of CO hydrogenation preparing low-carbon mixed alcohol and preparation method thereof
JP2017197399A (en) Carbon circulation utilization system
JP2009269983A (en) Fuel-cost-saving apparatus of eliminating carbon dioxide
CN107469853B (en) A kind of Co4N nanometer sheet and its preparation method and application
CN111359644B (en) Non-noble metal-based molybdenum carbide catalyst for dimethyl ether steam reforming hydrogen production and preparation method and application thereof
CN100377989C (en) Method for preparing hydrogen utilizing waste plastics
JP2002284513A (en) Method for manufacturing carbon
CN109876813A (en) A kind of preparation method and applications of copper zinc composite catalyst
JP5897722B2 (en) Method for preparing carbon dioxide methanation catalyst
CN114452998B (en) Preparation method and application of multiwall carbon nanotube and graphitized carbon nitride composite material
CN110016365A (en) A kind of device and method of biomass coke tar reforming preparing synthetic gas
CN109261157A (en) A kind of Ni@LaCO3OH composite material and preparation method and application
CN105642289A (en) Preparation method of catalyst for complete methanation of syngas
JP2002282694A (en) Catalyst for producing carbon
CN112403505A (en) CoP-g-C3N4Electronic current collector photocatalyst and preparation method and application thereof
CN113372185A (en) Infrared-driven carbon dioxide catalytic conversion method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308