JP4774665B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP4774665B2
JP4774665B2 JP2003028613A JP2003028613A JP4774665B2 JP 4774665 B2 JP4774665 B2 JP 4774665B2 JP 2003028613 A JP2003028613 A JP 2003028613A JP 2003028613 A JP2003028613 A JP 2003028613A JP 4774665 B2 JP4774665 B2 JP 4774665B2
Authority
JP
Japan
Prior art keywords
semiconductor device
manufacturing
catalyst layer
carbon
tubular body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003028613A
Other languages
English (en)
Other versions
JP2004241572A (ja
Inventor
洋介 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003028613A priority Critical patent/JP4774665B2/ja
Publication of JP2004241572A publication Critical patent/JP2004241572A/ja
Application granted granted Critical
Publication of JP4774665B2 publication Critical patent/JP4774665B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、炭素管状体及びその両端の電極からなる単位構造を高密度に多数配列したカーボンナノチューブアレイに適用して好適な半導体装置及びその製造方法に関する。詳しくは、一端部を除く他の部分を保護膜に覆われると共に、基板上に島状に設けられた触媒層の端部から一方向に向けて延在する炭素管状体を備え、この触媒層の端部を荷電粒子線の照射幅により規定することによって、一次元量子細線として動作可能な炭素管状体及びその両端の電極からなる単位構造を高密度に多数配列できるようにしたものである。
【0002】
【従来の技術】
現在、従来方式の半導体プロセス技術による半導体デバイスの高密度化及び高集積化は限界に近づいている。特に、ゲート長が0.1μm未満の半導体デバイスを製造するための微細加工技術は、ArFレーザによる露光では光学的に限界であることから、F2レーザ、電子線(EB)又はX線を用いた露光技術への移行期にあるが、ゲート長が0.1μm未満の半導体デバイスを生産するための技術として確立された露光技術はない。このため、半導体デバイスの小型化及び高速度化を、微細加工技術の向上に基づく半導体デバイスの高密度化及び高集積化により実現することは困難になりつつある。
【0003】
カーボンナノチューブ(以下、CNTと記載)は、単層(単一壁)CNTにおける直径が数nmであることから、自然の一次元電気伝導細線として動作し得る構造を有している。このため、CNTは、一次元量子細線による超高速動作が可能なナノメートル・サイズの電子デバイス、即ち、ナノデバイスを、露光技術による制限を受けずに実現できる材料として注目され、半導体特性を有するCNTを用いてFET(Field Effect Transistor)等の電子デバイスを試作し、このデバイス特性を評価する試みが盛んになされている(例えば、非特許文献1及び2参照)。
【0004】
CNTは、Fe粒子のような微細な金属触媒を成長起点とし、C22等を原料ガスとしたCVD法により成長させ得ることが知られている(例えば、非特許文献1参照)。この触媒を成長起点とするCNTの合成技術と従来方式の半導体プロセス技術とを組み合わせることによって、CNTを基板上の特定の位置に配してCNTを用いた電子デバイスを実現する技術も開示されている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開2002−118248号公報(第7−9頁、第16−19図及び第26図)
【非特許文献1】
Ali Javey et al. "Nano Letters", American Chemical Society, 2002, vol.2, No.9, p.929-932
【非特許文献2】
Nobuhide Yoneya et al. "Applied Physics Letters", American Institute of Physics, 16 September 2002, vol.81, No.12, p.2250-2252
【非特許文献3】
O.A.Nerushev et al. "Physica B", Elsevier Science B.V., 2002, No.323, p.51-59
【0006】
【発明が解決しようとする課題】
ところで、従来方式のCNTを用いた電子デバイスの製造方法によれば、以下のような問題がある。
(1)半導体特性を有するCNTを、特定の位置で定められた方向に向けて正確に配置する効果的な実装技術がない。このため、CNTはナノメートル・サイズであるにも拘らず試作された素子の大きさは数μmにも達している。
(2)半導体特性を有するCNTのキャリア濃度を同一基板上で局所的に制御することが困難である。このため、p型又はn型の半導体特性を有する多数のCNTを基板上の特定の位置に形成することができない。従って、p型FET及びn型FETから構成される相補型の回路を工業的に生産することができない。
【0007】
そこで、この発明は上述した課題を解決したものであって、CNTの位置、形状及び成長方向を制御すること及びCNTとその両端の電極とからなる単位構造を高密度に多数配列できるようにした半導体装置及びその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記問題を解決するために、本発明に係る半導体装置は、荷電粒子線の照射幅により規定される形状及び一端部を有し、基板上に設けられた島状の触媒層と、この触媒層の一端部が露出されて、他の部分を覆った保護膜と、この保護膜から露出された触媒層の端部から一の方向に向けて設けられた炭素管状体と、この炭素管状体の両端に設けられた電極とを備えるものである。
【0009】
本発明に係る半導体装置によれば、触媒層が、基板上に島状に設けられ、荷電粒子線の照射幅により規定された形状及び面積である一端部を除いて、他の部分を保護膜により覆われる。この触媒層の端部から一方向に向けて炭素管状体が設けられ、この炭素管状体の両端に電極が設けられる。
【0010】
従って、触媒層の一端部の位置、形状及び面積が炭素管状体の向き及び径を規定するので、荷電粒子線の照射幅により規定された数ナノメートルの径を有する炭素管状体とその両端の電極からなるナノメートル・サイズの微小な単位構造を、基板上の特定の位置に高密度に多数配列できる。よって、一次元量子細線として超高速動作が可能な炭素管状体からなる論理回路を搭載した半導体装置を実現できる。
【0011】
本発明に係る半導体装置の製造方法は、荷電粒子線の照射幅により規定される島状の触媒層を基板上に形成する工程と、この基板上に形成された触媒層を保護膜により覆う工程と、この触媒層を覆う保護膜を選択的に除去して、少なくとも荷電粒子線の照射幅を有する触媒層の端部を露出する工程と、露出された触媒層の端部から一の方向に向けて炭素管状体を形成する工程と、この炭素管状体の両端に電極を形成する工程とを含むものである。
【0012】
本発明に係る半導体装置の製造方法によれば、保護膜から露出する触媒層の端部の位置及び形状を任意に変更できるので、この触媒層の端部を起点として形成される炭素管状体の位置、形状及び成長方向を正確に制御できる。
【0013】
従って、荷電粒子線の照射幅により規定された数ナノメートルの径を有する炭素管状体とその両端の電極からなるナノメートル・サイズの単位構造を、基板上の特定の位置に高密度に多数配列することが容易となる。よって、一次元量子細線を備えて超高速動作が可能な半導体装置を工業的に製造することができる。
【0014】
【発明の実施の形態】
以下、図面を参照しながら、本発明に係る半導体装置及びその製造方法の実施形態の一例について説明する。
図1は、本発明の実施形態としての半導体装置100の構成例を示す模式図である。
この実施形態では、一端部を除く他の部分を保護膜により覆われて基板上に島状に設けられた触媒層と、保護膜に覆われた触媒層の端部から一方向に向けて設けられた炭素管状体としてのカーボンナノチューブと、カーボンナノチューブの両端に設けられた電極とを備え、このカーボンナノチューブが設けられる触媒層の端部を荷電粒子線の照射幅により規定する。
【0015】
これによって、数ナノメートルの径を有するカーボンナノチューブとその両端に設けられた電極からなるナノメートル・サイズの単位構造を基板上の特定の位置に高密度に多数配列できるようにしたものである。
【0016】
図1に示す半導体装置100は、カーボンナノチューブ1(以下、CNT1と記載)を用いた半導体装置の一例であり、n型の半導体特性を有するCNT1とその両端に夫々設けられた第1及び第2の電極2,3とからなる単位構造20nが組み込まれたn型FET20nと、p型の半導体特性を有するCNT1とその両端に夫々接続する第1及び第2の電極2,3とからなる単位構造20pが組み込まれたp型FET20pとで構成される論理回路が高速動作する半導体装置である。
【0017】
半導体装置100では、図1に示すように、Si基板6表面に形成されたSiOx(酸化シリコン)膜5上に、2つの単位構造20n,20pが配列したカーボンナノチューブアレイ50が形成されており、単位構造20nと単位構造20pとの間及びCNT1上の空隙を埋め込むように、層間絶縁膜9が成膜されている。単位構造20n,20pの夫々のCNT1は、保護膜7に覆われた触媒層4の端部から一方向に向けて設けられており、その両端には導電性物質からなる第1及び第2の電極2,3が設けられている。第1の電極2は、触媒層4の表面を覆う保護膜7表面に、導電性物質が更に積層されることにより形成されている。
【0018】
Si基板6は、入力電圧Vinを印加するためのバックゲート(Backgate)となる。単位構造20nの第1の電極2は、n型FET20nのドレイン(Drain)電極であり、ドレイン電圧V-を印加される。単位構造20pの第2の電極3は、p型FET20pのドレイン電極であり、ドレイン電圧V+を印加される。そして、共用コンタクト(図示せず)が、単位構造20nの第2の電極3及び単位構造20pの第1の電極2と接続して出力電圧Voutを出力する。これにより半導体装置100は、電圧インバータ回路として動作する。
【0019】
半導体装置100は、相補型FETによる最も簡単な論理回路の構成例であって、カーボンナノチューブアレイ50を備えた半導体装置の一例である。より多数の単位構造20を高密度に配列したカーボンナノチューブアレイ50を実装することによって、より複雑な論理回路をカーボンナノチューブアレイ50を用いて構成できる。
【0020】
半導体装置100に実装されるカーボンナノチューブアレイ50は、図2(a)に示すように、CNT1と、CNT1の一方の端部に接続する第1の電極2と、CNT1の他方の端部に接続する第2の電極3とからなる単位構造20が、基板6上の任意の位置に高密度に多数配列されて構成される。また、構造21のように、2つの単位構造20に含まれる夫々のCNT1が交差した形状とすることもできる。このとき構造21に含まれる2本のCNT1は、電気的絶縁状態にあるが、CNT1の交差位置でアーキング(Arcing)を起こさせたり、この交差位置に電極等を設けることによって、電気的に接続した構造とすることもできる。
【0021】
カーボンナノチューブアレイ50が形成される基板6は、従来方式の半導体プロセス技術を利用することができるので、Si,GaAs又はInP等の半導体基板であることが望ましいが、特に半導体基板に限定されるものではなく、石英基板、サファイア基板及びこれらの絶縁基板表面に半導体又は導電性薄膜等が堆積された基板並びにSOI(Silicon on Insulator)基板のような積層基板も用いることができる。なお、ポリイミド及びポリカーボネイトのような有機物からなる基板は、カーボンナノチューブアレイ50の製造に使用する荷電粒子線により基板表面のC−C結合が切断され、カーボン(C)等による汚染が発生するので、そのまま用いることは好ましくない。
【0022】
このような基板6表面には、図2(b)に示すように、第1絶縁膜5が形成されても良い。この第1絶縁膜5は、例えば基板6が図1に示した半導体装置100に用いたようなSi基板である場合、熱酸化又はCVD(Chemical Vapor Deposition)等により成膜されたSiOx及びSiN(窒化シリコン)膜等が採用される。第1絶縁膜5の厚さは、特に限定されるものではないが、従来の半導体プロセス技術で成膜可能な範囲、即ち、10nm乃至1μm程度で、基板6に造り込まれる他の素子の製造プロセスと整合が取れる範囲であれば良い。
【0023】
基板6上に第1絶縁膜5が形成された場合、カーボンナノチューブアレイ50は第1絶縁膜5上に形成される。カーボンナノチューブアレイ50では、触媒層4が第1絶縁膜5上の任意の位置に複数の島状に配列されており、夫々の触媒層4の表面を保護膜7がCNT1の成長起点となった部分を除いて覆っている。触媒層4の保護膜7で覆われていない部分にはCNT1の一方の端部が接続している。第1の電極2は、このCNT1の端部と接続すると共に保護膜7の表面を覆う導電性物質により構成される。第2の電極3は、CNT1の第1の電極2が接続されていない端部に接続された導電性物質により構成される。
【0024】
このようなカーボンナノチューブアレイ50において、触媒層4は、CNT1の成長起点となる物質であって、特に、Fe(鉄),Co(コバルト)又はNi(ニッケル)のような磁性体であることが望ましい。一方、保護膜7は、CNT1の成長を防止する物質であれば、無機物、有機物、金属及びこれらの混合物質又は合成物質のいずれであっても特に制限されるものではないが、触媒層4の表面を均一に覆うことができる薄膜であることが望ましい。
【0025】
第1及び第2の電極2,3は、Al(アルミニウム),Si(シリコン),Ti(チタン),Co(コバルト),Cu(銅),Mo(モリブデン),W(タングステン),Pt(白金)及びAu(金)のように、従来方式の半導体装置において電極材料として用いられる金属元素群から選択される1つ以上の元素を含む導電性物質により構成され、CNT1の両端部に夫々形成される。
【0026】
CNT1は、単位構造20が基板6上に高密度に配列されてナノメートル・サイズの電子デバイス、即ち、ナノデバイスとして機能するように、長さが50nm以下であることが望ましい。
【0027】
CNT1には、Li(リチウム),Na(ナトリウム),K(カリウム),Rb(ルビジウム)及びCs(セシウム)からなるアルカリ金属元素群又はSc(スカンジウム),Y(イットリウム),ランタノイド元素及びアクチノイド元素からなる希土類元素群に含まれる元素が、電子供与体としてドープされてもよい。このような電子供与体は、CNT1に内包された状態であっても良い。このときCNT1はn型半導体の特性を有するので、このようなCNT1を用いた単位構造20を基板6上の特定の位置に形成することによって、CNT1によるn型FETが基板6上の所定の位置に配される。
【0028】
CNT1は、電子受容体を内包することもできる。電子受容体としては、60個以上の炭素原子が球殻状又は筒状の網構造を構成するフラーレン(Fullerene)が適当である。CNT1に内包されるフラーレンは、更に、1個以上の金属原子を内包することができる。内包された金属原子は、フラーレン内部でイオン化されて金属イオンになっていても良い。この金属原子及び/又は金属イオンは、フラーレン内部に金属のハロゲン化合物として取り込まれた後に金属原子及び/又は金属イオンに還元されることによりフラーレンに内包される。このため、フラーレンに内包される金属原子及び/又は金属イオンは、そのハロゲン化合物が安定な状態を維持できる希土類元素群又は遷移金属元素群から選択され得る。また、CNT1に内包されるフラーレンは、希土類元素群又は遷移金属元素群から選択される1つ以上の元素を含む磁性体を内包することもできる。
【0029】
例えば、CNT1に磁性体内包フラーレン等を内包させることによりCNT1の磁性の有無のような磁気特性を制御すると、TMR(Tunneling Magneto Resistance)現象を利用したMRAM(Magnetic Random Access Memory)のような次世代のデバイスを、カーボンナノチューブアレイ50を実装した高集積で小型の半導体装置100として工業的に実現することも可能である。
【0030】
なお、CNT1は、単層(単一壁)ナノチューブ又は多層(多重壁)ナノチューブのいずれか一方に特に限定されるものではなく、単層ナノチューブ及び多層ナノチューブを、所望のデバイス特性及び集積度に応じて基板6上に配することができる。
【0031】
カーボンナノチューブアレイ50をFETのような電子デバイスとして動作させる場合、CNT1には半導体特性を有するCNTが採用されることは自明であるが、カーボンナノチューブアレイ50は配線としても使用できる。この場合、CNT1には導電性(金属性)のCNTが採用される。特に、金属内包フラーレン等を内包させたCNT1は超伝導特性を有することが期待できるので、配線の微細化及び高密度化による配線遅延等の問題を解決し得る。
【0032】
このように本実施形態に係る半導体装置100によれば、CNT1とその両端に接続する第1及び第2の電極2,3からなる単位構造20を高密度に多数配列したカーボンナノチューブアレイ50をSi基板6上の特定の位置に配することができる。また、カーボンナノチューブアレイ50のデバイス特性を、CNT1に内包させる物質により制御できるので、基板6上の特定の位置に所望のデバイス特性を有するカーボンナノチューブアレイ50を配置することができる。
【0033】
従って、一次元量子細線として超高速動作が可能なカーボンナノチューブアレイ50を実装したナノメートル・サイズの相補型FETからなる複雑な論理回路を動作させ得る半導体装置100を実現できる。
【0034】
次に、本実施形態に係る半導体装置100の製造方法について、図3乃至図8を参照しながら詳しく説明する。
[第1の製造方法]
この製造方法では、上述したようなSi基板6表面のSiOx膜5上にp型FET20pとn型FET20nとを夫々形成することによって、電圧インバータ回路として動作する半導体装置100を製造することを前提条件とする。
【0035】
これを前提条件として、先ず、図3(a)及び(b)に示すように、Si基板6表面にSiOx膜5を形成し、このSiOx膜5上の任意の位置に、荷電粒子線を用いた加工により複数の島状に触媒層4を配列する。なお、図3には、1つの触媒層4が孤立して堆積された様子を示したが、実際には、このような触媒層4が複数形成され、2つの島状の触媒が一対を構成するように整然と配列される。
【0036】
この触媒層4の形成に用いる荷電粒子線は、例えば、収束イオンビーム(FIB:Focused Ion Beam)装置により生成する。
FIB装置は、一般に、液体金属イオンとして公知のGaイオン(Ga+)等をイオン源として用い、Ga融液等をエミッタ先端に垂らし、これに30kV程度の加速電圧をかけることによってイオンを引き出す。このようにして引き出されたGaイオン等によるビームは、FIB装置の鏡筒内で電界により加速されると共に静電レンズ系によりビーム径が絞り込まれて、収束イオンビーム(以下、FIBと記載)となる。
【0037】
このようなFIB装置は、半導体デバイス製造における微細加工プロセス等に利用される。例えば、FIBを、Si基板等の表面に形成された薄膜の所望の位置に照射することによって、この薄膜のSIM(Scanning Ion Microscopy)像観察及びマスクレスエッチング(Maskless Etching)が可能となる。また、所望する物質の前駆体が含まれた原料ガスを供給しながらSi基板等の表面にFIBを照射することによって、この基板表面の限定された位置に所望の物質を堆積させるマスクレスデポジション(Maskless Deposition)が可能となる。このように、FIB装置によれば、マスクレスエッチング及びマスクレスデポジションが可能となるので、任意の物質をサブミクロンのスケールで微細加工することができる。
【0038】
FIB装置は、任意の物質の微細加工をマスクを使用することなく行うため、FIB照射による加工位置を正確に特定するための手段が内部に組み込まれている。走査型電子顕微鏡(SEM:Scanning Electron Microscope)がFIB装置に組み込まれている場合、SEM像観察によりFIB照射位置を正確に特定することができる。SEMが組み込まれていない場合、イオンビームの照射により被加工物質に若干の損傷を与えるが、SIM像観察によりFIB照射位置を特定する。現在、市販されているFIB装置では、分解能が約6nm程度のSIM像を観察することができるほどに装置性能が向上している。
【0039】
このようなGaをイオン源とするFIB装置内において、Ni(CO)4,Fe(CO)5又はFe(OH)5のようなNi,Fe又はCo等の金属元素が含まれた原料ガスを供給しながら、Si基板6表面に形成されたSiOx膜5表面にFIBを照射し、Ni,Fe又はCo等の磁性を有する金属からなる触媒層4を、複数の島状に配列されるように堆積する。
【0040】
触媒層4の形成条件は、ビーム電流が100乃至200pA、加速電圧が30kV程度の設定でFIBを照射しながらNi(CO)4ガスを原料ガスとして供給する。このとき照射量が1nAの垂直入射のFIBによるNiの堆積速度は、0.5乃至1.0μm3/秒程度である。触媒層4の大きさ及び形状は、FIBのビーム径を10nm以下に絞り込むことにより10nmφ程度の円形島状とすることもできるが、本実施形態においては、FIBを走査することによって、図3に示すように、短辺の長さが100nm程度で、厚さが10nm程度の矩形状とする。
【0041】
触媒層4の形成においては、原料ガスを分解して触媒層4を合成するために必要なエネルギーを、触媒層4を形成する範囲内に限定して与えることができればよいので、FIBの代わりに電子ビーム(EB)を用いることも可能である。
【0042】
次に、図4(a)及び(b)に示すように、CNT1の成長を防止する保護膜7を成膜する。この保護膜7としては、例えば、フェナントレン(Phenanthrene:C1410)のような芳香族系炭化水素化合物を原料ガスとして供給しながらFIBを触媒層4表面に向けて照射することによって、触媒層4の全表面をピンホール等の欠陥なく覆うアモルファスカーボン(C)の薄膜を触媒層4表面に高精度に形成することができる。
【0043】
このようなアモルファスカーボン薄膜では、触媒層4の側表面での堆積速度が上表面と比較して遅い。よって、触媒層4の側表面にも充分な厚さの保護膜7を成膜するため、触媒層4の上表面で厚さが30nm程度のアモルファスカーボン薄膜が堆積するような条件を選択する。このとき触媒層4の側表面では、厚さが5nm程度のアモルファスカーボン薄膜が堆積する。アモルファスカーボン薄膜の堆積条件が、ビーム電流が300pA、加速電圧が30kVの場合、照射量が1nAの垂直入射のFIBによるカーボン(C)の堆積速度は、0.02乃至0.04μm3/秒程度である。
【0044】
次に、図5(a)及び(b)に示すように、保護膜7で覆われた触媒層4にFIBによるマスクレスエッチングを施し、CNT1の成長起点となる露出面に含まれる辺の長さが10nm以下になるまで触媒層4を微細化する。FIB装置によっては、ビームの安定性及びドリフトによる位置ずれ等を考慮する必要があるため、一度の加工で10nm以下に微細化する方法によらず、FIBによるエッチング、触媒層4の形状確認、再エッチング及び形状の再確認を繰り返す方法を採用する。この方法により触媒層4の露出面に含まれる辺の長さを確実に10nm以下の所望の長さに微細化できる。
【0045】
このとき保護膜7は、ビームが広がったりずれたりしたような場合においても、加工位置以外ではFIBによる照射損傷が触媒層4に入らないように触媒層4を保護する。また、保護膜7は、触媒層4の形状確認の際に用いられるSIM像観察により触媒層4が損傷することも防ぐ。
【0046】
このようなFIBによるマスクレスエッチングにおいては、ビーム電流が20pA、加速電圧が30kVの場合、照射量が1nAの垂直入射のFIBにより0.5μm3/秒程度のエッチング速度が得られるので、エッチングと形状確認とを繰り返す方法を用いても充分に実用的である。FIBによるマスクレスエッチングの速度は、FIBの加速電圧及びビーム電流の変更により制御することができるが、実際には、FIB装置の仕様によって、加速電圧が10乃至40kV、ビーム電流が1pA乃至30nA程度の範囲において、FIBの照***度及びFIBによる照射損傷等を鑑みて加速電圧及びビーム電流を設定することによりエッチング速度が決定される。
【0047】
触媒層4は、FIBによるマスクレスエッチング後、図5(b)に示すように、FIBにより削り込まれた方向の面が露出し、この加工方向の辺の長さが10nm以下となっている。また、触媒層4は、保護膜7により上表面を保護されているので、触媒層4の厚さは10nmのままである。即ち、触媒層4のCNT1を成長させる方向の断面は、1辺の長さが略10nmの正方形状になっている。
【0048】
CNT1は、成長起点となる触媒層4の形状に依存した形状で合成されるので、触媒層4を1辺の長さが略10nmの正方形状の断面を有するように加工することによって、この断面と直交する方向に直径が10nm未満の単層のCNT1を1本だけ成長させることが可能となる。
【0049】
次に、保護膜7を、FIBでのマスクレスエッチングにより微細化された触媒層4の全表面を覆うように、再び成膜する。そして、FIBでのマスクレスエッチングによって、図6(a)乃至(c)に示すように、触媒層4のCNT1を成長させる方向の表面に成膜された保護膜7を除去して触媒層4を露出させると共に、この保護膜7が除去された触媒層4の露出面から触媒層4を再びエッチングし、触媒層4の露出面の位置を微調整する。なお、図3に示した触媒層4の形成工程において、FIBのビーム径を10nm以下に絞り込むことにより、直径が10nm程度の円形島状のように触媒層4が微細に形成された場合、図4に示した保護膜7の形成及び図5に示した触媒層4の微細加工は必要ないので、最初の触媒層4の形成工程の後、この保護膜7の成膜及び触媒層4の露出面の形成を行う。
【0050】
このようにして加工された触媒層4は、この表面が保護膜7により覆われているが、CNT1の成長方向では保護膜7から露出している。保護膜7は、CNT1の成長抑制物質であるアモルファスカーボンをFIBを照射しながら堆積させたものであるから、CNT1は、触媒層4の保護膜7により覆われた部分からは成長することができない。即ち、触媒層4の全表面を保護膜7で覆った後、CNT1を成長させたい方向の保護膜7を除去して触媒層4の露出面を形成することによって、CNT1の成長方向を高精度に制御することができる。
【0051】
従って、触媒層4をSi基板6上に形成する位置と触媒層4が保護膜7から露出する位置とを高精度に制御することによって、Si基板6上の特定の位置にCNT1を特定の方向に向けて正確に配することが可能となる。このとき、触媒層4の露出面を形成する方向は特に限定されず、触媒層4の上表面を覆う保護膜7にFIBを照射して直径が10nm未満の開口部を設けることによって、触媒層4の露出面を触媒層4の上表面に取り、ここを成長起点としてSi基板6表面と垂直方向にCNT1を成長させることもできる。また、触媒層4の上表面を覆う保護膜7の除去面積を大きくし、多数のCNT1をSi基板6表面と垂直方向に成長させることもできる。
【0052】
本実施形態では、保護膜7としてアモルファスカーボン薄膜を用いたが、保護膜7は、CNT1の成長抑制物質であれば特にその材料を限定されず、無機物、有機物、金属及びこれらの化合物であっても良い。
【0053】
次に、C22のような炭素含有物質を原料ガスとした熱CVDによりCNT1を合成する。CNT1の合成は、内壁が石英で覆われたスチール製の気密チャンバーを用い、石英とスチール製のチャンバー壁との間に設置されたカーボンヒーターによりチャンバー内を750℃程度に加熱した状態で、ドライポンプによりチャンバー内を排気しながら、大気圧(101325Pa)を維持できる流量のC22を約30分間供給することにより行う。このときCNT1は、図7(a)に示すように、触媒層4の露出面を成長起点として、その先端部に触媒4aが付着した状態で露出面と直交する方向に成長する。
【0054】
触媒層4としてNi,Fe及びCoのような磁性体を用いた場合、触媒層4の露出面と直交する方向に磁場を印加しながらCNT1を合成することによって、CNT1の先端部に付着した触媒4aをこの磁場方向に引き付けながらCNT1を成長させることができる。これによって、CNT1の成長方向を磁場方向に規制することができるので、長さが30nm以上のCNT1であっても、曲がることなく直線状に成長させることができる。
【0055】
CNT1の合成は、CNT1が所望の長さに成長したときに終了するが、CNT1の成長速度にはばらつきがあるため、長さが50nm程度のCNT1を合成する条件であっても、100nm程度の長さにまで成長するCNT1も存在する。このように所望の長さ以上に成長したCNT1は、CVDによる合成が終了した後、切断位置8にFIBを照射することにより所望の長さに加工される。
【0056】
次に、図7(b)に示すように、n型FET20nを構成するCNT1の成長起点側及び終点側の夫々の端部に導電性物質からなる第1の電極2及び第2の電極3を形成する。ここで、CNT1の切断位置8付近のC−C結合がCNT1切断時のFIB照射により損傷している可能性があるので、これを修復するためのアニール処理を電極形成前に行っても良い。アニール処理は、気密チャンバー内に電極形成前のSi基板6を載置し、これをCNT1を構成するカーボンが酸化されないように、1×10-6Pa以上の高真空を維持しながら400℃程度まで昇温することにより行う。
【0057】
第1及び第2の電極2,3の形成は、FIB装置によるマスクレスデポジションにより行う。例えば、有機金属ガスのような金属元素を含む原料ガスをFIB装置内に供給しながらCNT1の成長起点側及び終点側の夫々の端部にFIBを照射することによって、このFIBが照射された部分に原料ガスに含まれた金属を堆積させる。
【0058】
CNT1の成長起点側では、第1の電極2となる導電性物質が保護膜7の表面を完全に覆うように形成される。これによって、第1の電極2は、触媒層4の露出面であった位置でCNT1の成長起点側の端部と電気的に接続する。第2の電極3は、CNT1の終点側の端部、即ち、FIBによる切断位置8に形成されたCNT1の開口部と電気的に接続するように形成される。第2の電極3を構成する導電性物質は、CNT1の開口部を充分に覆うことができ、かつ他の配線との接続に際しても抵抗値の上昇及び断線等の欠陥が発生しないように、厚さが100nm程度になるように堆積する。これによってn型FET20nを完成する。
【0059】
FIB装置による導電性物質のマスクレスデポジションに用いる原料ガスは、例えば、Wにより第1及び第2の電極2,3を形成する場合、W(CO)6のようにWを含み、FIB照射により分解してWを堆積させるガスを用いる。堆積条件としては、原料ガスとしてW(CO)6をFIB装置内に供給しながら、ビーム電流が100乃至200pA、加速電圧が30kV程度の設定で、第1又は第2の電極2,3を形成する位置にFIBを照射する。このとき、照射量が1nAの垂直入射のFIBにより0.5乃至1.0μm3/秒程度のWの堆積速度が得られる。
【0060】
第1及び第2の電極2,3として用いるW等の導電性物質だけではなく触媒層4として用いるNi等の磁性金属及び保護膜7として用いるアモルファスカーボン薄膜は、全てFIB又はEBのような荷電粒子線を用いたマスクレスデポジションにより堆積する。このような荷電粒子線による薄膜の堆積速度は、荷電粒子をビーム化するときの加速電圧及びビーム電流の変更により制御することができる。実際には、例えば、FIB装置では、加速電圧が10乃至40kV、ビーム電流が1pA乃至30nA程度の範囲において、FIBの照***度及びFIBによる照射損傷等を鑑みて加速電圧及びビーム電流を設定することにより堆積速度が決定される。
【0061】
次に、単位構造20pを構成するCNT1に電子受容体を内包させる。上述した熱CVDにより合成されるCNT1は通常n型の半導体特性を有する。よって、単位構造20pを構成するCNT1に電子受容体を内包させることによって、単位構造20pに含まれるCNT1の半導体特性をp型に変更する。
【0062】
CNT1に電子受容体としてフラーレンを内包させる場合、FIBの照射によりCNT1の切断位置8に開口部を形成した後、このCNT1が配置されたSi基板6を内壁が石英で覆われた気密チャンバー内にフラーレンと共に載置し、1×10-6Pa以上の高真空を維持しながら400℃程度に加熱する。これによって、フラーレンはCNT1の開口部からCNT1内の空隙に浸入し、CNT1に内包される。
【0063】
次に、n型FET20nに含まれるCNT1の両端に第1及び第2の電極2,3を形成したときと同様にして、電子受容体を内包したCNT1の両端に第1及び第2の電極2,3を形成する。これによってp型FET20pを完成する。
【0064】
最後に、n型FET20n及びp型FET20pの夫々の第1及び第2の電極2,3の間を埋めて各電極間の電気的絶縁性を保つと共にCNT1を物理的及び化学的衝撃から保護するため、層間絶縁膜9を成膜する。層間絶縁膜9は、SiOxのような従来の半導体デバイスにおいて層間絶縁膜として使用される電気的絶縁性を有する膜を、厚さが100nm程度となるように公知のCVD又は塗布法等により成膜する。
【0065】
このような絶縁性の膜が第1及び第2の電極2,3の上表面に成膜された場合、公知のドライエッチング法等を用いた全面エッチバック又はCMP(Chemical Mechanical Polish)のような平坦化方法により除去し、第1及び第2の電極2,3が電気的に接続可能となるようにする。このようにして半導体装置100を完成する。
【0066】
この第1の製造方法では、触媒層4の露出面の位置及び面積をSi基板6上で任意に変更することができるので、この触媒層4の露出面を成長起点として合成されるCNT1の位置、形状及び成長方向を正確に制御できる。従って、CNT1及びその両端の電極からなる単位構造20をSi基板6上の特定の位置に形成することができるので、複数の単位構造20が配列されることにより電圧インバータ回路のような論理回路として超高速度で動作し得る半導体装置100を、Si基板6上に高密度に多数形成することができる。
【0067】
また、第1及び第2の電極2,3を形成する前に、CNT1の端部から電子供与体又は電子受容体等をCNT1に内包させることができるので、CNT1の内包物によりCNT1の物理的及び化学的特性を制御できる。よって、CNT1を組み込んだ半導体装置のデバイス特性を容易に制御できる。
【0068】
[第2の製造方法]
CNT1を30nm以上の長さまで直線状に成長させる別の方法として、図8(a)及び(b)に示すように、Si基板6表面に形成されたSiOx膜5に、CNT1の成長方向に沿った溝10を予め形成しておくこともできる。
この方法では、先ず、単位構造20を配置する部分のSiOx膜5をエッチングして溝10を形成する。SiOx膜5のエッチングは、FIBによるマスクレスエッチングを用いることが望ましいが、従来のフォトリソグラフィ法とドライエッチング法とを組み合わせても良い。
【0069】
次に、SiOx膜5に形成された溝10の内部に、第1の製造方法と同様にして、保護膜7に覆われた触媒層4を形成する。そして、溝10内の保護膜7を除去して触媒層4の露出面を形成する。この溝10内に形成された触媒層4の露出面を成長起点としてCNT1を合成することによって、溝10に沿って直線状に成長したCNT1を得ることができる。この後、第1の製造方法と同様にして、第1及び第2の電極2,3と層間絶縁膜9とを形成して半導体装置100を完成する。
【0070】
この第2の製造方法では、100nm以上のCNT1を直線状で形成できるばかりではなく、溝10の形状を変更することによって、鉤状又は曲線状等の任意の形状のCNT1を合成することができる。従って、CNT1を配線として引き回すような場合に好都合である。
【0071】
[第3の製造方法]
第1の電極2を形成する前にCNT1の成長起点側の触媒層4及び保護膜7を除去し、第1の電極2と第2の電極3とを同じ構造とすることもできる。
この場合、第1の製造方法と同様にしてCNT1の合成工程迄を終了し、第1及び第2の電極2,3を形成する前に、層間絶縁膜9を100nm程度の厚さで成膜してCNT1を保護する。
【0072】
次に、この層間絶縁膜9の表面にFIBを照射することによって、CNT1の両端部の層間絶縁膜9とCNT1の成長起点側の触媒層4及び保護膜7とをマスクレスエッチングにより除去する。そして、CNT1の両端部で層間絶縁膜9に形成された開口部に、FIB装置でのマスクレスデポジションにより、第1の製造方法と同様にして、Wのような導電性物質を堆積することによって、第1及び第2の電極2,3を形成する。このようにして半導体装置100を完成する。
【0073】
この第3の製造方法では、FIB装置でのマスクレスエッチングによって、第1及び第2の電極2,3の形成位置にある層間絶縁膜9と共に、この下層のSiOx膜5も除去してから第1及び第2の電極2,3を形成することができる。
【0074】
従って、従来の半導体プロセスによりSiOx膜5下層に配線層及びメモリ素子等を予め作り込み、これらと単位構造20とを第1又は第2の電極2,3により電気的に接続することができる。よって、従来の半導体プロセスによるサブミクロン又はミクロンスケールの比較的大きな基本構造とナノスケールの単位構造20とを合わせて組み込んだ半導体装置を自在に設計及び製造することができる。
【0075】
このように、本発明に係る実施形態としての半導体装置の製造方法によれば、CNT1を、Si基板6上の特定の位置で定められた方向に向けて正確に配置することができるので、CNT1と第1及び第2の電極2,3とからなる単位構造20をSi基板6上の特定の位置に高密度に多数形成することができる。従って、一次元量子細線として超高速動作が可能なカーボンナノチューブアレイ50を実装した半導体装置を効率的に製造することができる。
【0076】
CNT1に電子供与体、電子受容体又は磁性体内包フラーレン等を内包させることによって、CNT1の物理的及び化学的特性を任意に変更することができる。従って、Si基板6上の特定の位置に配されたCNT1を含むカーボンナノチューブアレイ50のデバイス特性を容易に制御することができるので、p型FET及びn型FETから構成される相補型回路のように実用的かつ複雑な論理回路を高集積した半導体装置100を工業的に生産することが可能となる。
【0077】
【発明の効果】
以上説明したように、本発明に係る半導体装置によれば、荷電粒子線の照射幅により規定される形状及び一端部を有し、基板上に設けられた島状の触媒層と、この触媒層の一端部が露出されて、他の部分を覆った保護膜と、この保護膜から露出された触媒層の一端部から一の方向に向けて設けられた炭素管状体と、この炭素管状体の両端に設けられた電極とを備えるものである。
【0078】
この構造によって、荷電粒子線の照射幅に依存した径の炭素管状体とその両端の電極からなるナノメートル・サイズの単位構造を基板上の特定の位置に高密度に多数配列できるので、一次元量子細線を備えて超高速動作が可能な半導体装置を実現できる。
【0079】
本発明に係る半導体装置の製造方法によれば、基板上の島状の触媒層を覆う保護膜を選択的に除去して少なくとも荷電粒子線の照射幅を有する触媒層の端部を露出し、露出した触媒層の端部から一方向に向けて炭素管状体を形成し、この炭素管状体の両端に電極を形成するものである。
【0080】
この構成によって、保護膜から露出する触媒層の端部の位置及び形状を任意に変更できるので、この触媒層の端部を起点として形成される炭素管状体の位置、形状及び成長方向を容易に制御できる。
【0081】
従って、荷電粒子線の照射幅により規定された数ナノメートルの径を有する炭素管状体とその両端の電極からなるナノメートル・サイズの単位構造を、基板上の特定の位置に高密度に多数配列できるので、一次元量子細線を備えて超高速動作が可能な半導体装置を工業的に製造することができる。
【0082】
この発明は、炭素管状体及びその両端の電極からなる単位構造を高密度に多数配列したカーボンナノチューブアレイに適用して極めて好適である。
【図面の簡単な説明】
【図1】本発明の実施形態としての半導体装置100の構成例を示す模式的断面図である。
【図2】本発明の実施形態としての半導体装置100に実装されるカーボンナノチューブアレイ50の構成例を示す図であって、図2(a)はカーボンナノチューブアレイ50の模式的平面図であり、図2(b)は図2(a)のA−A線での拡大断面図である。
【図3】本発明の実施形態としての半導体装置100の製造方法を示す工程図(その1)であって、図3(a)は模式的平面図であり、図3(b)は図3(a)のB−B線断面図である。
【図4】本発明の実施形態としての半導体装置100の製造方法を示す工程図(その2)であって、図4(a)は模式的平面図であり、図4(b)は図4(a)のC−C線断面図である。
【図5】本発明の実施形態としての半導体装置100の製造方法を示す工程図(その3)であって、図5(a)は模式的平面図であり、図5(b)は図5(a)のD−D線断面図である。
【図6】本発明の実施形態としての半導体装置100の製造方法を示す工程図(その4)であって、図6(a)は模式的平面図であり、図6(b)は図6(a)のE−E線断面図であり、図6(c)は図6(a)のF−F線断面図である。
【図7】本発明の実施形態としての半導体装置100の製造方法を示す工程図(その5)である。
【図8】本発明の実施形態としての半導体装置100の別の製造方法を示す工程図であって、図8(a)は模式的平面図であり、図8(b)は図8(a)のG−G線断面図である。
【符号の説明】
1・・・カーボンナノチューブ、2・・・第1の電極、3・・・第2の電極、4・・・触媒、6・・・基板、7・・・保護膜、50・・・カーボンナノチューブアレイ、100・・・半導体装置

Claims (16)

  1. 基板に荷電粒子線を照射しながら金属元素が含まれた原料ガスを供給することにより前記基板上に前記金属元素を堆積させて前記金属元素からなる島状の触媒層を形成する工程と、
    前記触媒層を炭素管状体の成長を防止する保護膜により覆う工程と、
    前記保護膜および前記触媒層を荷電粒子線の照射によるマスクレスエッチングにより選択的に除去することにより前記触媒層の一端部を露出させ、この際、この露出した一端部の前記マスクレスエッチングによる加工方向の辺の長さが10nm以下となるようにする工程と、
    前記触媒層の前記一端部から一の方向に向けて炭素管状体を形成する工程と、
    前記炭素管状体の両端に電極を形成する工程とを含む半導体装置の製造方法。
  2. 前記保護膜を、前記炭素管状体の成長抑制物質の前駆体が含まれた原料ガスを前記荷電粒子線の照射下に供給することにより成膜する請求項1に記載の半導体装置の製造方法。
  3. 前記保護膜はアモルファスカーボン膜である請求項1または2に記載の半導体装置の製造方法。
  4. 前記電極を、金属元素が含まれた原料ガスを荷電粒子線の照射下に供給することにより前記金属元素を堆積させることにより形成する請求項1〜3のいずれか一項に記載の半導体装置の製造方法。
  5. 前記炭素管状体の一端部より荷電粒子線を照射することにより当該炭素管状体の長さを制御する工程が前記電極を形成する工程の前に実施される請求項1〜4のいずれか一項に記載の半導体装置の製造方法。
  6. 前記炭素管状体を形成する工程は、前記一の方向に印加された磁場の下で行われる請求項1〜5のいずれか一項に記載の半導体装置の製造方法。
  7. 前記荷電粒子線は収束イオンビームである請求項1〜6のいずれか一項に記載の半導体装置の製造方法。
  8. 前記荷電粒子線は電子ビームである請求項1〜6のいずれか一項に記載の半導体装置の製造方法。
  9. 前記炭素管状体に電子供与体を内包させるか又は含有させる請求項1〜8のいずれか一項に記載の半導体装置の製造方法。
  10. 前記電子供与体は、Li,Na,K,Rb及びCsからなるアルカリ金属元素群又はSc,Y,ランタノイド元素及びアクチノイド元素からなる希土類元素群から選択されるいずれか1つ以上の元素を含む請求項9に記載の半導体装置の製造方法。
  11. 前記炭素管状体に電子受容体を内包させる請求項1〜8のいずれか一項に記載の半導体装置の製造方法。
  12. 前記電子受容体は、60個以上の炭素原子からなる球殻状又は筒状の炭素分子である請求項11に記載の半導体装置の製造方法。
  13. 前記炭素分子は、1個以上の金属原子及び/又は金属イオンを内包している請求項12に記載の半導体装置の製造方法。
  14. 前記金属原子及び/又は金属イオンは、希土類元素群又は遷移金属元素群から選択される1つ以上の元素を含む請求項13に記載の半導体装置の製造方法。
  15. 前記炭素分子は、希土類元素群又は遷移金属元素群から選択される1つ以上の元素を含む磁性体を内包している請求項12に記載の半導体装置の製造方法。
  16. 前記触媒層は磁性体からなる請求項1〜15のいずれか一項に記載の半導体装置の製造方法。
JP2003028613A 2003-02-05 2003-02-05 半導体装置の製造方法 Expired - Fee Related JP4774665B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003028613A JP4774665B2 (ja) 2003-02-05 2003-02-05 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003028613A JP4774665B2 (ja) 2003-02-05 2003-02-05 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2004241572A JP2004241572A (ja) 2004-08-26
JP4774665B2 true JP4774665B2 (ja) 2011-09-14

Family

ID=32956032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028613A Expired - Fee Related JP4774665B2 (ja) 2003-02-05 2003-02-05 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP4774665B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100539041C (zh) 2004-10-22 2009-09-09 富士通微电子株式会社 半导体器件及其制造方法
JP4555695B2 (ja) * 2005-01-20 2010-10-06 富士通株式会社 カーボンナノチューブ配線を備えた電子デバイス及びその製造方法
US7492015B2 (en) * 2005-11-10 2009-02-17 International Business Machines Corporation Complementary carbon nanotube triple gate technology
US8004043B2 (en) 2006-12-19 2011-08-23 Intel Corporation Logic circuits using carbon nanotube transistors
KR100882289B1 (ko) * 2007-04-03 2009-02-10 후지쯔 마이크로일렉트로닉스 가부시키가이샤 반도체 장치 및 그 제조 방법
FR2917893B1 (fr) * 2007-06-22 2009-08-28 Commissariat Energie Atomique Procede de fabrication d'une connexion electrique a base de nanotubes de carbone
JP5424230B2 (ja) * 2007-07-13 2014-02-26 国立大学法人北海道大学 カーボンナノチューブ電界効果トランジスタおよびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063934A (ja) * 1983-09-17 1985-04-12 Mitsubishi Electric Corp 微細パタ−ンの形成方法
JPH04131377A (ja) * 1990-09-21 1992-05-06 Hitachi Ltd 膜形成方法
JP3083401B2 (ja) * 1992-05-12 2000-09-04 日本電子株式会社 Fibアシストデポジション装置のガス供給装置
US6630772B1 (en) * 1998-09-21 2003-10-07 Agere Systems Inc. Device comprising carbon nanotube field emitter structure and process for forming device
JP3859199B2 (ja) * 2000-07-18 2006-12-20 エルジー エレクトロニクス インコーポレイティド カーボンナノチューブの水平成長方法及びこれを利用した電界効果トランジスタ
JP2002097009A (ja) * 2000-09-20 2002-04-02 Japan Science & Technology Corp ハイブリッド単層カーボンナノチューブ
JP3550367B2 (ja) * 2001-02-27 2004-08-04 独立行政法人 科学技術振興機構 ハイブリッドカーボンナノチューブの作製方法
JP2002299705A (ja) * 2001-03-29 2002-10-11 Yamaguchi Technology Licensing Organization Ltd 微小面積トンネル接合の作製方法

Also Published As

Publication number Publication date
JP2004241572A (ja) 2004-08-26

Similar Documents

Publication Publication Date Title
KR101910976B1 (ko) 그래핀을 이용한 전계효과 트랜지스터
US7084507B2 (en) Integrated circuit device and method of producing the same
KR100714932B1 (ko) 자기-정렬 나노튜브 전계 효과 트랜지스터 및 그 제조 방법
TWI463654B (zh) 奈米管/奈米導線場效電晶體之自行對準製程
US8642996B2 (en) Graphene nanoribbons and carbon nanotubes fabricated from SiC fins or nanowire templates
TWI461350B (zh) 使用奈米結構物之三極管及其製造方法
JP3854731B2 (ja) 微細構造の製造方法
US6740910B2 (en) Field-effect transistor, circuit configuration and method of fabricating a field-effect transistor
JP5816981B2 (ja) グラフェン膜成長の制御方法
JP5329800B2 (ja) 触媒ナノ粒子の制御および選択的な形成
JP4904696B2 (ja) 電界効果トランジスタおよびその製造方法
JP2004171903A (ja) 電子素子及びその製造方法
JP4670640B2 (ja) カーボンナノチューブの製造方法、並びにカーボンナノチューブ構造体を用いた素子、及び配線
JP4774665B2 (ja) 半導体装置の製造方法
JP5092596B2 (ja) ナノマグネット、量子デバイス、及びこれらの製造方法
US20100068828A1 (en) Method of forming a structure having a giant resistance anisotropy or low-k dielectric
KR101010115B1 (ko) 반도체 소자 및 그 형성 방법
JP4780546B2 (ja) カーボンナノチューブの作製方法及び電流制御素子の作製方法
EP1973179B1 (en) Guiding nanowire growth
JP2006049459A (ja) カーボンナノチューブトランジスタの製造方法
JP6773615B2 (ja) ナノワイヤトランジスタの製造方法
JP4813675B2 (ja) 微細パターンの形成方法
JP4854180B2 (ja) InSbナノ細線構造の作製方法
JP2001077346A (ja) 単電子トランジスタおよびその製造方法
JP2914314B2 (ja) 微細パターン形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051003

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090916

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees