JP4754378B2 - 電動機の制御装置 - Google Patents

電動機の制御装置 Download PDF

Info

Publication number
JP4754378B2
JP4754378B2 JP2006078552A JP2006078552A JP4754378B2 JP 4754378 B2 JP4754378 B2 JP 4754378B2 JP 2006078552 A JP2006078552 A JP 2006078552A JP 2006078552 A JP2006078552 A JP 2006078552A JP 4754378 B2 JP4754378 B2 JP 4754378B2
Authority
JP
Japan
Prior art keywords
command value
rotor
armature
phase difference
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006078552A
Other languages
English (en)
Other versions
JP2007259549A5 (ja
JP2007259549A (ja
Inventor
博文 新
浩行 伊勢川
保 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006078552A priority Critical patent/JP4754378B2/ja
Priority to US11/717,636 priority patent/US7583048B2/en
Priority to DE102007013577A priority patent/DE102007013577B4/de
Publication of JP2007259549A publication Critical patent/JP2007259549A/ja
Publication of JP2007259549A5 publication Critical patent/JP2007259549A5/ja
Application granted granted Critical
Publication of JP4754378B2 publication Critical patent/JP4754378B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • H02P21/08Indirect field-oriented control; Rotor flux feed-forward control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、永久磁石界磁型の回転電動機の界磁弱め制御を、同心円状に配置された二つのロータ間の位相差を変更することによって行う電動機の制御装置に関する。
従来より、永久磁石界磁型の回転電動機の回転軸の周囲に同心円状に設けた第1ロータ及び第2ロータを備え、回転速度応じて第1ロータと第2ロータの位相差を変更することで、界磁弱め制御を行うようにした電動機が知られている(例えば、特許文献1参照)。
かかる従来の電動機においては、第1ロータと第2ロータが、遠心力の作用により径方向に沿って変位する部材を介して接続されている。また、電動機が停止状態にあるときに、第1ロータに配置された永久磁石の磁極と第2ロータに配置された永久磁極の磁極の向きが同一となって界磁の磁束が最大となり、電動機の回転速度が高くなるに従って遠心力により第1ロータと第2ロータの位相差が拡大して、界磁の磁束が減少するように構成されている。
ここで、図12は縦軸を出力トルクTrとし横軸を回転数Nとして、電動機の界磁弱めが必要となる領域を示したものであり、図中uは電動機の直交ライン(界磁弱め制御を行わずに電動機を作動させたときに、回転数と出力トルクの組合わせにより電動機の相電圧が電源電圧と等しくなる点を結んだもの)である。図中Xは界磁弱めが不要な領域であり、Yは界磁弱めが必要な領域である。
図1に示したように、界磁弱めが必要となる領域Yは電動機の回転数Nと出力トルクTrにより決定されるため、従来の回転数のみによる界磁弱め制御では、界磁弱めの制御量が過大又は過小となるという不都合がある。
また、本来、界磁弱め制御は、電動機の回転により電機子に生じる逆起電力を減少させて電機子の端子間電圧が電源電圧よりも大きくなることを抑制し、これにより、電動機をより高回転域で使用できるようにするものである。そして、電動機の回転数や遠心力で第1ロータと第2ロータの位相差を変更する場合には、界磁弱めを変更するパラメータが回転数のみであるため、電動機の出力トルクや回転数の制御範囲を柔軟に変更することができないという不都合がある。
また、発電機としても作動する電動機においては、一般的に駆動時(出力トルクが正)と発電時(出力トルクが負)では同一回転数に対する界磁の制御量を変えた方が運転効率が高くなるが、回転数や遠心力で第1ロータと第2ロータの位相差を変更するときには、このように駆動時と発電時で界磁の制御量を変えることができないという不都合がある。
特開2002−204541号公報
本発明は上記背景を鑑みてなされたものであり、簡易な構成により、電動機の回転数に依らずに、同心円状に配置された二つのロータ間の位相差を変更して界磁弱め制御を行うことができる電動機の制御装置を提供することを目的とする。
本発明は上記目的を達成するためになされたものであり、永久磁石による界磁を複数個有する第1ロータ及び第2ロータを、回転軸の周囲に同心円状に配置した永久磁石界磁型の回転電動機の作動を、該第1ロータと該第2ロータとの位相差であるロータ位相差を変更することによる界磁制御を行って制御する電動機の制御装置に関する。なお、前記界磁制御には、前記電動機の界磁の磁束を減少させる界磁弱め制御と、前記電動機の界磁の磁束を増大させる界磁強め制御とが含まれる。
そして、前記第1ロータの位置を検出するロータ位置検出手段と、前記第1ロータの位置に基づいて、前記電動機を界磁の磁束方向であるd軸と該d軸と直交するq軸からなる2相直流の回転座標系による等価回路に変換し、d軸側の電機子の通電量とq軸側の電機子の通電量を制御することで、前記電動機の通電制御を行う通電制御手段と、所定の界磁弱めの効果を得るために必要なd軸側の電機子の通電量である界磁弱め電流指令値を決定する界磁弱め電流指令値決定手段と、前記界磁弱め電流指令値に応じて、前記ロータ位相差の指令値を決定するロータ位相差指令値決定手段と、前記ロータ位相差の指令値に応じて、前記ロータ位相差を変更するロータ位相差変更手段とを備えたことを特徴とする。
かかる本発明によれば、前記界磁電流指令値決定手段は、前記等価回路による電動機の通電制御において一般的な、d軸側の電機子の通電量により前記電動機の界磁弱めを行うための前記界磁弱め電流指令値を決定する。そして、前記ロータ位相差指令値決定手段は、前記界磁弱め電流指令値に応じて前記ロータ位相差の指令値を決定する。そのため、前記等価回路による電動機の通電制御を行うために、従来より備えられていた前記界磁弱め電流指定値決定手段の構成を利用した簡易な構成により、前記ロータ位相差の指令値を決定することができる。そして、これにより、前記電動機の回転数に依らずに、前記ロータ位相差変更手段によって前記ロータ位相差を変更して前記電動機の界磁弱め制御を行うことができる。
また、直流電源から供給される直流電力を前記電動機の電機子に供給する多相交流電力に変換するインバータ回路を備え、前記界磁弱め電流指令値決定手段は、前記等価回路におけるd軸側の電機子の端子間電圧とq軸側の電機子の端子間電圧との合成ベクトルの大きさが、前記直流電源の出力電圧以下に設定された所定電圧以下となるように、前記界磁弱め電流指令値を決定することを特徴とする。
かかる本発明によれば、d軸側の電機子の端子間電圧とq軸側の電機子の端子間電圧との合成ベクトルの大きさが、前記直流電源の出力電圧以下に設定された所定電圧以下となるように、前記界磁弱め電流指令値を決定して前記ロータ位相差を変更することにより、前記電動機の回転域の上限を前記所定電圧を超えない範囲で拡大することができる。
また、前記ロータ位相差の指令値と所定のトルク指令値とに応じて、q軸側の電機子の通電量の指令値とd軸側の電機子の通電量の指令値とを決定する電流指令値決定手段を備え、前記通電制御手段は、該通電指令値決定手段により決定されたq軸側の電機子の通電量の指令値とd軸側の電機子の通電量の指令値とに基づいて、q軸側の電機子の通電量とd軸側の電機子の通電量とを制御することを特徴とする。
かかる本発明によれば、前記ロータ位相差が変化すると、それに応じて前記電動機の界磁の磁束が変化するため、前記電動機の出力トルクを前記トルク指令値とするのに必要となるq軸側の電機子の通電量とd軸側の電機子の通電量が変化する。そこで、前記電流指令値決定手段により、前記ロータ位相差の指令値と前記トルク指令値とに応じて、q軸側の電機子の通電量の指令値とd軸側の電機子の通電量の指令値とを決定することによって、前記電動機の界磁の磁束の変化の影響を考慮した適切なq軸側の電機子の通電量の指令値とd軸側の電機子の通電量の指令値とを決定することができる。
また、前記電流指令値決定手段は、前記ロータ位相差の指令値に基づいて前記電動機の誘起電圧定数を推定し、該誘起電圧定数の推定値を用いてq軸側の電機子の通電量の指令値とd軸側の電機子の通電量の指令値とを決定することを特徴とする。
かかる本発明によれば、前記ロータ位相差の変化に応じて前記電動機の界磁の磁束が変化すると、それに応じて前記電動機の誘起電圧定数が変化する。そこで、前記通電指令値決定手段は、前記電動機の誘起電圧定数の推定値を用いることで、前記電動機の実際の界磁の状態に応じた適切なq軸側の電機子の通電量の指令値とd軸側の電機子の通電量の指令値とを決定することができる。
本発明の実施の形態について、図1〜図11を参照して説明する。図1は2重ロータを備えたDCブラシレスモータの構成図、図2は図1に示したDCブラシレスモータの外側ロータと内側ロータの位相差を変更する機構の構成図及び作動説明図、図3及び図4は外側ロータと内側ロータの位相差を変更することによる効果の説明図、図5は電動機の制御装置の制御ブロック図、図6はdq座標系における電圧ベクトル図、図7は界磁弱め電流算出部のブロック図、図8は界磁弱め電流に応じたロータ位相差を決定するマップの説明図、図9はロータ位相差に応じた誘起電圧定数を決定するマップの説明図、図10は界磁弱め電流指令値に応じてロータ位相差の指令値とd軸電機子及びq軸電機子の通電量の指令値を決定する処理のフローチャート、図11はアクチュエータによりロータ位相差を変更する処理のフローチャートである。
図1を参照して、本実施の形態における電動機1は、永久磁石11a,11bの界磁が周方向に沿って等間隔に配設された内側ロータ11(本発明の第2ロータに相当する)と、永久磁石12a,12bの界磁が周方向に沿って等間隔に配設された外側ロータ12(本発明の第1ロータに相当する)と、内側ロータ11及び外側ロータ12に対する回転磁界を発生させるための電機子10aを有するステータ10とを備えたDCブラシレスモータである。電動機1は、例えばハイブリッド車両や電動車両の駆動源として使用され、ハイブリッド車両に搭載されたときは、電動機及び発電機として動作する。
内側ロータ11と外側ロータ12は、共に回転軸が電動機1の回転軸2と同軸となるように同心円状に配置されている。そして、内側ロータ11においては、N極を回転軸2側とする永久磁石11aとS極を回転軸2側とする永久磁石11bが交互に配設されている。同様に、外側ロータ12においても、N極を回転軸2側とする永久磁石12aとS極を回転軸2側とする永久磁石12bが交互に配設されている。
次に、電動機1は、外側ロータ12と内側ロータ11の位相差であるロータ位相差を変更するために、図2(a)に示した遊星歯車機構30を備えている。図2(a)を参照して、遊星歯車機構30は、内側ロータ11の内周側の中空部に配置されたシングルピニオン型の遊星歯車機構であり、外側ロータ12と同軸且つ一体に形成された第1リングギアR1、内側ロータ11と同軸且つ一体に形成された第2リングギアR2、第1リングギアR1と噛合する第1プラネタリギア31、第2リングギアR2に噛合する第2プラネタリギア32、第1プラネタリギア31及び第2プラネタリギア32と噛合するアイドルギアであるサンギアS、第1プラネタリギア31を回転自在に支持すると共に回転軸2に回転可能に軸支された第1プラネタリキャリアC1、及び第2プラネタリギア32を回転自在に支持すると共にステータ10に固定された第2プラネタリキャリアC2を備えている。
遊星歯車機構30において、第1リングギアR1と第2リングギアR2は略同等のギア形状とされ、第1プラネタリギア31と第2プラネタリギア32も略同等のギア形状とされている。また、サンギアSの回転軸33は電動機1の回転軸2と同軸に配置されると共に、軸受け34により回転可能に軸支されている。そして、これにより、第1プラネタリギア31と第2プラネタリギア32がサンギアSと噛合し、外側ロータ12と内側ロータ11が同期して回転するように構成されている。
さらに、第1プラネタリキャリアC1の回転軸35は、電動機1の回転軸2と同軸に配置されると共にアクチュエータ25に接続されており、第2プラネタリキャリアC2はステータ10に固定されている。
アクチュエータ25は、外部から入力される制御信号に応じて、油圧により第1プラネタリキャリアC1を正転方向又は逆転方向に回転させ、或いは回転軸2回りの第1プラネタリキャリアC1の回転を規制する。そして、アクチュエータ25によって第1プラネタリキャリアC1が回転すると、外側ロータ12と内側ロータ11間の相対的な位置関係(位相差)が変化する。なお、遊星歯車機構30とアクチュエータ25により、本発明のロータ位相差変更手段が構成される。また、油圧ではなく電動により第1プラネタリキャリアC1を回転させるアクチュエータを用いてもよい。
図2(b)は、遊星歯車機構30における第1リングギアR1と、第1プラネタリキャリアC1と、サンギアSと、第2プラネタリキャリアC2と、第2リングギアR2の回転速度の関係を示した図であり、縦軸が各ギアの回転速度Vrに設定されている。
図2(b)において、ステータ10に固定された第2プラネタリキャリアC2の速度はゼロである。そのため、第2リングギアR2及び内側ロータ11は、例えば逆転方向(Vr<0)に回動するサンギアSに対して、第2リングギアR2に対するサンギアSのギア比g2に応じた速度で正転方向(Vr>0)に回転することになる。
ここで、アクチュエータ25が非作動状態(アクチュエータ25による第1プラネタリキャリアC1の回動がなされていない状態)にあるときは、第1プラネタリキャリアC1の回転速度はゼロである。そのため、第1リングギアR1及び外側ロータ12は、回転するサンギヤSに対して、第1リングギアR1に対するサンギアSのギア比g1に応じた速度で逆方向に回転する。そして、ギヤ比g1とギヤ比g2は略同等(g1≒g2)に設定されているので、内側ロータ11と外側ロータ12は同期して回転し、内側ロータ11と外側ロータ12間の位相差が一定に維持される。
一方、アクチュエータ25が作動状態(アクチュエータ25により第1プラネタリキャリアC1が回動している状態)にあるときは、第1リングギアR1及び外側ロータ12は、回転するサンギアSに対して、第1リングギアR1に対するサンギアSのギア比g1に応じた速度に対して、第1プラネタリキャリアC1の回動分だけ増速又は減速されて、逆方向に回転する。そして、これにより、外側ロータ12と内側ロータ11の位相差が変化する。
また、アクチュエータ25は、第1リングギアR1に対するサンギアSのギア比g1と電動機1の極対数Pに対して、少なくとも、機械角度β(度)=(180/P)×g1/(1+g1)だけ、第1プラネタリキャリアC1を正転方向又は逆転方向に回動可能に構成されている。
そのため、外側ロータ12と内側ロータ11の位相差は、少なくとも電気角で180度の範囲で進角側又は遅角側に変更することができ、電動機1の状態は、外側ロータ12の永久磁石12a,12bと内側ロータ11の永久磁石11a,11bが同極同士を対向して配置された界磁弱め状態と、外側ロータ12の永久磁石12a,12bと内側ロータ11の永久磁石11a,11bが異極同士を対向して配置された界磁強め状態との間で、適宜設定可能である。
図3(a)は界磁強め状態を示しており、外側ロータ12の永久磁石12a,12bの磁束Q2と内側ロータ11の永久磁石11a,11bの磁束Q1の向きが同一であるため、合成された磁束Q3が大きくなる。一方、図3(b)は界磁弱め状態を示しており、外側ロータ12の永久磁石12a,12bの磁束Q2と内側ロータ11の永久磁石11a,11bの磁束Q1の向きが逆であるため、合成された磁束Q3が小さくなる。
図4は、図3(a)の状態と図3(b)の状態において、電動機1を所定回転数で作動させた場合にステータ10の電機子に生じる誘起電圧を比較したグラフであり、縦軸が誘起電圧(V)に設定され、横軸が電気角(度)に設定されている。図中aが図3(a)の状態(界磁強め状態)であり、bが図3(b)の状態(界磁弱め状態)である。図4から、外側ロータ12と内側ロータ11の位相差を変更することで、生じる誘起電圧のレベルが大幅に変化していることがわかる。
そして、このように、外側ロータ12と内側ロータ11の位相差を変更して、界磁の磁束を増減させることにより、電動機1の誘起電圧定数Keを変化させることができる。これにより、誘起電圧定数Keが一定である一つのロータを備えた一般的な電動機に比べて、電動機1の出力及び回転数に対する運転可能領域を拡大することができる。また、電動機の制御として一般的なdq座標変換により、d軸(界磁軸)側の電機子に通電して界磁弱め制御を行う場合に比べて、電動機1の銅損が減少するため、電動機1の運転効率を高めることができる。
次に、図5〜図11を参照して、本発明の電動機の制御装置について説明する。図5に示した電動機の制御装置(以下、単に制御装置という)は、電動機1を界磁方向をd軸としてd軸と直交する方向をq軸とした2相直流の回転座標系による等価回路に変換して扱い、外部から与えられるトルク指令値Tr_cに応じたトルクが電動機1から出力されるように、電動機1に対する通電量を制御するものである。
制御装置はCPU、メモリ等により構成される電子ユニットであり、トルク指令値Tr_cと電動機1の外側ロータ12と内側ロータ11の位相差(ロータ位相差)の指令値θd_cとに基づいて、d軸側の電機子(以下、d軸電機子という)に流れる電流(以下、d軸電流という)の指令値Id_cとq軸側の電機子(以下、q軸電機子という)に流れる電流(以下、q軸電流という)の指令値Iq_cとを決定する電流指令値決定部60(本発明の電流指令値決定手段に相当する)、電流センサ70,71により検出されてバンドパスフィルタ72により不要成分が除去された電流検出信号と、レゾルバ73(本発明のロータ位置検出手段に相当する)により検出される外側ロータ12のロータ角度θrとに基づいて、3相/dq変換によりd軸電流の検出値Id_sとq軸電流の検出値Iq_sとを算出する3相/dq変換部75、d軸電流の指令値Id_cと検出値Id_sの偏差ΔId及びq軸電流の指令値Iq_cと検出値Iq_sの偏差ΔIqが減少するように、d軸電機子の端子間電圧(以下、d軸電圧という)の指令値Vd_cとq軸電機子の端子間電圧(以下、q軸電圧という)の指令値Vq_cとを決定する通電制御部50(本発明の通電制御手段に相当する)、d軸電圧の指令値Vd_cとq軸電圧の指令値Vq_cを大きさV1と角度θの成分に変換するrθ変換部61、及び該大きさV1と角度θの成分をPWM制御により3相(U,V,W)の交流電圧に変換するPWM演算部62(本発明のインバータ回路の機能を含む)を備えている。
さらに、制御装置は、PWM演算部62に直流電力を供給する直流電源(図示しない)の出力電圧Vdcから後述する目標電圧円の半径Vp_targetを算出する目標電圧円算出部90、目標電圧円の半径Vp_targetとd軸電圧の指令Vd_c及びq軸電圧の指令Vq_cとに基づいて界磁弱め電流指令値ΔId_volを算出する界磁弱め電流算出部91(本発明の界磁弱め電流指令値決定手段に相当する)、及び該界磁弱め電流指令値ΔId_volに応じて、ロータ位相差の指令値θd_cを決定するロータ位相差指令値決定部94(本発明のロータ位相差指令値決定手段に相当する)を備えている。
また、通電制御部50は、d軸電流の指令値Id_cと検出値Id_sとの偏差ΔIdを算出する減算器52、該偏差ΔIdを生じさせるためのd軸偏差電圧ΔVdを算出するd軸電流制御部53、d軸電流の指令値Id_cとq軸電流の指令値Iq_cとに基づいて、d軸とq軸間で干渉し合う速度起電力の影響を打ち消すための成分(非干渉成分)を算出する非干渉制御部56、d軸偏差電圧ΔVdから非干渉制御部56により算出された非干渉成分を減じる減算器54、q軸電流の指令値Iq_cと検出値Iq_sとの偏差ΔIqを算出する減算器55、該偏差ΔIqを生じさせるためのq軸偏差電圧ΔVqを算出するq軸電流制御部57、及びq軸偏差電圧ΔVqに非干渉成分を加える加算器58を備えている。
図6は、dq座標系における界磁弱め制御について説明したものであり、縦軸がq軸(トルク軸)に設定され、横軸がd軸(界磁軸)に設定されている。図中Cは目標電圧円算出部90により算出されたVp_targetを半径とする円(目標電圧円)である。Vp_targetは、例えばVdc×0.5に設定され、或いは正弦波変調に対応したVdc/61/2に設定される。
また、Vqはq軸電圧、Vdはd軸電圧、ωは電動機1の角速度、Lqはq軸電機子のインダクタンス、Iqはq軸電流、Ldはd軸電機子のインダクタンス、Idはd軸電流、Keは誘起電圧定数(Keωは誘起電圧)である。
図6において、q軸電圧Vqとd軸電圧Vdの合成ベクトルV1は、電源電圧円Cの範囲外(|V1|>Vp_target)となり、この場合はPWM演算部62からq軸電機子及びd軸電機子に通電することができない。そこで、界磁弱め電流算出部91は、以下の式(1)により算出されるΔVpを生じさせる電流分を、d軸電機子の通電量に加えることによりq軸電圧をVqからVq'とする界磁弱め制御を行う。
Figure 0004754378
これにより、d軸電圧とq軸電圧の合成ベクトルがV1からV1'となり、合成ベクトルV1'は電源電圧円Cの範囲内となるため、q軸電機子に通電することが可能となる。
界磁弱め電流算出部91は、図7に示したように、上記ΔVpを算出するΔVp算出部100と、ΔVpに応じた界磁弱め電流指令値ΔId_volを算出するΔId_vol算出部110とにより構成されている。ΔVp算出部100には、目標電圧円の半径Vp_targetとd軸電圧の指令値Vd_cとq軸電圧の指令値Vq_cとが入力される。そして、2乗器101,102、減算器103、平方器104、及び減算器105により、上記式(1)の演算が実行されてΔVpが算出される。
また、ΔId_vol算出部110は、ΔVpに対して、比例ゲインK1(111)と時定数T1(112)を乗じて、積分処理を行い(113)、演算値を電動機1の通常使用領域内に制限するリミット処理(114)を行う。そして、該リミット処理(114)により得られたΔId_aと、該値に対して時定数T2を乗じて(120)積分処理を行い(121)、演算値を電動機1の通常使用領域内に制限するリミット処理(122)を行ったΔId_bとを加算器130により加算して、演算値を電動機1の通常使用領域内に制限するリミット処理(131)を行うことで、界磁弱め電流指令値ΔId_volを算出する。
次に、図10に示したフローチャートに従って、ロータ位相差指令値決定部94及び電流指令値決定部60の作動について説明する。図10のSTEP10〜STEP12及びSTEP20がロータ位相差指令値決定部94による処理であり、STEP13が電流指令値決定部60による処理である。
ロータ位相差指令値決定部94は、図8(a)に示したΔId_vol/θdマップを用いて、ロータ位相差θdを決定する。図8(a)に示したΔId_vol/θdマップは、図中A1の設定により、界磁弱め電流指令値ΔId_volがΔId_vol_refよりも大きいとき(ΔId_vol_ref<ΔId_vol)は、ロータ位相差θdを180度(界磁弱め側)とし、界磁弱め電流指令値ΔId_volがΔId_vol_ref以下であるとき(ΔId_vol≦ΔId_vol_ref)には、ロータ位相差θdを0度(界磁強め側)とするものである。
なお、A1の設定はロータ位相差θdを2段階(0度又は180度)に切り替えるものであるが、B1の設定のように3段階に切り替えてもよく、或いは4段階以上に切り替える設定としてもよい。また、図8(b)に示したように、界磁弱め電流指令値ΔId_volの大きさに反比例させてロータ位相差θdを連続的に変更するようにしてもよい。
ロータ位相差指令値決定部94は、STEP10で、界磁弱め電流算出部91により算出された界磁弱め電流指定値ΔId_volを読み込む。そして、続くSTEP11で、ロータ位相差指令値決定部94は、界磁弱め電流指令値ΔId_volがΔId_vol_ref(図8(a)参照)以下であるか否かを判断する。
界磁弱め電流指令値ΔId_volがΔId_vol_ref以下であったときはSTEP12に進み、ロータ位相差指令値決定部94は、図8(a)に示したΔId_vol/θdマップに従ってロータ位相差指令値θd_cを180度に決定し、STEP13に進む。一方、界磁弱め電流指令値ΔId_volがΔId_vol_refよりも大きいときにはSTEP20に分岐し、ロータ位相差指令値決定部94は、図8(a)に示したΔId_vol/θdマップに従ってロータ位相差指令値θd_cを0度に決定して、STEP13に進む。
STEP13で、電流指令値決定部60は、予めメモリ(図示しない)に記憶されたTr,θd/Id,Iqマップに、トルク指令値Tr_cとロータ位相差指令値θd_cを適用して、d軸電流の指令値Id_c及びq軸電流の指令値Iq_cを決定する。ここで、Tr,θd/Id,Iqマップは、ロータ位相差θdの設定に応じて変化する電動機1の界磁の磁束の変化を考慮して、実験データ或いはコンピュータシミュレーションに基づいて作成されたものである。
このように、ロータ位相差θdの設定が変更されたときに、それに応じてd軸電流の指令値Id_cとq軸電流の指令値Iq_cを決定することで、界磁の状態に応じた適切なId_cとIq_qを決定することができる。
なお、本実施の形態では、Tr,θd/Id,Iqマップを用いてId_cとIq_cを決定したが、電動機1の出力トルクはq軸電流と誘起電圧定数Keに比例するため、電動機1の誘起電圧定数Keを推定して、q軸電流の指令値Iq_cとd軸電流の指令値Id_cを決定するようにしてもよい。
具体的には、図9(a)に示したθd/KeマップのA2の設定を用いて、ロータ位相差θd(0度又は180度)に対応した電動機1の誘起電圧定数Keを取得し、該誘起電圧定数Keの下でトルク指令Tr_cが得られるq軸電流の指令値Iq_cとd軸電流の指令値Id_cを決定する。なお、図8(a)のB1の設定によりロータ位相差θdを3段階に切り替えて設定するときは、それに応じて、図9(a)のB2の設定により誘起電圧定数Keも3段階に切り替えて設定する。ロータ位相差θdを4段階以上に設定するときも同様である。また、図8(b)に示したように、界磁弱め電流指令値ΔId_volの大きさに反比例させてロータ位相差θdを連続的に変更するときは、それに応じて、図9(b)に示したように、誘起電圧定数Keもロータ位相差θdに反比例させて連続的に変更する。
次に、図11に示したフローチャートに従って、アクチュエータ25の動作について説明する。アクチュエータ25は、図11のSTEP1でロータ位相差指令値決定部94からロータ位相差の指令値θd_cを受信すると、STEP2でθd_cを機械角度βに変換する。そして、続くSTEP3で、アクチュエータ25は機械角度βを第1プラネタリキャリアC1の動作角度γに変換し、STEP4で該動作角度γ分だけ、第1プラネタリキャリアを回動させる。
なお、本実施の形態の電動機の制御装置は、d軸電圧の指令値Vd_c及びq軸電圧の指令値Vq_cと目標電圧円の半径Vp_targetとに基づいて、界磁弱め電流指令値ΔId_volを算出したが、他の構成により界磁弱め電流の指令値を算出する場合であっても、本発明の効果を得ることができる。
2重ロータを備えたDCブラシレスモータの構成図。 図1に示したDCブラシレスモータの外側ロータと内側ロータの位相差を変更する機構の構成図及び作動説明図。 外側ロータと内側ロータの位相差を変更することによる効果の説明図。 外側ロータと内側ロータの位相差を変更することによる効果の説明図。 電動機の制御装置の制御ブロック図。 dq座標系における電圧ベクトル図。 界磁弱め電流算出部のブロック図。 界磁弱め電流に応じたロータ位相差を決定するマップの説明図。 ロータ位相差に応じた誘起電圧定数を決定するマップの説明図。 界磁弱め電流指令値に応じてロータ位相差の指令値とd軸電機子及びq軸電機子の通電量の指令値を決定する処理のフローチャート。 アクチュエータによりロータ位相差を変更する処理のフローチャート。 電動機の界磁弱めが必要となる領域の説明図。
符号の説明
1…電動機、2…電動機の回転軸、10…ステータ、11…内側ロータ、11a,11b…永久磁石、12…外側ロータ、12a,12b…永久磁石、25…アクチュエータ、30…遊星歯車機構、C1…第1プラネタリキャリア、C2…第2プラネタリキャリア、R1…第1リングギア、R2…第2リングギア、S…サンギア、31…第1プラネタリギア、32…第2プラネタリギア、33…サンギアの回転軸、34…軸受け、35…第1プラネタリキャリアの回転軸、50…通電制御部、60…電流指令値決定部、90…目標電圧円算出部、91…界磁弱め電流算出部、94…ロータ位相差指令値決定部

Claims (4)

  1. 永久磁石による界磁を複数個有する第1ロータ及び第2ロータを、回転軸の周囲に同心円状に配置した永久磁石界磁型の回転電動機の作動を、該第1ロータと該第2ロータとの位相差であるロータ位相差を変更することによる界磁制御を行って制御する電動機の制御装置であって、
    前記第1ロータの位置を検出するロータ位置検出手段と、
    前記第1ロータの位置に基づいて、前記電動機を界磁の磁束方向であるd軸と該d軸と直交するq軸からなる2相直流の回転座標系による等価回路に変換し、d軸側の電機子の通電量とq軸側の電機子の通電量を制御することで、前記電動機の通電制御を行う通電制御手段と、
    所定の界磁弱めの効果を得るために必要なd軸側の電機子の通電量である界磁弱め電流指令値を決定する界磁弱め電流指令値決定手段と、
    前記界磁弱め電流指令値に応じて、前記ロータ位相差の指令値を決定するロータ位相差指令値決定手段と、
    前記ロータ位相差の指令値に応じて、前記ロータ位相差を変更するロータ位相差変更手段とを備えたことを特徴とする電動機の制御装置。
  2. 直流電源から供給される直流電力を前記電動機の電機子に供給する多相交流電力に変換するインバータ回路を備え、
    前記界磁弱め電流指令値決定手段は、前記等価回路におけるd軸側の電機子の端子間電圧とq軸側の電機子の端子間電圧との合成ベクトルの大きさが、前記直流電源の出力電圧以下に設定された所定電圧以下となるように、前記界磁弱め電流指令値を決定することを特徴とする請求項1記載の電動機の制御装置。
  3. 前記ロータ位相差の指令値と所定のトルク指令値とに応じて、q軸側の電機子の通電量の指令値とd軸側の電機子の通電量の指令値とを決定する電流指令値決定手段を備え、
    前記通電制御手段は、該通電指令値決定手段により決定されたq軸側の電機子の通電量の指令値とd軸側の電機子の通電量の指令値とに基づいて、q軸側の電機子の通電量とd軸側の電機子の通電量とを制御することを特徴とする請求項1又は請求項2記載の電動機の制御装置。
  4. 前記電流指令値決定手段は、前記ロータ位相差の指令値に基づいて前記電動機の誘起電圧定数を推定し、該誘起電圧定数の推定値を用いてq軸側の電機子の通電量の指令値とd軸側の電機子の通電量の指令値とを決定することを特徴とする請求項3記載の電動機の制御装置。
JP2006078552A 2006-03-22 2006-03-22 電動機の制御装置 Expired - Fee Related JP4754378B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006078552A JP4754378B2 (ja) 2006-03-22 2006-03-22 電動機の制御装置
US11/717,636 US7583048B2 (en) 2006-03-22 2007-03-14 Controller for motor
DE102007013577A DE102007013577B4 (de) 2006-03-22 2007-03-21 Motorsteuerung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078552A JP4754378B2 (ja) 2006-03-22 2006-03-22 電動機の制御装置

Publications (3)

Publication Number Publication Date
JP2007259549A JP2007259549A (ja) 2007-10-04
JP2007259549A5 JP2007259549A5 (ja) 2008-10-23
JP4754378B2 true JP4754378B2 (ja) 2011-08-24

Family

ID=38514809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078552A Expired - Fee Related JP4754378B2 (ja) 2006-03-22 2006-03-22 電動機の制御装置

Country Status (3)

Country Link
US (1) US7583048B2 (ja)
JP (1) JP4754378B2 (ja)
DE (1) DE102007013577B4 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4879657B2 (ja) * 2006-05-31 2012-02-22 本田技研工業株式会社 電動機の制御装置
JP4712638B2 (ja) * 2006-08-04 2011-06-29 本田技研工業株式会社 電動機の制御装置
JP4582168B2 (ja) * 2008-03-21 2010-11-17 株式会社デンソー 回転機の制御装置、及び回転機の制御システム
JP5200628B2 (ja) * 2008-03-31 2013-06-05 株式会社ジェイテクト モータ制御装置および電動パワーステアリング装置
JP4556076B2 (ja) 2008-04-22 2010-10-06 本田技研工業株式会社 電動機の制御装置
US7957942B2 (en) * 2008-06-22 2011-06-07 United Electronic Industries, Inc Position and angle digital detection and simulation
US8594981B2 (en) * 2008-06-22 2013-11-26 United Electronic Industries Dynamically powering a position and angle digital detection and simulation output
JP5229642B2 (ja) * 2010-08-06 2013-07-03 株式会社デンソー モータ、および、それを用いた電動パワーステアリング装置
GB201301259D0 (en) * 2013-01-24 2013-03-06 Rolls Royce Plc Method of controlling an ac machine and controller for controlling an ac machine
DE102013004954B4 (de) * 2013-03-22 2022-07-07 Audi Ag Verfahren zum Betreiben einer mehrphasigen elektrischen Maschine sowie entsprechende mehrphasige elektrische Maschine
US9968412B2 (en) 2016-08-16 2018-05-15 Ethicon Endo-Surgery, Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
US9956050B2 (en) 2016-08-16 2018-05-01 Ethicon Endo-Surgery, Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
US10016246B2 (en) * 2016-08-16 2018-07-10 Ethicon Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
US10008967B2 (en) * 2016-10-25 2018-06-26 Microchip Technology Inc. Closed loop flux weakening for permanent magnet synchronous motors
JP7192649B2 (ja) * 2019-05-09 2022-12-20 株式会社デンソー 回転電機制御装置
CN116470794A (zh) * 2022-01-12 2023-07-21 舍弗勒技术股份两合公司 用于永磁同步电机的控制方法和控制模块

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0945963B1 (en) * 1998-03-25 2003-11-05 Nissan Motor Co., Ltd. Motor/generator
JP3806539B2 (ja) * 1999-03-24 2006-08-09 株式会社日立製作所 永久磁石式同期モータの制御方法
JP3480439B2 (ja) * 1999-09-27 2003-12-22 日産自動車株式会社 回転電機の制御装置
JP4013448B2 (ja) * 2000-05-01 2007-11-28 株式会社デンソー 2ロータ型同期機
US6563246B1 (en) * 1999-10-14 2003-05-13 Denso Corporation Rotary electric machine for electric vehicle
US6472845B2 (en) * 2000-08-07 2002-10-29 Nissan Motor Co., Ltd. Motor/generator device
JP4269544B2 (ja) * 2000-09-14 2009-05-27 株式会社デンソー 複数ロータ型同期機
JP4666806B2 (ja) 2000-11-01 2011-04-06 信越化学工業株式会社 永久磁石型回転電動機
JP3671884B2 (ja) * 2001-08-30 2005-07-13 日産自動車株式会社 回転電機
JP3711955B2 (ja) 2002-04-01 2005-11-02 日産自動車株式会社 回転電機の制御装置
JP3757890B2 (ja) * 2002-04-01 2006-03-22 日産自動車株式会社 回転電機の駆動方法
JP4225001B2 (ja) 2002-08-09 2009-02-18 株式会社エクォス・リサーチ 電動機
JP2006050705A (ja) * 2004-08-02 2006-02-16 Nissan Motor Co Ltd 電動機制御装置

Also Published As

Publication number Publication date
US7583048B2 (en) 2009-09-01
JP2007259549A (ja) 2007-10-04
DE102007013577B4 (de) 2011-06-22
DE102007013577A1 (de) 2007-10-18
US20080024082A1 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP4754378B2 (ja) 電動機の制御装置
JP4754379B2 (ja) 電動機の制御装置
JP4879649B2 (ja) 電動機の制御装置
JP4712585B2 (ja) 電動機の制御装置
JP4879657B2 (ja) 電動機の制御装置
JP4745158B2 (ja) 電動機の制御装置
JP2002315386A (ja) 電動機の制御装置
JP2008043128A (ja) 電動機の制御装置
US20060145652A1 (en) Motor drive controlling device and electric power-steering device
JP5267848B2 (ja) モータ制御装置
JP4749941B2 (ja) 電動機の制御装置
JP5172418B2 (ja) 電動機システムの制御装置
JP4749936B2 (ja) 電動機の制御装置
JP5273706B2 (ja) 電動機の制御装置
JP2001190099A (ja) 永久磁石同期電動機のベクトル制御方法
JP5212696B2 (ja) 電動機の制御装置
JP5212697B2 (ja) 電動機の制御装置
JP4724078B2 (ja) 電動機の制御装置
JP2008193790A (ja) 電動機付ターボチャージャ用電動機駆動装置
JPWO2009004944A1 (ja) 同期モータの制御方法及び制御装置
JP2018014789A (ja) 電動オイルポンプおよび電動オイルポンプシステム
JP5172437B2 (ja) 電動機の制御装置
JP2013085422A (ja) モータ制御装置
JP2013085423A (ja) モータ制御装置および電動パワーステアリング装置
JP2012239281A (ja) モータ制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees