JP4726419B2 - 流路部材及び流路装置 - Google Patents

流路部材及び流路装置 Download PDF

Info

Publication number
JP4726419B2
JP4726419B2 JP2004048100A JP2004048100A JP4726419B2 JP 4726419 B2 JP4726419 B2 JP 4726419B2 JP 2004048100 A JP2004048100 A JP 2004048100A JP 2004048100 A JP2004048100 A JP 2004048100A JP 4726419 B2 JP4726419 B2 JP 4726419B2
Authority
JP
Japan
Prior art keywords
flow path
actuator
flow
insulating substrate
path member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004048100A
Other languages
English (en)
Other versions
JP2005238347A (ja
Inventor
藤人 中川路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004048100A priority Critical patent/JP4726419B2/ja
Publication of JP2005238347A publication Critical patent/JP2005238347A/ja
Application granted granted Critical
Publication of JP4726419B2 publication Critical patent/JP4726419B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)

Description

本発明は、アクチュエータによって流量を増減可能な流路部材及び流路装置に関するものである。
近年、半導体産業における微細加工技術の発展により、シリコンやガラス基板、樹脂基板上に微細な配線を作製する技術が広く用いられるようになり、小型の電気化学センサーが作製され、環境、医療分野に応用されてきている。
また、近年、DNAの解析技術が大きく発展し、ガラス基板上に微細な流路を形成した装置を利用して、電気泳動法を応用した解析が行なわれており、このような微細加工技術を用いた小型の分析手法μTAS(Total Analysis Sytem)が話題となっている。また、化学装置においても、マイクロリアクタの考え方が出てきており、反応装置を小型することで、資源の節約や、実験の手軽さを実現することが期待され、それに伴う実験数の増加が期待される。また、医療分野においては、その場で、血液の分析等が可能となり、迅速な医療処置がおこなわれる可能性がある。
マイクロリアクタの流路形成方法は比較的簡単ではあるが、流路内の流体の流量調整は試行錯誤で流路を設計して行われ、そのたびに試作する必要がある。さらに、流体の粘度等が変化した場合、微調整が困難であった。
このような課題に対し、流路内の流体の流量を調整するために、例えば、流路の途中に微小バルブを設けることで流路の流れを調整する方法(特許文献1参照)や、微小流路を流れる流体に、刺激によりゾルーゲル転移する物質を添加し、微小流路上の所望の箇所に刺激を与え、流体をゲル化させて流れを制御する方法(特許文献2参照)が提案されている。
特開2002−282682号公報 特開2002−163022号公報
しかしながら特許文献1の方法では、バルブでは開閉が行えるのみであるため流量を調整することはできない。また、特許文献2の方法では、精密な調整を行うためには、刺激量と流量との相関を予め測定する必要があり、また、応答速度、再現性において信頼性が高いとは考えられず、精密な流量調整ができるとは言い難い。
本発明は、流量調整精度に優れた、流路部材およびその製造方法ならびに流路装置を提供することを目的とする。
本発明の流路部材は、絶縁基板と、該絶縁基板に内蔵された流路と、圧電素子の電歪作用によって前記流路の形状を変化させて流量を増減するアクチュエータと、を具備してなり、該アクチュエータは前記流路に隣接するように前記絶縁基板に固定され、かつ前記アクチュエータは、圧電絶縁層と内部電極層とが交互に流路側に向けて積層された圧電素子に、前記圧電絶縁層の両側に前記積層された圧電素子の側面に層状に形成されるとともに前記内部電極層にそれぞれ接続された一対の外部電極を設けて、前記アクチュエータの前記絶縁基板側に固定された主面側の端部にて前記一対の外部電極が前記絶縁基板に設けられた貫通導体とそれぞれ電気的に接続されることによって構成されており、該一対の外部電極を介して前記圧電絶縁層に電圧を印加することにより、前記圧電素子の寸法を前記圧電絶縁層の厚み方向に前記絶縁基板に固定された主面とは逆の主面側に向かって増減させて前記流路の断面積を増減させることを特徴とする。
また、本発明の流路部材は、前記流路を構成する前記絶縁基板の壁面に前記アクチュエータが配置されていることが望ましい。
また、本発明の流路部材は、流路と圧電素子との間に圧電素子保護層が設けられていることが望ましい。
また、本発明の流路部材は、異なる流体を流通させる複数の流路を備えるとともに、前記複数の流路が合流し、前記の異なる流体を混合させる混合場を具備してなることが望ましい。
また、本発明の流路部材は、複数の流路のそれぞれに、該流路の形状を変化させて流量を増減するアクチュエータが設けることが望ましい。
また、本発明の流路部材は、流路を挟持するように、複数のアクチュエータが配置されてなることが望ましい。
また、本発明の流路部材は、絶縁基板が少なくとも樹脂を含有してなることが望ましい。
また、本発明の流路部材は、絶縁基板を構成する樹脂が熱可塑性樹脂であることが望ましい。
また、本発明の流路部材は、絶縁基板がセラミックスを主成分とすることが望ましい。
また、本発明の流路部材は、前記絶縁基板は前記アクチュエータの外部電極に電圧を印加する導体配線層を有しており、該導体配線層が金、銀、銅、アルミニウムの少なくとも1種を含む低抵抗金属からなることが望ましい。
また、本発明の流路装置は、以上説明した流路部材に連結部材を介してポンプが接続されてなることを特徴とする。
また、本発明の流路装置は、以上説明した流路部材に連結部材を介して流量測定器が接続されてなることを特徴とする。
本発明の流路部材では、絶縁基板に内蔵された流路の断面積をアクチュエータを用いて変化させ、流体の流量を迅速に精密に制御することが可能となった。
また、流路の壁面にアクチュエータを配置することで、より、簡単な構造で流路の制御を行うことができ、流路部材のコストダウンを可能とし、また、信頼性を向上させることができる。
また、圧電素子を圧電素子保護層で保護することにより、流体による圧電素子の劣化を防止し、流路部材の寿命を延ばすことができる。
また、異なる流体を流通させる複数の流路を備えるマイクロリアクタとして異なる流体が混合反応する場を設けることで、いろいろな反応を行うことが可能となる。
また、複数の流路のそれぞれに、該流路の形状を変化させて流量を増減するアクチュエータを設けることにより、反応の場へ供給する各流路の流量を制御でき、反応の微調整がさらに可能となる。
また、アクチュエータ1個の変位量で流量制御困難な場合は2個以上のアクチュエータを流路を挟持するように、配置組み合わせることにより大きく流量を制御できる。
また、絶縁基板として加工性に優れた樹脂を用いることにより、微細な流路であっても、容易に形成することができる。また、透明の樹脂を用いた場合には、流体の流れている様子を可視化でき、分光学的測定が可能となる。
また、樹脂を熱可塑性樹脂にすることにより、インプリント等の加工技術を用いることが可能となり、量産化が容易となりさらに、低コスト化が可能となる。
また、流体としては、水系、溶剤系が考えられるが、溶剤系の場合、絶縁基板として樹脂を用いることが困難となる。また、流体が強酸、強アルカリ等の場合も、樹脂が分解される可能性があるため、樹脂を用いることができない場合がある。このような場合であっても耐溶剤性、耐薬品性に優れたセラミック材料で絶縁基板を形成することにより、流体として有機溶剤や強酸、強アルカリ等を流体として使用できる。また、温度を制御する場合はセラミックであれば高温にすることも可能となる。
また、配線回路に金、銀、銅、アルミニウムの少なくとも1種を含む低抵抗金属を用いることで、高電圧の電流を流しても発熱しないので、精密な温度制御が必要な場合には、特に望ましい。
また、本発明の流路装置を用いることで、流体抵抗を発生させることができ、微小流量発生のポンプを用いて原料流体を流した場合に発生する脈動並びに脈流を整流化することができる。
また、流路部材に連結部材を介して流量測定器を接続することにより、実際の流量が実測可能となり、より精密な測定が可能となる。
本発明の流路部材は、例えば、図1に示すように、絶縁基板1である配線側基板1aと、流路側基板1bとの積層体であり、配線側基板1aにはアクチュエータ3が埋め込まれており、アクチュエータ3の+側外部電極5a、―側外部電極5bには、アクチュエータ3に電流を供給する貫通導体15および導体配線層17が接続されている。なお、アクチュエータ3は配線側基板1aに接着シート7により固定されている。また、アクチュエータ3である圧電素子3は樹脂などからなる圧電素子保護層9により保護することが望ましい。また、流路11は流路側基板1bの配線側基板1aと接する側の面に設けられた溝と、この溝を塞ぐ配線側基板1aとで構成されている。
そして、流路部材に内蔵され、流路11の近傍に配置されたアクチュエータ3に、導体配線層17、貫通導体15、外部電極5を介して電圧を印加することで、アクチュエータ3の寸法が増減し、流路11の断面積を増減させて流路11に流れる流体の流量を変化させることができるのである。
図2(a)、(b)、(c)にアクチュエータ3である圧電素子3の詳細な構造を示す。図2(a)に示すように、圧電素子3は、薄膜の圧電絶縁層19と薄膜の内部電極層21とを交互に積層して構成される。さらに内部電極層21には+側内部電極層21aと−側内部電極層21bがあり、圧電絶縁層19を挟んで交互に積層されている。この+側内部電極層21aは全て+側外部電極5aに接続され、一方、−側内部電極層21bは全て−側外部電極5bに接続されている。
図2(b)は内部電極層21の形状を示す平面図である。例えば、圧電絶縁層19の主面に形成された+側内部電極層21aは、圧電素子3の一端部に形成された+側外部電極5aと電気的に接続されるため、図2(b)の例では、右側の端部には延びており、それ以外の3辺とは電気的に絶縁する必要があるため、それぞれの辺に対して+側内部電極層21aを設けていない絶縁部が形成されている。そして、圧電絶縁層19の主面のうち、+側内部電極層21aが形成された主面とは逆の主面には、−側内部電極層21bが形成されており、+側内部電極層21aとは逆の形状となっている。即ち、+側外部電極5aとは逆に、左側の辺に−側内部電極層21bが延びた構造となっている。
また、図2(c)は圧電素子3が電圧を制御することにより、垂直方法に変位することを示している。
即ち、本発明の流路部材は、電圧を制御することにより垂直方向に変位するアクチュエータ3を流路11に隣接するように内蔵することで、流路部材の流路11の断面積を精密に制御することができ、流路11が極端に微細なものであったとしても、流路11を流れる流体の流量を迅速に、精密に制御することができるのである。
図3に本発明の流路部材内に形成された流路11の構成例を示す。まず、ポンプを用いて流体A〜Dが流路11a〜11dに導入される。これらの流体のうち流路11bに導入された流体Bは、流路bから分岐した流路11eと流路11fとに分かれて流れる。そして、流路11a〜11dに導入された流体はアクチュエータ3(図示せず)が設けられた流量調整部4A〜4Eで、それぞれ、流量を調整され、流路11g〜11kへと流れていく。
例えば、流路11a、流量調整部4Aを経て、流路11gを通過した流体Aと、流路11b、流路11e、流量調整部4Bを経て、流路11hを通過した流体Bとは、流路11gと流路11hとが合流して形成された流路11mで混合される。例えば、流体AとBとが、反応しうる物質である場合には、流路11mは、流体Aと流体Bとの反応場となる。
また、流路11fを通過した流体Bは流量調整部4Cで、流量を調整されて、流路11iへと流れ出す。また、流路11cに導入された流体Cは流量調整部4Dを経て、流路11jへ流れ出し、流路11iと合流し、流路11nで流路11iからの流体Bと混合される。そして、流体Bと流体Cとが反応する場合には、この流路11nは流体Bと流体Cとの反応場となる。さらに、流体Bと流体Cとの混合流体あるいは反応流体は、流路11d、流量調整部4E、流路11kを経て、流路11nと合流した流体Dと流路11pで混合、あるいは反応することになる。
図3に示すように、本発明の流路部材によれば、複数の流体を高精度に混合、反応させることができ、また、非常に少量の流体であっても混合、反応を行うことができる。また、連続して異なる組成の流体を混合、反応させることも可能である。
このような流路部材において、流量調整部4A〜4Eにはアクチュエータ3が配置されているが、流量調整部4A〜4Eはアクチュエータ3の体積の増減方向に対して、幅広く、浅く形成することが望ましい。このような構造にすることで断面構造変化による抵抗発生のため、ポンプで発生した脈流を整流することができる。さらに、アクチュエータの変位が微量でも流量を大きく変化させることができる。
また、流量調整部4A〜4Eにおいて、流路11を挟み込むように、アクチュエータ3を配置した場合には、アクチュエータ3の変位による流路11の体積の増減量、並びに増減速度を2倍にすることができるため、より迅速に、流量を大きく変化させることができる。
なお、それぞれのアクチュエータ3は必要に応じて、それぞれが独立して制御できることは言うまでもない。
本発明の流路部材に形成された流路11は、以上説明したように種々の気体、液体、および混層流体を流通させるもので、その目的に合わせて形状を適宜設計、変更することが望ましい。例えば、大気中の成分分析、液体のpHを測定するなど、流体に他の成分を混合するなどの処理を行う必要が無い場合には、流路11の断面構造は流体と壁の抵抗が小さくなるような構造が望ましく、例えば、図4(a)に示すように略半円とすることが望ましい。
また、流体を薬品と混合するなどして、処理した流体を検査する場合には流体と薬品とを混合する必要があるため、流体抵抗が大きい流路断面として、流体の混合を促進することが望ましく、例えば、図4(b)に示すように流路断面を矩形とすることが望ましい。また、より短い距離で混合、反応を終わらせるためには、流路11の壁面に流体の流れ方向に略垂直な方向に溝を形成するなどして流体が乱流を起こすような形態とすることが望ましい。
このように、流路11の断面形状はその目的に合わせて、断面構造を最適化することが望ましい。いうまでもなく、流路11の最適な断面形状は流体の特性によっても変化する。例えば、粘度の低い流体は流路11の幅が狭くても流体は充分に流れるが、流体の粘度が高くなると流路11の断面積を広くする必要がある。このような観点から、流路11の幅は、100〜700μm程度が適当である。また、流路11の深さについても同様であり、粘度が低いと浅く、粘度が高いと深くすることが望ましく、100〜500μmが適当である。
また、本発明の流路部材に用いられる配線側基板1a、流路側基板1bの材料は熱硬化性樹脂、熱可塑性樹脂、セラミック材料が用いられ、実験の目的に合して選択できる。配線側基板1a、流路側基板1bの材料は、材料の加工性を考慮すると熱可塑性樹脂を用いることが望ましく、スチロール系樹脂、アクリル系樹脂、メタクリル系樹脂、ポリエステル系樹脂、シリコーン系樹脂、および熱可塑性弗素系樹脂などが好適に用いられる。とくに、分光学的測定における検出器として用いる場合には、透明性が重要となるので、透明な樹脂基板が得られるような加工条件を選択したり、透明度の高い樹脂基板を選択することが好ましい。また、熱可塑性樹脂はインプリントやナノインプリントの加工方法を用いることが可能であり、同じ形状を多量に作製する場合に適している。また、熱硬化性樹脂は耐溶剤性に優れており、特に、有機溶剤を流体として用いて分光学的測定を行う用途に適している。このような熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、熱硬化性ポリフェニレンエーテル樹脂、ポリイミド樹脂等が用いられる。セラミック材料としては、アルミナ、ムライト、窒化アルミニウム等が用いられる。セラミック材料は耐溶剤性と耐薬品性が優れており、特に樹脂が用いることのできない場合に適している。また、絶縁基板1をセラミック材料により形成した場合には、耐熱性に優れていることから、発熱反応を伴う場合であっても何ら問題なく長時間の使用が可能である。
また、絶縁基板1をセラミック材料により形成した場合には、外部ヒーターにより加熱することもできる。また、ヒータ電極を内蔵させることも可能であり、その場合には装置全体の小型化が可能となる。
また、アクチュエータ3の圧電絶縁層19の材料としては、ペロブスカイト構造を有するジルコン酸チタン酸鉛Pb(Zr、Ti)O(PZT)や、その他マグネシウムニオブ酸鉛Pb(Mg1/3Nb2/3)O(PZN)等が用いられる。また、外部電極5には金属粉末と樹脂との混合物である導電性ペーストが用いられる。内部電極層21は電気抵抗等を考慮して、銀あるいは銀パラジウム合金ペーストあるいはニッケルペースト等が用いられる。
また、アクチュエータ3を配線側基板1aに搭載する場合には、アクチュエータ3と配線側基板1aとの間に粘着力あるいは接着力を有するアクチュエータ接着層7を設けることが望ましい。アクチュエータ接着層7としては、半導体素子などをマウントする際に用いられるエポキシシートを好適に用いることができる。なお、粘着性あるいは接着性があれば、特に材料を限定する必要はない。また、アクチュエータ接着層7を用いずにアクチュエータ3を貫通導体15に半田実装するなどしてもよい。
また、配線側基板1aを貫通して設けられた貫通導体15は、例えば、炭酸レーザ等を用いて加工された貫通孔15aに導電性の金属と熱硬化性樹脂から構成される導電性ペーストを充填して形成される。金属成分としては、銅あるいは銀コート銅、はんだコート銅等の単独または低融点金属との混合物が好適に用いられる。樹脂は熱硬化性樹脂であれば良く、汎用のエポキシ樹脂を用いても良い。エポキシ樹脂としては、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、他官能型エポキシ樹脂などが好適に用いられ、さらに硬化剤として酸無水物系、アミン系、イミダゾール系を混合して貫通導体15となる導電性ペーストとする。また、樹脂としてフェノール樹脂を用いても良い。
導体配線層17は、従来の配線基板として導体配線層を形成するに好適な金属より形成され、例えば、金、銀、銅、アルミニウムの少なくとも1種を含む低抵抗金属の金属箔が好適に使用される。導体配線層17の厚みは1〜50μmが良く、望ましくは5〜20μmが良い。導体配線17の厚みを5〜20μmにすることにより、良好に電気信号を伝えることができる。導体配線層17の厚みが1μmより小さいと導体配線層17の抵抗が大きくなり、また、50μmより大きいと、積層時に配線側基板1aの変形が大きくなったり、配線側基板1aへの導体配線層17の埋め込み量が多くなり、配線側基板1aの歪みが大きくなり、全製造工程後に配線側基板1aが変形を起こしやすいなどの問題がある。また、導体配線層17が厚くなることにより、導体配線層17のパターンをエッチングして形成する場合には、エッチングしにくくなるため精度のよい微細な回路が得られないという問題もある。なお、導体配線層17の表面にNiやAuなどのメッキを施してもよい。
次に、本発明の流路部材の製造方法について図5〜13を用いて説明する。
まず、アクチュエータ3の製造方法を示す。アクチュエータ3は、その製造方法が広く公開されている。図5に薄膜技術を応用した積層型圧電素子3の製造プロセスを示す。焼成までの前工程は、積層セラミックコンデンサと類似の方法で製造される。各種セラミック原料粉末を所定の組成で秤量、混合後、予焼し、得られた圧電セラミックス粉末に、適量の有機バインダ、溶剤、可塑剤及び分散剤を添加混練し、スラリーを作製する。バインダとしては、ポリビニルブチラールやアクリレート系バインダが使用される。また、溶剤としては、トルエンなどの有機溶剤が好適に用いられる。また、可塑剤としては、DOP(ジオクチルフタレート)のような高沸点系の有機溶剤が用いられる。また、分散剤は市販のものであれば特に規定されない。これらの成分は必要に応じて適宜、配合比を調整することができる。このようにして作製したスラリーを成膜装置により15〜100μmの厚みのグリーンシートとし、適当な寸法に切断した後、その片面上に内部電極用金属ペーストを印刷し、これを所要枚数積層し、熱圧着により生積層体をつくる。次に生積層体の内部に含まれる有機成分を熱分解するために300〜400℃、10〜80hで脱バインダ処理を行う。なお、この脱バインダ処理においては、バインダ成分を完全に除去せずに、保形性を維持している。次に、脱バインダした生積層体を所要の寸法に切断後、800〜1500℃の温度で焼成することでセラミック積層体が得られる。次に、この焼結体から余分なバリなどを取り除き、寸法精度を高め、さらにC面加工し、さらに、この積層体の各内部電極層21が露出した側面に外部電極ペーストを塗布し、熱処理することで内部電極層21と外部電極5が接続され、アクチュエータ3となる。なお、内部電極層21や外部電極5となる金属ペーストは、従来、周知のAg−Pd系金属ペーストが好適に用いられる。
アクチュエータ3を構成する圧電絶縁層19のシート厚みはアクチュエータ3全体の厚みを薄くできるので薄いほど良い。しかしながら、セラミック粗大粒子のために絶縁性劣化が考えられるため、圧電絶縁層19のシート厚みは10μm以上が好ましい。圧電絶縁層19を複数層、積層してアクチュエータ3を作製するのであるが、必要な圧電絶縁層19の積層数は必要な変位量から計算して求められる。具体的には、アクチュエータ3の変位量は圧電絶縁層19の圧電歪係数D33と圧電絶縁層19の厚み、圧電絶縁層19の総層数から理論的に求めることができる。
次に、配線側基板1aに形成される導体配線層17の製造方法を説明する。
図6(a)に示す転写シートAは、樹脂フィルム23に接着層27を介して金属箔17が接着されて形成されてなるものである。樹脂フィルム23は、ポリエステル、ポリエチレンテレフタレート、ポリイミド、ポリフェニレンサルファイド、塩化ビニル、ポリプロピレン等公知のものが使用できる。樹脂フィルム23の厚みは、10〜500μmが適当であり、望ましくは20〜300μmが良い。樹脂フィルム23の厚みは、10〜500μmの範囲であれば十分に柔軟であり、後の工程で銅箔17の転写を問題なく行うことができる。これは、樹脂フィルム23の厚みが10μmより小さいと樹脂フィルム23の変形や折れ曲がりにより形成した導体配線層17が断線を引き起こし易くなり、厚みが500μmより大きいと樹脂フィルム23の柔軟性がなくなるため、樹脂フィルム23並びに接着層27の剥離が難しくなるためである。接着層27としては、アクリル系、ゴム系、シリコーン系、エポキシ系等公知の接着剤が好適に用いることができる。また、接着層27の厚みは、接着力とも関係するが、1〜20μmが適当である。
この導体配線層17は銅をメッキ成長させた銅箔17を用いることが望ましく、メッキ成長させた銅箔17は通常マット面(荒れた面)とシャニー面(スムーズ面)からなるが、シャニー面もエッチング液(例えばメック社のCZ液)にて処理すると荒れた面とすることができ、樹脂を含有する配線側基板1aや流路側基板1bに高温で押し付けることで、界面に物理的な接続力であるアンカー効果が発現する。
そして、このような転写シートAにおいて、樹脂フィルム23と接着層27の粘着力は、50〜700g/20mmが良く、望ましくは100〜500g/20mmが良い。樹脂フィルム23と接着層27の粘着力が50〜700g/20mmあれば銅箔が配線側基板に充分に密着し、問題なく電気信号を伝えることが可能となる。上記の粘着力が50g/20mmより弱いと、回路形成するためのエッチング処理の際、導体配線層25が樹脂フィルム23より剥離し、導体配線層17の断線を引き起こす。また、700g/20mmより大きいと、回路形成後、配線側基板1aに転写し、樹脂フィルム23並びに接着層27を剥離する際、配線側基板1aの変形、導体配線層17の断線等を引き起こす。なお、この粘着力は、図16に示すように、接着層27を介して導体配線層17が接着された樹脂フィルム23から樹脂フィルム23を導体配線層17から180°の方向に引き剥がす時の応力を表したものである。
次に、樹脂フィルム23に接着された導体配線層17からエッチング法により不要部分を除去して導体回路を形成する。先ず、図6(a)の転写シートAに、図6(b)に示すように導体配線層17上にフォトレジスト、スクリーン印刷等の方法で導体回路状にレジスト29を形成した後、不要な部分をエッチング除去して、図6(c)に示すような樹脂フィルム23上に所望の回路パターンを有する導体配線層17を形成することができる。
なお、このエッチング工程において導体配線層17の断面形状が図6(c)に示すように樹脂フィルム23に対して台形になる。次に、図6(d)に示すように、導体配線層17の不要部分をエッチング除去した後に、レジスト29をレジスト除去液等により取り除き、洗浄して、配線付き転写フィルムBを得ることができる。
次に、本発明の配線側基板1aの製造方法について説明する。
図7(a)に示すように、まず、アクチュエータ3を収納する配線側基板1aに形成されるくぼみと逆形状の凹凸をリソグラフィやエッチングにより施されたガラス基板33と、配線側基板1aを用意する。
次に、図7(b)に示すように、平行熱板35間に、ガラス基板33の凹凸が施された側の面と配線側基板1aとが対面するように配置して、配線側基板1aのガラス転移温度以上、融点以下の温度で加圧することにより、配線側基板1aにくぼみ12を転写、形成して、図7(c)に示すような主面にくぼみ12が形成された配線側基板1aを作製する。
次に、図8(a)に示すように、マイクロドリルまたは炭酸レーザなどのレーザ光を用いて、くぼみ12と連通する貫通孔15aを形成する。さらに、図8(b)に示すように、くぼみ12の底面に、貫通孔15aを塞がぬようにBステージのエポキシ製のアクチュエータ接着シート7を貼り付ける。
次に、図9(a)に示すように、くぼみ12にアクチュエータ3を挿入し、図9(b)に示すようにアクチュエータ3をアクチュエータ接着シート7を介して配線側基板1aに固定する。
次に、図10(a)に示すようにマスクシート31をアクチュエータ3以外の部分全体に貼り付ける。次に、図10(b)に示すように弾性率の低い、シリコーンゴムやアクリロニトリルゴムなどの希釈溶液をアクチュエータ3を覆うように塗布し、乾燥して、薄膜の圧電素子保護層9を形成する。さらに図10(c)に示すようにマスクシート31を剥がすことにより不必要な圧電素子保護層9を除去する。
次に図11に示すように貫通孔15aに導電性ペーストを埋め込み、貫通導体15とする。
次に、流路側基板1bの製造方法について説明する。
例えば、図12(a)、(b)に示すように、流路側基板1bは、流路側基板1bの少なくとも一方の主面に流路11が形成されており、その一部は、幅広になり、流量調整部4となっている。この流量調整部4の大きさはアクチュエータ3を収納できる大きさとすることが望ましい。このような構造の流路側基板1bは、図7(a)〜(c)を用いて説明したように、インプリント法、ナノインプリント法を用いることで容易に作製することができる。また、流路側基板1bに直接マイクロドリルを用いて機械的に切削してもよく、レーザ光を用いて流路側基板1bを直接加工してもよい。
そして、以上説明した、流路側基板1bと配線側基板1aと配線付き転写フィルムBとを、図13(a)に示すように、順次位置あわせして積層し、プレス機にて熱圧着する。この工程ではアクチュエータ3を固定するアクチュエータ接着シート7の硬化機能と、導体配線層17を転写する機能と、配線側基板1aと流路側基板1bとを熱接着させる一括積層機能をもつ。3つの機能を成立させる条件としては、配線側基板1aと流路側基板1bのTg以上の温度で加熱することが重要である。他の条件は任意に制御できる。
次に、図13(b)に示すように、樹脂フィルム23と、接着剤27を剥離することで、本発明の流路部材を作製することができる。なお、図13(b)で示した流路部材の断面は、流路11の流れ方向に対して垂直な方向の断面であり、図1で示した流路11の流れ方向に対して平行な方向の断面において、流路11が狭くなるアクチュエータ3が設けられた位置の断面である。
そして、アクチュエータ3が設けられた流量調整部4の形状は、図12(a)に示すような形状であってもよいが、図14(a)に示すように、流量調整部4と流路11との連結部において流路11の幅が徐々に広がるように形成することで、流路11に流体が滞留しないようにすることができる。また、図14(b)に示すように、流路11に比べて流量調整部4の底面を高く形成することで、流量調整部4の底面とアクチュエータ3との距離を小さくすることができ、アクチュエータ3の変位量が小さい場合でも、流量調整の能力を大きくすることができる。
以上説明した例ではアクチュエータ3を一つ形成する工程を示したが、複数個のアクチュエータ3を搭載してもよく、また、流路11の構造、数も任意に設計可能である。
また、絶縁基板1をセラミックにより形成する場合には、流路側基板1bと配線側基板1aとをセラミック基板で作製し、流路11をレーザ光やマイクロドリルにより形成し、例えば、流路側基板1bと配線側基板1aとを低融点ガラスや、ロウ材、樹脂系接着剤などの接着剤により接合することで流路部材を作製することができる。
なお、アクチュエータ3を収納するためのくぼみ12や貫通孔15aは、流路側基板1bや配線側基板1aの焼成前に成形体の段階で形成しておくことが望ましい。
また、基板1の材料が熱硬化性樹脂もしくはセラミックの場合は配線側基板1aと流路側基板1bの基板同士の接着方法としては接着シートを基板間に挟み、硬化させる方法を取ることもできる。この場合には、例えば、図10で形成したアクチュエータ保護層9のアクチュエータ3を覆っていない部分を除去せずに、接着層として用いることができる。なお、導体配線層17は銅タングステンペーストを用いたメタライズもしくは電解、無電界めっき工法を用いることでも作製することが可能である。
また、本発明の流路部材に連結部材を介して、流量測定器を連結することで、流量をより正確に制御することができる。また、例えば、流路部材にマイクロコイルを内蔵させて、フレミングの左手の法則を利用した流量測定器を内蔵させることで、複雑に分岐、合流する流路11の場合であっても、精密な流量の制御が可能となる。
厚み100μmのポリエチレンテレフタレート(PET)フィルム23の表面にアクリル系樹脂からなる接着剤27を3μm塗布し、厚さ12μm、表面粗さ0.8μmの銅箔を接着剤27に接着し転写フィルムAとした。この転写フィルムAに対して所定の配線形成用マスク、DFR(ドライフィルムレジスト)を用いてフォト工程、エッチング工程を行い配線付き樹脂フィルムBとした。
配線側基板1aとして、厚み1mmのポリメチルメタクリレート(PMMA)を用いた。まず、くぼみ12をPMMAからなる配線側基板1aに形成するために、ガラス基板33に従来のリソグラフィ、およびエッチング技術を用いて凹凸構造を作製し、平坦な厚み1mmのPMMAからなる配線側基板1aに、ガラス基板33の凹凸構造を有する側の面を当接させ、ホットプレスを用い160℃、3MPa、5分間、配線側基板1aにガラス基板33を押し付けて処理することによりガラス基板33上の凹凸をPMMAからなる配線側基板1aに転写し、くぼみ12を形成した。このくぼみ12の大きさはアクチュエータ3の大きさおよび流量を考慮して設計されるもので、0.68mm角、深さ0.55mmとした。
次に配線側基板1aに孔径200μmの貫通孔15aをマイクロドリルを用いて形成した。
次にくぼみ12の底面に100μmの厚みの京セラケミカル製のボンディングシートTFA―880Cをアクチュエータ接着シート7として貼り付けてアクチュエータ3を搭載した。なお、アクチュエータ3はマグネシウムニオブ酸鉛Pb(Mg1/3Nb2/3)O(PZN)を圧電絶縁層19として用い、15μmの圧電絶縁層19(電極層含)を32層積層した0.6mm角、厚み0.5mmの形状のものを用いた。このアクチュエータ3の圧電歪定数D33は2×10−9m/Vであった。
次に、積水化学社製の24μm厚みのPETフィルム23を図10のようにして、アクチュエータ3以外の部分に貼り付けた。
次に、日本ゼオン社製のNBR(アクリロニトリルラバー)をトルエンに10質量%希釈し、配線側基板1aのアクチュエータ3を形成した側の全面に塗布し、乾燥させ、約5μの厚みのNBR膜を作製した。
次に、マスキング用接着PETフィルムをNBR膜と一緒に剥がして、アクチュエータ3の周りのみにNBR膜を残した。NBRは柔軟性があり、アクチュエータ3の変位に十分に追従でき、アクチュエータ3を保護する機能を十分に発揮できるものである。また、くぼみ12とアクチュエータ3との隙間にも圧電素子保護層9であるNBR膜が充填され、アクチュエータ3を完全に被覆保護していた。
次にマイクロドリルで形成した貫通孔15aに導電性の金属と熱硬化性樹脂から構成される導電性ペーストを充填して貫通導体15を形成した。
導電性ペーストは平均粒径5μmの銀コート胴粉100部に対してビスフェノールA型エポキシ樹脂(油化シェルエポキシ社製:エピコート828)10部、酸無水物(日本化薬製:カヤハードMCD)を3部、硬化促進剤としてイミダゾール(四国化成社製:キュアゾール2EMZ)を0.3部配合して作製した。
次に、流路側基板1bの作製方法について説明する。
流路側基板1bとして、厚み500μmのポリメチルメタクリレート(PMMA)を用いた。まず、流路11をPMMAからなる流路側基板1bに形成するために、まずガラス基板33に従来のリソグラフィ、およびエッチング技術を用いて凹凸構造を作製し、平坦な厚み500μmのPMMAからなる流路側基板1bに、ガラス基板33の凹凸構造を有する側の面を当接させ、ホットプレスを用い160℃、3MPa、5分間、流路側基板1bにガラス基板33を押し付けて処理することによりガラス基板上の凹凸をPMMAからなる流路側基板1bに転写して流路11を形成した。
今回の流量調整する具体的形状を、図14(a)、(b)に示す。流路11は深さh1を100μm、幅W1を200μmとし、アクチュエータ3が変位していないときの流量調整部4の深さh2を33μm、幅W2を750μm、長さL1を750μmとした。なお、流量調整部4においては、底面を流路11よりも12μm高くなるようにした。
次に配線付き樹脂フィルムBと配線側基板1aと流路側基板1bとを位置あわせし、ホットプレスにて170℃、3MPa、60分間、熱処理することにより、PMMAからなる配線側基板1aに導体配線層3を埋め込んだ。その後、PETからなる樹脂フィルム23と接着剤27を同時に剥ぎ取り、流路基板とした。
用いたアクチュエータ3の解放状態での変位量を図15(a)に、流体として25℃の純水を用いた場合の流量変化を図15(b)に示す。この図15(a)によれば、アクチュエータ3は200Vの印加で20μm変位して、アクチュエータ3と流量調整部4の底面との距離h2が、33μmから13μmへと変化し、図15(b)に示すように流量を約60%まで減少させることができた。
なお、アクチュエータ3の変位量は、配線基板を作製するまえにアクチュエータ3単独で測定した値である。このようなアクチュエータ3の変位のトルクは非常に大きく、本発明の配線基板に組み込んだ場合でもほぼ、解放状態の場合と同じ変位となる。また、流量変化は、配線基板に連結部材を介して流量計を連結して流路装置として測定した。
また、測定に当たっては、流路部材に連結器を介してポンプを連結し、流路装置とした。この流路装置では、ポンプの脈動を流路部材が吸収し、脈動のないスムーズに流体を流通させることができた。
図17に本発明の流路部材31にチューブなどの連結部材33で連結されたポンプ35、流量測定器37によって構成される本発明の流路装置を示す。連結部材33は、例えば、両端に連結治具33aを設けたチューブ33bからなり、一方の連結治具33aは、ポンプの流体排出口に接続され、他方の連結治具33aは、流路部材31の流路11の流体流入側の端部に接続されている。そして、流体は、ポンプ35から連結部材31を経由して流路部材31の流体流入側の端部から流路11に導入され、流路11を通過して、流路部材31の流体排出側の端部から排出される。そして、流路部材31の流体排出側の端部には、他の連結部材33が連結され、流路部材31の流体排出側の端部から排出された流体は、他の連結部材33を経由して、他の連結部材33に連結された流量測定器37に導入される。そして、この流量測定器37によって流体の流量が測定される。
この流量測定器37によって、測定された流量に基づき、流量部材31に内蔵されたアクチュエータ3を駆動して、流量を精密に、迅速に制御することができる。
なお、ポンプ35としては、例えば、信頼性の高いダイアフラム式のポンプ35が好適に用いられる。また、流体がガスの場合にはポンプ35は、例えば、圧送式のガスタンクを用いてもよい。流量測定器37は、流量の経時的な変化を測定できるものが望ましい。
本発明の流路部材並びに流路装置は、小型流量調整器、血液検査器、小型反応装置、小型混合装置として、特に微量の流体の、混合、反応、検査等に好適に用いられる。また、携帯用装置に組み込むなどの利用方法が挙げられる。
本発明の流路部材を示す断面図である。 (a)は、アクチュエータの断面図、(b)は、アクチュエータの配線構造を説明する平面図、(c)は、アクチュエータの変位方向を示す斜視図である。 本発明の流路部材に形成された流路の模式図である。 本発明の流路の形状を説明する透過斜視図である。 本発明の作製工程を示す工程フローである。 本発明の流路部材の製造方法を説明する工程図である。 本発明の流路部材の製造方法を説明する工程図である。 本発明の流路部材の製造方法を説明する工程図である。 本発明の流路部材の製造方法を説明する工程図である。 本発明の流路部材の製造方法を説明する工程図である。 本発明の流路部材の製造方法を説明する工程図である。 本発明の流路部材の製造方法を説明する工程図である。 本発明の流路部材の製造方法を説明する工程図である。 本発明の流路部材の流量調整部を説明する要部拡大図である。 (a)は、本発明の流路部材に用いたアクチュエータの印加電圧と変位量の関係図、(b)は、本発明の流路部材のアクチュエータに印加した電圧と流量変化率の関係図である。 転写シートにおける樹脂フィルムと接着層の粘着力の測定方法を示す模式図である。 本発明の流路装置を説明する模式図である。
符号の説明
1・・・絶縁基板
1a・・・配線側基板
1b・・・流路側基板
3・・・アクチュエータ
9・・・圧電素子保護層
11・・・流路
31・・・流路装置
33・・・連結部材
35・・・ポンプ
37・・・流量測定器

Claims (12)

  1. 絶縁基板と、該絶縁基板に内蔵された流路と、圧電素子の電歪作用によって前記流路の形状を変化させて流量を増減するアクチュエータと、を具備してなり、該アクチュエータは前記流路に隣接するように前記絶縁基板に固定され、かつ前記アクチュエータは、圧電絶縁層と内部電極層とが交互に流路側に向けて積層された圧電素子に、前記圧電絶縁層の両側に前記積層された圧電素子の側面に層状に形成されるとともに前記内部電極層にそれぞれ接続された一対の外部電極を設けて、前記アクチュエータの前記絶縁基板側に固定された主面側の端部にて前記一対の外部電極が前記絶縁基板に設けられた貫通導体とそれぞれ電気的に接続されることによって構成されており、前記一対の外部電極を介して前記圧電絶縁層に電圧を印加することにより、前記圧電素子の寸法を前記圧電絶縁層の厚み方向に前記絶縁基板に固定された主面とは逆の主面側に向かって増減させて前記流路の断面積を増減させることを特徴とする流路部材。
  2. 前記流路を構成する前記絶縁基板の壁面に前記アクチュエータが配置されていることを特徴とする請求項1に記載の流路部材。
  3. 前記流路と前記圧電素子との間に圧電素子保護層が設けられていることを特徴とする請求項1又は2に記載の流路部材。
  4. 異なる流体を流通させる複数の前記流路を備えるとともに、前記複数の前記流路が合流し、前記異なる流体を混合させる混合場を具備してなることを特徴とする請求項1乃至3のうちいずれかに記載の流路部材。
  5. 前記複数の流路のそれぞれに、該流路の形状を変化させて流量を増減する前記アクチュエータが設けられたことを特徴とする請求項4に記載の流路部材。
  6. 前記流路を挟持するように、複数の前記アクチュエータが配置されてなることを特徴とする請求項1乃至5のうちいずれかに記載の流路部材。
  7. 前記絶縁基板が、少なくとも樹脂を含有してなることを特徴とする請求項1乃至6のうちいずれかに記載の流路部材。
  8. 前記絶縁基板を構成する前記樹脂が熱可塑性樹脂であることを特徴とする請求項7に記載の流路部材。
  9. 前記絶縁基板がセラミックスを主成分とすることを請求項1乃至6のうちいずれかに記載の流路部材。
  10. 前記絶縁基板は前記アクチュエータの外部電極に電圧を印加する導体配線層を有しており、該導体配線層が金、銀、銅、アルミニウムの少なくとも1種を含む低抵抗金属からなることを特徴とする請求項1乃至9のうちいずれかに記載の流路部材。
  11. 請求項1乃至10のうちいずれかに記載の流路部材に連結部材を介してポンプが接続されてなることを特徴とする流路装置。
  12. 請求項1乃至10のうちいずれかに記載の流路部材に連結部材を介して流量測定器が接続されてなることを特徴とする流路装置。
JP2004048100A 2004-02-24 2004-02-24 流路部材及び流路装置 Expired - Fee Related JP4726419B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048100A JP4726419B2 (ja) 2004-02-24 2004-02-24 流路部材及び流路装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004048100A JP4726419B2 (ja) 2004-02-24 2004-02-24 流路部材及び流路装置

Publications (2)

Publication Number Publication Date
JP2005238347A JP2005238347A (ja) 2005-09-08
JP4726419B2 true JP4726419B2 (ja) 2011-07-20

Family

ID=35020622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048100A Expired - Fee Related JP4726419B2 (ja) 2004-02-24 2004-02-24 流路部材及び流路装置

Country Status (1)

Country Link
JP (1) JP4726419B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268489A (ja) * 2006-03-31 2007-10-18 Fujifilm Corp マイクロ科学装置及びその流体操作方法
FR2903679B1 (fr) * 2006-07-17 2014-07-04 Centre Nat Rech Scient Fabrication de dispositifs microfluidiques polymeriques par impression photo-assistee.
JP2013090498A (ja) * 2011-10-20 2013-05-13 Sumitomo Precision Prod Co Ltd アクチュエータ及びその製造方法
JP2015199187A (ja) * 2014-03-31 2015-11-12 住友ベークライト株式会社 樹脂製マイクロ流路デバイスの製造方法およびマイクロ流路デバイス
US11888413B2 (en) 2019-07-22 2024-01-30 Toyota Jidosha Kabushiki Kaisha Actuator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051669A (ja) * 1991-06-21 1993-01-08 Seiko Epson Corp マイクロポンプ及びマイクロバルブの製造方法
JP3023897B2 (ja) * 1991-10-18 2000-03-21 キヤノン株式会社 ガス流量制御装置
JPH11129471A (ja) * 1997-10-30 1999-05-18 Minolta Co Ltd インクジェット記録装置及びその製造方法
JP2002099330A (ja) * 2000-09-22 2002-04-05 Aera Japan Ltd 流量制御装置
JP2002228033A (ja) * 2001-02-05 2002-08-14 Olympus Optical Co Ltd 分離型マイクロバルブ
JP3538777B2 (ja) * 2001-03-26 2004-06-14 独立行政法人産業技術総合研究所 微小化学反応装置
JP3805644B2 (ja) * 2001-05-18 2006-08-02 太平洋セメント株式会社 圧電アクチュエータ
GB0129374D0 (en) * 2001-12-07 2002-01-30 Univ Brunel Test apparatus

Also Published As

Publication number Publication date
JP2005238347A (ja) 2005-09-08

Similar Documents

Publication Publication Date Title
US7390079B2 (en) Device mounting structure, device mounting method, electronic apparatus, liquid droplet ejection head, and liquid droplet ejection apparatus
Metz et al. Polyimide-based microfluidic devices
JP5380430B2 (ja) マイクロ流体デバイス及びマイクロ流体デバイスを内蔵する流体射出デバイス
US8535623B2 (en) Concave connector substrate, method of manufacturing the same, measuring kit, sensor substrate, and sensor substrate interprolated cylinder
US6781056B1 (en) Heater for temperature control integrated in circuit board and method of manufacture
JP2007097280A (ja) 圧電アクチュエータおよびその製造方法、並びにインクジェット記録ヘッド
EP2232481A2 (en) Composite passive materials for ultrasound transducers
US6901217B2 (en) Conduits integrated in circuit board and method of manufacture
JP4726419B2 (ja) 流路部材及び流路装置
US20040089357A1 (en) Integrated electrofluidic system and method
US20040265184A1 (en) Microchemical chip and method for producing the same
JP2007050639A (ja) デバイス実装構造、デバイス実装方法、電子装置、液滴吐出ヘッド、及び液滴吐出装置
US9708715B2 (en) Conduction structure, method of manufacturing conduction structure, droplet ejecting head, and printing apparatus
US8960861B2 (en) Liquid droplet ejecting head, printing apparatus and method of manufacturing liquid droplet ejecting head
KR102134135B1 (ko) 전자 소자, 및 반도체 소자를 포함하는 구조체
JP4721236B2 (ja) 電気浸透流ポンプ、ポンピングシステム、マイクロ化学チップおよび燃料電池
EP1527879B1 (en) Cell driving type piezoelectric/electrostrictive actuator and method of manufacturing the same
EP1780548A1 (en) Microchemical chip
US9822452B2 (en) Conduction structure, method of manufacturing conduction structure, droplet ejecting head, and printing apparatus
CN112078248B (zh) 配线基板及其制造方法、喷墨头、mems装置以及振荡器
Babikian et al. Surface Mount Electroosmotic Pump for Integrated Microfluidic Printed Circuit Boards
CN111216453B (zh) 喷墨头
JP2019089259A (ja) Memsデバイス、液体吐出ヘッド、および液体吐出装置
Sumaria et al. Massively Parallel Liquid Metal Wiring for Soft Electronics and Robotics
JP2012009590A (ja) 3次元流路と電気配線を内蔵したltcc基板、その製造方法、その基板を用いたmems素子及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees