JP4637989B2 - Method for forming semiconductor wiring film - Google Patents

Method for forming semiconductor wiring film Download PDF

Info

Publication number
JP4637989B2
JP4637989B2 JP2000084961A JP2000084961A JP4637989B2 JP 4637989 B2 JP4637989 B2 JP 4637989B2 JP 2000084961 A JP2000084961 A JP 2000084961A JP 2000084961 A JP2000084961 A JP 2000084961A JP 4637989 B2 JP4637989 B2 JP 4637989B2
Authority
JP
Japan
Prior art keywords
film
wiring
copper
plating
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000084961A
Other languages
Japanese (ja)
Other versions
JP2001274161A (en
Inventor
栄典 楠本
淳 久本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000084961A priority Critical patent/JP4637989B2/en
Publication of JP2001274161A publication Critical patent/JP2001274161A/en
Application granted granted Critical
Publication of JP4637989B2 publication Critical patent/JP4637989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ULSIに代表される半導体の製造工程における配線膜の形成方法に関するものであり、とくに低電気抵抗で微細な配線構造の配線膜の形成方法に関するものであり、結果としていわゆるULSI等の半導体装置の高速演算、低駆動電圧化、低消費電力化を実現する技術に関するものである。
【0002】
【従来の技術】
近年、ULSI分野では微細化を進めることによる高集積化が急速に進展しており、配線膜についても、従来のAl系材料では微細化に伴う電気抵抗の増大による信号伝達の遅延がクローズアップされている。配線膜の低電気抵抗化には、従来のAl系材料より低電気抵抗の材料として銅及び銅合金の利用が検討されている。
【0003】
【発明が解決しようとする課題】
銅系の材料は低電気抵抗であることに加え、ULSIの配線を流れる電流による配線の変形・断線現象(エレクトロマイグレーション)を生じにくいこと、更には低価格であることからもっとも有力な材料とされている。
この銅系金属の場合、Al系金属膜で従来行われてきた絶縁膜上にスパッタリング法にて成膜した後エッチング法により配線構造を形成することが困難であり、絶縁膜に孔・溝を形成した後、これらの孔・溝に銅系金属をメッキ法によって充填する方法が採用されている。メッキ法では、空孔の無いメッキ膜を得るために、孔底や平坦部での成膜速度調整等の観点から電解メッキ法が用いられているが、あらかじめ孔・溝の内部や半導体ウエハの表面に導電性を付与するためのシード層をスパッタリング法やCVD法によって形成しておくことが必要である。近年のLSIの微細化の傾向から、孔については現状の0.25ミクロン径から2003年頃には0.1ミクロン径にまで小径化することが予想されており、0.15ミクロン径以下の微細化に対して、アスペクト比と呼ばれる直径に対する深さの比が4以上になると、この孔や溝を金属配線材料で充填することは困難である。
【0004】
さらに、前述のシード層が不完全な場合においては、現状の0.25ミクロン径であっても空孔等の膜中の欠陥が発生することが知られている。この孔や溝の金属配線材料の充填が不完全であれば、電気抵抗の増加としてULSI特性を劣化させるだけでなく、エレクトロマイグレーションの起点となって信頼性を低下させることも知られている。
この課題を解決する手段として、これらの開口部が塞がった充填が不充分な孔・溝を有するULSI製造途中段階の材料、及びこれらの孔・溝の開口部を金属膜で塞いだ材料に対して高温下で高圧ガス圧力を作用させる方法(高圧アニール法)が提案されている。しかしながら、通常の電解メッキ法で形成された銅配線膜の場合には、この高圧アニール法を持ってしても圧力を120Mpa以上で温度を350℃以上とする高温処理が必要であり、一層のプロセスの低温化が求められている。
【0005】
【課題を解決するための手段】
上記課題解決のため、本願発明において採用した方法は、孔又は溝が形成された絶縁膜の表面を電解メッキ法によって銅又は銅合金の金属材料で被覆することにより、前記孔又は溝の内部に前記金属材料を充填して配線膜を形成する半導体配線膜の形成方法であって、前記電解メッキを水素ガス又は水素イオンを含むメッキ浴中にて行い、前記メッキ浴における電圧範囲を、メッキ液内で水素ガス発生を抑制した条件での最大電圧より大きく、当該最大電圧+5000mVより小さいものとすることで、膜中に水素を取り込みながら前記金属材料の配線膜を形成し、その後、加熱処理することにより前記孔又は溝に前記金属材料を充填している。
【0006】
銅系金属配線膜を形成する際に、水素ガス又は水素イオンを含むメッキ浴から金属配線膜中に水素をドープさせることにより、金属配線膜材料の金属材料原子の拡散による移動が促進される。この原子の拡散現象の促進によって、成膜時に十分金属材料を充填できなかった孔・溝の確実な充填を、後工程の熱処理との組合せることで行うことができる。
このような水素の取り込みのためには、例えば、水素ガス供給源からメッキ浴中に水素ガスを供給する水素供給装置を設けることでも実現できる。しかし、電解メッキ法では、メッキ条件(電流電圧条件)を変更することによってメッキ時に水素ガス又は水素イオンを発生させることが可能である。そこで、本願発明では、前記メッキ浴における電圧範囲を、メッキ液内で水素ガス発生を抑制した条件での最大電圧より大きく、当該最大電圧+5000mVより小さいものとしている。
【0007】
通常の電解メッキ法では、メッキ中に水素ガスを発生させることは、水素による膜中への気孔発生などによる欠陥導入につながるとの観点と、電流効率の低下を招くとの観点から、実施しないことが常識であるが、本発明では、従来回避されることが常識であった水素ガス発生を伴う電流電圧条件での電解メッキによる銅系配線膜形成を行った。
また、本願発明においては、前記絶縁膜には、アスペクト比が2以上7.7以下の孔が形成されている。加えて、前記配線膜を形成した後の加熱処理を、高温高圧の不活性ガスを主成分とするガス雰囲気下で行うことを特徴とする。前記熱処理だけでは金属配線材料の完全な充填が困難なような径が細かい孔・溝の場合には、上記熱処理を高圧力による組成変形現象を利用して充填することができる。
なお、本発明の最も好ましい実施の形態としては、孔又は溝が形成された絶縁膜の表面を電解メッキ法によって銅又は銅合金の金属材料で被覆することにより、前記孔又は溝の内部に前記金属材料を充填して配線膜を形成する半導体配線膜の形成方法であって、前記電解メッキを水素ガス又は水素イオンを含むメッキ浴中にて行い、前記メッキ浴における電圧範囲を、メッキ浴中に平衡状態以上の水素ガスまたは水素イオンが含まれる状況を抑制した条件での最大電圧であって電流効率が95パーセントのときの電圧より大きく、前記最大電圧+5000mVより小さいものとすることで、膜中に水素を取り込みながら前記金属材料の配線膜を形成し、その後、加熱処理することにより前記孔又は溝に前記金属材料を充填するとよい。
【0008】
【発明の実施の形態】
本発明が適用される多層構造のULSIの断面を図1に模式的に示す。図1において「n・pウエル・n」及び「p・nウエル・p」のトランジスタ1Aが形成されたSi基板1の上に絶縁膜2が形成される。絶縁膜2の上には第1層の金属配線M1が反応防止用のバリア膜を介して形成される。絶縁膜2にはコンタクトホール(孔)2Aが形成され、タングステンをCVD法にて充填して第1層の金属配線M1に接続される。
【0009】
この第1層の金属配線M1上にも更に絶縁膜層が形成される。この絶縁層には第1層の金属配線M1と第2層の金属配線M2との接続のためのヴィアホール(孔)2Bが形成され、第2層の金属配線M2を形成するための溝2Cが形成される。このヴィアホール2Bは第2層の金属配線M2を形成するための溝2Cの充填と同時に行われる。
この場合、ヴィアホール2Bのみのアスペクト比は3程度であるが、溝2Cを併せると4〜6になることが多い。図中に示した第3層から第6層の配線膜M3〜M6及びそれらを接続するためのヴィアホールも同様の方法で形成される。
【0010】
一般に、図1に示した多層配線構造を有するULSI製造工程では、一層形成毎に表面の平坦化処理が必要であり、CMP工程と呼ばれる表面平坦化研磨工程が施される。この工程に先立ち、CMP工程の安定な再現性を得ることと、一様な研磨を達成するために、基板全体を加熱してリフロー法と呼ばれる金属配線材料の熱処理が施される。このリフロー法は再結晶温度以上の温度に加熱した状態で顕著になると一般的にいわれている金属配線材料の表面拡散現象を利用している。銅系金属配線材料の再結晶温度は400℃近傍であることが一般的に知られている。
【0011】
しかし、水素ガスを発生させながら電解メッキ法によって形成された銅もしくは銅合金の配線膜(図2参照)は、メッキ工程において不可避的に水素ガスが膜中に取り込まれ、銅原子の拡散等が促進されるようになる。この結果、メッキ後の加熱処理(リフロー処理)温度を低減化させ、圧力も低減化させることができるようになる。
このような効果を得るためには、メッキ浴中に水素ガスまたは水素イオンが含まれればよいが、電解メッキ法ではメッキ条件を変更することによって容易にメッキ時に水素ガスを発生させることが可能である。
【0012】
通常の電解メッキ法では図3に示すように水素ガスを発生させないことを前提に、工業的に利用できる電流密度において領域A−B(銅が析出し水素が少ない領域)で示される範囲内で電流・電圧条件が決定される。なお、本領域はメッキ材、メッキ液の種類、メッキ液の濃度、及びメッキ時の温度により変化するが、逆にこれらの条件が決まれれば一義的に定まる領域である。なお、図3の数値は、あるメッキ作業条件下での単なる例示にすぎない。
メッキ中に水素ガスを発生させることは、水素による膜中への気孔発生等による欠陥導入につながるとの観点と、電流効率の低下を招くとの観点から、実施しないことが常識である。本発明では、水素ガス又は水素イオンを膜中に取り込むことによって銅系配線膜中の銅原子の拡散促進効果を得ることにより銅配線膜のリフロー特性を改善するため、従来回避されることが常識であった水素ガス発生を伴う電流・電圧条件での電解メッキによる銅系配線膜形成を行う。
【0013】
銅メッキ浴としては、硫酸銅浴、ほう弗化銅浴又はピロリン酸銅浴が採用できる。後述の実施例では、硫酸銅浴を採用している。硫酸銅浴の代表的な浴組成は、「硫酸銅:125〜150g/リットル、硫酸:30〜100あるいは125〜150g/リットル、添加剤:適当量」である(「銅および銅合金の基礎と工業技術(改訂版)」1995年改訂版、発行日本伸銅協会、参照)。
水素ガス発生を伴う電流・電圧条件も、メッキ材、メッキ液の種類、メッキ液の濃度、及びメッキ時の温度により変化するが、当業者であれば、これらの条件が決まれば必要な電流電圧条件を見いだすことは容易である。図3に基づけば、Bより高電圧側の領域(銅が析出し水素も発生する領域)となる。
【0014】
ただし、膜中に取り込まれる水素ガスが多すぎると、配線膜自体がポーラスな構造となるばかりでなく、配線膜以外の半導体構成材料に悪影響を及ぼす。このような理由により、電解メッキ時の電流電圧条件は、メッキ液に依存して一義的に決まる水素ガス発生を抑制した条件での(図3にB点として示した)最大電圧より大であって、B+5,000mVを超えない領域B−Cで示す範囲内であることが望ましい。すなわち、通常の電解メッキ法で適正とされている領域より5V程度大きい範囲までが望ましい。電流効率(陰極電流効率:流した電流のうち、どの程度がCu析出に使われたか)でいえば、従来の電解メッキでは95〜100パーセントであるところ、本発明では80パーセント程度である。
【0015】
既述した如く、現状技術では孔径が0.15ミクロン以下、アスペクト比4以上の微細化に対して、図4(a)に示したような孔の奥底部へのボイド発生が懸念され、金属系配線材料の充填が困難であるとされている。このようなボイドに対しては、膜中の水素の拡散促進現象を利用した大気圧近傍のリフロー法では完全な金属配線膜材料の充填はできない。このような状況下では、リフロー処理を、高温高圧の不活性ガスを主成分とするガス雰囲気下で行うことが推奨される。図4(b)は、この作用を模式的に示したものである。金属配線膜中に含まれた水素による金属配線膜原子の拡散促進機能により、金属配線膜材料の見かけの変形抵抗が小さくなり、塑性変形が容易となることから、高圧のガス圧力による金属配線膜材料が孔・溝の奥底部まで充填される。なお、本発明は、高圧リフロー時の圧力を水素を含まない配線膜材料の充填条件と同じにして温度を低下させることのみを規定するものではなく、温度を同じにして圧力を低減する条件、或いは両者ともに低減する条件も選択しうる。
【0016】
【実施例】
Si基板上に厚さ1.5ミクロンのシリコン酸化膜(SiO2)を形成して、パターンニング後、シリコン酸化膜をエッチングして表1に示すような孔・溝を形成した試料を用い、本発明の効果を検証した。なお、孔・溝の内面には、銅系配線材料で一般的に採用されるTaNバリア層を、更に銅シード層をスパッタリング法によって成膜した。処理条件は表1に示したとおりであり、一部従来法による成膜・リフロー処理を行い比較材とした。
【0017】
【表1】

Figure 0004637989
【0018】
実施例1と比較例1の比較から、本発明の水素ガス含有メッキ膜を用いることによりリフロー温度の低減化が可能であること、即ち従来法よりも低温で孔への銅配線材料の充填が可能であることが確認できた。
また、実施例2と比較例2の比較から、溝の底に孔が形成されたデュアルダマシン構造でも、本発明の水素ガス含有メッキ膜を用いることによりリフロー温度の低減化が可能であること、即ち従来法よりも低温で孔・溝への銅配線材料の充填が可能であることが確認できた。
【0019】
更に、実施例3と、比較例3の比較から、本発明の水素ガス含有メッキ膜に高圧ガス雰囲気下での高圧リフロー処理を施すことによって、金属配線材料を高アスペクト比の孔・溝へ充填可能であることが確認できた。
【0020】
【発明の効果】
以上述べたように、本発明により、低電気抵抗の観点から今後の配線材料として期待されている銅系配線材料の低温でのリフローが可能となり、高圧ガス雰囲気下でのリフロー処理と組み合わせれば、ますます微細化する孔・溝への充填が可能となる。本発明はこのような効果によって、金属配線膜材料を用いたULSIの工業的生産プロセスの簡素化、信頼性向上に多大なる貢献を果たすことが期待される。
【図面の簡単な説明】
【図1】 半導体の多層配線構造の一例を示す断面図である。
【図2】 電解メッキ法によって形成された銅配線の拡大断面図である。
【図3】 電解メッキ法の電流電圧条件を示す図である。
【図4】 (a)は、孔奥底部にボイドを有する配線断面図であり、(b)は、高圧高圧のリフロー処理で孔が充填され水素が追い出された状態を示す配線断面図である。
【符号の説明】
1 基板
2 絶縁膜
2B コンタクトホール
2C 溝
3 銅配線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a wiring film in a manufacturing process of a semiconductor represented by ULSI, and more particularly to a method for forming a wiring film having a low electrical resistance and a fine wiring structure. The present invention relates to a technique for realizing high-speed calculation, low drive voltage, and low power consumption of a semiconductor device.
[0002]
[Prior art]
In recent years, in the ULSI field, high integration due to progress in miniaturization has been rapidly progressing, and the delay in signal transmission due to the increase in electrical resistance associated with miniaturization has been highlighted in the conventional Al-based materials. ing. In order to reduce the electrical resistance of the wiring film, the use of copper and copper alloys as a material having a lower electrical resistance than conventional Al-based materials has been studied.
[0003]
[Problems to be solved by the invention]
In addition to low electrical resistance, copper-based materials are considered to be the most promising materials because they are less likely to cause wiring deformation and disconnection (electromigration) due to current flowing through ULSI wiring, and because they are inexpensive. ing.
In the case of this copper-based metal, it is difficult to form a wiring structure by an etching method after forming a film on a conventional insulating film using an Al-based metal film by sputtering, and holes / grooves are formed in the insulating film. After the formation, a method of filling these holes / grooves with a copper-based metal by a plating method is employed. In the plating method, in order to obtain a plating film without voids, electrolytic plating is used from the viewpoint of film formation speed adjustment at the bottom or flat part of the hole. It is necessary to form a seed layer for imparting conductivity to the surface by sputtering or CVD. Due to the recent trend toward miniaturization of LSIs, it is expected that the hole diameter will be reduced from the current 0.25 micron diameter to about 0.1 micron diameter around 2003, and the hole size is 0.15 micron or smaller. In contrast, when the ratio of the depth to the diameter, called the aspect ratio, is 4 or more, it is difficult to fill the holes and grooves with the metal wiring material.
[0004]
Furthermore, it is known that when the seed layer is incomplete, defects in the film such as vacancies occur even with the current 0.25 micron diameter. It is known that if the hole or groove is not completely filled with the metal wiring material, not only the ULSI characteristic is deteriorated as the electric resistance is increased, but also reliability is lowered as a starting point of electromigration.
As a means to solve this problem, for materials in the process of manufacturing ULSI having holes / grooves that are insufficiently filled with these openings, and for materials in which the openings of these holes / grooves are closed with a metal film A method of applying a high pressure gas pressure at a high temperature (high pressure annealing method) has been proposed. However, in the case of a copper wiring film formed by a normal electrolytic plating method, even if this high-pressure annealing method is used, a high-temperature treatment is required in which the pressure is 120 Mpa or higher and the temperature is 350 ° C. or higher. There is a need to lower the temperature of the process.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the method employed in the present invention is to coat the inside of the hole or groove by coating the surface of the insulating film in which the hole or groove is formed with a copper or copper alloy metal material by electrolytic plating. A method of forming a semiconductor wiring film by filling the metal material to form a wiring film, wherein the electrolytic plating is performed in a plating bath containing hydrogen gas or hydrogen ions, and a voltage range in the plating bath is set to a plating solution. The wiring film of the metal material is formed while incorporating hydrogen into the film, and then heat-treated by setting the voltage to be larger than the maximum voltage under the condition in which the generation of hydrogen gas is suppressed and smaller than the maximum voltage +5000 mV. As a result, the hole or groove is filled with the metal material.
[0006]
When the copper-based metal wiring film is formed, the metal wiring film is doped with hydrogen from a plating bath containing hydrogen gas or hydrogen ions, thereby promoting movement of the metal wiring film material due to diffusion of metal material atoms. By promoting the diffusion phenomenon of atoms, it is possible to perform reliable filling of holes / grooves that could not be sufficiently filled with a metal material at the time of film formation by combining with heat treatment in a subsequent process.
Such hydrogen uptake can be realized, for example, by providing a hydrogen supply device that supplies hydrogen gas into the plating bath from a hydrogen gas supply source. However, in the electrolytic plating method, it is possible to generate hydrogen gas or hydrogen ions during plating by changing the plating conditions (current voltage conditions). Therefore, in the present invention, the voltage range in the plating bath is set to be larger than the maximum voltage under the condition of suppressing the generation of hydrogen gas in the plating solution and smaller than the maximum voltage +5000 mV.
[0007]
In the usual electrolytic plating method, it is not implemented from the viewpoint that the generation of hydrogen gas during plating leads to the introduction of defects due to the generation of pores in the film due to hydrogen and the reduction of current efficiency. However, in the present invention, the copper-based wiring film was formed by electroplating under current-voltage conditions accompanied by hydrogen gas generation, which was conventionally avoided in the present invention.
In the present invention, a hole having an aspect ratio of 2 or more and 7.7 or less is formed in the insulating film. In addition, the heat treatment after the wiring film is formed is performed in a gas atmosphere containing a high-temperature and high-pressure inert gas as a main component. In the case of a hole / groove with a small diameter that makes it difficult to completely fill the metal wiring material only by the heat treatment, the heat treatment can be filled using a composition deformation phenomenon due to high pressure.
In the most preferred embodiment of the present invention, the surface of the insulating film in which the hole or groove is formed is coated with a copper or copper alloy metal material by an electrolytic plating method, so that the inside of the hole or groove is A method for forming a semiconductor wiring film comprising filling a metal material to form a wiring film, wherein the electrolytic plating is performed in a plating bath containing hydrogen gas or hydrogen ions, and a voltage range in the plating bath is set in the plating bath. The maximum voltage under the condition that suppresses the situation where hydrogen gas or hydrogen ions in an equilibrium state or higher is contained, and is larger than the voltage when the current efficiency is 95%, and smaller than the maximum voltage +5000 mV. A wiring film made of the metal material is formed while hydrogen is taken in, and then the hole or groove is filled with the metal material by heat treatment.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
A cross section of a multi-layer ULSI to which the present invention is applied is schematically shown in FIG. In FIG. 1, an insulating film 2 is formed on a Si substrate 1 on which a transistor 1A of “n · p well · n” and “p · n well · p” is formed. A first-layer metal wiring M1 is formed on the insulating film 2 through a barrier film for preventing reaction. A contact hole (hole) 2A is formed in the insulating film 2, and tungsten is filled by a CVD method to be connected to the first-layer metal wiring M1.
[0009]
An insulating film layer is further formed on the first-layer metal wiring M1. In this insulating layer, a via hole (hole) 2B for connecting the first layer metal wiring M1 and the second layer metal wiring M2 is formed, and a groove 2C for forming the second layer metal wiring M2 is formed. Is formed. The via hole 2B is performed simultaneously with the filling of the groove 2C for forming the second layer metal wiring M2.
In this case, the aspect ratio of only the via hole 2B is about 3, but it is often 4 to 6 when the groove 2C is combined. The third to sixth wiring films M3 to M6 shown in the drawing and via holes for connecting them are also formed by the same method.
[0010]
In general, in the ULSI manufacturing process having the multilayer wiring structure shown in FIG. 1, a surface flattening process is required for each layer formation, and a surface flattening polishing process called a CMP process is performed. Prior to this process, in order to obtain stable reproducibility of the CMP process and achieve uniform polishing, the entire substrate is heated and a heat treatment of a metal wiring material called a reflow method is performed. This reflow method utilizes the surface diffusion phenomenon of a metal wiring material, which is generally said to become significant when heated to a temperature higher than the recrystallization temperature. It is generally known that the recrystallization temperature of copper-based metal wiring materials is around 400 ° C.
[0011]
However, a copper or copper alloy wiring film (see FIG. 2) formed by electrolytic plating while generating hydrogen gas inevitably causes hydrogen gas to be taken into the film during the plating process, resulting in diffusion of copper atoms, etc. Be promoted. As a result, the temperature of the heat treatment (reflow treatment) after plating can be reduced, and the pressure can also be reduced.
In order to obtain such an effect, hydrogen gas or hydrogen ions may be contained in the plating bath. However, in the electrolytic plating method, it is possible to easily generate hydrogen gas during plating by changing the plating conditions. is there.
[0012]
Assuming that hydrogen gas is not generated as shown in FIG. 3 in a normal electrolytic plating method, within a range indicated by a region AB (a region where copper is deposited and hydrogen is low) at an industrially available current density. Current and voltage conditions are determined. This region varies depending on the plating material, the type of the plating solution, the concentration of the plating solution, and the temperature at the time of plating. On the contrary, if these conditions are determined, this region is uniquely determined. Note that the numerical values in FIG. 3 are merely examples under certain plating work conditions.
It is common knowledge not to generate hydrogen gas during plating from the viewpoint of introducing defects due to generation of pores or the like in the film by hydrogen, and from the viewpoint of reducing current efficiency. In the present invention, since hydrogen gas or hydrogen ions are taken into the film to obtain the diffusion promoting effect of copper atoms in the copper-based wiring film, the reflow characteristics of the copper wiring film are improved, so that it is conventionally avoided. The copper-based wiring film is formed by electrolytic plating under the current / voltage conditions accompanied by the generation of hydrogen gas.
[0013]
As the copper plating bath, a copper sulfate bath, a copper borofluoride bath, or a copper pyrophosphate bath can be employed. In the examples described later, a copper sulfate bath is employed. A typical bath composition of a copper sulfate bath is “copper sulfate: 125 to 150 g / liter, sulfuric acid: 30 to 100 or 125 to 150 g / liter, additive: appropriate amount” (“the basis of copper and copper alloy” "Industrial technology (revised edition)" revised edition in 1995, published by Japan Copper and Brass Association).
The current and voltage conditions that accompany the generation of hydrogen gas also vary depending on the plating material, the type of plating solution, the concentration of the plating solution, and the temperature at the time of plating. Those skilled in the art will need the necessary current voltage if these conditions are determined. It is easy to find the conditions. Based on FIG. 3, a region on the higher voltage side than B (a region where copper is deposited and hydrogen is also generated).
[0014]
However, if too much hydrogen gas is taken into the film, the wiring film itself has a porous structure, and adversely affects semiconductor constituent materials other than the wiring film. For these reasons, the current-voltage condition during electroplating is larger than the maximum voltage (shown as point B in FIG. 3) under the condition of suppressing hydrogen gas generation that is uniquely determined depending on the plating solution. Thus, it is desirable to be within the range indicated by the region BC that does not exceed B + 5,000 mV. That is, the range up to about 5V larger than the region appropriate for the normal electrolytic plating method is desirable. In terms of current efficiency (cathode current efficiency: how much of the flowed current was used for Cu deposition), it is 95 to 100 percent in the conventional electrolytic plating, and about 80 percent in the present invention.
[0015]
As described above, in the current technology, there is a concern about the generation of voids at the bottom of the hole as shown in FIG. 4 (a) in response to the miniaturization of the hole diameter of 0.15 microns or less and the aspect ratio of 4 or more. It is said that it is difficult to fill the system wiring material. Such voids cannot be completely filled with the metal wiring film material by the reflow method in the vicinity of the atmospheric pressure using the phenomenon of hydrogen diffusion promotion in the film. Under such circumstances, it is recommended that the reflow treatment be performed in a gas atmosphere mainly composed of a high-temperature and high-pressure inert gas. FIG. 4B schematically illustrates this action. The metal wiring film by the high gas pressure because the metal wiring film material diffusion promotion function by hydrogen contained in the metal wiring film reduces the apparent deformation resistance of the metal wiring film material and facilitates plastic deformation. The material is filled to the bottom of the hole / groove. Note that the present invention does not only specify that the pressure at the time of high-pressure reflow is the same as the filling condition of the wiring film material that does not contain hydrogen to lower the temperature, but the condition for reducing the pressure at the same temperature, Or the conditions which reduce both can also be selected.
[0016]
【Example】
A silicon oxide film (SiO 2 ) having a thickness of 1.5 microns is formed on a Si substrate, and after patterning, a sample in which holes and grooves as shown in Table 1 are formed by etching the silicon oxide film is used. The effect of the present invention was verified. A TaN barrier layer generally employed for copper wiring materials and a copper seed layer were formed on the inner surfaces of the holes and grooves by sputtering. The processing conditions are as shown in Table 1, and a film was formed and reflowed by a conventional method to make a comparative material.
[0017]
[Table 1]
Figure 0004637989
[0018]
From the comparison between Example 1 and Comparative Example 1, it is possible to reduce the reflow temperature by using the hydrogen gas-containing plating film of the present invention, that is, the copper wiring material can be filled into the holes at a lower temperature than the conventional method. It was confirmed that it was possible.
Further, from the comparison between Example 2 and Comparative Example 2, even in the dual damascene structure in which holes are formed at the bottom of the groove, the reflow temperature can be reduced by using the hydrogen gas-containing plating film of the present invention. That is, it was confirmed that the copper wiring material can be filled into the holes and grooves at a lower temperature than the conventional method.
[0019]
Furthermore, from the comparison between Example 3 and Comparative Example 3, the metal film material is filled into the holes / grooves having a high aspect ratio by subjecting the hydrogen gas-containing plating film of the present invention to high-pressure reflow treatment in a high-pressure gas atmosphere. It was confirmed that it was possible.
[0020]
【The invention's effect】
As described above, according to the present invention, it becomes possible to reflow a copper-based wiring material expected as a future wiring material from the viewpoint of low electrical resistance at a low temperature, and when combined with a reflow treatment in a high-pressure gas atmosphere, This makes it possible to fill holes and grooves that are becoming increasingly finer. Due to such effects, the present invention is expected to greatly contribute to the simplification and reliability improvement of the industrial production process of ULSI using a metal wiring film material.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a multilayer wiring structure of a semiconductor.
FIG. 2 is an enlarged cross-sectional view of a copper wiring formed by an electrolytic plating method.
FIG. 3 is a diagram showing current-voltage conditions for electrolytic plating.
4A is a wiring cross-sectional view having a void at the bottom of the hole, and FIG. 4B is a wiring cross-sectional view showing a state in which the hole is filled and hydrogen is expelled by high-pressure and high-pressure reflow processing. .
[Explanation of symbols]
1 Substrate 2 Insulating film 2B Contact hole 2C Groove 3 Copper wiring

Claims (2)

孔又は溝が形成された絶縁膜の表面を電解メッキ法によって銅又は銅合金の金属材料で被覆することにより、前記孔又は溝の内部に前記金属材料を充填して配線膜を形成する半導体配線膜の形成方法であって、
前記電解メッキを水素ガス又は水素イオンを含むメッキ浴中にて行い、
前記メッキ浴における電圧範囲を、メッキ浴中に平衡状態以上の水素ガスまたは水素イオンが含まれる状況を抑制した条件での最大電圧であって電流効率が95パーセントのときの電圧より大きく、前記最大電圧+5000mVより小さいものとすることで、膜中に水素を取り込みながら前記金属材料の配線膜を形成し、
その後、加熱処理することにより前記孔又は溝に前記金属材料を充填することを特徴とする半導体配線膜の形成方法。
Semiconductor wiring that forms a wiring film by filling the inside of the hole or groove with the metal material by coating the surface of the insulating film in which the hole or groove is formed with a copper or copper alloy metal material by electrolytic plating A method for forming a film, comprising:
The electrolytic plating is performed in a plating bath containing hydrogen gas or hydrogen ions,
The voltage range in the plating bath, a maximum voltage under conditions suppressing the situation that contains hydrogen gas or hydrogen ions above equilibrium in the plating bath current efficiency is greater than the voltage at the 95%, the maximum By making the voltage less than +5000 mV, the wiring film of the metal material is formed while incorporating hydrogen into the film,
Thereafter, the hole or groove is filled with the metal material by heat treatment.
前記絶縁膜には、アスペクト比が2以上7.7以下の孔が形成されているものであって、
前記配線膜を形成した後の加熱処理を、高温高圧の不活性ガスを主成分とするガス雰囲気下で行うことを特徴とする請求項1記載の半導体配線膜の形成方法。
A hole having an aspect ratio of 2 or more and 7.7 or less is formed in the insulating film,
2. The method of forming a semiconductor wiring film according to claim 1, wherein the heat treatment after the wiring film is formed is performed in a gas atmosphere containing a high-temperature and high-pressure inert gas as a main component.
JP2000084961A 2000-03-24 2000-03-24 Method for forming semiconductor wiring film Expired - Fee Related JP4637989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000084961A JP4637989B2 (en) 2000-03-24 2000-03-24 Method for forming semiconductor wiring film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000084961A JP4637989B2 (en) 2000-03-24 2000-03-24 Method for forming semiconductor wiring film

Publications (2)

Publication Number Publication Date
JP2001274161A JP2001274161A (en) 2001-10-05
JP4637989B2 true JP4637989B2 (en) 2011-02-23

Family

ID=18601360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000084961A Expired - Fee Related JP4637989B2 (en) 2000-03-24 2000-03-24 Method for forming semiconductor wiring film

Country Status (1)

Country Link
JP (1) JP4637989B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575401B2 (en) * 2007-06-06 2010-11-04 株式会社東芝 Plating film forming apparatus and plating film forming method
CN102485965A (en) * 2010-12-06 2012-06-06 中国科学院微电子研究所 Electroplating method of deep blind hole
US10049927B2 (en) * 2016-06-10 2018-08-14 Applied Materials, Inc. Seam-healing method upon supra-atmospheric process in diffusion promoting ambient
US10622214B2 (en) 2017-05-25 2020-04-14 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US10276411B2 (en) 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
JP6947914B2 (en) 2017-08-18 2021-10-13 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Annealing chamber under high pressure and high temperature
CN117936420A (en) 2017-11-11 2024-04-26 微材料有限责任公司 Gas delivery system for high pressure processing chamber
JP2021503714A (en) 2017-11-17 2021-02-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Capacitor system for high pressure processing system
EP3762962A4 (en) 2018-03-09 2021-12-08 Applied Materials, Inc. High pressure annealing process for metal containing materials
US10950429B2 (en) 2018-05-08 2021-03-16 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US10748783B2 (en) 2018-07-25 2020-08-18 Applied Materials, Inc. Gas delivery module
WO2020117462A1 (en) 2018-12-07 2020-06-11 Applied Materials, Inc. Semiconductor processing system
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003886A (en) * 1998-06-12 2000-01-07 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device and apparatus thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294315A (en) * 1997-04-18 1998-11-04 Sony Corp Formation of metal wiring
JPH11238794A (en) * 1998-02-20 1999-08-31 Sony Corp Formation of interconnection
JPH11288937A (en) * 1998-04-03 1999-10-19 Kobe Steel Ltd Method for forming copper wiring film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003886A (en) * 1998-06-12 2000-01-07 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device and apparatus thereof

Also Published As

Publication number Publication date
JP2001274161A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
TW527666B (en) Electroless method of seed layer deposition, repair, and fabrication of Cu interconnects
JP3979791B2 (en) Semiconductor device and manufacturing method thereof
JP5203602B2 (en) Method for direct electroplating of copper onto a non-copper plateable layer
JP3892621B2 (en) Method for forming wiring film
JP4637989B2 (en) Method for forming semiconductor wiring film
JP3116897B2 (en) Fine wiring formation method
US7799681B2 (en) Method for forming a ruthenium metal cap layer
TWI234814B (en) Method of manufacturing a semiconductor device
US20030015793A1 (en) Microstructure control of copper interconnects
US20070298607A1 (en) Method for copper damascence fill for forming an interconnect
DE102006056624B4 (en) Method for producing a self-aligned CuSiN cover layer in a microstructure component
JPH07283219A (en) Manufacture of semiconductor device
JP2007150298A (en) Conductor-dielectric structure, and method for manufacturing same
JPH11307481A (en) Equipment and method of electroplating
JP2000156406A (en) Semiconductor device and its manufacture
JP2005033164A (en) Method of forming copper wiring for semiconductor element
KR101076927B1 (en) Structure of copper wiring in semiconductor device and method of forming the same
JP2003113494A (en) IMPROVED METHOD FOR Cu ELECTROPLATING IN INTEGRATED CIRCUIT FABRICATION
JP3715975B2 (en) Manufacturing method of multilayer wiring structure
KR20070059616A (en) Superconformal cu electroless-plating by using additives
KR100421913B1 (en) Method for forming interconnect structures of semiconductor device
US20050077181A1 (en) Modified electroplating solution components in a low-acid electrolyte solution
WO2008134536A1 (en) Method for electrochemically depositing metal onto a microelectronic workpiece
JPH11312655A (en) Formation of copper-alloy film and manufacture of semiconductor device
KR100451767B1 (en) Method for forming interconnect structures of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080425

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees