JP4515439B2 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
JP4515439B2
JP4515439B2 JP2006327384A JP2006327384A JP4515439B2 JP 4515439 B2 JP4515439 B2 JP 4515439B2 JP 2006327384 A JP2006327384 A JP 2006327384A JP 2006327384 A JP2006327384 A JP 2006327384A JP 4515439 B2 JP4515439 B2 JP 4515439B2
Authority
JP
Japan
Prior art keywords
torque
motor
trq
control
induced voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006327384A
Other languages
English (en)
Other versions
JP2008137550A (ja
Inventor
博文 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006327384A priority Critical patent/JP4515439B2/ja
Publication of JP2008137550A publication Critical patent/JP2008137550A/ja
Application granted granted Critical
Publication of JP4515439B2 publication Critical patent/JP4515439B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/16DC brushless machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • B60L2250/28Accelerator pedal thresholds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/22Standstill, e.g. zero speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

本発明は、ハイブリッド車両の制御装置に関する。
従来、例えば内燃機関とモータとを駆動源として搭載したハイブリッド車両の制御装置において、例えばインバータ等によってモータを駆動または回生制御する際には、モータのロータの磁極位置に応じてインバータでの転流動作を制御するようになっており、ここで、ロータの磁極位置を検出する磁極位置センサを省略して、センサレス制御によってロータの磁極判別を行うことにより、装置構成が複雑化することを防止するハイブリッド車両の制御装置が知られている(例えば、特許文献1参照)。
特開2002−320398号公報
ところで、上記従来技術に係るハイブリッド車両の制御装置では、内燃機関の低回転領域においてセンサレス制御によりロータの磁極判別を行う際に、モータの駆動電流に高調波を重畳させ、この時のモータのインダクタンス変化に基づいて磁極位置を判別することから、内燃機関の始動時等における磁極位置判別時に高調波重畳による電磁騒音とインバータのスイッチングによる電磁騒音とが発生し、車室内における所望の静粛性を確保することができなくなる虞がある。
また、内燃機関の停止時において、騒音を低減させるために、内燃機関とこの内燃機関を搭載する車体との共振点を短時間で抜けるために高トルク制動を行うと、回転数変化が増大することから、センサレス制御における磁極位置の検出精度が低下してしまうという問題が生じる。
本発明は上記事情に鑑みてなされたもので、モータのセンサレス制御において、磁極位置の検出精度を向上させつつ、所望の静粛性を確保することが可能なハイブリッド車両の制御装置を提供することを目的とする。
上記課題を解決して係る目的を達成するために、請求項1に記載の本発明のハイブリッド車両の制御装置は、内燃機関およびモータを駆動源として備え、少なくとも前記内燃機関または前記モータの駆動力により走行可能なハイブリッド車両の制御装置であって、
前記モータは、各々に永久磁石片(例えば、実施の形態での永久磁石9)を具備すると共に互いの相対的な位相を変更可能な複数のロータ部材(例えば、実施の形態での外周側回転子5、内周側回転子6)からなるロータ(例えば、実施の形態での回転子ユニット3)と、前記複数のロータ部材の相対的な位相を変更することによって前記モータの誘起電圧定数を変更する誘起電圧定数変更手段(例えば、実施の形態での位相変更手段12)とを備え、前記モータの誘起電圧に基づき前記ロータの位置を検出しつつ前記モータを制御するセンサレス制御を実行するセンサレス制御手段(例えば、実施の形態での角度誤差算出部60、追従演算オブザーバ61)と、前記モータの回転数が所定回転数(例えば、実施の形態での回転数N2)より低い車両制動時に、前記モータの複数相を短絡する短絡制御を実行して、制動トルク(例えば、実施の形態での短絡トルクSH_TRQ)を発生させる制動手段(例えば、実施の形態でのステップS5、ステップS48)と、前記誘起電圧定数変更手段により前記制動トルクを変更する制動トルク変更手段(例えば、実施の形態でのステップS5a)と、前記内燃機関の再始動時に前記モータを強制転流により起動させる始動手段(例えば、実施の形態でのステップS39およびステップS40)とを備え、前記制動トルク変更手段は、前記誘起電圧定数が所定値に固定された場合に前記制動トルクが最大になるときの前記回転数よりも高い前記回転数で前記誘起電圧定数が極大又は極小になるようにして、前記誘起電圧定数変更手段により前記誘起電圧定数を変更することにより、前記制動トルクを変更する
さらに、請求項2に記載の本発明のハイブリッド車両の制御装置は、前記センサレス制御手段による前記センサレス制御の実行状態から前記制動手段による前記短絡制御の実行状態へ移行するより前に、前記センサレス制御の実行時の停止制御用トルク(例えば、実施の形態でのトルク演算値ESR_TRQ)と、前記短絡制御の実行時の前記制動トルクとの差分が所定値以下となるように設定するトルク制御手段(例えば、実施の形態でのステップS7)を備えることを特徴としている。
さらに、請求項3に記載の本発明のハイブリッド車両の制御装置は、車両停車直後に前記内燃機関をアイドル状態とし、ブレーキ踏込み量が所定の踏込み量(例えば、実施の形態での所定値Pbks1)以上での停車時間が所定時間を超えるとアイドル停止制御を実行すると共に、前記内燃機関の回転数が所定回転数(例えば、実施の形態での回転数N2)以下になると前記短絡制御を実行して前記モータの回転を停止させる停止手段(例えば、実施の形態でのステップS35〜ステップS38)を備えることを特徴としている。
さらに、請求項4に記載の本発明のハイブリッド車両の制御装置では、前記停止手段は、前記誘起電圧定数変更手段により前記エンジン回転数に応じて前記誘起電圧定数を変更することを特徴としている。
さらに、請求項5に記載の本発明のハイブリッド車両の制御装置では、前記始動手段は、前記内燃機関の回転停止後、ブレーキ踏込み量が所定の踏込み量(例えば、実施の形態での踏力Pbks2)以下になると、前記モータを強制転流により起動させると共に前記内燃機関の点火制御を実行することを特徴としている。
さらに、請求項6に記載の本発明のハイブリッド車両の制御装置では、前記始動手段は、前記内燃機関の再始動時に前記モータを強制転流により起動させる際に、前記誘起電圧定数変更手段により前記誘起電圧定数を増大傾向に変化させることを特徴としている。
請求項1に記載の本発明のハイブリッド車両の制御装置によれば、例えば内燃機関とモータとが直結されたハイブリッド車両等において、短絡制御によって内燃機関のアイドル回転数以下で相対的に大きな制動トルクを発生させて迅速に内燃機関の回転を停止させることができ、さらに、内燃機関の回転停止直前には制動トルクが0となって内燃機関の逆転が生じる虞なしに滑らかな運転停止が可能となり、機械的な負荷を低減することができる。
しかも、誘起電圧定数変更手段によりモータの誘起電圧定数を変更することで制動トルクの大きさを変更可能であることから、短絡制御によって過剰に大きな制動トルクが発生してしまうことを防止することができると共に、回転数の変化に応じた制動トルクの変化に伴い過剰に大きなトルク変動が生じることを防止して、内燃機関を滑らかに停止させることができる。
さらに、内燃機関の再始動時には、例えば高調波重畳による磁極判別等を行う必要無しに、始動手段によってモータを強制転流させることで内燃機関を適切に再始動させることができる。
さらに、請求項2に記載の本発明のハイブリッド車両の制御装置によれば、内燃機関の運転を停止させる場合に、センサレス制御の実行状態から短絡制御の実行状態へ移行する際に、過剰に大きなトルク変動が生じてしまうことを防止することができる。
さらに、請求項3に記載の本発明のハイブリッド車両の制御装置によれば、ハイブリッド車両が停車してから内燃機関の回転数が所定の回転数以下になるまで短絡制御の実行を開始しないことから、ブレーキが開放された場合には、直ちにモータの駆動力により内燃機関の駆動を再開することができ、内燃機関の回転数が所定の回転数以下に到達した時点でモータの回転を停止することができる。
さらに、請求項4に記載の本発明のハイブリッド車両の制御装置によれば、誘起電圧定数変更手段によりモータの誘起電圧定数を変更することで制動トルクの大きさを変更可能であることから、内燃機関の運転を停止させる際に、短絡制御によって過剰に大きな制動トルクが発生してしまうことを防止することができると共に、エンジン回転数の変化に応じて過剰に大きなトルク変動が生じることを防止することができる。
さらに、請求項5に記載の本発明のハイブリッド車両の制御装置によれば、ブレーキ踏込み量が所定の踏込み量以下になった場合に、乗員に発車意思があると判断して、磁極位置の判別を必要としない強制転流によりモータを滑らかに始動させ、このモータの駆動によって内燃機関を適切に始動させることができる。
さらに、請求項6に記載の本発明のハイブリッド車両の制御装置によれば、内燃内燃機関の再始動時に、ロータの位置には拘わらずに通電を順次転流させる強制転流によってモータを起動させると共に誘起電圧定数変更手段により誘起電圧定数を増大傾向に変化させることから、モータを滑らか、かつ、迅速に始動させ、このモータの駆動によって内燃機関を適切に始動させることができる。
以下、本発明のハイブリッド車両の制御装置の実施形態について添付図面を参照しながら説明する。
この実施の形態に係るハイブリッド車両100は、例えば図1に示すように、モータ1および内燃機関Eを駆動源として備えるパラレルハイブリッド車両であり、モータ1と、内燃機関Eと、トランスミッションT/Mとは直列に直結され、少なくともモータ1または内燃機関Eの駆動力は、クラッチCおよびトランスミッションT/Mを介して車両100の駆動輪Wに伝達されるようになっている。
そして、この車両100の減速時に駆動輪W側からモータ1に駆動力が伝達されると、モータ1は発電機として機能して、いわゆる回生制動力を発生し、車体の運動エネルギーを電気エネルギー(回生エネルギー)として回収する。また、内燃機関Eの出力がモータ1に伝達された場合にもモータ1は発電機として機能して発電エネルギーを発生する。
ここで、ハイブリッド車両の制御装置(以下、単に、制御装置と呼ぶ)100aが設けられた車両100には、例えばアクセルペダル開度センサ、ブレーキペダルスイッチセンサ、車輪速センサ等の各種センサ(図示略)が設けられており、制御装置100aはこれら各種センサの検出結果に基づいて、内燃機関E、モータ1、クラッチC、トランスミッションT/Mのそれぞれの制御系に対して制御指令を出力する。
モータ1は、例えば図2〜図5に示すように、円環状の固定子2の内周側に回転子ユニット3が配置されたインナロータ型のブラシレスモータとされている。
固定子2は複数相の固定子巻線2aを有し、回転子ユニット3は軸芯部に回転軸4を有している。モータ1の回転力はクラッチCおよびトランスミッションT/Mを介して駆動輪Wに伝達される。
回転子ユニット3は、例えば円環状の外周側回転子5と、この外周側回転子5の内側に同軸に配置される円環状の内周側回転子6を備え、外周側回転子5と内周側回転子6とが所定の設定角度の範囲で相対的に回動可能とされている。
外周側回転子5と内周側回転子6は、各回転子本体である円環状のロータ鉄心7,8が例えば焼結金属によって形成され、その各ロータ鉄心7,8の外周側に偏寄した位置に、複数の磁石装着スロット7a,8aが円周方向等間隔に形成されている。各磁石装着スロット7a,8aには、厚み方向に磁化された2つの平板状の永久磁石9,9が並列に並んで装着されている。同じ磁石装着スロット7a,8a内に装着される2つの永久磁石9,9は同方向に磁化され、各隣接する磁石装着スロット7a,7a、及び、8a,8aに装着される永久磁石9の対同士は磁極の向きが逆向きになるように設定されている。即ち、各回転子5,6においては、外周側がN極とされた永久磁石9の対と、S極とされた永久磁石9の対が円周方向に交互に並んで配置されている。なお、各回転子5,6の外周面の隣接する磁石装着スロット7a,7a、及び、8a,8aの各間には、永久磁石9の磁束の流れを制御(例えば、磁路短絡の抑制等)するための切欠き部10が回転子5,6の軸方向に沿って形成されている。
外周側回転子5と内周側回転子6の磁石装着スロット7a,8aは夫々同数設けられ、両回転子5,6の永久磁石9,…,9が夫々1対1で対応するようになっている。したがって、外周側回転子5と内周側回転子6の各磁石装着スロット7a,8a内の永久磁石9の対を互いに同極同士で対向させる(異極配置にする)ことにより、回転子ユニット3全体の界磁が最も弱められる弱め界磁の状態(例えば、図5,図6(b)参照)を得ることができるとともに、外周側回転子5と内周側回転子6の各磁石装着スロット7a,8a内の永久磁石9の対を互いに異極同士で対向させる(同極配置にする)ことにより、回転子ユニット3全体の界磁が最も強められる強め界磁の状態(例えば、図3,図6(a)参照)を得ることができる。
また、回転子ユニット3は、外周側回転子5と内周側回転子6を相対回動させるための回動機構11を備えている。この回動機構11は、両回転子5,6の相対位相を任意に変更するための位相変更手段12の一部を構成するものであり、非圧縮性の作動流体である作動液(例えば、トランスミッションT/M用の潤滑油、エンジンオイル等でもよい)の圧力によって操作されるようになっている。
位相変更手段12は、例えば図7に示すように、回動機構11と、この回動機構11に供給する作動液の圧力を制御する油圧制御装置13とを主要な要素として備えて構成されている。
回動機構11は、例えば図2〜図5に示すように、回転軸4の外周に一体回転可能にスプライン嵌合されるベーンロータ14と、ベーンロータ14の外周側に相対回動可能に配置される環状ハウジング15とを備え、この環状ハウジング15が内周側回転子6の内周面に一体に嵌合固定されるとともに、ベーンロータ14が、環状ハウジング15と内周側回転子6の両側の側端部を跨ぐ円板状の一対のドライブプレート16,16を介して外周側回転子5に一体に結合されている。したがって、ベーンロータ14は回転軸4と外周側回転子5に一体化され、環状ハウジング15は内周側回転子6に一体化されている。
ベーンロータ14は、回転軸4にスプライン嵌合される円筒状のボス部17の外周に、径方向外側に突出する複数のベーン18が円周方向等間隔に設けられている。一方、環状ハウジング15は、内周面に円周方向等間隔に複数の凹部19が設けられ、この各凹部19にベーンロータ14の対応するベーン18が収容配置されるようになっている。各凹部19は、ベーン18の先端部の回転軌道にほぼ合致する円弧面を有する底壁20と、隣接する凹部19,19同士を隔成する略三角形状の仕切壁21によって構成され、ベーンロータ14と環状ハウジング15の相対回動時に、ベーン18が一方の仕切壁21と他方の仕切壁21の間を変位し得るようになっている。
この実施の形態においては、仕切壁21はベーン18と当接することにより、ベーンロータ14と環状ハウジング15の相対回動を規制する規制部材としても機能する。なお、各ベーン18の先端部と仕切壁21の先端部には、軸方向に沿うようにシール部材22が設けられ、これらのシール部材22によってベーン18と凹部19の底壁20、仕切壁21とボス部17の外周面の各間が液密にシールされている。
また、内周側回転子6に固定される環状ハウジング15のベース部15aは一定厚みの円筒状に形成されるとともに、例えば図2に示すように、内周側回転子6や仕切壁21に対して軸方向外側に突出している。このベース部15aの外側に突出した各端部は、ドライブプレート16に形成された環状のガイド溝16aに摺動自在に保持され、環状ハウジング15と内周側回転子6が、外周側回転子5や回転軸4にフローティング状態で支持されるようになっている。
外周側回転子5とベーンロータ14を連結する両側のドライブプレート16,16は、環状ハウジング15の両側面(軸方向の両端面)に摺動自在に密接し、環状ハウジング15の各凹部19の側方を夫々閉塞する。したがって、各凹部19は、ベーンロータ14のボス部17と両側のドライブプレート16,16によって夫々独立した空間部を形成し、この空間部は、作動液が導入される導入空間23となっている。各導入空間23内は、ベーンロータ14の対応する各ベーン18によって夫々2室に隔成され、一方の部屋が進角側作動室24、他方の部屋が遅角側作動室25とされている。
進角側作動室24は、内部に導入された作動液の圧力によって内周側回転子6を外周側回転子5に対して進角方向に相対回動させ、遅角側作動室25は、内部に導入された作動液の圧力によって内周側回転子6を外周側回転子5に対して遅角方向に相対回動させる。この場合、「進角」とは、内周側回転子6を外周側回転子5に対して、図3,図5中の矢印Rで示すモータ1の回転方向に進めることを言い、「遅角」とは、内周側回転子6を外周側回転子5に対して、モータ1の回転方向Rと逆側に進めることを言うものとする。
また、各進角側作動室24と遅角側作動室25に対する作動液の給排は回転軸4を通して行われるようになっている。具体的には、進角側作動室24は、例えば図7に示す油圧制御装置13の進角側給排通路26に接続され、遅角側作動室25は同油圧制御装置13の遅角側給排通路27に接続されている。さらに、進角側給排通路26と遅角側給排通路27の一部は、例えば図2に示すように、夫々回転軸4に軸方向に沿って形成させた通路孔26a,27aによって構成されている。そして、各通路孔26a,27aの端部は、回転軸4の外周面の軸方向にオフセットした2位置に形成された環状溝26bと環状溝27bに夫々接続され、その各環状溝26b,27bは、ベーンロータ14のボス部17に略半径方向に沿って形成された複数の導通孔26c,…,26c,27c,…,27cに接続されている。進角側給排通路26の各導通孔26cは環状溝26bと各進角側作動室24とを接続し、遅角側給排通路27の各導通孔27cは環状溝27bと各遅角側作動室25とを接続している。
この実施の形態のモータ1において、内周側回転子6が外周側回転子5に対して最遅角位置にあるときに、外周側回転子5と内周側回転子6の永久磁石9が異極同士で対向して強め界磁の状態(例えば、図3,図6(a)参照)になり、内周側回転子6が外周側回転子5に対して最進角位置にあるときに、外周側回転子5と内周側回転子6の永久磁石9が同極同士で対向して弱め界磁の状態(例えば、図5,図6(b)参照)になるように設定されている。
なお、このモータ1は、進角側作動室24と遅角側作動室25に対する作動液の給排制御によって、強め界磁の状態と弱め界磁の状態を任意に変更し得るものであるが、このように磁界の強さが変更されると、これに伴って誘起電圧定数Keが変化し、この結果、モータ1の特性が変更される。即ち、強め界磁によって誘起電圧定数Keが大きくなると、モータ1として運転可能な許容回転速度は低下するものの、出力可能な最大トルクは増大し、逆に、弱め界磁によって誘起電圧定数Keが小さくなると、モータ1の出力可能な最大トルクは減少するものの、運転可能な許容回転速度は上昇する。
油圧制御装置13は、例えば図7に示すように、オイルタンク(図示略)から作動液を吸い上げて通路に吐出するオイルポンプ32と、このオイルポンプ32から吐出された作動液の油圧を調整して高圧のライン通路33に導入し、余剰分の作動液を各種機器の潤滑や冷却のための低圧通路34に流出させるレギュレータバルブ35と、ライン通路33に導入された作動液を進角側給排通路26と遅角側給排通路27に振り分けるとともに、進角側給排通路26と遅角側給排通路27で不要な作動液をドレン通路36に排出する流路切換弁37とを備えている。
レギュレータバルブ35は、ライン通路33の圧力を制御圧として受け、反力スプリング38とのバランスによって作動液の振り分けを行う。
また、流路切換弁37は、制御スプール37aを進退操作する電磁ソレノイド37bを有し、この電磁ソレノイド37bが制御装置100aによって制御されるようになっている。
制御装置100aは、例えば図1に示すように、モータ制御部40と、PDU(パワードライブユニット)41と、バッテリ42とを備えて構成されている。
PDU41は、例えば図8に示すように、トランジスタのスイッチング素子がブリッジ接続されたブリッジ回路41aを用いてパルス幅変調(PWM)を行うPWMインバータ41Aを備え、モータ1と電気エネルギーの授受を行う高圧系のバッテリ42に接続されている。
PDU41に具備されるPWMインバータ41Aは、各相毎に対をなすハイ側,ロー側U相トランジスタUH,ULおよびハイ側,ロー側V相トランジスタVH,VLおよびハイ側,ロー側W相トランジスタWH,WLをブリッジ接続してなるブリッジ回路41aと、平滑コンデンサ41bとを備えて構成され、各トランジスタUH,VH,WHはバッテリ42の正極側端子に接続されてハイサイドアームを構成し、各トランジスタUL,VL,WLはバッテリ42の負極側端子に接続されローサイドアームを構成しており、各相毎に対をなす各トランジスタUH,ULおよびVH,VLおよびWH,WLはバッテリ42に対して直列に接続され、各トランジスタUH,UL,VH,VL,WH,WLのコレクタ−エミッタ間には、エミッタからコレクタに向けて順方向となるようにして、各ダイオードDUH,DUL,DVH,DVL,DWH,DWLが接続されている。
そして、PWMインバータ41Aは、例えばモータ1の駆動時等において、モータ制御部40から入力されるスイッチング指令であるゲート信号(つまり、パルス幅変調信号)に基づき、PWMインバータ41Aにおいて各相毎に対を成す各トランジスタUH,ULおよび各トランジスタVH,VLおよび各トランジスタWH,WLのオン(導通)/オフ(遮断)状態を切り換えることによって、バッテリ42から供給される直流電力を3相交流電力に変換し、モータ1の固定子巻線2aへの通電を順次転流させることによって、各相の固定子巻線2aに交流のU相電流Iu、V相電流IvおよびW相電流Iwを通電する。
また、PWMインバータ41Aは、例えば3相短絡制御の実行時等において、短絡指令に応じたゲート信号により、PWMインバータ41Aのハイサイドアームまたはローサイドアームの各トランジスタUH,VH,WHまたはUL,VL,WLをON状態に設定する。
また、PWMインバータ41Aは、例えば強制転流制御の実行時等において、転流指令に応じたゲート信号により、3相のうちの所定の2相にパターン通電を行い、モータ1の回転子ユニット3を強制的に回転させ、磁極位置を特定の位置に配置させる。
モータ制御部40は、例えば図1に示すように、回転直交座標をなすdq座標上で電流のフィードバック制御を行うものであり、例えば運転者のアクセル操作に係るアクセル開度を検出するアクセルペダル開度センサの検出結果に基づいて算出されるトルク指令値Tqに基づきd軸電流指令Idc及びq軸電流指令Iqcを演算し、d軸電流指令Idc及びq軸電流指令Iqcに基づいて各相出力電圧Vu,Vv,Vwを算出し、各相出力電圧Vu,Vv,Vwに応じてPDU41へゲート信号であるPWM信号を入力すると共に、実際にPDU41からモータ1に供給される各相電流Iu,Iv,Iwの何れか2つの相電流をdq座標上の電流に変換して得たd軸電流Id及びq軸電流Iqと、d軸電流指令Idc及びq軸電流指令Iqcとの各偏差がゼロとなるように制御を行う。
このモータ制御部40は、例えば、トルク制御部50と、目標電流設定部51と、電流偏差算出部52と、界磁制御部53と、電力制御部54と、電流制御部55と、dq−3相変換部56と、PWM信号生成部57と、フィルタ処理部58と、3相−dq変換部59と、角度誤差算出部60と、追従演算オブザーバ61とを備えて構成されている。
さらに、角度誤差算出部60は、例えばモデル演算部71と、角速度状態量算出部72と、正規化部73とを備えて構成され、追従演算オブザーバ61は、角度差補正部74を備えて構成されている。
そして、このモータ制御部40には、例えば、アクセル開度(ACC)センサから出力される検出信号と、ブレーキ(BRK)センサから出力される検出信号と、エンジン回転数(Ne)センサから出力される検出信号と、PDU41からモータ1に出力される3相の各相電流Iu,Iv,Iwのうち、2相のU相電流IuおよびW相電流Iwを検出する各電流センサ81,81から出力される各検出信号Ius,Iwsと、バッテリ42の端子電圧(電源電圧)VBを検出する電圧センサ82から出力される検出信号と、油圧制御装置13により可変制御される内周側回転子6と外周側回転子5との相対的な位相(相対位相)θを検出する位相センサ(図示略)から出力される検出信号と、車両100の各車輪の回転速度(車輪速)を検出する複数の車輪速センサ(図示略)から出力される検出信号等とが入力されている。
トルク制御部50は、アクセル開度(ACC)センサおよびブレーキ(BRK)センサおよびエンジン回転数(Ne)センサから出力されるアクセルペダルの踏み込み操作に関するアクセル操作量およびブレーキの踏込み量およびエンジン回転数の各検出信号に基づいて、モータ1の出力トルクとして必要とされるトルク値を演算し、このトルク値をモータ1から発生させるためのトルク指令QTARを目標電流設定部51に出力する。
さらに、トルク制御部50は、アクセル開度センサおよびブレーキセンサおよびエンジン回転数センサの各検出信号に基づいて、短絡指令または転流指令をPWM信号生成部57に出力すると共に、モータ1を所定の界磁状態に設定することを指示する誘起電圧可変指令を油圧制御装置13に出力する。
目標電流設定部51は、トルク制御部50から入力されるトルク指令QTARに基づき、PDU41からモータ1に供給される各相電流Iu,Iv,Iwを指定するための電流指令を演算しており、この電流指令は、回転する直交座標上でのd軸目標電流Idc及びq軸目標電流Iqcとして電流偏差算出部52へ出力されている。
この回転直交座標をなすdq座標は、例えば回転子ユニット3の外周側回転子5の永久磁石9による界磁極の磁束方向をd軸(界磁軸)とし、このd軸と直交する方向をq軸(トルク軸)としており、モータ1の回転子ユニット3の回転位相に同期して回転している。これにより、PDU41からモータ1の各相に供給される交流信号に対する電流指令として、直流的な信号であるd軸目標電流Idcおよびq軸目標電流Iqcを与えるようになっている。
電流偏差算出部52は、界磁制御部53から入力されるd軸補正電流が加算されたd軸目標電流Idcと、d軸電流Idとの偏差ΔIdを算出するd軸電流偏差算出部52aと、電力制御部54から入力されるq軸補正電流が加算されたq軸目標電流Iqcと、q軸電流Iqとの偏差ΔIqを算出するq軸電流偏差算出部52bとを備えて構成されている。
なお、界磁制御部53は、例えばモータ1の回転数NMの増大に伴う逆起電圧の増大を抑制するために回転子ユニット3の界磁量を等価的に弱めるようにして電流位相を制御する弱め界磁制御の弱め界磁電流に対する目標値をd軸補正電流としてd軸電流偏差算出部52aへ出力する。
また、電力制御部54は、例えばバッテリ42の残容量等に応じた適宜の電力制御に応じてq軸目標電流Iqcを補正するためのq軸補正電流をq軸電流偏差算出部52bへ出力する。
電流制御部55は、例えばモータ1の回転数NMに応じたPI(比例積分)動作により、偏差ΔIdを制御増幅してd軸電圧指令値Vdを算出し、偏差ΔIqを制御増幅してq軸電圧指令値Vqを算出する。
dq−3相変換部56は、追従演算オブザーバ61から入力される推定回転角度θ^を用いて、dq座標上でのd軸電圧指令値Vdおよびq軸電圧指令値Vqを、静止座標である3相交流座標上での電圧指令値であるU相出力電圧VuおよびV相出力電圧VvおよびW相出力電圧Vwに変換する。
PWM信号生成部57は、例えば、正弦波状の各相出力電圧Vu,Vv,Vwと、三角波からなるキャリア信号と、スイッチング周波数とに基づくパルス幅変調により、PDU41のPWMインバータ41Aの各スイッチング素子をオン/オフ駆動させる各パルスからなるスイッチング指令であるゲート信号(つまり、PWM信号)を生成する。
フィルタ処理部58は、各電流センサ81,81により検出された各相電流に対する検出信号Ius,Iwsに対して、高周波成分の除去等のフィルタ処理を行い、物理量としての各相電流Iu,Iwを抽出する。
3相−dq変換部59は、フィルタ処理部58により抽出された各相電流Iu,Iwと、追従演算オブザーバ61から入力される推定回転角度θ^とにより、モータ1の回転位相による回転座標すなわちdq座標上でのd軸電流Idおよびq軸電流Iqを算出する。
角度誤差算出部60は、回転子ユニット3の回転角度に対する推定回転角度θ^と実回転角度θとの角度差θe(=θ−θ^)が相対的に小さい値である場合に角度差θeを正弦値sinθeで近似可能(θe≒sinθe)であることを利用して、例えばdq軸演算モデルによる回路方程式に含まれる角度差θeの正弦値sinθeおよび余弦値cosθeに基づき角度差θeを算出し、追従演算オブザーバ61へ出力する。
モデル演算部71は、電流制御部55から出力されるd軸電圧指令値Vd及びq軸電圧指令値Vqと、3相−dq変換部59から出力されるd軸電流Id及びq軸電流Iqとに基づき、例えば下記数式(1)に示すように記述されるdq座標上での回路方程式により、角度差θeの正弦値sinθeおよび余弦値cosθeからなる誘起電圧の正弦成分Vs及び余弦成分Vcを、回転子ユニット3の回転角速度ωおよび誘起電圧定数Keおよび相抵抗値rおよびインダクタンス成分値Lに基づき算出する。
Figure 0004515439
角速度状態量算出部72は、後述する正規化部73での正規化処理にて用いる回転角速度ωに比例する状態量として、例えば下記数式(2)に示すように、回転角速度ωと誘起電圧定数Keとを乗算して得た値(ωKe)を、モデル演算部71にて算出される誘起電圧の正弦成分Vsおよび余弦成分Vcに基づき算出し、正規化部73へ出力する。
Figure 0004515439
正規化部73は、モデル演算部71にて算出される誘起電圧の正弦成分Vsを、角速度状態量算出部72にて算出される回転角速度ωに比例する状態量(例えば、ωKe)によって除算することで角度差θeに近似される角度差近似値(−Vs/(Vs2+Vc2)1/2≒θe)を算出し、追従演算オブザーバ74へ入力する。
すなわち、角度差θeに回転角速度ω及び誘起電圧定数Keを乗算して得た値として角度差推定値θesを設定すると、この角度差推定値θesは、上記数式(1)での誘起電圧の正弦成分Vsにおいて、正弦値sinθeを角度差θeで近似(θe≒sinθe)し、さらに、相抵抗値rによる電圧降下を無視して、例えば下記数式(3)に示すように記述される。
Figure 0004515439
ここで、上記数式(3)において、例えばインダクタンス成分値Lに誤差ΔLがあると、角度差推定値θesは、例えば下記数式(4)に示すように記述され、たとえ角度差θeが一定値であっても、回転角速度ωに比例して誤差が増大することになる。
すなわち、下記数式(4)において、誤差ΔLを含む項(ωΔLIq)は、角度差θeがゼロのときの角度差推定値θesの誤差であって、回転角速度ωに比例して増大する。このため、モータ1の相対的に高回転状態においては、モータ1の相対的に低回転状態に比べて、角度差推定値θesの誤差が増大する。
Figure 0004515439
ここで、上記数式(4)による角度差推定値θesを、回転角速度ωに比例する値ωK(Kは任意の定数)で除算すると、下記数式(5)に示すように、角度差推定値θesの誤差が回転角速度ωに依存しない値となる。
Figure 0004515439
このため、追従演算オブザーバ61は、上記数式(5)に示すように角度差推定値θesに近似される誘起電圧の正弦成分Vsを、上記数式(2)に示すように角速度状態量算出部72にて算出される回転角速度ωに比例する状態量(例えば、ωKe)によって除算して得た値(Vs/(Vs2+Vc2)1/2)、つまり角度差θeに近似される角度差近似値(−Vs/(Vs2+Vc2)1/2≒θe)を追従演算処理に対する入力値とする。
そして、追従演算オブザーバ61は、例えば下記数式(6)に示すように、所定時間周期Δtにて繰り返し実行される追従演算処理の実行回数を示す任意の自然数nと、推定回転角度θ^に係る制御ゲイン(フィードバックゲイン)K1と、回転角速度推定値ω^に係る制御ゲイン(フィードバックゲイン)K2と、正負の符号を含む適宜の比例係数K〜と、例えばモータ1の相対的に低回転状態おいて、あるいは、例えば実回転角度θを算出する際等において、適宜に設定されるロータの回転角度offsetとに基づき、この入力値(つまり角度差θe)をゼロに収束させるようにして追従演算処理を行うことによって、推定回転角度θ^を逐次更新しつつ算出し、推定回転角度θ^の収束値を制御部15のdq−3相変換部56および3相−dq変換部59へ出力する。
ここで、追従演算オブザーバ61は、角度差補正部74を有しており、この角度差補正部74は角度差の余弦成分Vcが負の値である時にこの角度差θeを補正すると共に、角度差θeの正弦成分Vs及び余弦成分Vcの各絶対値の大小関係に応じて角度差θeを補正する。
Figure 0004515439
本実施形態によるハイブリッド車両の制御装置100aは上記構成を備えており、次に、このハイブリッド車両の制御装置100aの動作について添付図面を参照しながら説明する。
以下に、モータ制動制御処理について説明する。
先ず、例えば図9に示すステップS1では、アクセルがOFFか否かを判定する。
この判定結果が「YES」(アクセルOFF)である場合には、ステップS2に進む。
一方、この判定結果が「NO」(アクセルON)である場合には、乗員の停止意思がないものとして、一連の処理を終了する。
そして、ステップS2では、ブレーキがON状態か否かを判定する。
この判定結果が「YES」(ブレーキON)である場合には、ステップS3に進む。
一方、この判定結果が「NO」(ブレーキOFF)である場合には、後述するステップS8に進む。
そして、ステップS3では、エンジン回転数Neが所定の回転数N1(例えば、750rpm程度)よりも小さいか否かを判定する。
この判定結果が「YES」(Ne<N1)である場合には、ステップS4に進む。
一方、この判定結果が「NO」(Ne≧N1)である場合には、後述するステップS8に進む。
そして、ステップS4では、エンジン回転数Neが所定の回転数N2(例えば、400rpm程度)よりも小さいか否かを判定する。
この判定結果が「YES」(Ne<N2)である場合には、ステップS5に進む。
一方、この判定結果が「NO」(Ne≧N2)である場合には、ステップS7に進む。
なお、所定の回転数N1は、所定の回転数N2よりも大きい回転数とされている。
そして、ステップS5では、3相短絡制御として、トルク制御部50から短絡指令を出力させると共に、後述する3相短絡の処理を行い、ステップS6に進む。
そして、ステップS6では、3相短絡制御では内燃機関Eを停止させるためのモータトルクを必要としないため、停止制御用トルクである内燃機関Eを停止するために最低限必要なモータトルクの演算値(以下、単に、トルク演算値と呼ぶ)ESR_TRQを初期値である0に設定して、一連の処理を終了する。
そして、ステップS7では、後述するセンサレス回生処理を実行し、一連の処理を終了する。
また、ステップS8では、通常の回生制御を行う。
そして、ステップS9では、トルク演算値ESR_TRQを0に設定し、一連の処理を終了する。ここで、ステップS8の通常の回生制御は、モータ1の回転時に、このモータ1が発生する誘起電圧の変化に基づいて回転子ユニット3の磁極位置を判別するセンサレス制御によって実行される回生制御である。
以下に、上述したステップS5での3相短絡の処理について説明する。
先ず、例えば図10に示すステップS5aにおいては、モータ回転数Nmに基づき、誘起電圧定数指令(つまり、誘起電圧可変指令)Ke*を所定の誘起電圧定数指令マップに対するマップ検索により算出する。なお、この実施の形態では、モータ1と内燃機関Eとは直結されていることから、モータ回転数Nmはエンジン回転数Neと同等である。
そして、ステップS5bにおいては、誘起電圧定数指令Ke*に基づき、外周側回転子5と内周側回転子6との相対位相に対する指令である位相角指令θ*を所定の位相角指令マップに対するマップ検索により算出し、一連の処理を終了する。
ここで、ステップS5aにおいて参照される所定の誘起電圧定数指令マップは、例えば図11に示すように、モータ回転数Nm(=エンジン回転数Ne)がゼロから所定回転数Naまで増大することに伴い、誘起電圧定数指令Ke*がゼロから100%(つまり、所定の最大値)まで増大傾向に変化し、モータ回転数Nmが所定回転数Naから増大することに伴い、誘起電圧定数指令Ke*が100%からゼロに向かい減少傾向に変化するように設定されている。そして、所定回転数Naは、例えば誘起電圧定数指令Ke*が100%に固定されている状態で発生する制動トルクが最大となる際の所定回転数とは異なる値、例えば、この所定回転数よりも大きな値であって、内燃機関Eと、この内燃機関Eを搭載する車体との共振点近傍の値となるように設定される。
この場合には、例えば誘起電圧定数指令Ke*が100%に固定されている状態に比べて、発生する制動トルクの最大値が低下すると共に、制動トルクが最大となる際のモータ回転数Nmが高回転側に変化する。また、内燃機関Eと、この内燃機関Eを搭載する車体との共振点近傍の回転領域では、誘起電圧定数Keが相対的に大きくなることで、この回転領域を迅速に遷移することができ、この回転領域から内燃機関の停止までは、誘起電圧定数Keが相対的に小さくなることで、緩やかに遷移することになり、迅速かつ滑らかな制動停止を行うことができる。
また、所定の誘起電圧定数指令マップが、例えば図12に示すように、モータ回転数Nm(=エンジン回転数Ne)がゼロから所定回転数Nbまで増大することに伴い、誘起電圧定数指令Ke*が100%(つまり、所定の最大値)から所定の最小値に向かい減少傾向に変化し、モータ回転数Nmが所定回転数Nbから増大することに伴い、誘起電圧定数指令Ke*が所定の最小値から100%に向かい増大傾向に変化するように設定されている。そして、所定回転数Nbは、例えば誘起電圧定数指令Ke*が100%に固定されている状態で発生する制動トルクが最大となる際の所定回転数とは異なる値、例えば、この所定回転数よりも大きな値となるように設定される。
この場合には、例えば誘起電圧定数指令Ke*が100%に固定されている状態に比べて、発生する制動トルクの最大値が低下すると共に、モータ回転数Nmに応じた制動トルク変化が、ほぼ一定の値となるように変化する。
なお、ステップS5bにおいて参照される所定の位相角指令マップは、例えば図13に示すように、誘起電圧定数指令Ke*がゼロから所定値まで増大することに伴い、位相角指令θ*がゼロとされ、誘起電圧定数指令Ke*が所定値から100%(つまり、所定の最大値)に向かい増大することに伴い、位相角指令θ*がゼロから最大値(つまり、電気角での180°)に向かい増大傾向に変化するように設定されている。
以下に、上述したステップS7でのセンサレス回生処理について説明する。
先ず、例えば図14に示すステップS10では、トルク制御部50から出力されるモータ1の出力トルクに対するトルク指令QTARが、短絡制動トルクである3相短絡制御を実行した時のモータ1の発生トルク(以下、単に、短絡トルクと略す)SH_TRQよりも大きいか否かを判定する。
この判定結果が「YES」(QTAR>ESR_TRQ)である場合には、ステップS11に進む。
一方、この判定結果が「NO」(QTAR≦ESR_TRQ)である場合には、後述するステップS17に進む。
ここで、短絡トルクSH_TRQは、例えば図15に示すように、エンジン回転数Ne(rpm:横軸)が減少するにつれて低トルク状態から高トルク状態にトルク(Nm:縦軸)が変化し、再び低トルク状態になり、最終的にエンジン回転数が0となると0トルクになる。
このトルク値の変化はモータ1毎の固有のものであるが、内燃機関Eの停止時には、内燃機関Eと、この内燃機関Eを支持する車体との振動の共振点近傍で短絡トルクSH_TRQによる制動力が最大になるようになっている。よって、内燃機関Eと車体との共振点を短時間で通過することができる。
短絡トルクSH_TRQは、短絡トルクTと、相抵抗Rと、電気角速度ωと、誘起電圧定数Keと、界磁軸およびトルク軸の各インダクタンス成分値Ld,Lqとに基づき、下記数式(7)を用いて算出することができる。
Figure 0004515439
そして、ステップS11では、指令トルクQTARがトルク演算値ESR_TRQよりも大きいか否かを判定する。
この判定結果が「YES」(QTAR>ESR_TRQ)である場合には、ステップS12に進む。
一方、この判定結果が「NO」(QTAR≦ESR_TRQ)である場合には、ステップS13に進む。
そして、ステップS12では、指令トルクQTARの現在値をトルク演算値ESR_TRQの値として設定して、後述するステップS16に進む。
そして、ステップS13では、トルク演算値ESR_TRQの減算処理を行い、ステップS14に進む。
そして、ステップS14では、トルク演算値ESR_TRQが短絡トルクSH_TRQから所定トルクα(例えば、2〜3Nm)だけ減算したものよりも小さいか否かを判定する。
この判定結果が「YES」(ESR_TRQ<SH_TRQ−α)である場合には、ステップS15に進む。
一方、この判定結果が「NO」(ESR_TRQ≧SH_TRQ−α)である場合には、ステップS16に進む。
そして、ステップS15では、短絡トルクSH_TRQのトルク値をトルク演算値ESR_TRQのトルク値として設定して、ステップS16に進む。
そして、ステップS16では、トルク演算値ESR_TRQのトルク値をモータ制御用指令トルクCommand_TRQに設定して、一連の処理を終了する。
そして、例えば図16に示すステップS17では、指令トルクQTARがトルク演算値ESR_TRQよりも大きいか否かを判定する。
この判定結果が「YES」(QTAR>ESR_TRQ)である場合には、ステップS18に進む。
一方、この判定結果が「NO」(QTAR≦ESR_TRQ)である場合には、ステップS19に進む。
そして、ステップS18では、指令トルクQTARをトルク演算値ESR_TRQに設定して、上述したステップS16に戻る。
そして、ステップS19では、トルク演算値ESR_TRQが短絡トルクSH_TRQよりも小さいか否かを判定する。
この判定結果が「YES」(ESR_TRQ<SH_TRQ)である場合には、ステップS18に進む。
一方、この判定結果が「NO」(ESR_TRQ≧SH_TRQ)である場合には、ステップS20に進む。
そして、ステップS20では、トルク演算値ESR_TRQの加算処理を行いステップS21に進む。
そして、ステップS21ではトルク演算値ESR_TRQが短絡トルクSH_TRQに所定トルクαを加算したものよりも大きいか否かを判定する。
この判定結果が「YES」(ESR_TRQ>SH_TRQ+α)である場合には、ステップS22に進む。
一方、この判定結果が「NO」(ESR_TRQ≦SH_TRQ+α)である場合には、上述したステップS16に戻る。
そして、ステップS22では、トルク演算値ESR_TRQに短絡トルクSH_TRQを設定して、上述したステップS16に戻る。
すなわち、上述したモータ制動制御処理においては、車両走行中にアクセル及びブレーキの状態によって乗員の加速意思、停車意思を判断し(ステップS1、ステップS2)、ブレーキペダルが踏み込まれていないか、或いは、ブレーキペダルが踏込まれていたとしてもエンジン回転数Neが所定の回転数N1よりも高い高回転領域にある場合には通常のセンサレス制御によりモータ1の回生制御を行う(ステップS8)。
そして、乗員によってブレーキが踏み込まれると(ステップS2でYES)、エンジン回転数Neが徐々に低下するが、このエンジン回転数Neが回転数N1から回転数N2の間の回転領域に入った時点で(ステップS3、ステップS4でYES)、3相短絡制御への切替え時に発生するトルク段差を抑制する処理として、トルク演算値ESR_TRQを短絡トルクSH_TRQに近づける処理(ステップS7)を行う。
具体的には、前述したようにトルク演算値ESR_TRQが初期値の0であるため、指令トルクQTARが短絡トルクSH_TRQよりも大きい場合には(ステップS10でYES)、指令トルクQTARよりもトルク演算値ESR_TRQが大きくなるため(ステップS11でYES)、トルク演算値ESR_TRQにこれよりも短絡トルクに近い指令トルクQTARを設定して(ステップS12)トルク演算値ESR_TRQを短絡トルクSH_TRQに近づける。
この後、トルク演算値ESR_TRQを減算処理によって徐々に短絡トルクSH_TRQに近づけて(ステップS13)、このトルク演算値ESR_TRQが短絡トルクSH_TRQから所定トルクαを減算したものよりも低いトルク範囲に入った時点で(ステップS14でYES)トルク演算値ESR_TRQを短絡トルクSH_TRQに完全に一致させる(ステップS15)。
一方、指令トルクQTARが短絡トルクSH_TRQ以下である場合には(ステップS10でNO)、トルク演算値ESR_TRQよりも指令トルクQTARが小さくなり、さらに、トルク演算値ESR_TRQよりも短絡トルクSH_TRQが小さくなる(ステップS17でNO、ステップS19でYES)。このため、初期値の0に設定されたトルク演算値ESR_TRQに対して初期のトルク合わせとして指令トルクQTARを設定する(ステップS18)。ここで、指令トルクQTARは、トルク演算値ESR_TRQよりも短絡トルクSH_TRQ寄りに位置するためトルク演算値ESR_TRQが短絡トルクSH_TRQに近づくこととなる。
そして、このトルク演算値ESR_TRQは短絡トルクSH_TRQよりも小さくなるため、加算処理で増加させて(ステップS20)、短絡トルクSH_TRQに所定トルクαを加算したものよりも大きいトルク範囲に入った時点で(ステップS21でYES)トルク演算値ESR_TRQの加算処理を停止してトルク演算値ESR_TRQに短絡トルクSH_TRQを設定して(ステップS22)トルク演算値ESR_TRQと短絡トルクSH_TRQに完全に一致させる。尚、エンジン回転数Neが回転数N2を下回るまでは通常の回生制御は継続して行われる。
以下に、車両停車時のアイドル停止判定処理について説明する。
先ず、例えば図17に示すステップS30では、アクセルがOFFか否かを判定する。
この判定結果が「YES」(アクセルOFF)である場合には、ステップS31に進む。
一方、この判定結果が「NO」(アクセルON)である場合には、後述するステップS44に進む。
そして、ステップS31では、ブレーキがONか否かを判定する。
この判定結果が「YES」(ブレーキON)である場合には、ステップS32に進む。
一方、この判定結果が「NO」(ブレーキOFF)である場合には、後述するステップS44に進む。
そして、ステップS32では、エンジン回転数Neが予め設定された所定の回転数N2よりも小さいか否かを判定する。
この判定結果が「YES」(Ne<N2)である場合には、ステップS33に進む。
一方、この判定結果が「NO」(Ne≧N2)である場合には、後述するステップS42に進む。
そして、ステップS33では、発進クラッチがオフ時のアイドル制御を行う。
そして、ステップS34では、ブレーキ踏力が予め設定された踏力Pbks1よりも大きいか否かを判定する。
この判定結果が「YES」(ブレーキ踏力>Pbks1)である場合には、ステップS35に進む。
一方、この判定結果が「NO」(ブレーキ踏力≦Pbks1)である場合には、一連の処理を終了する。ここで、前記踏力Pbks1は、乗員の停車意思を判定するための閾値である。
そして、ステップS35では、タイマーをスタートさせる。
そして、ステップS36では、再びブレーキ踏力が踏力Pbks1よりも大きいか否かを判定する。
この判定結果が「YES」(ブレーキ踏力>Pbks1)である場合には、ステップS37に進む。
一方、この判定結果が「NO」(ブレーキ踏力≦Pbks1)である場合には、後述するステップS41に進む。
そして、ステップS37では、タイマーが終了したか否かを判定する。
この判定結果が「YES」(タイマー終了)である場合には、ステップS38に進む。
一方、この判定結果が「NO」(タイマー継続)である場合には、上述したステップS36に戻る。
そして、ステップS38では、後述するエンジン停止制御処理を行う。
そして、ステップS39ではブレーキ踏力が所定の踏力Pbks2以下か否かを判定する。
この判定結果が「YES」(ブレーキ踏力≦Pbks2)である場合には、ステップS40に進む。
一方、この判定結果が「NO」(ブレーキ踏力>Pbks2)である場合には、ステップS39の処理を繰り返す。
そして、ステップS40では、後述するエンジン始動制御処理を行い、一連の処理を終了する。
そして、ステップS41では、タイマーをリセットして、一連の処理を終了する。
そして、ステップS42では、内燃機関Eのフューエルカット(燃料供給停止)を行う。
そして、ステップS43では、モータ1による回生制御を行い、一連の処理を終了する。
そして、ステップS44では、内燃機関Eの通常の燃焼処理制御を行い、一連の処理を終了する。
以下に、上述したステップS38でのエンジン停止制御処理について説明する。
先ず、例えば図18に示すステップS45では、内燃機関Eの駆動フラグが1か否かを判定する。
この判定結果が「YES」(ENG駆動フラグ=1)である場合には、ステップS46に進む。
一方、この判定結果が「NO」(ENG駆動フラグ≠1)である場合には、ステップS45の処理を繰り返す。
そして、ステップS46では、イグニッション(IG)がONか否かを判定する。
この判定結果が「YES」(IGがON)である場合には、ステップS47に進む。
一方、この判定結果が「NO」(IGがOFF)である場合には、上述したステップS45に戻る。
そして、ステップS47では、エンジン回転数Neが回転数N2よりも小さいか否かを判定する。
この判定結果が「YES」(Ne<N2)である場合には、ステップS48に進む。
一方、この判定結果が「NO」(Ne≧N2)である場合には、後述するステップS51に進む。
そして、ステップS48では、上述したステップS5と同等の3相短絡制御を実行し、ステップS49に進む。
一方、ステップS51ではフューエルカットを行う。そして、ステップS52では、モータ1の回生制御を行い、上述したステップS47に戻る。
そして、ステップS49では、エンジン回転数Neが略ゼロか否かを判定する。
この判定結果が「YES」(Ne≒0)である場合には、ステップS50に進む。
一方、この判定結果が「NO」(Ne≒0ではない)である場合には、上述したステップS48に戻る。
そして、ステップS50では、内燃機関Eの駆動フラグに0を設定し、一連の処理を終了する。
以下に、上述したステップS40におけるエンジン始動制御処理について説明する。
先ず、例えば図19に示すステップS53では、内燃機関Eの駆動フラグが0か否かを判定する。
この判定結果が「YES」(ENG駆動フラグ=0)である場合には、ステップS54に進む。
一方、この判定結果が「NO」(ENG駆動フラグ≠0)である場合には、ステップS53の処理を繰り返す。
そして、ステップS54では、イグニッションがONか否かを判定する。
この判定結果が「YES」(IGがON)である場合には、ステップS55に進む。
一方、この判定結果が「NO」(IGがOFF)である場合には、上述したステップS53に戻る。
ステップS55では、モータ1を所定の弱め界磁状態から強め界磁状態に設定することを指示する誘起電圧定数指令Ke*をトルク制御部50から油圧制御装置13に出力すると共に、PWMインバータ41Aを用いてモータ1の3相のうち2相にパターン通電を行う強制転流により回転子ユニット3の磁極位置を所定位置に動かしてモータ1を起動する。
そして、ステップS56では、エンジン回転数Neがアイドル回転数Nidlsよりも大きいか否かを判定する。
この判定結果が「YES」(Ne>Nidls)である場合はステップS57に進む。
一方、この判定結果が「NO」(Ne≦Nidls)である場合には、上述したステップS54に戻る。
そして、ステップS57では内燃機関Eの点火制御を開始する。
そして、ステップS58では、内燃機関Eが点火制御によって完爆しているか否かを判定する。
この判定結果が「YES」(完爆している)である場合には、ステップS59に進む。
一方、この判定結果が「NO」(完爆していない)である場合には、上述したステップS57に戻る。
そして、ステップS59では、内燃機関Eの駆動フラグを1に設定して、一連の処理を終了する。
すなわち、上述したアイドル停止判定処理においては、乗員の車両停止の意思があると判断された場合(ステップS30とステップS31でYES)、エンジン回転数Neが所定回転数N2を下回る低回転領域に入ったら、内燃機関Eの回転を停止する準備として発進クラッチを切断する(ステップS33)。そして、ブレーキ踏力が所定値Pbks1を上回った状態が所定時間継続した場合にはエンジン停止制御処理に移行する。
エンジン停止制御処理においては、内燃機関Eが駆動状態で(ステップS45でYES)、エンジン回転数Neが所定回転数N2以上の場合には通常の回生制御である内燃機関Eのフューエルカット及び回生制御を行い(ステップS51、ステップS52)、一方、エンジン回転数Neが所定の回転数N2よりも小さい場合には、PWMインバータ41Aによってモータ1の3相短絡制御を行って内燃機関Eの回転を停止させる(ステップS48)。
一方、エンジン始動制御処理においては、いわゆる内燃機関Eのアイドル停止状態で、強制転流によりモータ1の起動を行い(ステップS55)、そして、このモータ1の回転数上昇によってエンジン回転数Neがアイドル回転数Nidls以上になった時点(ステップS58でYES)で点火制御を開始して内燃機関Eの再始動を行う。
上述したように、本実施形態によるハイブリッド車両の制御装置100aによれば、エンジン回転数Neがアイドル回転数以下の所定の回転数N2を下回る回転数領域にある場合には、モータ1の3相短絡制御によって相対的に大きな制動トルクを発生させることができるため、迅速に内燃機関Eの回転を停止させることができる。さらに、内燃機関Eの回転停止直前には3相短絡制御の制動トルクが滑らかに0となって内燃機関Eの逆転が生じる虞無しに適切に回転停止に至ることができるため、機械的な負荷を低減することができ、この結果、商品性の向上と信頼性の向上とを図ることができる。しかも、モータ1の誘起電圧定数Keを変更することで、発生する制動トルクの大きさを変更可能であることから、3相短絡制御によって過剰に大きな制動トルクが発生してしまうことを防止することができると共に、モータ1の回転数(=エンジン回転数Ne)の変化に応じた制動トルクの変化に伴い過剰に大きなトルク変動が生じることを防止して、内燃機関Eを滑らかに停止させることができる。
また、内燃機関Eの始動時には、例えば高調波を用いるセンサレス制御で磁極位置の判別を行う必要無しに、強制転流によってモータ1を始動して、内燃機関Eの再始動を行うことができるため、高調波による電磁騒音を防止して車室内の静粛性を向上すことできる。しかも、強制転流の実行開始に伴い誘起電圧定数を増大傾向に変化させることから、モータ1を滑らか、かつ、迅速に始動させ、このモータ1の駆動によって内燃機関Eを適切に始動させることができる。
そして、エンジン回転数Neが高回転領域において、ステップS8の通常のセンサレス制御と、ステップS5の3相短絡制御との切替え時のトルク演算値ESR_TRQと短絡トルクSH_TRQとの各トルク値をステップS7で揃えることができるため、ステップS8のセンサレス制御からステップS5の3相短絡制御に移行する際のトルク段差を低減して滑らかに内燃機関Eを停止させることができ、この結果、更なる商品性の向上を図ることができる。
また、ステップS42で内燃機関Eへのフューエルカットを行ってからエンジン回転数Neが回転数N2以下になるまで3相短絡制御に移行しないため、この間にブレーキがOFF状態に変化したとしても、即座にモータ1の回転数を上昇させて内燃機関Eの駆動を再開することができる。そして、エンジン回転数Neが回転数N2以下になって乗員の停止意思が確実な状態になった時点でモータ1の回転を3相短絡制御によって停止させることができる。よって、乗員の発車意思に対する内燃機関Eの始動応答性を向上させることができる。
さらに、アイドル停止による内燃機関Eの回転停止後にステップS39でブレーキ踏込み量が所定の踏込み量Pbks2以下になったと判定されると乗員に発車意思があると判断して、迅速に強制転流によりモータ1を始動させ、例えば発進クラッチ(図示略)が係合する前に、モータ1の駆動によって内燃機関Eを始動させることができるため、モータ1の始動時の電磁騒音を低減しつつ内燃機関Eを滑らかに始動させることができ、商品性を向上することができる。
そして、内燃機関Eのアイドル停止を判定する際に、エンジン回転数Neが回転数N2を下回りステップS37でタイマーが終了するまでは、ステップS36でブレーキ踏力を監視し、このブレーキ踏力が所定の踏力Pbks1を下回った時点でタイマーをリセットして内燃機関Eのアイドル停止を中止することができるため、乗員の発車意思に対する車両の応答性を向上することができる。
また、センサレス回生処理において、回転数N1から回転数N2の間の回転数領域で、トルク演算値ESR_TRQが0から短絡トルクSH_TRQに近づくように処理されるが、指令トルクQTARがトルク演算値ESR_TRQよりも短絡トルクSH_TRQ寄りにある場合にトルク演算値ESR_TRQを指令トルクQTARの値まで大きく変位させることができるため、トルク演算値ESR_TRQと短絡トルクSH_TRQとの値を揃える際の時間を短縮することができる。
以下に、上述した実施の形態の変形例に係るハイブリッド車両の制御装置100aの動作について添付図面を参照しながら説明する。
ここで、この変形例では、前述した実施の形態の図9,図14〜図16に示すモータ制動制御処理を図20〜図23に示すモータ制動制御処理と置き換えたものであるため、上述した実施の形態と重複する説明を省略する。尚、この変形例では最大短絡トルクSH_TRQMAXよりも低回転側においては、エンジン回転数Neが十分に低減されているためトルク段差は無視できるものとしている。
以下に、この変形例でのモータ制動制御処理について説明する。
先ず、例えば図20に示すステップS100では、アクセルがOFFか否かを判定する。
この判定結果が「YES」(アクセルOFF)である場合には、ステップS101に進む。
一方、この判定結果が「NO」(アクセルON)である場合には、乗員の停止意思がないものとして、一連の処理を終了する。
そして、ステップS101では、ブレーキがON状態か否かを判定する。
この判定結果が「YES」(ブレーキON)である場合には、ステップS102に進む。
一方、この判定結果が「NO」(ブレーキOFF)である場合には、ステップS107に進む。
そして、ステップS102では、エンジン回転数NeがN1よりも小さいか否かを判定する。
この判定結果が「YES」(Ne<N1)である場合には、ステップS103に進む。
一方、この判定結果が「NO」(Ne≧N1)である場合には、ステップS107に進む。
そして、ステップS103では、3相短絡許可フラグF_SHENBが1か否かを判定する。
この判定結果が「YES」(F_SHENB=1)である場合には、ステップS104に進む。
一方、この判定結果が「NO」(F_SHENB=0)である場合には、ステップS106に進む。
そして、ステップS104では、上述したステップS5と同等の3相短絡制御を実行し、ステップS105に進む。
そして、ステップS105ではトルク演算値ESR_TRQに0を設定して、一連の処理を終了する。
また、ステップS106では、センサレス回生処理を行い、一連の処理を終了する。
また、ステップS107では、通常の回生制御を行う。
そして、ステップS108では、トルク演算値ESR_TRQに0を設定して、一連の処理を終了する。
以下に、上述したステップS106でのセンサレス回生処理について説明する。
先ず、例えば図21に示すステップS109では指令トルクQTARが最大短絡トルクSH_TRQMAXよりも大きいか否かを判定する。
この判定結果が「YES」(QTAR>SH_TRQMAX)である場合には、ステップS111に進む。
一方、この判定結果が「NO」(QTAR≦SH_TRQMAX)である場合には、ステップS110に進む。
そして、ステップS110では、指令トルクQTARに最大短絡トルクSH_TRQMAXを設定してステップS111に進む。ここで、ステップS109とステップS110とでは指令トルクQTARのリミット処理を行っており、具体的には、指令トルクQTARが最大短絡トルクSH_TRQMAXよりも小さい場合に、指令トルクQTARに最大短絡トルクSH_TRQMAXを設定して指令トルクQTARを短絡トルクSH_TRQの制動トルクの範囲内に変位させているのである。
尚、最大短絡トルクSH_TRQMAXは、短絡トルクSH_TRQによる制動トルクが最大になるという意味で「最大」と称している。
そして、ステップS111では、指令トルクQTARが短絡トルクSH_TRQよりも大きいか否かを判定する。
この判定結果が「YES」(QTAR>SH_TRQ)である場合には、ステップS112に進む。
一方、この判定結果が「NO」(QTAR≦SH_TRQ)である場合には、ステップS120に進む。
そして、ステップS112では、指令トルクQTARがトルク演算値ESR_TRQよりも小さいか否かを判定する。
この判定結果が「YES」(QTAR<ESR_TRQ)である場合には、ステップS113に進む。
一方、この判定結果が「NO」(QTAR≧ESR_TRQ)である場合には、ステップS117に進む。
そして、ステップS113では、トルク演算値ESR_TRQに指令トルクQTARを設定する。
そして、ステップS114では、3相短絡許可フラグF_SHENBを0に設定し、ステップS115に進む。
そして、ステップS115では、トルク演算値ESR_TRQをモータ制御用指令トルクCommand_TRQに設定する。
そして、ステップS116では、指令トルクQTARをバッファBuf1に設定して、一連の処理を終了する。
また、ステップS117では、エンジン停止制御用トルクESR_TRQを減算処理する。
そして、ステップS118では、トルク演算値ESR_TRQが短絡トルクSH_TRQから所定トルクαを減算したものよりも小さいか否かを判定する。
この判定結果が「YES」(ESR_TRQ<SH_TRQ−α)である場合には、ステップS119に進む。
一方、この判定結果が「NO」(ESR_TRQ≧SH_TRQ−α)である場合には、上述したステップS115に戻る。
そして、ステップS119では、短絡トルクSH_TRQをトルク演算値ESR_TRQに設定すると共に、3相短絡許可フラグF_SHENBを1に設定して、上述したステップS115に戻る。
そして、例えば図22に示すステップS120では、指令トルクQTARがトルク演算値ESR_TRQよりも小さいか否かを判定する。
この判定結果が「YES」(QTAR<ESR_TRQ)である場合には、ステップS126に進む。
一方、この判定結果が「NO」(QTAR≧ESR_TRQ)である場合には、ステップS121に進む。
そして、ステップS121では、トルク演算値ESR_TRQが短絡トルクSH_TRQよりも小さいか否かを判定する。
この判定結果が「YES」(ESR_TRQ<SH_TRQ)である場合には、ステップS122に進む。
一方、この判定結果が「NO」(ESR_TRQ≧SH_TRQ)である場合には、ステップS126に進む。
そして、ステップS122では、バッファBuf1が指令トルクQTAR以上か否かを判定する。
この判定結果が「YES」(Buf1≧QTAR)である場合には、ステップS123に進む。
一方、この判定結果が「NO」(Buf1<QTAR)である場合には、ステップS126に進む。
そして、ステップS123では、トルク演算値ESR_TRQを保持して、ステップS124に進む。
また、ステップS126では演算値ESR_TRQに指令トルクQTARを設定して、ステップS124に進む。
そして、ステップS124では、トルク演算値ESR_TRQが短絡トルクSH_TRQから所定トルクαを減算したトルク値よりも小さいか否かを判定する。
この判定結果が「YES」(ESR_TRQ<SH_TRQ−α)である場合には、ステップS125に進む。
一方、この判定結果が「NO」(ESR_TRQ≧SH_TRQ−α)である場合には、ステップS127に進む。
そして、ステップS125では、3相短絡許可フラグF_SHENBに0を設定してステップS115に進む。
そして、ステップS127では、トルク演算値ESR_TRQが短絡トルクSH_TRQに所定トルクαを加算したトルク値よりも小さいか否かを判定する。
この判定結果が「YES」(ESR_TRQ<SH_TRQ+α)である場合には、ステップS128に進む。
一方、この判定結果が「NO」(ESR_TRQ≧SH_TRQ+α)である場合には、上述したステップS125に進む。
また、ステップS128では、短絡トルクSH_TRQをESR_TRQに設定すると共に3相短絡許可フラグF_SHENBに1を設定して、上述したステップS115に進む。
すなわち、この変形例のモータ制動制御処理においては、車両走行中に乗員の停車意思がある場合には、例えば図23に示すように、エンジン回転数Neが所定の回転数N1よりも低回転領域に入った場合に通常の回生制御からセンサレス回生処理に移行する(ステップS102でYES)。
そして、センサレス回生処理では、指令トルクQTARが短絡トルクSH_TRQよりも大きく(ステップS111でYES)、指令トルクQTARよりもトルク演算値ESR_TRQが大きい場合には(ステップS112でYES)、トルク演算値ESR_TRQを短絡トルクSH_TRQに近づけるべくトルク演算値ESR_TRQに指令トルクQTARを設定する。
この後、このトルク演算値ESR_TRQを減算処理により減少させ(ステップS117)、短絡トルクSH_TRQに十分近づいた時点(ステップS118でYES)で減算処理を停止して、トルク演算値ESR_TRQに短絡トルクSH_TRQを設定してこれらを完全に一致させてから3相短絡制御を許可する(ステップS119)。
さらに、指令トルクQTARが最大短絡トルクSH_TRQMAXよりも小さい場合にはリミット処理によって指令トルクQTARにSH_TRQMAXが設定される(ステップS110)。つまり、短絡トルクSH_TRQが最大短絡トルクSH_TRQMAXでない限り指令トルクQTARは短絡トルクSH_TRQよりも小さくなる(ステップS11でNO)。
すなわち、指令トルクQTARよりも初期状態であるトルク演算値ESR_TRQは大きいため(ステップS120でYES)、初期のトルク合わせとして指令トルクQTARをトルク演算値ESR_TRQに設定し、その後、このトルク演算値ESR_TRQを保持して(ステップS123)、短絡トルクSH_TRQが減少するのに応じてトルク演算値ESR_TRQを短絡トルクSH_TRQとの差が減少する方向(例えば、図23中の矢印の方向)に相対的に変移させる。
そして、この短絡トルクSH_TRQがトルク演算値ESR_TRQに十分近づいた時点(ステップS124でNO且つステップS127でYES)でこれらトルク演算値ESR_TRQと短絡トルクSH_TRQとを完全に一致させて3相短絡制御を許可する(ステップS128)。
したがって、この変形例によれば、エンジン回転数Neが、上述した実施の形態の所定回転数N2よりも高い回転数であっても、短絡トルクSH_TRQにトルク演算値ESR_TRQが十分に近づいた時点で3相短絡制御に移行することができるため、3相短絡制御を行う領域を拡大することができ、この結果、PWMインバータ41Aのスイッチングによる騒音を低減することができる。
さらに、エンジン回転数Neが高回転から低下してくる際に、トルク演算値ESR_TRQが短絡トルクSH_TRQよりも小さい場合、短絡トルクSH_TRQが制動トルクの増加する方向に変化するのに対して、トルク演算値ESR_TRQを制動トルクの減少する方向に変化させることなく、滑らかにトルク演算値ESR_TRQと短絡トルクSH_TRQとを揃えることができるため、乗員に違和感を与えることなしにトルク段差を低減して商品性を向上することができる。
尚、上述した実施の形態では3相短絡制御を行う場合について説明したが、これに替えてPWMインバータ41Aの3相分のハイサイドアーム又はローサイドアームのうちいずれか2相分だけをON状態とする2相短絡制御を行う構成としてもよい。
本発明の実施の形態に係るハイブリッド車両の概略構成図である。 本発明の実施の形態に係るモータの要部断面図である。 本発明の実施の形態に係るモータの最遅角位置に制御されている回転子ユニットの一部部品を省略した側面図である。 本発明の実施の形態に係るモータの回転子ユニットの分解斜視図である。 本発明の実施の形態に係るモータの最進角位置に制御されている回転子ユニットの一部部品を省略した側面図である。 本発明の実施の形態に係るモータの内周側回転子の永久磁石と外周側回転子の永久磁石とが同極配置された強め界磁状態を模式的に示す図(a)と、内周側回転子の永久磁石と外周側回転子の永久磁石とが異極配置された弱め界磁状態を模式的に示す図(b)を併せて記載した図である。 本発明の実施の形態に係る油圧制御装置の構成図である。 本発明の実施の形態に係るPDUの構成図である。 本発明の実施の形態におけるモータ制動制御処理のフローチャートである。 本発明の実施の形態における3相短絡の処理を示すフローチャートである。 本発明の実施の形態におけるモータ回転数(=エンジン回転数Ne)と誘起電圧定数指令Ke*および制動トルクとの関係の一例を示すグラフ図である。 本発明の実施の形態におけるモータ回転数(=エンジン回転数Ne)と誘起電圧定数指令Ke*および制動トルクとの関係の一例を示すグラフ図である。 本発明の実施の形態における誘起電圧定数指令Ke*と位相角指令θ*との関係の一例を示すグラフ図である。 本発明の実施の形態におけるセンサレス回生処理のフローチャートである。 本発明の実施の形態におけるエンジン回転数に対する短絡トルクの変化を示すグラフ図である。 本発明の実施の形態におけるセンサレス回生処理のフローチャートである。 本発明の実施の形態におけるアイドル停止判定処理のフローチャートである。 本発明の実施の形態におけるエンジン停止制御処理のフローチャートである。 本発明の実施の形態におけるエンジン始動制御処理のフローチャートである。 本発明の実施の形態の変形例におけるモータ制動制御処理のフローチャートである。 本発明の実施の形態の変形例におけるセンサレス回生処理のフローチャートである。 本発明の実施の形態の変形例におけるセンサレス回生処理のフローチャートである。 本発明の実施の形態の変形例におけるエンジン回転数に対する短絡トルクの変化を示すグラフ図である。
符号の説明
100a ハイブリッド車両の制御装置
1 モータ
3 回転子ユニット(ロータ)
5 外周側回転子(ロータ部材)
6 内周側回転子(ロータ部材)
9 永久磁石(永久磁石片)
12 位相変更手段(誘起電圧定数変更手段)
60 角度誤差算出部(センサレス制御手段)
61 追従演算オブザーバ(センサレス制御手段)
ステップS5、ステップS48 制動手段
ステップS5a 制動トルク変更手段
ステップS7 トルク制御手段
ステップS35〜ステップS38 停止手段
ステップS39、ステップS40 始動手段

Claims (6)

  1. 内燃機関およびモータを駆動源として備え、少なくとも前記内燃機関または前記モータの駆動力により走行可能なハイブリッド車両の制御装置であって、
    前記モータは、各々に永久磁石片を具備すると共に互いの相対的な位相を変更可能な複数のロータ部材からなるロータと、前記複数のロータ部材の相対的な位相を変更することによって前記モータの誘起電圧定数を変更する誘起電圧定数変更手段とを備え、
    前記モータの誘起電圧に基づき前記ロータの位置を検出しつつ前記モータを制御するセンサレス制御を実行するセンサレス制御手段と、
    前記モータの回転数が所定回転数より低い車両制動時に、前記モータの複数相を短絡する短絡制御を実行して、制動トルクを発生させる制動手段と、
    前記誘起電圧定数変更手段により前記制動トルクを変更する制動トルク変更手段と、
    前記内燃機関の再始動時に前記モータを強制転流により起動させる始動手段と
    を備え
    前記制動トルク変更手段は、前記誘起電圧定数が所定値に固定された場合に前記制動トルクが最大になるときの前記回転数よりも高い前記回転数で前記誘起電圧定数が極大又は極小になるようにして、前記誘起電圧定数変更手段により前記誘起電圧定数を変更することにより、前記制動トルクを変更することを特徴とするハイブリッド車両の制御装置。
  2. 前記センサレス制御手段による前記センサレス制御の実行状態から前記制動手段による前記短絡制御の実行状態へ移行するより前に、前記センサレス制御の実行時の停止制御用トルクと、前記短絡制御の実行時の前記制動トルクとの差分が所定値以下となるように設定するトルク制御手段を備えることを特徴とする請求項1に記載のハイブリッド車両の制御装置。
  3. 車両停車直後に前記内燃機関をアイドル状態とし、ブレーキ踏込み量が所定の踏込み量以上での停車時間が所定時間を超えるとアイドル停止制御を実行すると共に、前記内燃機関の回転数が所定回転数以下になると前記短絡制御を実行して前記モータの回転を停止させる停止手段を備えることを特徴とする請求項1または請求項2に記載のハイブリッド車両の制御装置。
  4. 前記停止手段は、前記誘起電圧定数変更手段により前記エンジン回転数に応じて前記誘起電圧定数を変更することを特徴とする請求項3に記載のハイブリッド車両の制御装置。
  5. 前記始動手段は、前記内燃機関の回転停止後、ブレーキ踏込み量が所定の踏込み量以下になると、前記モータを強制転流により起動させると共に前記内燃機関の点火制御を実行することを特徴とする請求項1から請求項4の何れか1つに記載のハイブリッド車両の制御装置。
  6. 前記始動手段は、前記内燃機関の再始動時に前記モータを強制転流により起動させる際に、前記誘起電圧定数変更手段により前記誘起電圧定数を増大傾向に変化させることを特徴とする請求項1から請求項5の何れか1つに記載のハイブリッド車両の制御装置。
JP2006327384A 2006-12-04 2006-12-04 ハイブリッド車両の制御装置 Expired - Fee Related JP4515439B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006327384A JP4515439B2 (ja) 2006-12-04 2006-12-04 ハイブリッド車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006327384A JP4515439B2 (ja) 2006-12-04 2006-12-04 ハイブリッド車両の制御装置

Publications (2)

Publication Number Publication Date
JP2008137550A JP2008137550A (ja) 2008-06-19
JP4515439B2 true JP4515439B2 (ja) 2010-07-28

Family

ID=39599476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006327384A Expired - Fee Related JP4515439B2 (ja) 2006-12-04 2006-12-04 ハイブリッド車両の制御装置

Country Status (1)

Country Link
JP (1) JP4515439B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5075034B2 (ja) * 2008-07-02 2012-11-14 トヨタ自動車株式会社 ハイブリッド車両の退避走行制御装置
DE102011006037A1 (de) * 2011-03-24 2012-09-27 Robert Bosch Gmbh Verfahren zum Betreiben einer von einem Verbrennungsmotor angetriebenen elektrischen Maschine in einem Kraftfahrzeug
JP5614908B2 (ja) * 2011-05-06 2014-10-29 新電元工業株式会社 ブラシレスモータ制御装置、およびブラシレスモータ制御方法
EP2706657B1 (en) 2011-05-06 2018-06-06 Shindengen Electric Manufacturing Co., Ltd. Brushless motor control apparatus and brushless motor control method
WO2013137279A1 (ja) * 2012-03-16 2013-09-19 日産自動車株式会社 ハイブリッド駆動電気自動車の駆動制御装置及び駆動制御方法
JP2013236431A (ja) * 2012-05-08 2013-11-21 Mitsubishi Electric Corp ブラシレスモータの制御方法及び制御装置
US9624859B2 (en) 2013-04-22 2017-04-18 Mitsubishi Electric Corporation Engine stop control apparatus and engine stop control method
JP2015033292A (ja) * 2013-08-06 2015-02-16 トヨタ自動車株式会社 車両制御装置
JP2015082943A (ja) * 2013-10-24 2015-04-27 トヨタ自動車株式会社 車両制御装置
JP2015091174A (ja) * 2013-11-05 2015-05-11 トヨタ自動車株式会社 車両制御装置
FR3015804B1 (fr) * 2013-12-20 2016-01-29 Valeo Sys Controle Moteur Sas Systeme d'entrainement, procede de commande d'un onduleur et programme d'ordinateur associe
TWI674746B (zh) * 2018-05-17 2019-10-11 朋程科技股份有限公司 同步整流發電機及其能量分配方法
CN109795470B (zh) * 2018-12-13 2020-07-07 清华大学 一种基于发动机瞬时转矩观测器的动力***主动减振方法
CN115085610B (zh) * 2022-08-22 2022-12-09 深圳市好盈科技股份有限公司 应用于竞赛级遥控模型车的线性刹车控制方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262494A (ja) * 2001-02-28 2002-09-13 Hitachi Ltd 洗濯機
JP2002262534A (ja) * 2001-02-28 2002-09-13 Hitachi Ltd 回転電機及びそれを搭載した車両
JP2003018879A (ja) * 2001-06-28 2003-01-17 Toshiba Corp 洗濯機及び永久磁石形直流モータ
JP2004072978A (ja) * 2002-08-09 2004-03-04 Equos Research Co Ltd 電動機
JP2004190585A (ja) * 2002-12-12 2004-07-08 Mitsubishi Electric Corp ハイブリッド車両の内燃機関始動停止制御装置
JP2006288051A (ja) * 2005-03-31 2006-10-19 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2006321397A (ja) * 2005-05-20 2006-11-30 Hitachi Ltd 車両用電動機駆動装置およびそれを用いた電動4輪駆動車

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262494A (ja) * 2001-02-28 2002-09-13 Hitachi Ltd 洗濯機
JP2002262534A (ja) * 2001-02-28 2002-09-13 Hitachi Ltd 回転電機及びそれを搭載した車両
JP2003018879A (ja) * 2001-06-28 2003-01-17 Toshiba Corp 洗濯機及び永久磁石形直流モータ
JP2004072978A (ja) * 2002-08-09 2004-03-04 Equos Research Co Ltd 電動機
JP2004190585A (ja) * 2002-12-12 2004-07-08 Mitsubishi Electric Corp ハイブリッド車両の内燃機関始動停止制御装置
JP2006288051A (ja) * 2005-03-31 2006-10-19 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2006321397A (ja) * 2005-05-20 2006-11-30 Hitachi Ltd 車両用電動機駆動装置およびそれを用いた電動4輪駆動車

Also Published As

Publication number Publication date
JP2008137550A (ja) 2008-06-19

Similar Documents

Publication Publication Date Title
JP4515439B2 (ja) ハイブリッド車両の制御装置
JP4421603B2 (ja) モータ制御方法およびモータ制御装置
JP4350676B2 (ja) ハイブリッド車両の制御装置
JP4452735B2 (ja) 昇圧コンバータの制御装置および制御方法
JP4971039B2 (ja) モータ制御装置
JP4372775B2 (ja) モータ制御装置
JP4777192B2 (ja) モータの制御装置
JP4971040B2 (ja) モータ制御装置
JP4732273B2 (ja) 車両用モータの制御装置
JP4372770B2 (ja) モータを備える車両の制御装置
JP4805128B2 (ja) モータ制御装置
JP4869825B2 (ja) モータの制御装置
JP4757722B2 (ja) モータの制御装置
JP2009060697A (ja) モータ制御装置
JP2008067499A (ja) 回転電機を具備する車両
JP2009005452A (ja) モータ制御装置
JP4754433B2 (ja) モータの制御装置
JP4805129B2 (ja) モータ制御装置
JP4864686B2 (ja) モータの制御装置
JP5063943B2 (ja) 電動機および電動機の位相制御方法
JP2008306845A (ja) モータ制御装置
JP2009050124A (ja) モータ制御装置
JP2009005453A (ja) モータ駆動車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees