JP5604227B2 - Method for producing activated carbon for capacitor and activated carbon - Google Patents

Method for producing activated carbon for capacitor and activated carbon Download PDF

Info

Publication number
JP5604227B2
JP5604227B2 JP2010191140A JP2010191140A JP5604227B2 JP 5604227 B2 JP5604227 B2 JP 5604227B2 JP 2010191140 A JP2010191140 A JP 2010191140A JP 2010191140 A JP2010191140 A JP 2010191140A JP 5604227 B2 JP5604227 B2 JP 5604227B2
Authority
JP
Japan
Prior art keywords
activated carbon
electrode
capacitor
carbon
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010191140A
Other languages
Japanese (ja)
Other versions
JP2012049389A (en
Inventor
河井隆伸
本川健一
笹岡奨
森谷直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP2010191140A priority Critical patent/JP5604227B2/en
Publication of JP2012049389A publication Critical patent/JP2012049389A/en
Application granted granted Critical
Publication of JP5604227B2 publication Critical patent/JP5604227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は、電極における充放電において高い静電容量、優れたレート特性、サイクル特性を発現し、低抵抗であるリチウムイオンキャパシタ正極、または、電気二重層キャパシタ電極用活性炭の製造方法及び活性炭に関する。 The present invention relates to a method for producing a lithium ion capacitor positive electrode or activated carbon for an electric double layer capacitor electrode, which exhibits high capacitance, excellent rate characteristics, and cycle characteristics in charge and discharge in an electrode, and has low resistance, and activated carbon.

固体電極と電解質溶液のような異なる2つの相が接触する界面では、正・負の電荷が非常に短い距離を介して配列、分布する。電極が正に帯電している場合、溶液側にはアニオンが配列する。この電荷の配列により生じる層が電気二重層である。
この電気二重層の生成に伴い電極界面に発現する容量を電気二重層容量といい、かかる原理を利用したエネルギー貯蔵デバイスが電気二重層キャパシタである。
電気二重層キャパシタはその充放電が化学反応を伴わない機構、すなわち、イオンの物理的な吸脱着によるため、繰り返し使用における特性低下が非常に小さいこと、使用温度範囲が広いこと、高速充放電性に優れる等、多くの特長を備えており、コンピューター等の小型電子機器のバックアップ電源に広く使用され、今後はさらに電気自動車等の併用電源として採用されることが期待されている。
At the interface where two different phases contact, such as a solid electrode and an electrolyte solution, positive and negative charges are arranged and distributed over a very short distance. When the electrode is positively charged, anions are arranged on the solution side. A layer generated by this charge arrangement is an electric double layer.
The capacity that appears at the electrode interface along with the generation of the electric double layer is referred to as an electric double layer capacity, and an energy storage device using such a principle is an electric double layer capacitor.
Electric double layer capacitors have a mechanism in which charging / discharging does not involve chemical reaction, that is, physical adsorption / desorption of ions, so that the characteristic deterioration in repeated use is very small, the operating temperature range is wide, and fast charge / discharge characteristics It has many features such as excellent performance and is widely used as a backup power source for small electronic devices such as computers, and is expected to be used as a combined power source for electric vehicles and the like in the future.

電気二重層キャパシタの静電容量Cは下記の式であらわされる。
C=∫ε/(4πδ)・dS
(2)
ここでεは電解液の誘電率、δは電極界面から電解質イオン中心までの距離、Sは電極界面の表面積を示す
The capacitance C of the electric double layer capacitor is expressed by the following equation.
C = ∫ε / (4πδ) ・ dS
(2)
Where ε is the dielectric constant of the electrolyte, δ is the distance from the electrode interface to the center of the electrolyte ion, and S is the surface area of the electrode interface

従って、キャパシタに使用される分極性電極として、大きな表面積の電極を使用すると、キャパシタの静電容量は増加する。
このため、比表面積が大きく、かつ導電性を有する活性炭や活性炭素繊維がキャパシタ用電極材として多く使用されている。
Accordingly, when a large surface area electrode is used as the polarizable electrode used in the capacitor, the capacitance of the capacitor increases.
For this reason, activated carbon and activated carbon fiber having a large specific surface area and conductivity are often used as electrode materials for capacitors.

また、特にキャパシタの大型化と関連して電気二重層キャパシタの長所を維持したまま、エネルギー密度の向上を図ることを狙いとしてハイブリッドキャパシタというものが検討されている。
ハイブリッドキャパシタは正極、負極の一方の電極に酸化・還元を伴わない非ファラデー反応により電荷を貯蔵する比表面積の大きな活性炭電極を用い、もう一方の電極に二次電池やレドックスキャパシタで用いられ、酸化・還元を伴うファラデー反応により電荷を貯蔵するレドックス材料である導電性高分子、酸化物、炭素材料を用いる。ファラデイックな電極の比容量は非ファラデイックな電極の比容量より大きいため、ハイブリッドキャパシタは電気二重層キャパシタより高静電容量である。詳しく説明すると、電気二重層キャパシタ (EDLC)のセル静電容量CEDLCは1/CEDLC=1/Ca+1/Cc
(Ca : 負極容量, Cc : 正極容量)で表され、正負極容量がほぼ等しい場合 (Ca=Cc=C)はセル容量CEDLC=C/2となる。一方、例えば正極に活性炭電極を用いたハイブリットキャパシタ (HC)の場合、負極容量を正極容量より十分大きくできるので (Cc≪Ca)、キャパシタのセル容量CHCは1/CHC=1/Ca+1/Cc=1/Ccとなる。前述のとおり、CC=Cとすると、きわめておおまかにはセル容量CHC=Cと表すことができるので、電気二重層キャパシタと比較してセル容量を向上させることができる。
なおかつ、ファラデイックな電極の使用充放電深度は浅く、電気二重層キャパシタと同様な長寿命、高出力、高信頼性などの特徴を有する二次電源システムになり得る。ハイブリッドキャパシタのうち、正極に活性炭、負極にリチウムイオンのドープ、脱ドープが可能な炭素材料、電解液にリチウムイオン塩を含む有機電解液を用いるシステムをリチウムイオンキャパシタと称する。
現在、主に使用されている活性炭は石炭、ヤシ殻、フェノール樹脂等を酸化性ガス(水蒸気、二酸化炭素、空気等)雰囲気で賦活して製造されているが、活性炭の組織はいずれも光学的に等方性であるため、導電性が不十分である。導電性が低いと、キャパシタとして内部抵抗が大きくなり、結果的に静電容量の低下をもたらす。
In addition, a hybrid capacitor has been studied with the aim of improving the energy density while maintaining the advantages of the electric double layer capacitor particularly in connection with the increase in size of the capacitor.
A hybrid capacitor uses an activated carbon electrode with a large specific surface area that stores charge by non-Faraday reaction without oxidation / reduction on one of the positive electrode and negative electrode, and the other electrode is used in a secondary battery or redox capacitor. -Conductive polymers, oxides, and carbon materials, which are redox materials that store charges by a Faraday reaction with reduction, are used. Since the specific capacity of the Faraday electrode is larger than that of the non-Faradic electrode, the hybrid capacitor has a higher capacitance than the electric double layer capacitor. In detail, the cell capacitance C EDLC of an electric double layer capacitor (EDLC) is 1 / C EDLC = 1 / C a + 1 / C c
(C a: negative electrode capacity, C c: the positive electrode capacity) is represented by, when the positive and negative electrode capacity is approximately equal (C a = C c = C ) is the cell capacitance C EDLC = C / 2. On the other hand, for example, in the case of a hybrid capacitor (HC) using an activated carbon electrode for the positive electrode, the negative electrode capacity can be made sufficiently larger than the positive electrode capacity (C c << C a ), so the cell capacity C HC of the capacitor is 1 / C HC = 1 / C a + 1 / C c = 1 / C c . As described above, when C C = C, the cell capacity can be expressed very roughly as C HC = C, so that the cell capacity can be improved as compared with the electric double layer capacitor.
Moreover, the charge / discharge depth of the Faradic electrode is shallow, and it can be a secondary power supply system having characteristics such as long life, high output, and high reliability similar to those of the electric double layer capacitor. Among the hybrid capacitors, a system using activated carbon for the positive electrode, a carbon material that can be doped or dedoped with lithium ions for the negative electrode, and an organic electrolyte containing a lithium ion salt for the electrolytic solution is called a lithium ion capacitor.
Currently, activated carbon is mainly produced by activating coal, coconut shell, phenol resin, etc. in an oxidizing gas (water vapor, carbon dioxide, air, etc.) atmosphere, but the activated carbon structure is optical. Is isotropic, the conductivity is insufficient. When the conductivity is low, the internal resistance of the capacitor increases, resulting in a decrease in capacitance.

また、Randin,JとYeager,E (J.Electroan.Chm.,36,257(1972))によると、活性炭表面がグラファイト層面におけるエッジ面により形成されると、そうでない場合と比較して活性炭の静電容量が大幅に向上する。しかしながら、通常の、光学的等方性を有する活性炭では、グラファイト層面のエッジ面とベーサル面の配置を制御することは難しいため、この方法により静電容量を向上させることは期待できない。電気二重層キャパシタの製造は、通常、電極材に結着剤(バインダー)と導電性を確保するための導電材を加えて、集電体と共に電極を形成する。導電材としては、カーボンブラック、天然黒鉛粉末、酸化ルテニウム等が単独または二種以上配合して使用される。例えば、特許文献1(特開平10−4037号公報)には、活性炭と結着剤と特定量のカーボンブラックを混合した電気二重層キャパシタ用電極が記載されているこれらの導電材の使用量は、通常1〜50%程度であるが、導電材を多量に用いると、電極における電極材以外の余分な成分の含有量が多くなるため、重量当りの静電容量が低下してしまう。
また、導電材として使用されるカーボンブラックや天然黒鉛粉末は、吸油量が大きく、嵩密度が低いため、それらを用いて電極を作製すると、バインダーが多量に必要となり、さらには電極密度が低くなってしまう。その結果、体積当りの静電容量が低下してしまう。
一般的には、式(2)により、キャパシタの静電容量は、電極の表面積の大きさに従い増大する。そのため、電極材としては、上記のような比表面積の大きな粉末や繊維状活性炭が使用されている。しかし、用いる電極材の比表面積の大きさから期待されるほど高い静電容量は得られていないのが実状である。むしろ、発現する静電容量を増大させさせるためには、メソポアを含む好適な細孔分布を選択的に有する活性炭を電極材として用いるのが有効であるという考え方があるが、そのような活性炭はいまだ、電極材として実用化されていない。
そこで出願人はかかる課題を解決するため先に特許文献2(特開2006−229099号)に示される、カーボンブラックと炭素前駆体樹脂を混合・焼成・粉砕・賦活して得られる活性炭を開発した。この活性炭は、高静電容量を実現すると共に急速充放電特性が優れたものであった。
しかしながら、炭素前駆体に熱硬化性のフェノールなどの樹脂を用いた場合、液状樹脂は粘性が高く、混合時に発熱しやすく、この発熱によって樹脂が硬化してしまうとカーボンブラック表面に均一に被覆されず造粒できない。また、液状樹脂を溶剤で希釈してカーボンブラックと混合した場合も、混合物はペースト状となり、溶剤の除去、回収が必要となり、設備投資や作業効率の点でコスト高となってしまう。
また、樹脂炭は賦活時にミクロポアを選択的に生成するので静電容量に寄与しない細孔が多く生成し、体積当りの静電容量を低下させてしまう。
According to Randin, J and Yeager, E (J. Electroan. Chm., 36, 257 (1972)), when the activated carbon surface is formed by an edge surface on the graphite layer surface, the electrostatic capacity of the activated carbon The capacity is greatly improved. However, in the case of normal activated carbon having optical isotropy, it is difficult to control the arrangement of the edge surface and the basal surface of the graphite layer surface, and therefore it is not expected to improve the capacitance by this method. In the production of an electric double layer capacitor, a binder (binder) and a conductive material for ensuring conductivity are usually added to an electrode material, and an electrode is formed together with a current collector. As the conductive material, carbon black, natural graphite powder, ruthenium oxide or the like is used alone or in combination. For example, Patent Document 1 (Japanese Patent Laid-Open No. 10-4037) describes an electrode for an electric double layer capacitor in which activated carbon, a binder, and a specific amount of carbon black are mixed. Usually, it is about 1 to 50%. However, if a large amount of conductive material is used, the content of extra components other than the electrode material in the electrode increases, so that the capacitance per weight decreases.
In addition, carbon black and natural graphite powder used as a conductive material have a large oil absorption and a low bulk density. Therefore, when an electrode is produced using them, a large amount of binder is required, and the electrode density is further reduced. End up. As a result, the capacitance per volume decreases.
In general, according to the equation (2), the capacitance of the capacitor increases with the surface area of the electrode. Therefore, as the electrode material, the above-mentioned powder having a large specific surface area or fibrous activated carbon is used. However, the actual condition is that the capacitance as high as expected from the size of the specific surface area of the electrode material used is not obtained. Rather, in order to increase the expressed capacitance, there is an idea that it is effective to use activated carbon having selectively a suitable pore distribution including mesopores as an electrode material. It has not been put into practical use as an electrode material.
Therefore, in order to solve such problems, the applicant previously developed activated carbon obtained by mixing, firing, pulverizing and activating carbon black and a carbon precursor resin as disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2006-229099). . This activated carbon achieved high electrostatic capacity and excellent rapid charge / discharge characteristics.
However, when a resin such as thermosetting phenol is used as the carbon precursor, the liquid resin has a high viscosity and tends to generate heat during mixing. If the resin is cured by this heat generation, the carbon black surface is uniformly coated. It cannot be granulated. Also, when the liquid resin is diluted with a solvent and mixed with carbon black, the mixture becomes a paste, which requires removal and recovery of the solvent, which increases costs in terms of capital investment and work efficiency.
Further, since the resin charcoal selectively generates micropores at the time of activation, many pores that do not contribute to the capacitance are generated, and the capacitance per volume is reduced.

特開平10−4037号公報Japanese Patent Laid-Open No. 10-4037 特開2006−229099号公報JP 2006-229099 A

以上の問題点を鑑み、本発明は、炭素前駆体に熱硬化性のフェノール樹脂のように粘性が高くなく、カーボンブラック表面に均一に被覆され、賦活時にミクロポアが選択的に生成されず、リチウムイオンキャパシタ正極材及び電気二重層キャパシタ用電極材として高い静電容量を発現する活性炭の製造法を提供するものである。   In view of the above problems, the present invention is not highly viscous like a thermosetting phenol resin on a carbon precursor, is uniformly coated on the surface of carbon black, and micropores are not selectively generated during activation. The present invention provides a method for producing activated carbon that exhibits a high capacitance as an electrode material for an ion capacitor positive electrode and an electric double layer capacitor.

カーボンブラックと炭素前駆体であるピッチを重量比1:0.1〜1:3の割合で加熱混合し、酸化性ガス雰囲気中600〜1000 ℃で焼成後、酸化雰囲気中700〜1000 ℃ で賦活することによって課題として挙げた点を解決したものである。
キャパシタを形成する際に、用いる電解質イオンの径に適合する大きさの孔、すなわちミクロポアあるいはメソポアを(選択的に)多く含む表面状態の活性炭を電極材として使用すると、高い静電容量が発現されると考えられる。
一般的に、カーボンブラックはメソポアを多く有し、活性炭はミクロポアを多く有する。従って、カーボンブラックを含有する炭素前駆体を焼成により炭素化し、賦活した場合、比較的軽度の賦活処理によってキャパシタに必要な量の孔が形成されることになる。
また、導電性を有するカーボンブラックを活性炭の内部に含有しているため、本発明による活性炭(電極材)は、電極作成時に導電材料をほとんど添加する必要がなく、その点で従来の活性炭より優れている。
Carbon black and carbon precursor pitch are heated and mixed at a weight ratio of 1: 0.1 to 1: 3, fired in an oxidizing gas atmosphere at 600 to 1000 ° C., and then activated in an oxidizing atmosphere at 700 to 1000 ° C. This solves the points raised as problems.
When a capacitor is formed, if a surface activated carbon containing (selectively) a large number of micropores or mesopores is used as an electrode material, a high capacitance is developed. It is thought.
Generally, carbon black has many mesopores, and activated carbon has many micropores. Therefore, when the carbon precursor containing carbon black is carbonized by firing and activated, a necessary amount of holes are formed in the capacitor by a relatively light activation treatment.
In addition, since carbon black having conductivity is contained inside the activated carbon, the activated carbon (electrode material) according to the present invention does not need to add a conductive material at the time of electrode preparation, and is superior to conventional activated carbon in that respect. ing.

上記の製造法で得られる活性炭の平均粒径D50が1〜20μm、Dtopが80 μm以下であり、窒素ガス吸着(BET)法の比表面積が100 m2-1以上、ミクロポア比表面積が800 m2 g-1以下、ミクロポア容積が0.4
cm3 g-1以下であることがリチウムイオンキャパシタ及び電気二重層キャパシタ用活性炭として望ましい。
The activated carbon obtained by the above production method has an average particle diameter D50 of 1 to 20 μm, Dtop of 80 μm or less, a specific surface area of nitrogen gas adsorption (BET) method of 100 m 2 g −1 or more, and a micropore specific surface area of 800 m 2 g -1 or less, micropore volume is 0.4
It is desirable for the activated carbon for lithium ion capacitors and electric double layer capacitors to be not more than cm 3 g −1 .

カーボンブラックは、市販のファーネスブラック、アセチレンブラック、ランプブラック、その他のカーボンブラックから適宜選択して使用でき、前記のカーボンブラックを単独で用いてもよく、また、調製される活性炭の細孔径分布を考慮して任意の割合で混合して使用してもよい。 Carbon black can be appropriately selected from commercially available furnace black, acetylene black, lamp black, and other carbon blacks, and the carbon black may be used alone, or the pore size distribution of the activated carbon to be prepared In consideration, they may be mixed and used at an arbitrary ratio.

ピッチは、一般的なバインダーピッチや含浸用ピッチを使用することができる。石炭系でも石油系のどちらでもよく、軟化点は、70〜250 ℃、好ましくは80〜150 ℃、より好ましくは80〜120 ℃程度である。
軟化点があまり低いと取り扱いが不便だったり、残炭率が低いためコスト高の原因となるので好ましくない。また、逆に軟化点が高すぎると一般的な加熱ニーダーで処理するには不向きであり、特殊な設備を使用せざるを得なくなり、量産向きではない。また、ピッチ価格も高くなるのでコスト的にも好ましくない。
As the pitch, a general binder pitch or impregnation pitch can be used. Either coal-based or petroleum-based may be used, and the softening point is about 70 to 250 ° C, preferably about 80 to 150 ° C, and more preferably about 80 to 120 ° C.
If the softening point is too low, the handling is inconvenient or the residual coal rate is low, which causes high costs, which is not preferable. On the other hand, if the softening point is too high, it is unsuitable for processing with a general heating kneader, and special equipment must be used, which is not suitable for mass production. Moreover, since the pitch price becomes high, it is not preferable in terms of cost.

カーボンブラックとピッチの配合割合は、重量比で、1 :
0.1〜 1 : 3の範囲が望ましい。
ピッチの割合が多すぎると、カーボンブラックとピッチの加熱混合はよくできるが、ところどころに塊ができてしまったり、混合室内で大きな塊となり、加熱混合後の試料が取り扱いにくいという不具合が生じる。逆に、ピッチの割合が少なすぎると、カーボンブラックとピッチがうまく加熱混合されないという問題、すなわち、ピッチによるカーボンブラックの被覆、結合が不安定となり目的の状態が得られない。
The mixing ratio of carbon black and pitch is 1 by weight.
The range of 0.1 to 1: 3 is desirable.
If the pitch ratio is too large, the heat mixing of the carbon black and the pitch can be performed well, but in some places, lumps are formed, or large lumps are formed in the mixing chamber, which causes a problem that the sample after heating and mixing is difficult to handle. On the other hand, if the pitch ratio is too small, the problem that the carbon black and the pitch are not well heated and mixed, that is, the coating and bonding of the carbon black with the pitch becomes unstable, and the desired state cannot be obtained.

カーボンブラックとピッチの加熱混合の方法や条件は、カーボンブラック表面にピッチが均一にコーティングされればよく、特に限定はされない。
加熱混合に用いる装置も特に限定されないが、二軸ニーダーなどが好適である。
The method and conditions for the heat mixing of carbon black and pitch are not particularly limited as long as the pitch is uniformly coated on the carbon black surface.
An apparatus used for heating and mixing is not particularly limited, but a biaxial kneader or the like is preferable.

次に、上記の加熱混合物を不活性ガス雰囲気中において、600〜1000 ℃で焼成処理する。 Next, the heated mixture is fired at 600 to 1000 ° C. in an inert gas atmosphere.

最終的に酸化性ガス雰囲気中で700〜1000 ℃で賦活処理することにより、本発明のキャパシタ用活性炭が得られる。
酸化性ガスとしては、水蒸気、二酸化炭素、空気等が使用できるが、賦活反応の制御、及びコストの面を考慮すると水蒸気賦活が好ましい。
Finally, the activated carbon for a capacitor of the present invention is obtained by activation treatment at 700 to 1000 ° C. in an oxidizing gas atmosphere.
As the oxidizing gas, steam, carbon dioxide, air, or the like can be used, but steam activation is preferable in view of control of activation reaction and cost.

以上の製造法で得られた活性炭は、以下の特徴を有する。
本発明の活性炭は、原材料としてカーボンブラックをピッチと共に使用するので、高い導電性を有する。
また、活性炭の表面には、キャパシタ用電極材として静電容量の増加に寄与しないマクロポアがほとんど存在せず、静電容量の向上に有効なメソポアとミクロポアが適宜な割合で存在しており、この活性炭は、高い静電容量の電極材として使用できる。
The activated carbon obtained by the above production method has the following characteristics.
Since the activated carbon of the present invention uses carbon black as a raw material together with pitch, it has high conductivity.
Also, on the surface of the activated carbon, there are almost no macropores that do not contribute to the increase in capacitance as electrode materials for capacitors, and mesopores and micropores that are effective in improving capacitance are present at an appropriate ratio. Activated carbon can be used as a high capacitance electrode material.

本発明の活性炭は、カーボンブラックが低結晶炭素で被覆、結合された造粒体であり、窒素ガス吸着 (BET)法による比表面積が100 m2
-1以上である。比表面積が小さすぎると、活性炭電極で充放電を行う際に、電解質イオンが吸脱着できるサイトが少なくなってしまうために、静電容量が小さくなる。
The activated carbon of the present invention is a granulated body in which carbon black is coated and bonded with low crystalline carbon, and has a specific surface area of 100 m 2 by nitrogen gas adsorption (BET) method.
g- 1 or more. If the specific surface area is too small, the number of sites where electrolyte ions can be adsorbed and desorbed when charging / discharging with the activated carbon electrode is reduced, and the capacitance becomes small.

本発明の活性炭をキャパシタの電極材として使用する場合の特性は、平均粒径D50が1〜20μmであることとDtopが80μm以下であることが望ましい。
D50, Dtopがこの範囲からはずれると、活性炭の表面状態が変化することにより、活性炭の水や有機溶媒への分散性、電解液との濡れ性が低下したり、電極作製時に凝集体が生成したり、活性炭電極と金属集電体との密着性が低下し、その結果、充放電特性が悪化する。
When the activated carbon of the present invention is used as an electrode material for a capacitor, it is desirable that the average particle diameter D50 is 1 to 20 μm and the Dtop is 80 μm or less.
If D50 and Dtop deviate from this range, the surface state of the activated carbon changes, so that the dispersibility of activated carbon in water and organic solvents and the wettability with the electrolyte decrease, and aggregates are generated during electrode preparation. Or the adhesion between the activated carbon electrode and the metal current collector is lowered, and as a result, the charge / discharge characteristics are deteriorated.

本発明の活性炭素を使用して電極を構成する際の結着剤(バインダー)は、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)などである。
電解質には安定性に優れるテトラアルキルアンモニウム塩、例えば、(CH34NBF4、(C254NBF4、(C374NBF4、(CH34NPF6、(C254NPF6,(C374NPF6などが使用できる。
本発明の活性炭素は、メソポアとミクロポアが適度に混在していることが特徴であるので、電解液の溶媒は、非水系のエチレンカーボネート、プロピレンカーボネート、r−ブチルラクトン、アセトニトリル、ジメチルホルムアミドなどが使用できる。
Binders (binders) used to form an electrode using the activated carbon of the present invention include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), and the like.
For the electrolyte, a tetraalkylammonium salt having excellent stability, for example, (CH 3 ) 4 NBF 4 , (C 2 H 5 ) 4 NBF 4 , (C 3 H 7 ) 4 NBF 4 , (CH 3 ) 4 NPF 6 , (C 2 H 5 ) 4 NPF 6 , (C 3 H 7 ) 4 NPF 6 and the like can be used.
Since the activated carbon of the present invention is characterized in that mesopores and micropores are appropriately mixed, non-aqueous ethylene carbonate, propylene carbonate, r-butyl lactone, acetonitrile, dimethylformamide and the like are used as the solvent of the electrolytic solution. Can be used.

本発明の活性炭は、原材料としてピッチと共にカーボンブラックを用いているので、高い導電性を有しており、従って、キャパシタ用電極材として、電極作製時に導電材を添加しなくてもよく、添加する場合でも極少量の導電材の使用で高い導電性が発揮される。
このため、電極材料として使用する場合、添加する導電材が極少量、もしくは導電材不使用でも、十分な導電性を発揮でき、従来のように多量の導電材を使用することによる問題点を解消することができる。すなわち、重量当りの静電容量を低下させたり、バインダーを余分に使用したり、体積当りの静電容量を低下させることがなくなり、その結果、静電容量の向上が可能となる。
従来の活性炭を電極材として用いた場合は、多量の導電材の添加により、また余分なバインダーの使用によって、電極の定電流充放電により評価される重量当り、体積当りの静電容量の低下をきたしていたが、本発明を用いると、かかる問題点を解消できる、つまり重量当り、体積当りの静電容量を向上させることができる。
また、N2吸脱着により評価される、活性炭表面に形成される細孔は、静電容量の発現に必要なメソポアとミクロポアであり、さらにはこれらが適宜な割合で存在することにより、電極の定電流充放電により評価される重量当り、体積当りの静電容量を向上させることができる。
これらのことにより、本発明の活性炭は、リチウムイオンキャパシタ用正極材及び電気二重層キャパシタ用電極材として高い静電容量を発現することができる。
炭素前駆体として使用するピッチは、従来炭素前駆体として使用されていたフェノール樹脂よりも安価であり、かつ、焼成後残炭率が高いので、低コストで活性炭素が得られるというメリットがある。
本発明の活性炭は、フェノール樹脂を用いて調製した活性炭よりも、静電容量に寄与しないマクロポアが生成しにくいので、無駄な細孔が少なく、面積当りの静電容量を高くすることができる。
Since the activated carbon of the present invention uses carbon black together with pitch as a raw material, it has high conductivity. Therefore, as a capacitor electrode material, it is not necessary to add a conductive material at the time of electrode preparation. Even in the case, high conductivity is exhibited by using a very small amount of conductive material.
For this reason, when used as an electrode material, even if a small amount of conductive material is added or even when no conductive material is used, sufficient conductivity can be exhibited, eliminating the problems caused by using a large amount of conductive material as before. can do. That is, the capacitance per weight is not reduced, the binder is not used excessively, and the capacitance per volume is not lowered, and as a result, the capacitance can be improved.
When conventional activated carbon is used as an electrode material, the addition of a large amount of conductive material and the use of an extra binder can reduce the capacitance per unit weight and volume, which is evaluated by constant current charging / discharging of the electrode. However, when the present invention is used, such a problem can be solved, that is, the capacitance per weight and per volume can be improved.
Further, the pores formed on the activated carbon surface, which are evaluated by N 2 adsorption / desorption, are mesopores and micropores necessary for the expression of capacitance, and furthermore, the presence of these in an appropriate ratio allows Capacitance per weight and volume evaluated by constant current charge / discharge can be improved.
By these things, the activated carbon of this invention can express a high electrostatic capacitance as a positive electrode material for lithium ion capacitors, and an electrode material for electric double layer capacitors.
The pitch used as the carbon precursor is less expensive than the phenol resin conventionally used as the carbon precursor and has a merit that the activated carbon can be obtained at low cost because the residual carbon ratio after firing is high.
The activated carbon of the present invention is less likely to generate macropores that do not contribute to the capacitance than activated carbon prepared using a phenol resin, so that there are few wasted pores and the capacitance per area can be increased.

比表面積などの活性炭の細孔構造は、N2ガスの吸脱着により評価した。装置は、Micromeritics社製の自動比表面積/細孔分布測定装置Tristar3000を使用した。
比表面積は、吸着等温線から得られた吸着ガス量を、単分子層として評価して表面積を計算するBETの多点法により求めた。
P/V(P0-P)=(1/VmC)+{(C-1)/VmC(P/P0)}…(1)
S=kVm ………………………………………(2)
P0 : 飽和蒸気圧
P : 吸着平衡圧
V : 吸着平衡圧Pにおける吸着量
Vm : 単分子層吸着量
C : 吸着熱などに関するパラメータ
S : 比表面積
k : 窒素単分子占有面積 0.162 nm2
平均細孔径は、Dubinin-Astakhovの式
log(V)=log(V0)-(RT/βE0)N・[log(P0/P)]N……(3)
V : 平衡圧力での吸着容積 (cm3
g-1 STP)
V0 : 細孔容積 (cm3 g-1
STP)
P0 : 温度Tでのガスの飽和圧力 (mmHg)
P : 平衡圧力 (mmHg)
T : 分析槽の温度 (K)
R : ガス定数 (0.0083144 kJ K-1
mol-1)
E0 : 特性エネルギー (kJ mol-1)
N : Astakhovべき数の最適化された値もしくは指定値
β : 分析ガスとP0ガス間の適合定数
により求めた。
平均細孔径DMEAN/Å=2[(103 nm3/Å3)/βE0]1/3/Γ[(3N+1)/3N]……(4)
ここで、Γは0≦x≦1を越える領域で、多項近似式で以下のように計算される。
Γ(x+1)=1+b1x+b2x2+b3x3+b4x4+b5x5+b6x6+b7x7+b8x8+ε(x)
|ε(x)|≦3×10-7
The activated carbon pore structure such as specific surface area was evaluated by adsorption and desorption of N 2 gas. As the apparatus, an automatic specific surface area / pore distribution measuring apparatus Tristar 3000 manufactured by Micromeritics was used.
The specific surface area was determined by a BET multipoint method in which the amount of adsorbed gas obtained from the adsorption isotherm was evaluated as a monolayer and the surface area was calculated.
P / V (P 0 -P) = (1 / V m C) + {(C-1) / V m C (P / P 0 )} ... (1)
S = kV m ……………………………………… (2)
P 0 : Saturated vapor pressure
P: adsorption equilibrium pressure
V: Adsorption amount at adsorption equilibrium pressure P
V m : Monolayer adsorption amount
C: Parameters related to heat of adsorption
S: Specific surface area
k: Nitrogen single molecule occupation area 0.162 nm 2
The average pore diameter is the Dubinin-Astakhov formula
log (V) = log (V 0 )-(RT / βE 0 ) N・ [log (P 0 / P)] N …… (3)
V: Adsorption volume at equilibrium pressure (cm 3
g -1 STP)
V 0 : Pore volume (cm 3 g -1
STP)
P 0 : Saturation pressure of gas at temperature T (mmHg)
P: Equilibrium pressure (mmHg)
T: Analysis tank temperature (K)
R: Gas constant (0.0083144 kJ K -1
mol -1 )
E 0 : Characteristic energy (kJ mol -1 )
N: Astakhov power number optimized value or specified value β: Obtained from the fitting constant between analysis gas and P 0 gas.
Average pore diameter D MEAN / Å = 2 [(10 3 nm 3 / Å 3 ) / βE 0 ] 1/3 / Γ [(3N + 1) / 3N] …… (4)
Here, Γ is a region exceeding 0 ≦ x ≦ 1, and is calculated by a polynomial approximation as follows.
Γ (x + 1) = 1 + b 1 x + b 2 x 2 + b 3 x 3 + b 4 x 4 + b 5 x 5 + b 6 x 6 + b 7 x 7 + b 8 x 8 + ε ( x)
| ε (x) | ≦ 3 × 10 -7

粒度分布の測定は、株式会社セイシン企業製のLASER
Micron Sizer-30を用いて、水を分散媒とした微量の界面活性剤を分散剤にして、試料を超音波分散させた状態で測定した。
The particle size distribution is measured by LASER manufactured by Seishin Corporation.
Using a Micron Sizer-30, the measurement was performed in a state where the sample was ultrasonically dispersed using a small amount of a surfactant with water as a dispersion medium.

電気化学的な充放電試験は、活性炭100重量部に対して、分散剤としてカルボキシメチルセルロース(CMC)を2〜3重量部、結着剤としてスチレンブタジエンゴム(SBR)を1〜6重量部併せて水系スラリーを調製し、Al箔上にドクターブレードを用いて厚さ100 μmに塗布し、110 ℃で乾燥し、ロールプレスをかけた後、φ12に打ち抜き電極とした。プレス後の電極は、厚さが60〜80 μmであった。
次に、アルゴンガス雰囲気のグローブボックス内で、2枚の電極シートの間にセルロース系多孔質膜を挟んだ二極式コイン型セルを組み立てた。
電解液には電解質としてのテトラエチルアンモニウムテトラフルオロボレートを溶解したプロピレンカーボネート(濃度1M)を用い、室温で定電流充放電を行った。
In the electrochemical charge / discharge test, 2-3 parts by weight of carboxymethylcellulose (CMC) as a dispersant and 1-6 parts by weight of styrene butadiene rubber (SBR) as a binder are combined with 100 parts by weight of activated carbon. A water-based slurry was prepared, applied to an Al foil to a thickness of 100 μm using a doctor blade, dried at 110 ° C., roll-pressed, and punched to φ12 to form an electrode. The electrode after pressing had a thickness of 60 to 80 μm.
Next, a bipolar coin-type cell in which a cellulosic porous membrane was sandwiched between two electrode sheets was assembled in a glove box in an argon gas atmosphere.
As the electrolytic solution, propylene carbonate (concentration 1M) in which tetraethylammonium tetrafluoroborate as an electrolyte was dissolved was used, and constant current charge / discharge was performed at room temperature.

実施例及び比較例の活性炭素の細孔分布図。The pore distribution map of the activated carbon of an Example and a comparative example.

次に、本発明を、以下に示す実施例により詳しく説明する。
以下の記載した各実施例及び比較例の調製条件を表1に、得られ活性炭素の粉体特性を表2に、表面積あたりの静電容量を表3に、また、製造収率を表4に、また、得られた活性炭素の細孔径分布を図1に示す。
Next, the present invention will be described in detail with reference to the following examples.
Table 1 shows the preparation conditions of the following examples and comparative examples, Table 2 shows the powder characteristics of the obtained activated carbon, Table 3 shows the capacitance per surface area, and Table 4 shows the production yield. FIG. 1 shows the pore size distribution of the activated carbon obtained.

市販のカーボンブラック(BET法による比表面積:260 m2-1、平均細孔径:8.6 nm)と軟化点が110 ℃のバインダーピッチを重量比1 : 0.5で加熱混合した。これを窒素雰囲気中750 ℃で焼成後、バッチ式ロータリーキルン炉を使用して、水蒸気雰囲気中、900
℃ 、1時間の条件で賦活処理をした。
得られた活性炭の平均粒径D50は10.3 μm、Dtopは54.6 μmであった。N2吸脱着により測定したN2吸脱着等温線から算出された活性炭のBET法による比表面積は435 m2-1、ミクロポア比表面積は329 m2 g-1、ミクロポア容積は0.132
cm3 g-1であった。
Commercially available carbon black (specific surface area by BET method: 260 m 2 g −1 , average pore diameter: 8.6 nm) and binder pitch having a softening point of 110 ° C. were heated and mixed at a weight ratio of 1: 0.5. After firing this at 750 ° C. in a nitrogen atmosphere, using a batch type rotary kiln furnace,
Activation treatment was performed under the conditions of 1 hour at ° C.
The obtained activated carbon had an average particle diameter D50 of 10.3 μm and Dtop of 54.6 μm. N 2 adsorption-desorption N 2 BET specific surface area of activated carbon is calculated from the adsorption-desorption isotherm 435 m 2 g -1 as measured by, micropore specific surface area of 329 m 2 g -1, micropore volume 0.132
cm 3 g -1 .

実施例1で用いたカーボンブラックとバインダーピッチを重量比1 : 0.25で加熱混合した。これを窒素雰囲気中750 ℃で焼成後、バッチ式ロータリーキルン炉を使用して、水蒸気雰囲気中(水蒸気量は実施例1の半分)、900 ℃ 、1時間の条件で賦活処理をした。活性炭の平均粒径D50は12.7 μm、Dtopは62.2 μmであった。N2吸脱着により測定されたN2吸脱着等温線から算出された活性炭のBET法による比表面積は701 m2
-1、ミクロポア比表面積は436 m2 g-1、ミクロポア容積は0.178 cm3 g-1であった。
The carbon black used in Example 1 and the binder pitch were heated and mixed at a weight ratio of 1: 0.25. This was fired at 750 ° C. in a nitrogen atmosphere, and then activated using a batch-type rotary kiln furnace in a water vapor atmosphere (the amount of water vapor was half that of Example 1) at 900 ° C. for 1 hour. The average particle diameter D50 of the activated carbon was 12.7 μm, and Dtop was 62.2 μm. BET specific surface area of the activated carbon, which is calculated from the N 2 adsorption-desorption isotherms measured by N 2 adsorption-desorption is 701 m 2
g −1 , the micropore specific surface area was 436 m 2 g −1 , and the micropore volume was 0.178 cm 3 g −1 .

実施例1、2の活性炭100重量部に対し、CMCを2重量部、SBRを1重量部加え、蒸留水を加えてスラリーを調製した。ドクターブレード法で14 μm厚のアルミ箔上に塗布し、乾燥後、ロールプレスして、φ12のサイズに打ち抜き電極とし、アルゴンガス雰囲気のグローブボックス内で、2枚の電極シートの間にセルロース系多孔質膜を挟んだ二極式コイン型セルを組み立て、電解液としてテトラエチルアンモニウムテトラフルオロボレートを溶解したプロピレンカーボネート(濃度1M)を用い、室温で定電流充放電を行い、静電容量を測定した。充放電の電流値は充電と放電で同じ値にした。   2 parts by weight of CMC and 1 part by weight of SBR were added to 100 parts by weight of the activated carbon of Examples 1 and 2, and distilled water was added to prepare a slurry. It is coated on a 14 μm thick aluminum foil by the doctor blade method, dried, roll-pressed to make a punched electrode of φ12 size, and a cellulosic system between two electrode sheets in a glove box in an argon gas atmosphere A bipolar coin-type cell with a porous membrane sandwiched was assembled, and a constant current charge / discharge was performed at room temperature using propylene carbonate (concentration: 1M) in which tetraethylammonium tetrafluoroborate was dissolved as an electrolyte, and the capacitance was measured. . The current value of charge / discharge was set to the same value for charge and discharge.

(比較例1)
市販の樹脂系活性炭(平均粒径D50 : 5.7 μm、Dtop :
19.7 μm、BET法による比表面積:3056 m2-1、ミクロポア比表面積 : 2416 m2 g-1、ミクロポア容積:0.966 cm3 g-1 )をそのまま用いた。
この活性炭100 重量部に対し、CMCを2重量部、SBRを2重量部加えてスラリ−を調製した。なお、導電補助材は添加していない。
(Comparative Example 1)
Commercially available resin-based activated carbon (average particle size D50: 5.7 μm, Dtop:
19.7 μm, BET specific surface area: 3056 m 2 g −1 , micropore specific surface area: 2416 m 2 g −1 , micropore volume: 0.966 cm 3 g −1 ) were used as they were.
A slurry was prepared by adding 2 parts by weight of CMC and 2 parts by weight of SBR to 100 parts by weight of this activated carbon. In addition, the conductive auxiliary material is not added.

これをドクタ−ブレ−ド法で30 μm厚のアルミ箔上に塗布し、乾燥後、φ12のサイズに打ち抜き、1 t/cm2でプレスして電極とした。
次に、アルゴンガス雰囲気のグロ−ブボックス内で、2枚の電極シ−トの間にセルロ−ス系多孔質膜を挟んだ二極式コイン型セルを組み立てた。
電解液には電解質としてのテトラエチルアンモニウムテトラフルオロボレ−トを溶解したプロピレンカ−ボネ−ト(濃度1M)を用い、室温で定電流充放電を行い、静電容量を測定した。充放電の電流値は充電と放電で同じ値にした。
This was coated on a 30 μm thick aluminum foil by the doctor blade method, dried, punched out to a size of φ12, and pressed at 1 t / cm 2 to obtain an electrode.
Next, a bipolar coin type cell in which a cellulosic porous film was sandwiched between two electrode sheets was assembled in a glove box in an argon gas atmosphere.
As the electrolyte, propylene carbonate (concentration 1M) in which tetraethylammonium tetrafluoroborate as an electrolyte was dissolved was charged and discharged at a constant current at room temperature, and the capacitance was measured. The current value of charge / discharge was set to the same value for charge and discharge.

(比較例2)YP
市販の椰子殻系活性炭(平均粒径D50 : 4.9 μm、Dtop :
16.6 μm、BET法による比表面積:1628 m2-1、ミクロポア比表面積 : 1278 m2g-1、ミクロポア容積は : 0.509 cm3 g-1)をそのまま用いた。
実施例1と同じ手順で充放電試験を行ない、静電容量を測定した。
(Comparative Example 2) YP
Commercially available coconut shell activated carbon (average particle size D50: 4.9 μm, Dtop:
16.6 μm, BET specific surface area: 1628 m 2 g −1 , micropore specific surface area: 1278 m 2 g −1 , micropore volume: 0.509 cm 3 g −1 ) were used as they were.
A charge / discharge test was performed in the same procedure as in Example 1, and the capacitance was measured.

(比較例3)#9
実施例1で用いたカーボンブラックとバインダーピッチを重量比1 : 0.08でニーダーで加熱混合した。加熱中に、試料が舞って周囲に飛散し、材料の物理的ロスが多く、加熱混合の作業性、収率が悪く、性状も原料カーボンブラックと大差ないので賦活を中止した。
カーボンブラックとピッチの加熱混合においてピッチの割合が少なすぎると、材料のロスが多く好ましくない。
(Comparative Example 3) # 9
The carbon black used in Example 1 and the binder pitch were heated and mixed with a kneader at a weight ratio of 1: 0.08. During heating, the sample flew around and scattered around, and there were many physical losses of materials, workability and yield of heating and mixing were poor, and the properties were not much different from the raw material carbon black, so activation was stopped.
If the proportion of pitch is too small in the heat mixing of carbon black and pitch, material loss is undesirably large.

(比較例4)ED1
市販のカーボンブラック(BET法による比表面積:461 m2-1)と液状フェノール樹脂を重量比1 : 1で混合し、乾燥・硬化後、平均粒径3.5 μmに粉砕した。これを窒素雰囲気中700 ℃で熱処理焼成後、小型のロータリーキルンを使用して、水蒸気雰囲気中、900 ℃、1時間の条件で賦活処理をした。得られた活性炭の平均粒径D50は3.3 μm、Dtopは16.9 μmであった。活性炭のBET法による比表面積は836 m2-1、ミクロポア比表面積は536 m2/g-1、ミクロポア容積は0.218
cm3 g-1、平均細孔径は2.3 nmであった。
(Comparative Example 4) ED1
Commercially available carbon black (specific surface area by BET method: 461 m 2 g −1 ) and liquid phenol resin were mixed at a weight ratio of 1: 1, dried and cured, and then pulverized to an average particle size of 3.5 μm. This was heat-treated and fired at 700 ° C. in a nitrogen atmosphere, and then activated using a small rotary kiln in a steam atmosphere at 900 ° C. for 1 hour. The obtained activated carbon had an average particle diameter D50 of 3.3 μm and a Dtop of 16.9 μm. Specific surface area of activated carbon by BET method is 836 m 2 g -1 , micropore specific surface area is 536 m 2 / g -1 , and micropore volume is 0.218
cm 3 g −1 and the average pore diameter was 2.3 nm.

この活性炭100 重量部に対し、CMCを2重量部、SBRを2重量部加え、蒸留水を加えてスラリーを得た。
これをドクターブレード法で30 μm厚のアルミ箔上に塗布し乾燥後、φ12のサイズに打ち抜き、1 t/cm2でプレスして電極とし、実施例1と同じ手順で充放電試験を行ない、静電容量を測定した。
To 100 parts by weight of this activated carbon, 2 parts by weight of CMC and 2 parts by weight of SBR were added, and distilled water was added to obtain a slurry.
This was applied to a 30 μm thick aluminum foil by the doctor blade method, dried, punched out to a size of φ12, pressed at 1 t / cm 2 to form an electrode, and a charge / discharge test was performed in the same procedure as in Example 1. Capacitance was measured.

図1に示されるように、比較例1,2,4は径5nm以下の小さな細孔(ミクロポア)を選択的に多く有するが、実施例1及び実施例2の活性炭は、表3にあるとおり、表面積当りの静電容量が高いことを示しており、静電容量に寄与しない無駄な細孔は無く、体積当りの静電容量が高いものが得られている。
表4に示す活性炭調製時の総合収率は、本発明が樹脂炭を用いた比較例4よりも高く、活性炭を低コストで製造することができる。
As shown in FIG. 1, Comparative Examples 1, 2, and 4 selectively have many small pores (micropores) having a diameter of 5 nm or less. The activated carbons of Examples 1 and 2 are as shown in Table 3. This indicates that the capacitance per surface area is high, there are no useless pores that do not contribute to the capacitance, and a high capacitance per volume is obtained.
The total yield at the time of preparation of activated carbon shown in Table 4 is higher than that of Comparative Example 4 in which the present invention uses resin charcoal, and activated carbon can be produced at low cost.

(表1)

Figure 0005604227
(Table 1)

Figure 0005604227

(表2)

Figure 0005604227
(Table 2)
Figure 0005604227

(表3)

Figure 0005604227
(Table 3)

Figure 0005604227

(表4)

Figure 0005604227
(Table 4)

Figure 0005604227

Claims (5)

カーボンブラックと炭素前駆体であるピッチを重量比1:0.1〜1:3の割合で加熱混合し、不活性ガス雰囲気中において600〜1000 ℃で焼成後、酸化性ガス雰囲気中700〜1000 ℃ で賦活するキャパシタ電極用活性炭の製造方法。 Carbon black and pitch, which is a carbon precursor, are heated and mixed at a weight ratio of 1: 0.1 to 1: 3, fired at 600 to 1000 ° C. in an inert gas atmosphere, and then 700 to 1000 in an oxidizing gas atmosphere. A method for producing activated carbon for capacitor electrodes activated at ℃. 請求項1において、酸化性ガス雰囲気が水蒸気雰囲気であるキャパシタ電極用活性炭の製造方法。 2. The method for producing activated carbon for capacitor electrodes according to claim 1, wherein the oxidizing gas atmosphere is a water vapor atmosphere. 請求項1または2の製造方法で製造された活性炭であって、窒素ガス吸着(BET)法によるミクロポア比表面積が500m2-1以下、ミクロポア容積が0.2cm3-1以下であるキャパシタ電極用活性炭。 A capacitor having a micropore specific surface area of 500 m 2 g -1 or less and a micropore volume of 0.2 cm 3 g -1 or less by a nitrogen gas adsorption (BET) method, wherein the activated carbon is produced by the production method according to claim 1 or 2. Activated carbon for electrodes. 請求項1または2の製造方法で製造された活性炭であって、窒素ガス吸着 (BET)法による比表面積が300m2-1以上である造粒体であるキャパシタ電極用活性炭。 3. An activated carbon for a capacitor electrode, which is an activated carbon produced by the production method according to claim 1, wherein the activated carbon is a granulated body having a specific surface area of 300 m 2 g −1 or more by a nitrogen gas adsorption (BET) method. 請求項1または2の製造方法で製造された活性炭であって、平均粒径D50が1〜20μmであり、Dtopが80μm以下であるキャパシタ電極用活性炭。 3. An activated carbon for a capacitor electrode manufactured by the manufacturing method according to claim 1, wherein the average particle diameter D 50 is 1 to 20 μm and the D top is 80 μm or less.
JP2010191140A 2010-08-27 2010-08-27 Method for producing activated carbon for capacitor and activated carbon Active JP5604227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010191140A JP5604227B2 (en) 2010-08-27 2010-08-27 Method for producing activated carbon for capacitor and activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010191140A JP5604227B2 (en) 2010-08-27 2010-08-27 Method for producing activated carbon for capacitor and activated carbon

Publications (2)

Publication Number Publication Date
JP2012049389A JP2012049389A (en) 2012-03-08
JP5604227B2 true JP5604227B2 (en) 2014-10-08

Family

ID=45903911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010191140A Active JP5604227B2 (en) 2010-08-27 2010-08-27 Method for producing activated carbon for capacitor and activated carbon

Country Status (1)

Country Link
JP (1) JP5604227B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6375593B2 (en) * 2013-05-27 2018-08-22 日本ケミコン株式会社 Electrode, electric double layer capacitor using the electrode, and method for manufacturing electrode
JP2022178233A (en) * 2021-05-19 2022-12-02 イビデン株式会社 Porous carbon-based material and production method of porous carbon-based material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3930739B2 (en) * 2002-01-10 2007-06-13 フタムラ化学株式会社 Activated carbon for electric double layer capacitor and manufacturing method thereof
JP2003309046A (en) * 2002-04-17 2003-10-31 Masayuki Yoshio High energy density electric double layer capacitor
JP4105897B2 (en) * 2002-05-27 2008-06-25 旭化成株式会社 NEGATIVE ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND ELECTRIC STORAGE DEVICE
JP4313547B2 (en) * 2002-06-06 2009-08-12 Jfeケミカル株式会社 Method for producing carbon material for electric double layer capacitor
JP4391198B2 (en) * 2003-10-31 2009-12-24 オルガノ株式会社 Activated carbon precursor, activated carbon, method for producing activated carbon, and polarizable electrode for electric double layer capacitor
JP2006229099A (en) * 2005-02-21 2006-08-31 Nippon Carbon Co Ltd Activated carbon for electric double-layer capacitor, and manufacture thereof
JP4968425B2 (en) * 2005-08-04 2012-07-04 戸田工業株式会社 Spherical porous carbon particle powder and method for producing the same
WO2007119885A1 (en) * 2006-04-14 2007-10-25 Cataler Corporation Method for producing carbon material for electrochemical device electrode
JP5041351B2 (en) * 2006-12-15 2012-10-03 日本カーボン株式会社 Method for producing negative electrode active material for lithium ion secondary battery and negative electrode active material for lithium ion secondary battery
JP2009253255A (en) * 2008-04-11 2009-10-29 Mitsubishi Gas Chem Co Inc Method for manufacturing active electrode material for electric double layer capacitor
JP2009260112A (en) * 2008-04-18 2009-11-05 Mitsubishi Gas Chem Co Inc Producing method of positive-electrode active material for electrochemical capacitor

Also Published As

Publication number Publication date
JP2012049389A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5473282B2 (en) Carbon material for electric double layer capacitor and manufacturing method thereof
JP5322435B2 (en) Negative electrode active material for electricity storage devices
TWI487180B (en) Anode material for nonaqueous lithium type electrical storage element
US8842417B2 (en) High voltage electro-chemical double layer capacitor
KR101470050B1 (en) Process for producing activated carbon for electric double layer capacitor electrode
US8564934B2 (en) Ultracapacitor with improved aging performance
WO2011081086A1 (en) Activated carbon for electric double-layer capacitor electrode and method for producing the same
WO2010116612A1 (en) Carbon material for electric double layer capacitor electrode and method for producing same
JP2012074467A (en) Anode material, method of manufacturing the same, and electricity-storage device
US9472353B2 (en) Ultracapacitor with improved aging performance
US10276312B2 (en) High surface area carbon materials and methods for making same
KR20150126636A (en) Activated carbon for electric double layer capacitor electrode and production method for same
US20160104584A1 (en) Electrical double-layer capacitor for high-voltage operation at high-temperatures
WO2015013353A1 (en) High voltage edlc electrodes containing co2 activated coconut char
JP4733707B2 (en) Carbon material for electric double layer capacitor, electric double layer capacitor, and method for producing carbon material for electric double layer capacitor
JP2009013012A (en) Method of producing active carbon for electric double-layer capacitor electrode
JP2006004978A (en) Electrical double-layer capacitor
JP4838152B2 (en) Porous carbon material, method for producing the same, and electric double layer capacitor
JP7305547B2 (en) Carbon material and manufacturing method thereof, electrode material for power storage device, and power storage device
JP5604227B2 (en) Method for producing activated carbon for capacitor and activated carbon
JP2013080780A (en) Negative electrode material for nonaqueous lithium type power storage element, and nonaqueous lithium type power storage element using the same
JP2020088119A (en) Manufacturing method of carbon material for electrical double layer capacitor
WO2021241334A1 (en) Electrochemical device
JP2007269518A (en) Porous carbon material, method for producing the same, polarizable electrode for electrical double layer capacitor, and electrical double layer capacitor
JP5001791B2 (en) Carbon material for electric double layer capacitor electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130521

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20130806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131127

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140825

R150 Certificate of patent or registration of utility model

Ref document number: 5604227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250