JP4375209B2 - 蒸発燃料処理装置 - Google Patents

蒸発燃料処理装置 Download PDF

Info

Publication number
JP4375209B2
JP4375209B2 JP2004333633A JP2004333633A JP4375209B2 JP 4375209 B2 JP4375209 B2 JP 4375209B2 JP 2004333633 A JP2004333633 A JP 2004333633A JP 2004333633 A JP2004333633 A JP 2004333633A JP 4375209 B2 JP4375209 B2 JP 4375209B2
Authority
JP
Japan
Prior art keywords
purge
stop
internal combustion
combustion engine
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004333633A
Other languages
English (en)
Other versions
JP2006144600A (ja
Inventor
昭憲 長内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004333633A priority Critical patent/JP4375209B2/ja
Publication of JP2006144600A publication Critical patent/JP2006144600A/ja
Application granted granted Critical
Publication of JP4375209B2 publication Critical patent/JP4375209B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

この発明は、蒸発燃料処理装置に係り、特に、車両に搭載される内燃機関の周辺において発生する蒸発燃料を大気に放出させることなく処理するための蒸発燃料処理装置に関する。
従来、例えば特開2002−221064号公報には、蒸発燃料処理装置を、ハイブリッド車両に搭載する構成が開示されている。蒸発燃料処理装置は、燃料タンク内で発生する蒸発燃料を捕獲するキャニスタを備えている。内燃機関の運転中にキャニスタに吸気負圧が導かれると、その内部の蒸発燃料が空気の流れによりパージされ、内燃機関に導かれる。このため、内燃機関が安定的に作動している場合は、比較的短い時間でキャニスタ内の蒸発燃料をパージすることが可能である。
ハイブリッド車両においては、車両の走行状態に合わせて、内燃機関が頻繁に停止状態とされる。内燃機関の停止中は吸気負圧が生じないため、キャニスタのパージを進めることができない。このため、ハイブリッド車両に搭載される蒸発燃料処理装置においては、十分なパージ能力を得ることが必ずしも容易ではない。
上記公報に開示される構成によれば、車両の走行状態に加えて、キャニスタのパージを進める必要があるか否かが判断される。そして、その必要が認められた場合には、車両の走行状態とは無関係に内燃機関が作動状態とされる。このような処理によれば、ハイブリッド車両において、所望のパージ能力を確実に確保することができる。このため、上述した従来の蒸発燃料処理装置によれば、ハイブリッド車両上で極めて良好なエミッション特性を実現することができる。
特開2002−221064号公報 特開2004−76673号公報 特開平4−194334号公報 特開平8−135510号公報 特開平11−294268号公報
しかしながら、上述した従来の装置は、本来は停止状態に維持できる内燃機関を、パージの必要に応じて起動するものである。このため、この装置は、パージの機会を確保するうえでは有利であるものの、内燃機関の燃費を悪化させ易いという特性を有するものであった。
この発明は、上述のような課題を解決するためになされたもので、内燃機関の燃費を悪化させることなく、パージの機会を十分に確保することのできる蒸発燃料処理装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、蒸発燃料処理装置であって、
燃料タンク内で発生する蒸発燃料を吸着するキャニスタと、
前記キャニスタを内燃機関の吸気通路に連通させるパージ通路と、
内燃機関の排気通路に配置された触媒が活性温度以上であるかを判定する温度判定手段と、
内燃機関の停止条件の成否を判定する停止条件判定手段と、
内燃機関に対して回転トルクを与える電動機と、
前記触媒が活性温度以上であり、かつ、前記停止条件が成立している場合に、前記パージ通路を導通状態として前記電動機によって前記内燃機関を回転させることにより停止後パージを実現する停止後パージ手段と、を備え
前記停止後パージ手段は、前記停止条件の成立後に、機関回転数がなだらかに低下するように、前記電動機の発生する回転トルクを制御する回転数制御手段を含むことを特徴とする。
また、第2の発明は、第1の発明において、
外部から供給される駆動信号を受けてスロットル開度を変化させる電子制御式のスロットル弁と、
前記キャニスタから流出するパージガスの濃度を検出する濃度検出手段と、
前記パージガスの濃度が高いほど、前記停止後パージの際のスロットル開度を大きくするスロットル制御手段と、
を備えることを特徴とする。
また、第5の発明は、第の発明において、
前記キャニスタから流出するパージガスの濃度を検出する濃度検出手段を備え、
前記回転数制御手段は、パージガスの濃度が高いほど、前記停止後パージの際の機関回転数の低下速度を遅くすることを特徴とする。

また、第6の発明は、第1乃至第5の発明の何れかにおいて、
吸気弁と排気弁とが共に開弁状態となるバルブオーバーラップ期間を可変とする可変バルブタイミング機構と、
前記停止後パージの実行中は、前記バルブオーバーラップが消滅するように前記可変バルブタイミング機構を制御するVVT制御手段と、
を備えることを特徴とする。
第1の発明によれば、触媒が活性温度以上であり、かつ、内燃機関の停止条件が成立している場合に、電動機によって内燃機関が駆動される。この際、内燃機関はポンプとして機能し、キャニスタ内の蒸発燃料が触媒にまで送られる。その結果、蒸発燃料が触媒において燃焼し、エミッション特性を悪化させることなく処理される。上記の停止後パージは、内燃機関を起動することなく、つまり、内燃機関に対して燃料を噴射することがなく実現される。このため、本発明によれば、内燃機関の燃費を悪化させることなく、パージの機会を増やすことができる。
第2の発明によれば、パージガスの濃度が高いほど、停止後パージの際のスロットル開度が大きくされる。スロットル開度が大きいほど、吸気通路を流れる空気が多量となるため、パージガスが希釈され易くなる。このため、本発明によれば、パージガスの濃度に関わらず、触媒に到達するガスの空燃比を常に適当に保つことができ、触媒における蒸発燃料の燃焼性を良好に維持することができる。
第3の発明によれば、パージガスの濃度が高いほど、停止後パージの際の機関回転数が高くされる。機関回転数が高いほど、吸気通路を流れる空気が多量となるため、パージガスが希釈され易くなる。このため、本発明によれば、パージガスの濃度に関わらず、触媒に到達するガスの空燃比を常に適当に保つことができ、触媒における蒸発燃料の燃焼性を良好に維持することができる。
第4の発明によれば、停止後パージの開始後に、機関回転数をなだらかに低下させることができる。機関回転数がなだらかに低下すると、機関停止に伴うショックを低減することができる。また、機関回転数がなだらかに低下している間は、内燃機関をポンプとして停止後パージを継続することができる。このため、本発明によれば、車両の搭乗者が感ずるショックを十分に抑制しながら、内燃機関の燃費を悪化させることなく、高いパージ能力を確保することができる。
第5の発明によれば、パージガスの濃度が高いほど、停止後パージの開始後における機関回転数の低下速度を遅くすることができる。機関回転数の低下速度が遅いほど、吸入空気量が減り難く、触媒に到達するガスは希釈され易くなる。また、その低下速度が遅いほど、停止後パージの実行期間が長くなり、パージの機会が確保され易くなる。このため、本発明によれば、パージガスの濃度に関わらず、触媒に到達するガスの空燃比を常に適当に保つことができると共に、パージガスの濃度が高いほど、より一層パージの機会を確保することが可能である。
第6の発明によれば、停止後パージの開始と共に、バルブオーバーラップを消滅させることができる。バルブオーバーラップが消滅すると、排気通路から吸気通路へのガスの逆流が阻止されるため、バックファイヤの発生を防ぐことができる。このため、本発明によれば、停止後パージの実行中にバックファイヤが生ずるのを確実に防ぐことができる。
実施の形態1.
[実施の形態1の構成]
図1は、本発明の実施の形態1の構成を説明するための図である。本発明のシステムは、車両への搭載、より具体的にはハイブリッド車両への搭載を前提としたものであり、燃料タンク10を備えている。燃料タンク10には、ベーパ通路12を介してキャニスタ14が連通している。キャニスタ14は、その内部に活性炭を備えており、燃料タンク10から流入してくる蒸発燃料を吸着することができる。
キャニスタ14には、大気通路16が連通している。大気通路16には、CCV18が設けられている。CCV18は、大気通路16を遮断するための電磁弁である。キャニスタ14には、更に、パージ通路22が連通している。パージ通路22は、パージVSV24を備えており、その端部において内燃機関の吸気通路26に連通している。吸気通路26は、エアフィルタ28の下流にスロットル弁30を備えている。スロットル弁30は、電子制御式の弁機構であり、外部から供給される駆動信号を受けてスロットル開度TAを変化させることができる。
上述したパージ通路22は、スロットル弁30の下流において吸気通路26に連通している。吸気通路26は、内燃機関の吸気ポート32に連通している。吸気ポート32には、その内部に燃料を噴射するための燃料噴射弁33が組み付けられている。内燃機関には、また、排気通路34が連通している。排気通路34には、排気ガスを浄化するための触媒36が組み込まれている。
内燃機関には、更に、吸気弁38および排気弁40が組み込まれている。吸気弁38および排気弁40には、それぞれ可変動弁機構42,44が連結されている。可変動弁機構42,44によれば、吸気弁38の開弁タイミング、および排気弁40の開弁タイミングをそれぞれ適当に変化させることができる。
本実施形態のシステムは、ECU(Electronic Control Unit)50を備えている。ECU50には、内燃機関に搭載される各種センサの出力が供給されている。また、ECU50には、燃料噴射弁33やスロットル弁30など、内燃機関に搭載される各種のアクチュエータが接続されている。ECU50は、それらのセンサ出力に基づいて、それらのアクチュエータを適当に駆動することができる。
本実施形態のシステムは、更に、モータジェネレータ(MG)60を備えている。MG60は、車両の駆動輪、或いは内燃機関に対して駆動トルクを与える電動機として機能することができると共に、内燃機関、或いは車両の駆動輪から駆動トルクを受けて発電動作を行うジェネレータとして機能することができる。
[実施の形態1の基本的動作]
本実施形態のシステムは、例えば給油時において、CCV18を開弁させてキャニスタ14を大気に開放する。この状態で給油が行われると、燃料タンク10内に存在するガス、つまり、蒸発燃料を含むガスがベーパ通路12を通ってキャニスタ14に流入する。キャニスタ14は、この際、ガス中の蒸発燃料を吸着し、燃料成分を含まない空気成分のみを大気通路16から大気に放出させる。
本実施形態のシステムは、給油時の他にも、燃料タンク10内で蒸発燃料が多量に発生する状況下では、同様の動作によりキャニスタ14に蒸発燃料を吸着する。このような機能によれば、蒸発燃料の大気への流出を有効に阻止することができる。
本実施形態のシステムは、内燃機関の運転中に、より具体的には、燃料噴射弁33による燃料噴射を伴う通常の運転中に、キャニスタ14をパージするための制御を行う。以下、この制御を「通常パージ制御」と称す。
通常パージ制御の実行中は、CCV18が開弁状態とされると共に、パージVSV24が適当なデューティ比で開閉駆動される。内燃機関の通常運転中にパージVSV24が開弁すると、吸気負圧がキャニスタ14に導かれる。その結果、大気通路16から空気が吸入され、その空気によってキャニスタ14がパージされ、蒸発燃料を含むパージガスが吸気通路26に流入する。
内燃機関の通常運転時には、排気空燃比が理論空燃比となるように、公知の空燃比フィードバック制御が実行されている。パージガスが理論空燃比よりリッチであれば、排気空燃比はリッチ側に偏ったものとなる。一方、パージガスがリーンであれば、排気空燃比もリーンに偏った値となる。このため、排気空燃比の偏りを見れば、パージガスの濃度を推定することが可能である。
ECU50は、通常運転の実行中に、空燃比フィードバック制御を実行しつつ、排気空燃比の偏りに基づいてパージガスの濃度FGPGを学習する。そして、その濃度FGPGに基づいて、パージガスの影響が相殺されるように、燃料噴射量に増減補正を施す。このため、本実施形態のシステムによれば、内燃機関の通常運転中に、エミッション特性を悪化させることなく、キャニスタ14に吸着された蒸発燃料を処理することが可能である。尚、FGPGを用いた補正の手法は、本発明の主要部ではなく、かつ、公知の事項であるため、ここでは、その詳細な説明は省略する。
[実施の形態1における特徴的動作]
キャニスタ14は、一定の容量を超えて蒸発燃料を吸着することはできない。このため、燃料タンク10内で発生した蒸発燃料の大気放出を阻止するためには、キャニスタ14に吸着されている燃料量を可能な限り少量とすること、つまり、キャニスタ14のパージの機会を可能な限り確保することが望まれる。
一方で、上述した通常パージ制御は、内燃機関の運転中にキャニスタをパージするものである。このため、内燃機関の運転が十分に継続しない場合は、通常パージ制御により多くのパージ量を確保することはできない。特に、ハイブリッド車両においては、内燃機関が頻繁に停止するため、通常パージ制御によって十分なパージ量を確保することが難しい。
ところで、本実施形態のシステムにおいて、触媒36は、内燃機関の通常運転中において排気熱により高温に加熱される。この温度は、内燃機関が停止した後も、ある適度の期間は活性温度以上に維持される。このため、内燃機関の停止後しばらくの間は、触媒36において、燃料を燃焼させることが可能である。
また、本実施形態のシステムでは、MG60を動力源とすることで、燃料噴射を停止しながら内燃機関を回転させることができる。そして、内燃機関は、その回転中は、吸気側のガスを排気側へ送り出すポンプとして機能する。このため、本実施形態のシステムにおいては、内燃機関の停止が指令された後、つまり、内燃機関に対する燃料噴射が停止された後、しばらくの期間は、パージVSV24を開いた状態でMG60を駆動することにより、キャニスタ14内の蒸発燃料を触媒36まで導いて燃焼させることが可能である。
MG60を動力源として内燃機関を回転させることとすれば、内燃機関に対して、無駄に燃料を噴射する必要がない。このため、上述したパージの手法によれば、内燃機関の停止指令が発せられた後に、無駄な燃料噴射を行うことなく、つまり、キャニスタ14のパージを進めることができる。そこで、本実施形態では、パージの機会を確保するべく、通常パージ制御に加えて、上述した停止指令後のパージを実行することとした。以下、そのパージを「停止後パージ」と称す。
[実施の形態1における具体的処理]
図2は、停止後パージを実現するためにECU50が実行するルーチンのフローチャートである。図2に示すルーチンでは、先ず、内燃機関の停止条件が成立しているか否かが判別される(ステップ100)。ハイブリッド車両においては、車両のIGがオンであっても、例えば、車速が0となることでこの条件は成立する。
上記ステップ100において、内燃機関の停止条件が成立していないと判別された場合は、停止後パージの必要性が生じていないと判断できる。この場合は、停止後空気量積算値SGAが0にリセットされた後(ステップ102)、判定空気量TGAが設定される(ステップ104)。
停止後空気量積算値SGAは、内燃機関の停止条件が成立した後の吸入空気量の積算値、つまり、燃料噴射が停止された後に触媒36に供給された空気量の積算値である。ここでは、未だ停止条件が成立していないため、その値SGAは0とされる。
触媒36の温度は、燃料噴射の停止後に時間の経過と共に低下する。そして、その温度は、触媒36を流れる空気量が多量であるほど早期に低下する。判定空気量TGAは、内燃機関に対する燃料噴射が停止された後、触媒36が活性温度を維持することのできる空気量の上限値である。この上限値は、内燃機関の運転中における触媒36の温度が高いほど大きな値となる。このため、ECU50には、ステップ104の枠中に示すように、触媒温度との関係で判定空気量TGAを定めたマップが記憶されている。
上記ステップ104では、具体的には、先ず触媒温度が検出される。次に、上記のマップを参照して、検出された触媒温度に対応する判定空気量TGAが読み出される。その結果、判定空気量TGAは、触媒36が活性温度を維持できる停止後空気量の上限値に適正に設定される。
以上の処理が終わると、次に、通常パージ制御が実行される(ステップ106)。通常パージ制御によれば、既述した通り、内燃機関の通常運転中に、エミッション特性を悪化させることなく、キャニスタ14のパージを進めることができる。
内燃機関の停止条件が成立すると、上記ステップ100の判定が肯定される。この場合は、先ず、停止後空気量積算値SGAの積算処理が実行される(ステップ108)。
次に、停止後空気量積算値SGAが、判定空気量TGA以上であるかが判別される(ステップ110)。SGAがTGAに達していると判断された場合は、既に触媒36が活性温度以下に低下している、つまり、停止後パージを終了するべき時期が到来していると判断できる。この場合は、以後、可変動弁機構42,44やスロットル弁30が始動時の状態に戻され(ステップ112)、更に、パージVSV24およびMG60がオフとされる(ステップ114,116)ことにより、停止後パージが終了される。
一方、上記ステップ110において、停止後空気量積算値SGAが判定空気量TGAに達していないと判別された場合は、触媒36が、未だ活性温度を維持していると判断できる。この場合は、次に、通常パージ時間TPGONが判定値KPG100以上であるかが判別される(ステップ118)。
通常パージ時間TPGONは、トリップ毎に、つまり、IGがオンとされた後の期間毎に計数される通常パージ制御の実行積算時間である。一方、判定値KPG100は、キャニスタ14に吸着された蒸発燃料をある程度パージするのに必要な標準的なパージ時間である。従って、上記ステップ118において、TPGON≧KPG100の成立が認められる場合は、通常パージ制御によりキャニスタ14が適正にパージされており、敢えて停止後パージを実行する必要がないと判断することができる。そして、この場合は、以後、ステップ112〜116の処理が実行される。
一方、上記ステップ118において、TPGON≧KPG100の不成立が認められた場合は、通常パージ制御によるパージが不十分であり、停止後パージを実行する必要があると判断できる。この場合は、先ず、スロットル閉じ制御が実行される(ステップ120)。
ECU50は、ステップ120の枠中に示すように、機関回転数NEとの関係でスロットル開度TAを定めたマップを記憶している。上記ステップ120では、具体的には、このマップに従って現在の機関回転数NEに対応するスロットル開度TAが読み出され、そのTAが実現されるようにスロットル弁30が制御される。
停止後パージの実行中は、MG60に駆動されることにより内燃機関が作動状態となる。この際、スロットル開度TAが大き過ぎると、吸気負圧が発生せず、キャニスタ14がパージできない。他方、スロットル開度TAが小さすぎると、過剰な吸気負圧が発生して、いわゆるオイル上がり(ピストン周辺からオイルが燃焼室に流入する現象)やオイル下がり(バルブステムの周囲から燃焼室にオイルが流入する現象)が生ずる。
これらの現象は、停止後パージの実行中に生ずる吸気負圧を適当な値に制御することで何れも防ぐことが可能である。そして、停止後パージの際の吸気負圧は、スロットル開度TAを機関回転数NEに応じた適当な値とすることで適正値とすることができる。ステップ120の枠中に示すマップは、上記の要求を満たすべく、適合等により定められたものである。このため、本実施形態のシステムによれば、停止後パージの開始後に、オイル上がりやオイル下がりを生じさせることのない適正な吸気負圧を発生させることができる。
上記の処理が終わると、以後、パージVSV24が開弁状態(オン状態)とされ(ステップ122)、更に、MG60の駆動制御が開始される(ステップ124)。これらの処理が実行されると、キャニスタ14に適正な吸気負圧が導かれて、キャニスタ14のパージが開始される。
図3は、上記の処理により実現される停止後パージの動作を説明するためのタイミングチャートである。図3(A)は、具体的には、パージの実行状態を示す波形である。また、図3(B)は機関回転数NEの変化を示す波形である。また、これらの図において、実線は停止後パージが実行された場合の波形を示しており、破線は停止後パージが実行されない場合の波形を示している。
図3に示すように、停止後パージが実行されない場合は(破線参照)、内燃機関に対して停止指令が発せられた後に、機関回転数NEが速やかに0となり、かつ、速やかにパージが停止される。これに対して、本実施形態のシステムでは、内燃機関に対する停止指令が発せられた後、停止後空気量積算値SGAが判定空気量TGAに達するまでの間は、MG60により内燃機関が駆動されることにより、燃料噴射を伴わない停止後パージが実現される。このため、本実施形態のシステムによれば、内燃機関の燃費を殆ど悪化させることなく、パージの機会を増やすことができる。
ところで、上述した実施の形態1においては、TPGON≧KPG100が成立しない場合は、つまり、通常パージ制御の実行時間が不十分であると判別される場合は、常に停止後パージを開始することとしているが、その条件が不成立であっても、IGオン後の経過時間が不十分である間は、その不成立に関わらず、停止後パージの開始を保留することとしてもよい。
ハイブリッド車両においては、内燃機関の停止条件が頻繁に成立するため、IGオンの直後にその停止条件が成立することがある。車両が渋滞路を走行しているような場合は、その後も内燃機関の停止条件が繰り返して成立し、通常パージ制御のみでは十分なパージが得られない事態が生ずる。これに対して、その後車両が円滑に走行できる場合は、通常パージ制御のみでキャニスタ14をパージすることが可能であり、必ずしも停止後パージを行う必要がない。
上述した通り、IGオンからの経過時間が不十分である間は停止後パージの実行を保留することとすると、停止後パージの実行場面を、渋滞路走行中など、通常パージ制御だけでは適正なパージが期待できない場面に限定することができる。このため、停止後パージの実行条件として、(i)TPGON≧KPG100の不成立に加えて、(ii)IGオン後の十分な時間の経過を求めることとすると、停止後パージの実行をより適正に制限して無駄を省くことができる。
また、上述した実施の形態1においては、蒸発燃料処理装置を、ハイブリッド車両に搭載することを前提としているが、本発明はこれに限定されるものではない。すなわち、本発明に係る蒸発燃料処理装置は、アイドリングストップを行うエコラン車両に搭載することとしてもよい。
エコラン車両では、ハイブリッド車両と同様に、IGがオンとされたまま、内燃機関の停止が指令されることがある。また、エコラン車両には、内燃機関に対して駆動トルクを与えるスタータモータが搭載されている。このため、実施の形態1におけるMG60をスタータモータに置き換えれば、エコラン車両においても、上述した停止後パージを実現して、実施の形態1の場合と同様の効果を得ることが可能である。
更に、本発明に係る蒸発燃料処理装置は、ハイブリッド車両やエコラン車両に限らず、通常の車両に搭載することとしてもよい。エコラン車両の場合と同様に、スタータモータをMG60に置き換えれば、通常車両においても上述した停止後パージを実現することは可能である。そして、このような変形例によれば、通常車両において、燃費を悪化させることなくパージの機会を増やすという効果を得ることができる。
また、上述した実施の形態1においては、触媒36が活性温度以上であるかを、停止後空気量積算値SGAに基づいて判断することとしているが、その判断の手法はこれに限定されるものではない。すなわち、触媒36が活性温度以上であるか否かは、その温度の実測値に基づいて判断することとしてもよい。尚、上述した数種の変形は、以下に説明する他の実施形態においても同様に行うことが可能である。
上述した実施の形態1においては、ECU50が、上記ステップ110の処理を実行することにより前記第1の発明における「温度判定手段」が、上記ステップ100の処理を実行することにより前記第1の発明における「停止条件判定手段」が、上記ステップ122および124の処理を実行することにより前記第1の発明における「停止後パージ手段」が、それぞれ実現されている。
実施の形態2.
[実施の形態2の特徴]
次に、図4を参照して、本発明の実施の形態2について説明する。本実施形態のシステムは、図1に示すシステムにおいて、ECU50に、後述する図4に示すルーチンを実行させることにより実現することができる。
上述した実施の形態1のシステムは、停止後パージの際に、機関回転数NEに基づいて、吸気負圧が適正値となるようにスロットル開度TAを決定することとしている。つまり、実施の形態1では、キャニスタ14から流出するパージガスの濃度に関わらず、常に機関回転数NEに基づいてスロットル開度TAを決定することとしている。
停止後パージの実行中は、スロットル弁30を通過して流通する空気と、キャニスタ14から流出したパージガスとの混合気が触媒36に流入する。この際、触媒36に流れ込むガスが過剰にリッチなものであると、触媒36の温度が十分に高くても、酸素不足によって燃料の不完全燃焼が生ずることがある。
このため、パージガスの濃度が高い場合には、これを希釈するために、吸入空気量を多量にすること、つまり、スロットル開度TAを大きくすることが望まれる。本実施形態のシステムは、このような要求を満たすべく、停止後パージの実行時に、パージガス中のベーパ濃度をスロットル開度TAに反映させることとした。
[実施の形態2における具体的処理]
図4は、上記の機能を実現するために本実施形態においてECU50が実行するルーチンのフローチャートである。図4に示すルーチンは、ステップ120の後にステップ130および132が挿入されている点を除き、図2に示すフローチャートと同一である。以下、図4において、図2に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
すなわち、図4に示すルーチンでは、ステップ120においてNEに対応するスロットル開度TAが設定された後に、機関回転数NEが判定回転数KNE以上であるかが判別される(ステップ130)。停止後パージが開始された直後は、機関回転数NEが未だ高い値に維持されている。そして、このような状況下では、スロットル開度TAに関わらず、吸入空気量GAは多量に確保されている。
吸入空気量GAが多量であれば、停止後パージの実行中に、パージガスは十分に希釈された状態で触媒36に到達する。このため、このような状況下では、パージガスの濃度を考慮することなく停止後パージを実行することができる。以上の理由により、ステップ130において、NE≧KNEの成立が認められた場合は、以後、パージガスの濃度を確認することなく、ステップ122および124の処理が実行される。
一方、上記ステップ130において、NE≧KNEの不成立が認められた場合、つまり、機関回転数NEが十分に低下していると認められた場合は、ベーパ濃度に基づいてスロットル開度TAを設定する処理が行われる。ECU50は、ステップ132の枠中に示すように、パージガス中のベーパ濃度との関係で、スロットル開度TAを定めたマップを記憶している。また、ECU50は、既述した通り、通常パージ制御の実行中にパージガス濃度FGPGを学習している。
上記ステップ132では、具体的には、上記のマップを参照して、パージガス濃度FGPGの学習値に対応するスロットル開度TAを読み出す処理、および読み出されたTAが実現されるようにスロットル弁30を制御する処理が実行される。これらの処理が終わると、以後、停止後パージを実現するべくステップ122および124の処理が実行される。
上述した一連の処理によれば、NEがKNEを下回った後は、パージガスの濃度が高いほどスロットル開度TAを大きくすることができる。このため、本実施形態のシステムによれば、パージガスの濃度が極めて高いような場合にも、停止後パージの実行中に過剰にリッチ化したガスが触媒36に供給されるのを有効に防ぐことができる。
尚、上述した実施の形態2においては、ECU50が、パージガス濃度FGPGを学習することにより前記第2の発明における「濃度検出手段」が、ステップ132の処理を実行することにより前記第2の発明における「スロットル制御手段」が、それぞれ実現されている。
実施の形態3.
[実施の形態3の特徴]
次に、図5を参照して、本発明の実施の形態3について説明する。本実施形態のシステムは、図1に示すシステムにおいて、ECU50に、後述する図5に示すルーチンを実行させることにより実現することができる。
上述した実施の形態2においては、パージガスの濃度が高い場合には、その希釈を図るべく、停止後パージの際にスロットル開度TAを大きくして吸入空気量GAを増やすこととしている。ところで、吸入空気量GAは、スロットル開度TAを大きくする他、機関回転数NEを高めることによっても増やすことができる。そこで、本実施形態では、パージガスの濃度が高いほど、停止後パージの際の機関回転数NEを高めることとした。
[実施の形態3における具体的処理]
図5は、上記の機能を実現するために本実施形態においてECU50が実行するルーチンのフローチャートである。図5に示すルーチンは、ステップ120および130が排除されている点、およびステップ122と124の間にステップ140が挿入されている点を除き、図4に示すルーチンと同様である。以下、図5において、図4に示すルーチンと同様のステップについては、その説明を省略または簡略する。
すなわち、図5に示すルーチンでは、ステップ118において通常パージ時間TPGONが判定値KPG100に達していないと判別されると、その後即座に、ステップ132の処理、つまり、スロットル開度TAをベーパ濃度に応じた開度とする制御が実行される。
また、このルーチンでは、ステップ122の処理に次いで、目標機関回転数NETがベーパ濃度(パージガス濃度FGPG)に基づいて設定される(ステップ140)。そして、ステップ124では、機関回転数NEが目標機関回転数NETに一致するように、MG60の状態が制御される。
ECU50は、ベーパ濃度との関係で目標機関回転数NETを定めたマップを記憶している。このマップは、ステップ140の枠中に示すように、ベーパ濃度が高いほどNETが高い値となるように設定されている。このため、上述した一連の処理によれば、停止後パージの実行中に、ベーパ濃度が高いほど、スロットル開度TAを大きく、かつ、機関回転数NEを高くすることができる。
停止後パージの実行中に生ずる吸入空気量GAは、機関回転数NEが高いほど多量となる。このため、本実施形態のシステムによれば、高濃度のパージガスを、実施の形態3の場合に比して更に高い能力で希釈することができる。このため、本実施形態のシステムによれば、パージガスが極めて高濃度であるような場合にも、停止後パージの実行中に燃料の不完全燃焼が生ずるのを確実に防ぐことができる。
尚、上述した実施の形態3においては、ECU50が、パージガス濃度FGPGを学習することにより前記第3の発明における「濃度検出手段」が、上記ステップ140の処理を実行することにより前記第3の発明における「回転数制御手段」が、それぞれ実現されている。
実施の形態4.
[実施の形態4の特徴]
次に、図6および図7を参照して、本発明の実施の形態4について説明する。本実施形態のシステムは、図1に示すシステムにおいて、ECU50に、後述する図6に示すルーチンを実行させることにより実現することができる。
上述した実施の形態1乃至3のシステムは、内燃機関の停止条件が成立した後に、一定の低速機関回転数が維持されるようにMG60を駆動することとしている。この場合、停止条件の成立直後に、機関回転数NEに急激な低下が生ずる。車両の搭乗者が感ずるショックを小さくするためには、この時点で生ずる機関回転数NEの変化は小さいほど好ましい。
そこで、本実施形態のシステムは、内燃機関の停止条件が成立した後に、機関回転数NEを緩やかに低下させ、NEの低下期間を利用して停止後パージを実現することとした。このような手法によれば、搭乗者の感ずるショックを十分に抑制しつつ、停止後パージによりキャニスタ14のパージを進めることが可能である。
[実施の形態4における具体的処理]
図6は、上記の機能を実現するために、本実施形態においてECU50が実行するルーチンのフローチャートである。図6に示すルーチンは、ステップ140がステップ150〜154に置き換えられている点を除き、実質的に図5に示すルーチンと同様である。以下、図6において、図5に示すルーチンと同様のステップについては、その説明を省略または簡略する。
すなわち、図6に示すルーチンでは、ステップ132の処理によりスロットル開度TAが制御された後に、機関回転数NEが、判定回転数KNE100以上であるか否かが判別される(ステップ132)。既述した通り、本実施形態のシステムは、内燃機関の停止条件が成立すると、その後、機関回転数NEを緩やかに低下させながら停止後パージを実現する。上記の判定回転数KNE100は、その停止後パージを継続するべき最低の機関回転数である。このため、NE≧KNE100の不成立が認められた場合は、機関回転数NEが十分に低下しており、停止後パージを終了するべき時期が到来したと判断される。そして、この場合は、以後ステップ112〜116の処理が実行される。
これに対して、上記ステップ150において、NEがKNE100以上であると判別された場合は、以後、停止後パージを実現するための処理が実行される。ここでは、先ず、ベーパ濃度(パージガス濃度FGPG)に基づいて、機関回転数NEの低下幅ΔNEが設定される(ステップ152)。次に、現在の機関回転数NEから上記のΔNEを減ずることにより、目標機関回転数NET=NE−ΔNEが算出される。
ECU50は、ステップ152の枠中に示すように、ベーパ濃度との関係でΔNEを定めたマップを記憶しており、そのマップに従ってΔNEを決定する。このマップによれば、ベーパ濃度が高いほど低下幅ΔNEは小さな値とされる。従って、目標回転数NETは、ベーパ濃度が高いほど、緩やかに低下する傾向を示す。
目標回転数NETが設定されると、以後、機関回転数NEがその目標回転数NETに一致するように、停止後パージの処理が実行される(ステップ122,124)。
図7は、上記の処理により実現される停止後パージの動作を説明するためのタイミングチャートである。図7(A)は、具体的には、パージの実行状態を示す波形である。また、図7(B)は機関回転数NEの変化を示す波形である。また、これらの図において、実線は停止後パージが実行された場合の波形を示しており、破線は停止後パージが実行されない場合の波形を示している。
図7に示すように、本実施形態のシステムによれば、内燃機関の停止条件が成立した後、機関回転数NEを緩やかに低下させることができる。このため、本実施形態のシステムによれば、内燃機関の停止条件が成立した後に、大きなショックを生じさせることなく、内燃機関を停止状態に導くことができる。
また、本実施形態のシステムでは、ベーパ濃度が高いほど機関回転数NEの低下速度は緩やかとされる。その結果、このシステムでは、ベーパ濃度が高いほど、内燃機関の停止条件が成立した後、停止後パージの実行期間が長期間確保される。このため、本実施形態のシステムによれば、停止後パージによってキャニスタ14内の蒸発燃料を無駄なく効率的にパージすることができる。
尚、上述した実施の形態4においては、ECU50が、ステップ152および154の処理を実行することにより、前記第4または5の発明における「回転数制御手段」が実現されている。また、ここでは、ECU50が、パージガス濃度FGPGを学習することにより前記第5の発明における「濃度検出手段」が実現されている。
実施の形態5.
[実施の形態5の特徴]
次に、図8を参照して、本発明の実施の形態5について説明する。本実施形態のシステムは、図1に示すシステムにおいて、ECU50に、後述する図8に示すルーチンを実行させることにより実現することができる。
本実施形態のシステムは、実施の形態1の場合と同様に、可変動弁機構42,44を備えている。内燃機関の運転中は、バルブオーバーラップ期間が生ずるように可変動弁機構42,44が制御されるのが通常である。このため、可変動弁機構42,44の状態が維持されたまま停止後パージが開始されると、バルブオーバーラップが発生するバルブタイミングのままで、パージガスのポンピングが行われることになる。
バルブオーバーラップの生ずるバルブタイミングによれば、排気弁40と吸気弁38が共に開弁する状況が形成される毎に、排気通路34内の高温ガスが吸気通路32側に逆流する現象が生ずる。そして、停止後パージの実行に伴って、吸気通路32にパージガスが導かれていれば、その高温ガスの逆流に起因して、バックファイヤが発生することがある。このようなバックファイヤは、吸気系の温度を上昇させる原因となり、また、触媒36での燃料の完全燃焼を妨げる原因となる。そこで、本実施形態のシステムは、停止後パージの開始と共に、バルブオーバーラップが消滅するように可変動弁機構42,44の状態を変化させることとした。
[実施の形態5における具体的処理]
図8は、上記の機能を実現するために本実施形態においてECU50が実行するルーチンのフローチャートである。図8に示すルーチンは、ステップ120の後にステップ160が挿入されている点を除いて図2に示すルーチンと同様である。以下、図8において、図2に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
図8に示すルーチンによれば、停止後パージの実行判定がされた場合に、VVT遅角制御(ステップ160)の実行後にステップ122および124が実行される。VVT遅角制御は、バルブオーバーラップが消滅するように可変動弁機構42,44を動かすための制御である。上記の手順によれば、停止後パージの実行中にバックファイヤが生ずるのを確実に防ぐことができる。このため、本実施形態のシステムによれば、エミッションの悪化や吸気系の温度上昇等の不都合を何ら伴うことなく、適正な停止後パージを安定的に進行させることができる。
尚、上述した実施の形態5においては、ECU50がステップ160の処理を実行することにより前記第6の発明における「VVT制御手段」が実現されている。
本発明の実施の形態1の構成を説明するための図である。 本発明の実施の形態1において実行されるルーチンのフローチャートである。 本発明の実施の形態1の動作を説明するためのタイミングチャートである。 本発明の実施の形態2において実行されるルーチンのフローチャートである。 本発明の実施の形態3において実行されるルーチンのフローチャートである。 本発明の実施の形態4において実行されるルーチンのフローチャートである。 本発明の実施の形態4の動作を説明するためのタイミングチャートである。 本発明の実施の形態5において実行されるルーチンのフローチャートである。
符号の説明
10 燃料タンク
14 キャニスタ
22 パージ通路
26 吸気通路
30 スロットル弁
42,44 可変動弁機構
34 排気通路
36 触媒
50 ECU(Electronic Control Unit)
60 モータジェネレータ(MG)

Claims (4)

  1. 燃料タンク内で発生する蒸発燃料を吸着するキャニスタと、
    前記キャニスタを内燃機関の吸気通路に連通させるパージ通路と、
    内燃機関の排気通路に配置された触媒が活性温度以上であるかを判定する温度判定手段と、
    内燃機関の停止条件の成否を判定する停止条件判定手段と、
    内燃機関に対して回転トルクを与える電動機と、
    前記触媒が活性温度以上であり、かつ、前記停止条件が成立している場合に、前記パージ通路を導通状態として前記電動機によって前記内燃機関を回転させることにより停止後パージを実現する停止後パージ手段と、を備え
    前記停止後パージ手段は、前記停止条件の成立後に、機関回転数がなだらかに低下するように、前記電動機の発生する回転トルクを制御する回転数制御手段を含むことを特徴とする蒸発燃料処理装置。
  2. 外部から供給される駆動信号を受けてスロットル開度を変化させる電子制御式のスロットル弁と、
    前記キャニスタから流出するパージガスの濃度を検出する濃度検出手段と、
    前記パージガスの濃度が高いほど、前記停止後パージの際のスロットル開度を大きくするスロットル制御手段と、
    を備えることを特徴とする請求項1記載の蒸発燃料処理装置。
  3. 前記キャニスタから流出するパージガスの濃度を検出する濃度検出手段を備え、
    前記回転数制御手段は、パージガスの濃度が高いほど、前記停止後パージの際の機関回転数の低下速度を遅くすることを特徴とする請求項記載の蒸発燃料処理装置。
  4. 吸気弁と排気弁とが共に開弁状態となるバルブオーバーラップ期間を可変とする可変バルブタイミング機構と、
    前記停止後パージの実行中は、前記バルブオーバーラップが消滅するように前記可変バルブタイミング機構を制御するVVT制御手段と、
    を備えることを特徴とする請求項1乃至の何れか1項記載の蒸発燃料処理装置。
JP2004333633A 2004-11-17 2004-11-17 蒸発燃料処理装置 Active JP4375209B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004333633A JP4375209B2 (ja) 2004-11-17 2004-11-17 蒸発燃料処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004333633A JP4375209B2 (ja) 2004-11-17 2004-11-17 蒸発燃料処理装置

Publications (2)

Publication Number Publication Date
JP2006144600A JP2006144600A (ja) 2006-06-08
JP4375209B2 true JP4375209B2 (ja) 2009-12-02

Family

ID=36624592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004333633A Active JP4375209B2 (ja) 2004-11-17 2004-11-17 蒸発燃料処理装置

Country Status (1)

Country Link
JP (1) JP4375209B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720667B2 (ja) * 2006-08-04 2011-07-13 トヨタ自動車株式会社 内燃機関の蒸発燃料処理装置
JP4849027B2 (ja) * 2007-07-19 2011-12-28 トヨタ自動車株式会社 ハイブリッド車両の蒸発燃料処理装置
KR100936983B1 (ko) * 2008-05-07 2010-01-15 현대자동차주식회사 배기가스 제어 시스템 및 이의 방법
JP5185059B2 (ja) * 2008-10-17 2013-04-17 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP5310113B2 (ja) * 2009-03-04 2013-10-09 日産自動車株式会社 内燃機関
JP6830869B2 (ja) * 2017-07-14 2021-02-17 愛三工業株式会社 蒸発燃料処理装置及び制御装置

Also Published As

Publication number Publication date
JP2006144600A (ja) 2006-06-08

Similar Documents

Publication Publication Date Title
JP4446804B2 (ja) 内燃機関の制御装置
JP4807296B2 (ja) 蒸発燃料処理装置
JP4161819B2 (ja) 蒸発燃料処理装置
JP6247667B2 (ja) 蒸発燃料処理装置
WO1996018814A1 (fr) Systeme de controle de l'evaporation de carburant
JP4375209B2 (ja) 蒸発燃料処理装置
US5609142A (en) Fuel-vapor treatment method and apparatus for internal combustion engine
JP2006125344A (ja) 内燃機関の制御装置
WO2019058705A1 (ja) エンジンシステム
JP4715632B2 (ja) 内燃機関の蒸発燃料処理制御装置
JP4737005B2 (ja) エンジンの制御装置
JP6299801B2 (ja) エンジンの制御装置
JP3644416B2 (ja) 内燃機関の空燃比制御装置および制御法
JP3849611B2 (ja) 蒸発燃料処理装置
JP4849027B2 (ja) ハイブリッド車両の蒸発燃料処理装置
JP2006132436A (ja) 蒸発燃料処理装置
JP7211325B2 (ja) 車両の制御装置
JP4403889B2 (ja) 内燃機関の蒸発燃料処理装置
JP2005016474A (ja) 内燃機関における故障診断機能を有する燃料ガスパージシステム
JP3919536B2 (ja) 蒸発燃料処理装置
JP4947891B2 (ja) 内燃機関の制御装置
JP2005351120A (ja) 内燃機関の制御装置
JPH10115258A (ja) エンジンの制御装置
JPS6380033A (ja) 空燃比制御システムの故障診断方法
JP3862934B2 (ja) 内燃機関の蒸発燃料処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3