JP4360444B2 - 高分子安定化液晶組成物、液晶表示素子、液晶表示素子の製造方法 - Google Patents

高分子安定化液晶組成物、液晶表示素子、液晶表示素子の製造方法 Download PDF

Info

Publication number
JP4360444B2
JP4360444B2 JP2008516653A JP2008516653A JP4360444B2 JP 4360444 B2 JP4360444 B2 JP 4360444B2 JP 2008516653 A JP2008516653 A JP 2008516653A JP 2008516653 A JP2008516653 A JP 2008516653A JP 4360444 B2 JP4360444 B2 JP 4360444B2
Authority
JP
Japan
Prior art keywords
group
liquid crystal
independently
polymer
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008516653A
Other languages
English (en)
Other versions
JPWO2008123235A1 (ja
Inventor
宣 藤沢
清文 竹内
一輝 初阪
伊佐 西山
駿介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Application granted granted Critical
Publication of JP4360444B2 publication Critical patent/JP4360444B2/ja
Publication of JPWO2008123235A1 publication Critical patent/JPWO2008123235A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/548Macromolecular compounds stabilizing the alignment; Polymer stabilized alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • G02F2202/023Materials and properties organic material polymeric curable
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

本発明はアクティブ素子にて駆動可能な高分子安定化液晶表示素子に有用な組成物、ならびに当該組成物を用いた高分子安定化液晶表示素子及びその製造方法に関する。
高分子を用いて液晶配向を安定化する技術としては、ねじれネマチック液晶に光硬化性モノマーを添加し光照射することで配向の高分子安定化を図る技術が開示されている(非特許文献1参照)。当該引用文献記載のネマチック液晶は、高分子安定化される前のねじれ構造を、光硬化後も維持しており、光硬化性モノマーとして、液晶骨格を有する液晶性モノマーを用いることで、表示用液晶材料の液晶性・配向性を失わないようにしている。
当該引用文献においては、光硬化性モノマーをねじれネマチック液晶ホスト中に数%の濃度で添加した後、電圧無印加の状態で光照射して作製した高分子安定型液晶素子の例を示している。さらに実施例において液晶性モノマーを2%、3%、4%、5%を変えた時の電圧−誘電率特性が示されている。この結果によると、液晶性モノマーの添加量が増加すると飽和する誘電率が下がり飽和させるためには更に高い電圧を印加させる必要があり駆動電圧が高くなり、これに応じて素子の駆動電圧も増加する。この点が高分子安定化液晶素子を実用化させる上で課題になっている。
また、液晶素子にスメクチック液晶を用いる場合、ネマチック相とは根本的に異なった挙動を示す。すなわち、スメクチック相を液晶表示素子として応用する場合、スメクチック相が層(レイヤー)構造を有し、液晶分子の長軸(分子の向き)が層構造ができている方向から傾く現象を利用する。液晶分子が層法線方向から傾く角度を、傾き角(チルト角)と呼び、スメクチック液晶を液晶素子として用いる場合に特徴的な物性となり、液晶素子として適したチルト角を得ることが望ましいが、前記引用文献には、このチルト角に与える影響についての開示はない。
一方、高分子安定化ねじれネマチック液晶をTFT液晶表示素子に適用した例として、TFT液晶表示素子において光硬化性液晶性モノマーを少量添加して重合させることにより、形成された高分子の作用で配向を安定化する技術が開示されている(特許文献1参照)。しかしながら、当該引用文献においては、立下り時の液晶の応答速度の改善はされているものの、前述の駆動電圧の問題については解決されておらず、また、光硬化性液晶モノマーの添加が前述のチルト角に与える影響についての開示もない。
高分子安定化液晶表示素子においてねじれネマチック液晶表示モード以外には、OCB(Optically compensated birefringence)モードへ応用した技術が提案されている(非特許文献2参照)。当該引用文献には、液晶分子を光反応性モノマー中に分散させ、外部電界印加により所望のベンド配列構造を得たのち、光照射により前記ベンド配列を固定化する技術が開示されている。OCBモードは表示装置を立ち上げる際に高い電圧を印加して初期状態で液晶分子がスプレイ配列しているが、これをベンド配列へ変える配向転移操作が必要になるで、予め、ベンド配向を高分子により固定化することにより、このベンド配列への配向転移操作が不要な表示立ち上げと同時にOCBモードによる表示が可能にしてOCBモードの欠点を解消している。
また、1枚の基板上に液晶分子を高分子液晶マトリックス中に固定化してハイブリッド配向を固定化させ、該基板上のホモジニアス配向部分が接するよう二枚の基板を張り合わせてOCBモードのベント配向を作り液晶表示素子に用いる技術が開示されている(特許文献2参照)。この場合は、電圧を印加せずベント配向を作ることが特徴である。
しかしながら、これらの引用文献開示の発明においても前述の駆動電圧の問題については解決されておらず、また、光硬化性液晶モノマーの添加が前述のチルト角に与える影響についての開示もない。
高分子安定強誘電性液晶(高分子安定FLC)に関しては、FLC材料と共にモノマーを使用し、電界を印加し一方の方向に液晶分子を揃えながら紫外線を照射することにより高分子安定化を図る技術が提案されている(非特許文献3及び4参照)。
又、強誘電性液晶と単官能液晶性(メタ)アクリレートモノマーを含有する液晶組成物を液晶セル中に注入した後、該組成物が所定の液晶相を示す温度において紫外線を照射し、単官能液晶性(メタ)アクリレートモノマーを高分子化させることによって得られる高分子安定化強誘電性液晶表示素子が開示されている(特許文献3、4及び5参照)。液晶分子の配向を高分子安定化することにより新規の機能を付与することができ、上述のOCBモード、及び強誘電性液晶に単官能液晶性(メタ)アクリレートを用いた素子は、良好なベント配向を得たり、良好な中間調表示が可能であるという特徴を有するものの、単官能液晶性(メタ)アクリレートモノマーの重合により得られた高分子の耐熱性が良好でなく、結果として高温での信頼性が良好でないという問題があった。さらに、強誘電性液晶に単官能液晶性(メタ)アクリレートを用いた素子では駆動電圧が高いという問題点があった。また、スメクチックA相で紫外線露光して高分子安定化を行いスメクチックC相へ除冷して相転移させると印加電圧に比例した中間調表示が可能になりうることが開示されているが駆動電圧が高いという問題があった。(特許文献3参照)。このように、これらの引用文献開示の発明においても前述の駆動電圧の問題については解決されておらず、また、光硬化性液晶モノマーの添加が前述のチルト角に与える影響についての開示もなかった。
単官能液晶性(メタ)アクリレートモノマーより耐熱性に優れた高分子を与える多官能液晶性モノマーを用いた高分子安定化強誘電性液晶表示素子が示されている(特許文献6参照)。しかしながら、多官能液晶性モノマーは、液晶性を示す温度が80℃以上と高いものが多く、高分子安定化液晶素子作成の紫外線を照射する前段階において温度を高くする必要性が生じ、その結果、望ましくない熱重合が誘起され、液晶配向の均一性が劣化してしまうという問題があった。
また、液晶が60〜95重量%で残りが網目状の高分子であるため高分子分散型液晶に見られる光散乱が起こる。この散乱が偏光を用いた表示素子のコントラストを低くする原因になる。そのため、コントラスト向上に他の手段が必要となる欠点があった。
更に、単官能液晶性(メタ)アクリレートに比べて多官能液晶性(メタ)アクリレートは、メソゲン基の熱の揺らぎが抑えられて高分子安定化の信頼性は高くなるものの低分子液晶との相互作用が高くなり駆動電圧が高くなる問題も有していた。
特開2005−10202号公報 特開2003−248226号公報 特開平9−211462号公報 特開平9−211463号公報 特開平11−21554号公報 特開平6−194635号公報 日本学術振興会 情報科学用有機材料第142委員会 A部会(液晶材料)第91回研究会資料(28頁から30頁) 電子情報通信学会技術研究報告、Vol.95、(EID95−17)、pp.43−48、1995 古江(H.Furue),ジャパン・ジャーナル・オブ・アプライド・フィジックス(Jpn. J. Appl. Phys.),36,L1517 (1997) 古江(H.Furue),ジャパン・ジャーナル・オブ・アプライド・フィジックス(Jpn. J. Appl. Phys.),37,3417 (1998)
本発明の課題は、中間調の表示を可能とするスメクチック液晶を用いた高分子安定液晶表示素子において、TFT(薄膜トランジスター)駆動が可能レベルに駆動電圧を低減して、更には駆動電圧の温度変化を抑制してTFT駆動による安定した表示が得られ、表示に適した大きさのチルト角を得ることが可能な高分子安定液晶組成物及びこれを用いて製造した高分子安定液晶表示素子を提供することにある。
スメクチック液晶を用いた高分子安定液晶表示素子用組成物において、液晶分子に高分子安定化の効果を強く与えるためには、高分子前駆体としてメソゲン構造を有する液晶性アクリレートのような液晶性高分前駆体を用いればよい。これは、液晶性アクリレートがメソゲン構造を持つために、周囲の低分子液晶のメソゲン構造と強いアンカリング力を持つことができ、そのため、高分子安定化した状態の熱的、力学的な安定性が向上するわけである。しかしながら、一方で、アンカリング力が強くなるために駆動電圧が増大しアモルファスシリコン−TFTやポリシリコンTFTで駆動が困難となる問題があった。また、アンカリング力が強くなることにより、スメクチック層内で液晶分子が傾きにくくなり、チルト角が小さくなるという欠点があった。
高分子安定化状態の安定性を向上するためには、二官能液晶性アクリレート等を用いて架橋高分子を用いればよい。二官能液晶性アクリレートの使用により、メソゲン基が高分子主鎖に配置され該メソゲン基の両端が架橋により固定化されているため熱の揺らぎの影響が少なく低分子液晶の配向安定化の信頼性が向上する。しかし、その反面、熱の揺らぎが小さくなるため低分子液晶との相互作用が増大する、その結果低分子液晶の配向を固定化した際に起こる低分子液晶/高分子界面でのアンカリング力がさらに高くなり、益々駆動電圧が増大するという弊害が生じる。さらに、スメクチック層内で液晶分子が益々傾きにくくなり、チルト角が小さくなるという欠点があった。
高分子安定化の信頼性を上げるのには、高分子鎖の架橋密度を高くしてガラス転移温度等を高くする方法があるが、同時に低分子液晶と該高分子とのアンカーリング力が増加して駆動電圧増加、及び、チルト角の減少を引き起こす。また、網目状高分子鎖の体積割合を増加すると該高分子鎖の熱的、機械的安定性は向上するが該高分子鎖の屈折率が表示素子中に低分子液晶の屈折率分布へ影響を強く及ぼすようになり低分子液晶との屈折率差から光散乱を起こして表示のコントラストを低下させていた。
このように液晶性高分子前駆体を用いると、高分子安定化状態は安定化するが、同時にアンカーリング力が増大し、好ましくない駆動電圧の増加や、チルト角の減少を引き起こす。しかしながら、本願発明者らは、種々の重合性液晶化合物と液晶化合物の組成を検討した結果、液晶性高分子前駆体と非液晶性高分子前駆体の両方を同時に使用することを検討することにより、駆動電圧の増加、チルト角の減少を防ぎ、更には、駆動電圧の温度依存性を抑制することを見出し、本願発明の完成に至った。
本願は、一般式(I−a)
Figure 0004360444
(式(I−a)中、Aは水素原子又はメチル基を表し、
は単結合又は炭素原子数1から15のアルキレン基(該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキレン基中に存在する1個又は2個以上の水素原子はそれぞれ独立にフッ素原子、メチル基又はエチル基で置換されていても良い。)を表し、
及びAはそれぞれ独立して水素原子又は炭素原子数1から18のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキル基中に存在する1個又は2個以上の水素原子はそれぞれ独立にハロゲン原子又は炭素原子数1から17のアルキル基で置換されていても良い。)を表し、
及びAはそれぞれ独立して水素原子又は炭素原子数1から10のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキル基中に存在する1個又は2個以上の水素原子はそれぞれ独立にハロゲン原子又は炭素原子数1から9のアルキル基で置換されていても良い。)を表し、
kは1から40を表し、
、B及びBは、それぞれ独立して水素原子、炭素原子数1から10の直鎖もしくは分岐のアルキル基(該アルキル基中に存在する1個もしくは2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い)、又は一般式(I−b)
Figure 0004360444
(式(I−b)中、Aは水素原子又はメチル基を表し、
は単結合又は炭素原子数1から15のアルキレン基(該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキレン基中に存在する1個又は2個以上の水素原子はそれぞれ独立にフッ素原子、メチル基又はエチル基で置換されていても良い。)で表される基を表す。ただし、2k+1個あるB、B及びBのうち前記一般式(I−b)で表される基となるものの個数は0〜3個である。)
で表される重合性化合物であって、該重合性化合物の重合物のガラス転移温度が−100℃から25℃である重合性化合物(I)と、
一般式(II−a)又は(II−b)
Figure 0004360444
(式(II−a)及び(II−b)中、R及びRはそれぞれ独立して炭素原子数1から10のアルキル基又は炭素原子数2から10のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子で置換されていても良い。)を表し、
は1,4−フェニレン基、1,4−シクロへキシレン基又は1,3−ジオキサン−2,5−ジイル基(これらの基のうち1,4−フェニレン基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
及びCはそれぞれ独立して1,4−フェニレン基、1,4−シクロへキシレン基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ピリダジン−3,6−ジイル基、1,3−ジオキサン−2,5−ジイル基、シクロヘキセン−1,4−ジイル基、デカヒドロナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基、1,3,4−チアジアゾール−2,5−ジイル又はインダン−2,5−ジイル基(これらの基のうち1,4−フェニレン基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基及びインダン−2,5−ジイル基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
及びZはそれぞれ独立して、単結合、−CHCH−、−CHO−、−OCH−、−CHCHO−、−OCHCH−、−CHCHCHO−、−OCHCHCH−、−CH=CH−、−C≡C−、−CFO−、−OCF−、−COO−又は−OCO−を表し、
はフッ素原子、塩素原子、トリフルオロメチル基、トリフルオロメトキシ基、ジフルオロメチル基、イソシアネート基、シアノ基を表し、
は、0、1又は2を表す。ただし、nが2を表す場合、複数あるC及びZは同じであっても異なっていても良い。)
で表される化合物(II)と、
一般式(III−a)
Figure 0004360444
(式(III−a)中、R及びRはそれぞれ独立して水素原子又はメチル基を表し、
及びCはそれぞれ独立して1,4−フェニレン基、1,4−シクロへキシレン基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ピリダジン−3,6−ジイル基、1,3−ジオキサン−2,5−ジイル基、シクロヘキセン−1,4−ジイル基、デカヒドロナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基又はインダン−2,5−ジイル基(これらの基のうち1,4−フェニレン基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基及びインダン−2,5−ジイル基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
及びZはそれぞれ独立して単結合又は炭素原子数1から15のアルキレン基(該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキレン基中に存在する1個又は2個以上の水素原子はそれぞれ独立にフッ素原子、メチル基又はエチル基で置換されていても良い。)を表し、
は、単結合、−CHCH−、−CHO−、−OCH−、−CHCHO−、−OCHCH−、−CHCHCHO−、−OCHCHCH−、−CHCHOCO−、−COOCHCH−、−CHCHCOO−、−OCOCHCH−、−CH=CH−、−C≡C−、−CFO−、−OCF−、−COO−又は−OCO−を表し、
は、0、1又は2を表す。ただし、nが2を表す場合、複数あるC及びZは同じであっても異なっていても良い。)、
一般式(III−b)
Figure 0004360444
(式(III−b)中、R及びRはそれぞれ独立して水素原子又はメチル基を表し、Cは1,4−フェニレン基、1,4−シクロへキシレン基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ピリダジン−3,6−ジイル基、1,3−ジオキサン−2,5−ジイル基、シクロヘキセン−1,4−ジイル基、デカヒドロナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基又はインダン−2,5−ジイル基(これらの基のうち1,4−フェニレン基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基及びインダン−2,5−ジイル基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
及びCはそれぞれ独立してベンゼン−1,2,4−トリイル基、ベンゼン−1,3,4−トリイル基、ベンゼン−1,3,5−トリイル基、シクロヘキサン−1,2,4−トリイル基、シクロヘキサン−1,3,4−トリイル基又はシクロヘキサン−1,3,5−トリイル基を表し、Z及びZはそれぞれ独立して単結合又は炭素原子数1から15のアルキレン基(該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキレン基中に存在する1個又は2個以上の水素原子はそれぞれ独立にフッ素原子、メチル基又はエチル基で置換されていても良い。)を表し、
及びZそれぞれ独立して単結合、−CHCH−、−CHO−、−OCH−、−CHCHO−、−OCHCH−、−CHCHCHO−、−OCHCHCH−、−CHCHOCO−、−COOCHCH−、−CHCHCOO−、−OCOCHCH−、−CH=CH−、−C≡C−、−CFO−、−OCF−、−COO−又は−OCO−を表し、
は、0、1又は2を表すが、nが2を表す場合、複数あるC及びZは同じであっても異なっていても良く、n及びnはそれぞれ独立して1、2及び3を表す。)
及び一般式(III−c)
Figure 0004360444
(式(III−c)中、Rは水素原子又はメチル基を表わし、
6員環T、T及びTはそれぞれ独立的に、
Figure 0004360444
のいずれか(ただしmは1から4の整数を表す。)を表し、
は0又は1の整数を表し、
及びYはそれぞれ独立して単結合、−CHCH−、−CHO−、−OCH−、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH−、−CHCHCHO−、−OCHCHCH−、−CH=CHCHCH−又は−CHCHCH=CH−を表し、
は単結合、−COO−、又は−OCO−を表し、
は炭素原子数1から18の炭化水素基を表す。)からなる群より選ばれる少なくとも1種の重合性化合物(III)と、
一般式(IV−a)又は(IV−b)
Figure 0004360444
(式(IV−a)及び(IV−b)中、Rは炭素原子数1から10のアルキル基又は炭素原子数2から10のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子で置換されていても良い。)を表し、
及びCはそれぞれ独立して1,4−フェニレン基、1,4−シクロへキシレン基、ピリミジン−2,5−ジイル基(これらの基のうち1,4−フェニレン基又は1,4−シクロへキシレン基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、シアノ基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
は単結合、−CHCH−、−C≡C−、−CFO−、−COO−又は−OCO−を表し、
及びYはそれぞれ独立して単結合、酸素原子、炭素数1〜14のアルキレン基、−OCH−、−COO−、−OCO−、−OCHCH−又は−OCOCH−を表し、
は、0、1又は2を表す。ただし、nが2を表す場合、複数あるC及びZは同じであっても異なっていても良い。
及びXはそれぞれ独立して、一般式(IV−c)から(IV−h)
Figure 0004360444
のいずれかの式で表される基を表す。ただし、
式(IV−c)から(IV−h)中、*は炭素原子が不斉炭素原子であることを表し、
、R、R、R及びRはそれぞれ独立して炭素原子数2から20のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)を表し、
、X及びYはそれぞれ独立してフッ素原子、塩素原子、メチル基又はシアノ基を表し、
及びYはそれぞれ独立して水素原子、フッ素原子、塩素原子、メチル基又はシアノ基を表し、
及びYはそれぞれ独立してフッ素原子、塩素原子、メチル基又はシアノ基を表し、
は単結合又はメチレン基を表し、
は酸素原子又は−OC(Re1)(Re2)O−で表される基(ただし、Re1及びRe2はそれぞれ独立して水素原子又は炭素原子数1から10のアルキル基を表す。)を表し、
はカルボニル基又は−CH(Rf1)−で表される基(ただし、Rf1は水素原子又は炭素原子数1から10のアルキル基を表す。)を表し、
は−OCO−、−COO−、−CHO−又は−OCH−を表す。)
で表されるカイラル化合物(IV)と、
を含有することを特徴とする高分子安定化液晶組成物を提供する。
本願発明の高分子安定化液晶組成物を構成部材とする高分子安定化強誘電性液晶表示素子は駆動電圧が低く、駆動電圧の温度変化を抑制して低温(-10℃)〜高温(60℃)の温度範囲でTFT駆動による安定した表示を得ることができ、強誘電性液晶単体の表示素子では不可能な中間調の表示を可能にして、熱的及び力学的安定性に優れる特徴を有する。更には、又、TFT駆動も可能であることから、プラスチック液晶セル等の構成部材として有用である。
以下に本発明の一例について説明する。本発明の高分子安定化液晶表示素子用組成物は、その中に含まれるラジカル重合性化合物が熱、又は紫外線等の活性エネルギー線により重合し、それに伴い液晶組成物と相分離、又は液晶組成物中に分散した状態を引き起こし、透明性高分子物質と液晶組成物からなる高分子安定化液晶表示素子を得るのに使用される。この素子は、一対の電極層を有する基板間に配向制御膜と液晶層とを有する液晶素子において、液晶層が少なくとも液晶性高分子前駆体と非液晶性高分子前駆体を含有する光硬化性組成物の光硬化物及び強誘電性液晶材料を含有しており、且つ一対の電極層間に電圧を印加していない状態における液晶性高分子前駆体のメソゲン基の配向方向と、又は、非液晶高分子前駆体の高分子主鎖の長軸方向と、強誘電性液晶材料の配向方向が配向制御膜の配向方向に揃い一軸配向になるように高分子安定化させた液晶表示素子であって、液晶層中に液晶性高分子前駆体と非液晶性高分子前駆体を含有する光硬化性組成物の光硬化物を分散させて含有させ、液晶性骨格を有する高分子鎖による強誘電性液晶材料の配向安定化効果により、電圧を印加していない状態では、液晶性高分子前駆体の液晶骨格の長軸や非液晶性高分子前駆体主鎖の長軸方向と強誘電性液晶材料の配向方向のなす方向が一様な方向の配向状態を実現させたものであり、電圧を印加すると強誘電性液晶の自発分極により強誘電性液晶材料の配向方向が液晶性高分子前駆体の液晶骨格の配向方向ではなくなり、電圧の変化によって 強誘電性液晶材料の配向方向と液晶性高分子前駆体の液晶骨格の配向方向のなす角度が連続的に変化する性質が付与されたものである。例えば、二枚の偏光板の間に該素子を配置して、印加する電圧を変化させることにより透過光量を連続的に制御することができ、強誘電性液晶単体の素子で行われる面積階調等の特別な手段を用いることなく印加電圧に比例した中間調の表示を可能にしたものである。上述の一軸配向は、一軸配向が得られるようにラビング配向処理したポリイミド等の高分子配向膜を用いる方法、光配向膜による方法、電界や磁場等の外場により方法、配向膜と前記外場を併用した方法等によりメソゲン基や高分子主鎖の長軸を揃えて配向させた状態に紫外線を露光して高分子安定化させることにより得られる。
このようにして形成された高分子安定化液晶表示素子は、前記組成物に添加され高分子前駆体の含有量に比例して駆動電圧、及び光散乱が上昇する。該前駆体の含有量が微量である場合、駆動電圧の上昇度合いは低減されるが、熱的や機械的安定性に乏しい。信頼性を高くするためには、前駆体の含有量を増やす必要があり、この時に駆動電圧の増加や液晶配向性の低下、及び散乱性の発現が問題になる。駆動電圧の増加は、例えば高分子分散型液晶表示素子の駆動電圧に関する記述として、特開平6−222320号公報において次式の関係が示されている。高分子安定化液晶素子の駆動電圧に対する考え方は、高分子分散型液晶表示素子と同様で、次の通りになる。
Figure 0004360444
(Vthはしきい値電圧を表わし、Kii及びKiiは弾性定数を表わし、iは1、2又は3を表わし、Δεは誘電率異方性を表わし、<r>は透明性高分子物質界面の平均空隙間隔を表わし、Aは液晶組成物に対する透明性高分子物質のアンカリングエネルギーを表わし、dは透明性電極を有する基板間の距離を表わす。)
これによると、高分子安定化液晶表示素子の駆動電圧は、透明性高分子物質界面の平均空隙間隔、基板間の距離、液晶組成物の弾性定数・誘電率異方性、及び液晶組成物と透明性高分子物質間のアンカリングエネルギーによって決定される。このうち、一般の液晶表示素子では駆動電圧はセル厚、該誘電率異方性、及び該弾性定数で決まるが、高分子分散液晶と同様に高分子安定化液晶表示素子において特有の要因である。それは、液晶組成物と透明性高分子物質間のアンカリングエネルギーである。そのため、高分子安定化液晶表示素子においてもポリマーと液晶との界面の面積が増加するとともに系のアンカリングエネルギーが増して駆動電圧が上がる。言い換えると、本発明の組成物中に液晶性高分子前駆体の含有量が増加すると駆動電圧が上がることを意味している。駆動電圧の上昇を低減し、低い駆動電圧を維持させるためには、高分子安定化液晶を構成する高分子のアンカリングエネルギーを低くすれば良いことになる。例えば、重合性高分子前駆体の効果は、低分子液晶の一軸配向を高分子安定化させることにある。一方、非液晶性高分子前駆体は、該非液晶性高分子が低分子液晶に対してアンカーリング力が弱いものを用いることにより重合性高分子による駆動電圧増加を低減させる役割を果たす。前記組成物に用いる重合性液晶高分子前駆体と非液晶性高分子前駆体を併用して組成を調整することで高分子安定化の信頼性を維持したまま課題である駆動電圧を下げることができる。
非液晶性高分子前駆体の該エネルギーを低くするには、アルキル側鎖を有する二官能モノマーを用いれば良い。特に、アルキル側鎖の炭素原子数が5から15が良く、更に、該炭素原子数が8から13がより好ましい。アルキル側鎖が短い場合は、アンカリングエネルギーが高くなり、長すぎると、側鎖の影響が強くなりアンカリングエネルギーが高くなる。又、低分子液晶に類似したベンゼン環等を有するメソゲン基を側鎖にすると低分子液晶との親和性が高くなりアンカリングエネルギーが増加して好ましくない。更に、アルキル側鎖間の距離も重要で、炭素原子数の距離に換算して6〜18が良い。使用する液晶組成に依存するがアルキル側鎖間が狭いと低分子液晶が高分子界面で垂直配向してしまい好ましくない。
アンカリングエネルギーは、側鎖が低分子液晶に及ぼす分子間相互作用と、主鎖が低分子液晶に及ぼす分子間相互作用とのバランスで決まり、両者の力が均等になるときにアンカリングエネルギーが最小になる。更に、高分子の架橋間距離は、高分子主鎖の熱運動性に影響を及ぼし、架橋間距離が短く熱運動性が低いと低分子液晶に対する分子相互作用が強く働きアンカリングエネルギーが高まる。架橋間距離が長くなると高分子主鎖の熱運動性が増して主鎖の熱による揺らぎが大きくなり分子間相互作用の力より揺らぎの力が大きくなると分子間相互作用を打ち消すように作用するためアンカリングエネルギーが小さくなる。しかし、架橋間距離が長くなると高分子前駆体の重合速度が遅くなり、液晶との相溶性が下がり好ましくなくなる。高分子主鎖の熱運動性を表す指標としては高分子ガラス転移温度が一般に用いられる。
本発明では、アンカリングを低くする目的で該ガラス転移温度が室温以下になる高分子前駆体を用いることが好ましく、更には、ガラス転移温度が0〜−100℃であることがより好ましい。他に、ガラス転移温度を低くする意味では、機械的安定性を向上させるためにガラス転移温度を低くすることが好ましい。ガラス転移温度が室温以上であると素子外部からの変形などにより高分子で液晶の配向を安定化させる高分子網目構造が変形したり破損したりして高分子配向安定化の作用が落ちてしまう。ガラス転移温度が低いと該網目構造が変形しても網目の弾力性で元の状態に戻り固定化された配向が保持される。即ち、本発明に使用する液晶組成と高分子前駆体の主鎖長と側鎖長を調整して、かつガラス転移温度が室温以下である高分子前駆体を使用することで駆動電圧が低く、信頼性の高い高分子安定化液晶素子が得られる。しかし、高分子安定化液晶では液晶表示素子作製時の初期配向を安定化させることも重要な課題である。
光散乱は、該平均空隙間隔が可視光の波長領域の範囲に入ると見られるようになり約500nm付近から1500nm付近で散乱が最も強くなる。高分子安定化液晶の場合は、網目状高分子の網目の大きさを上述の範囲から避けるように液晶中に形成させることが重要になる。500nm以下にするには、スピノーダル分解による相分離過程を利用する方法、UV重合速度を速くして作製する方法(UV重合プロセスによる方法や高分子前駆体組成の調整による方法)、低分子液晶と相溶した状態で相分離が殆ど起こらせないで重合させる方法等が挙げられ、これらの手法を有効に用いて光散乱が起こらない微細な網目状高分子を形成させることが好ましい。高分子前駆体が、低分子液晶に相溶している場合は低分子液晶中に分散した状態で網目状高分子を形成させることが可能で分子レベルの微細な構造を得られることができより好ましい。しかしながら、本発明の高分子前駆体を液晶相中で重合させると重合ミクロ相分離が極小的に起こる場合は、配向のオーダーは高くはないが液晶分子ダイレクターに沿うように網目状の高分子が形成されることが電子顕微鏡等で観察される。これは、前駆体主鎖が液晶に接すると液晶分子ダイレクター方向へ該前駆体主鎖が揃う傾向があり、該前駆体の高分子化により液晶の配向が固定化される。しかし、該前駆体の濃度が高くなると重合ミクロ相分離で起こるスピノダル分解やバイノーダル分解による相分離構造が液晶の配向を無視して形成されるため目的の液晶の配向を固定化させることはできなくなる。上述の方法は低分子液晶の配向を乱す恐れがある場合があり、この場合は、所望の安定化させる配向が得られるように電界、配向膜の配向規制力、磁場外場などを活用して目的の高分子安定化液晶素子が得られるように前記外場を調整して作製することもできる。更には、重合性液晶高分子前駆体と非液晶性高分子前駆体による共重合体でメソゲン基の自己組織化の性質や水素結合基等を基にした自己組織化を応用して規則性のある周期構造を形成させても良い。所望の特性を得るのに必要であれば微粒子状の高分子を低分子液晶中に分散させた構造であっても良い。
このように、液晶高分子前駆体と非液晶高分子前駆体で構成される高分子安定化液晶組成物を用いることで駆動電圧を低く、中間調表示が可能で、且つ高分子安定化の信頼性が高く、更に、光散乱が無く、チルト角が大きく高コントラストな液晶表示素子を得ることができる。
液晶が配向膜等で配向させた状態を配向欠陥無く固定化させるためには、少なくとも、ネマチック相から除冷してスメチック相へ相転移させることが好ましく、用いる液晶セルの基板面が平坦であることがより好ましい。また、ネマチック相やスメクチック相等の液晶相中で該高分子前駆体を網目状、又は分散した状態に重合させる必要がある。更に、該相分離構造形成を避けるためには、高分子前駆体の含有量を少なくして、液晶が配向している状態で液晶分子間に網目状高分子が形成できるよう該高分子前駆体含有量や該前駆体の組成を調整することが好ましく、さらに、光重合の場合は、UV露光時間、UV露光強度、及び温度を調整して網目状の高分子を形成させて液晶配向欠陥が無いようにすることが好ましい。また、組成物中の高分子前駆体を重合させる際に、所望の液晶配向を得るためには、垂直配向、パラレル配向やアンチパラレル配向のラビング配向処理や光配向処理を施した配向膜を有する液晶セルを用いたり、上下基板が垂直配向膜、又は垂直配向膜と平行配向との組み合わせた液晶セル等を用いたりすることができる。さらには、光、熱、電圧、磁場等の外場を印加して得られる捩れ配向、ベント配向やスプレイ配向、平行配向等や、配向膜単独だけでは得ることが難しい液晶配向状態を作り、該前駆体の高分子化により、それらの配向状態を固定化させて目的の高分子安定化液晶表示素子を得ることができる。例えば、スメクチック相では外場によりダイレクターを一定方向へ揃えた配向状態を高分子安定化させたり、スイッチングさせて過度的な配向状態を高分子化により固定化させ所望の高分子安定化液晶表示素子を得ることもできる。
本発明に用いる高分子前駆体は、上述のような高分子前駆体としてより改善効果が大きい化合物の探索を行った結果、到達したものである。
本発明の高分子安定化液晶組成物は、一般式(I−a)で表される重合性化合物(I)
と、一般式(II−a)又は(II−b)で表される低分子液晶化合物(II)と、一般式(III−a)、(III−b)及び(III−c)からなる群より選ばれる少なくとも1種の重合性液晶化合物(III)と、一般式(IV−a)又は(IV−b)で表されるカイラル化合物(IV)をそれぞれ少なくとも一種含有するものである。
重合性化合物(I)は、一般式(I−a)で表されるものの中で複数、主鎖長やアルキル側鎖長の異なるものを含有させても良い。更に、必要に応じて、重合性液晶化合物を併用しても良い。重合性液晶化合物を用いると低分子液晶の配向性を高めることができるが、低分子液晶との親和性が高く駆動電圧が増加し易くなるため5%以下が好ましい。さらに、重合性液晶化合物(III)の併用により配向性を高めて、かつ一般式(I−a)で表される重合性化合物(I)による低アンカリングエネルギーの作用と低ガラス転移温度の効果で駆動電圧が低くて機械的強度が高い高分子安定化液晶表示素子を得ることができる。
液晶セルの2枚の基板はガラス、プラスチックの如き柔軟性をもつ透明な材料を用いることができ、一方はシリコン等の不透明な材料でも良い。透明電極層を有する透明基板は、例えば、ガラス板等の透明基板上にインジウムスズオキシド(ITO)をスパッタリングすることにより得ることができる。
カラーフィルターは、例えば、顔料分散法、印刷法、電着法、又は、染色法等によって作成することができる。顔料分散法によるカラーフィルターの作成方法を一例に説明すると、カラーフィルター用の硬化性着色組成物を、該透明基板上に塗布し、パターニング処理を施し、そして加熱又は光照射により硬化させる。この工程を、赤、緑、青の3色についてそれぞれ行うことで、カラーフィルター用の画素部を作成することができる。その他、該基板上に、TFT、薄膜ダイオード、金属絶縁体金属比抵抗素子等の能動素子を設けた画素電極を設置してもよい。
前記基板を、透明電極層が内側となるように対向させる。その際、スペーサーを介して、基板の間隔を調整してもよい。このときは、得られる調光層の厚さが1〜100μmとなるように調整するのが好ましい。1.5から10μmが更に好ましく、偏光板を使用する場合は、コントラストが最大になるように液晶の屈折率異方性Δnとセル厚dとの積を調整することが好ましい。又、二枚の偏光板がある場合は、各偏光板の偏光軸を調整して視野角やコントラトが良好になるように調整することもできる。更に、視野角を広げるための位相差フィルムも使用することもできる。スペーサーとしては、例えば、ガラス粒子、プラスチック粒子、アルミナ粒子、フォトレジスト材料等が挙げられる。その後、エポキシ系熱硬化性組成物等のシール剤を、液晶注入口を設けた形で該基板にスクリーン印刷し、該基板同士を貼り合わせ、加熱しシール剤を熱硬化させる。
2枚の基板間に高分子安定化液晶組成物を狭持させるに方法は、通常の真空注入法、又はODF法などを用いることができる。この時、高分子安定化液晶組成物は、各種液晶化合物と本発明の高分子前駆体が相溶していれば良く、均一なアイソトロピック状態か、又はネマチック相であることが好ましい。スメクチック相では、素子作製時の取り扱い方が難しくなる。
ラジカル重合性化合物を重合させる方法としては、紫外線照射が好適である。紫外線を発生させるランプとしては、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプ等を用いることができる。また、照射する紫外線の波長としては、高分子分散型液晶表示素子用組成物に含有されている光重合開始剤の吸収波長領域であり、且つ含有されている液晶組成物の吸収波長域でない波長領域の紫外線を照射することが好ましく、具体的には、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプを使用して330nm以下の紫外線をカットして使用することが好ましく、350nm以下の紫外線をカットして使用することがより好ましい。
照射する紫外線の強度は、目的とする調光層を得るため適宜調整することができるが、使用する高分子前駆体の反応性に依存するが10から10000mJ/cmが好ましく、50から5000mJ/cmがより好ましい。紫外線を照射する時間は照射する紫外線強度により適宜選択されるが、10から600秒が好ましい。
また、紫外線照射の時の温度は、所望の液晶初期配向を調光層の特性を決めて安定化させるのに重要な要素となる。等方相状態を固定化させる場合は、高分子安定化液晶表示素子用組成物のアイソトロピック−ネマチック転移点よりわずかに高い温度が好ましく、具体的には転移点+0.1から10℃が好ましく、転移点+0.1℃から3℃がより好ましい。また、ネマチック相やスメクチック相、コレステリック相を示す温度にして素子を作製することができる。
高分子安定化させる液晶の配向状態としては、スメクチック相やネマチック相で見られるベンド配向、捩れ配向、及びスプレイ配向等やそれらを複数組み合わせたマルチドメイン、及び一軸配向を持つモノドメインを複数方向に配置したマルチドメイン等、必要な配向状態が挙げられる。これらの配向状態は、温度を変えたり、外部電場を印加して電圧を変化させたり、基板界面に存在するポリイミド配向膜や光配向膜等の配向処理方向を一方向や複数方向に処理して液晶を配向させて、液晶の配向を様々な方法で目的の配向状態を作り、紫外線露光して高分子安定化させることが好ましい。
本発明の高分子安定化液晶表示素子は、本発明の高分子安定化液晶組成物を重合させ、液晶相中に高分子鎖を形成させることにより低分子液晶の配向状態を安定化したものである。このような高分子安定化液晶表示素子は、高分子安定化液晶組成物に外部電場を加え、又は重合性液晶の配向を配向膜により制御することで、所望の配向状態を維持させながら紫外線露光して重合させることによって得ることができる。
本発明の高分子安定化液晶組成物に使用する化合物の具体的な一例を以下に示す。
<重合性化合物(I)>
本発明の高分子安定化液晶組成物に用いられる重合性化合物(I)は、下記一般式(I−a)
Figure 0004360444
(式(I−a)中、Aは水素原子又はメチル基を表し、
は単結合又は炭素原子数1から15のアルキレン基(該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキレン基中に存在する1個又は2個以上の水素原子はそれぞれ独立にフッ素原子、メチル基又はエチル基で置換されていても良い。)を表し、
及びAはそれぞれ独立して水素原子又は炭素原子数1から18のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキル基中に存在する1個又は2個以上の水素原子はそれぞれ独立にハロゲン原子又は炭素原子数1から17のアルキル基で置換されていても良い。)を表し、
及びAはそれぞれ独立して水素原子又は炭素原子数1から10のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキル基中に存在する1個又は2個以上の水素原子はそれぞれ独立にハロゲン原子又は炭素原子数1から9のアルキル基で置換されていても良い。)を表し、
kは1から40を表し、
、B及びBは、それぞれ独立して水素原子、炭素原子数1から10の直鎖もしくは分岐のアルキル基(該アルキル基中に存在する1個もしくは2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い)、又は一般式(I−b)
Figure 0004360444
(式(I−b)中、Aは水素原子又はメチル基を表し、
は単結合又は炭素原子数1から15のアルキレン基(該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキレン基中に存在する1個又は2個以上の水素原子はそれぞれ独立にフッ素原子、メチル基又はエチル基で置換されていても良い。)で表される基を表す。ただし、2k+1個あるB、B及びBのうち前記一般式(I−b)で表される基となるものの個数は0〜3個である。)
で表される重合性化合物であって、該重合性化合物の重合物のガラス転移温度が−100℃から25℃である重合性化合物(I)である。
なお、本願発明において、「アルキレン基」とは、特に断りのない場合、脂肪族直鎖炭化水素の両端の炭素原子から水素原子各1個を除いた二価の基「−(CH−」(ただしnは1以上の整数)を意味するものとし、その水素原子からハロゲン原子もしくはアルキル基への置換、又はメチレン基から酸素原子、−CO−、−COO−もしくは−OCO−への置換がある場合は、その旨を特に断るものとする。また、「アルキレン鎖長」とは、「アルキレン基」の一般式「−(CH−」におけるnをいうものとする。
一般式(I−a)で表される重合性化合物(I)の好ましい構造として、下記一般式(I−c)
Figure 0004360444
(式(I−c)中、A11及びA19はそれぞれ独立して水素原子又はメチル基を表し、
12及びA18はそれぞれ独立して単結合又は炭素原子数1から15のアルキレン基(該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキレン基中に存在する1個又は2個以上の水素原子はそれぞれ独立にフッ素原子、メチル基又はエチル基で置換されていても良い。)を表し、
13及びA16はそれぞれ独立して炭素原子数2から20の直鎖アルキル基(該直鎖アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)を表し、
14及びA17はそれぞれ独立して水素原子又は炭素原子数1から10のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキル基中に存在する1個又は2個以上の水素原子はそれぞれ独立にハロゲン原子又は炭素原子数1から9のアルキル基で置換されていても良い。)を表し、
15は炭素原子数9から16のアルキレン基(該アルキレン基中に存在する少なくとも1個以上5個以下のメチレン基において、該メチレン基中の水素原子の一つはそれぞれ独立に炭素原子数1から10の直鎖又は分岐のアルキル基で置換されている。該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)を表す。)で表される化合物、一般式(I−d)
Figure 0004360444
(式(I−d)中、A21及びA22はそれぞれ独立して水素原子又はメチル基を表し、aは、6〜22の整数を表す。)で表される化合物、一般式(I−e)
Figure 0004360444
(式(I−e)中、A31及びA32はそれぞれ独立して水素原子又はメチル基を表し、b及びcはそれぞれ独立して1〜10の整数を表し、dは1〜10の整数を表し、
eは0〜6の整数を表す。)で表される化合物、及び一般式(I−f)
Figure 0004360444
(式(I−f)中、A41及びA42はそれぞれ独立して水素原子又はメチル基を表し、m,n,p及びqはそれぞれ独立して1〜10の整数を表す。)で表される化合物からなる群から選ばれる1種以上が挙げられる。これらの中でも、式(I−c)で表される化合物を含むことが好ましい。
一般式(I−c)で表される重合性化合物の好ましい構造として、A11及びA19はいずれも水素原子であることが好ましい。これらの置換基A11,A19がメチル基である化合物においても本願発明の効果は発現するが、水素原子である化合物は重合速度がより速くなる点で有利である。
12及びA18はそれぞれ独立して単結合又は炭素原子数1〜3のアルキレン基であることが好ましい。二つの重合性官能基間距離は、A12及びA18とA15とで独立的にそれぞれ炭素数の長さを変えて調整することができる。一般式(I−c)で表される化合物の特徴は、重合性官能基間の距離(架橋点間の距離)が長いことであるが、この距離があまりに長いと重合速度が極端に遅くなって相分離に悪い影響が出てくるため、重合性官能基間距離には上限がある。一方、A13及びA16の二つの側鎖間距離も主鎖の運動性に影響がある。すなわちA13及びA16の間の距離が短いと側鎖A13及びA16がお互いに干渉するようになり、運動性の低下をきたす。従って、一般式(I−c)で表される化合物において重合性官能基間距離はA12、A18、及びA15の和で決まるが、このうちA12とA18を長くするよりはA15を長くした方が好ましい。
一方、側鎖であるA13,A14,A16,A17においては、これらの側鎖の長さが次のような態様を有することが好ましい。
一般式(I−c)において、A13とA14は主鎖の同じ炭素原子に結合しているが、これらの長さが異なるとき、長いほうの側鎖をA13と呼ぶものとする(A13の長さとA14の長さが等しい場合は、いずれが一方をA13とする)。同様に、A16の長さとA17の長さが異なるとき、長いほうの側鎖をA16と呼ぶものとする(A16の長さとA17の長さが等しい場合は、いずれが一方をA16とする)。
このようなA13及びA16は、本願においてはそれぞれ独立して炭素原子数2から20の直鎖アルキル基(該直鎖アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)とされているが、
好ましくは、それぞれ独立して炭素原子数2から18の直鎖アルキル基(該直鎖アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)であり、
より好ましくは、それぞれ独立して炭素原子数3から15の直鎖アルキル基(該直鎖アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)である。
側鎖は主鎖に比べて運動性が高いので、これが存在することは低温での高分子鎖の運動性向上に寄与するが、前述したように二つの側鎖間で空間的な干渉が起こる状況では逆に運動性が低下する。このような側鎖間での空間的な干渉を防ぐためには側鎖間距離を長くすること、及び、側鎖長を必要な範囲内で短くすることが有効である。
さらにA14及びA17については、本願においてはそれぞれ独立に水素原子又は炭素原子数1から10のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキル基中に存在する1個又は2個以上の水素原子はそれぞれ独立にハロゲン原子又は炭素原子数1から9のアルキル基で置換されていても良い。)とされているが、
好ましくは、それぞれ独立に水素原子又は炭素原子数1から7のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)であり、
より好ましくは、それぞれ独立に水素原子又は炭素原子数1から5のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)であり、
さらに好ましくは、それぞれ独立に水素原子又は炭素原子数1から3のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)である。
このA14及びA17についても、その長さが長すぎることは側鎖間の空間的な干渉を誘起するため好ましくない。この一方でA14及びA17が短い長さを持ったアルキル鎖である場合、高い運動性を持った側鎖になり得ること、及び隣接する主鎖同士の接近を阻害する働きを有することが考えられ、高分子主鎖間の干渉を防ぐ作用がり主鎖の運動性を高めているものと考えられアンカリングエネルギーが低温で増加して行くことを抑制することができ高分子安定化液晶表示素子の低温域における表示特性を改善する上で有効である。
二つの側鎖間に位置するA15は、側鎖間距離を変える意味からも、架橋点間距離を広げてガラス転移温度を下げる意味からも、長い方が好ましい。しかしながらA15が長すぎる場合は一般式(I−c)で表される化合物の分子量が大きくなりすぎ液晶組成物との相溶性が低下してくること、及び重合速度が遅くなりすぎて相分離に悪影響が出ること等の理由から自ずとその長さには上限が設定される。
よって、本願発明においてA15は、炭素原子数9から16のアルキレン基(該アルキレン基中に存在する少なくとも1個以上5個以下のメチレン基において、該メチレン基中の水素原子の一つはそれぞれ独立に炭素原子数1から10の直鎖又は分岐のアルキル基で置換されている。該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)であることが好ましい。
すなわち、本願発明においてA15のアルキレン鎖長は炭素原子数9から16であることが好ましい。A15は構造上の特徴として、アルキレン基中の水素原子が炭素原子数1から10のアルキル基で置換された構造を有する。アルキル基の置換数は1個以上5個以下であるが、1個から3個が好ましく、2個又は3個置換されていることがより好ましい。置換するアルキル基の炭素原子数は、1個から5個が好ましく、1個から3個がより好ましい。
一般式(I−a)で表される化合物は、Tetrahedron Letters,Vol.30,pp4985、Tetrahedron Letters,Vol.23,No6,pp681−684、及び、Journal of Polymer Science:PartA:Polymer Chemistry,Vol.34,pp217−225等の公知の方法で合成することができる。
例えば、一般式(I−c)において、A14及びA17が水素である化合物は、エポキシ基を複数有する化合物と、エポキシ基と反応し得る活性水素を有するアクリル酸やメタクリル酸等の重合性化合物とを反応させ、水酸基を有する重合性化合物を合成し、次に、飽和脂肪酸と反応させることにより得ることができる。
更に、複数のエポキシ基を有する化合物と飽和脂肪酸とを反応させ、水酸基を有する化合物を合成し、次に水酸基と反応し得る基を有するアクリル酸塩化物等の重合性化合物とを反応させることにより得ることができる。
またラジカル重合性化合物が、例えば、一般式(I−c)のA14及びA17がアルキル基であり、A12及びA18が炭素原子数1であるメチレン基である場合は、オキセタン基を複数有する化合物と、オキセタン基と反応し得る脂肪酸塩化物や脂肪酸とを反応させ、更に、アクリル酸などの活性水素を有する重合性化合物とを反応させる方法や、オキセタン基を一つ有する化合物と、オキセタン基と反応し得る多価の脂肪酸塩化物や脂肪酸とを反応させ、更に、アクリル酸などの活性水素を有する重合性化合物とを反応させる方法等により得ることができる。
また、一般式(I−c)のA12及びA18が炭素原子数3であるアルキレン基(プロピレン基;−CHCHCH−)の場合は、オキセタン基の代わりにフラン基を複数有する化合物を用いることにより得ることができる。更に、一般式(I−c)のA12及びA18が炭素原子数4であるアルキレン基(ブチレン基;−CHCHCHCH−)の場合は、オキセタン基の代わりにピラン基を複数有する化合物を用いることにより得ることができる。
このようにして得られた一般式(I−c)の化合物のうち、特に下記の構造を持つものが好ましい。
Figure 0004360444
(式(I−c−1)中、A11及びA19はそれぞれ独立して水素原子又はメチル基を表し、
12及びA18はそれぞれメチレン基を表し、
13及びA16はそれぞれ独立して炭素原子数2から20の直鎖アルキル基(該直鎖アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)を表し、
14及びA17はそれぞれ独立して炭素原子数1から10のアルキル基を表し、
15は炭素原子数9から16のアルキレン基(該アルキレン基中に存在する少なくとも1個以上5個以下のメチレン基において、該メチレン基中の水素原子の一つはそれぞれ独立に炭素原子数1から10の直鎖又は分岐のアルキル基で置換されている。該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)を表す。)(1−c−1)で表される化合物のうち、A15に含まれる−COO−又は−OCO−基の数が2以下で、かつ、A13及びA16に含まれる−COO−又は−OCO−基の数がそれぞれ1以下であるものが特に好ましく、具体的には、下記(I-1)から(I-9)の化合物が挙げられる。
Figure 0004360444
Figure 0004360444
<低分子液晶化合物(II)>
本発明の高分子安定化液晶組成物に用いられる低分子液晶化合物(II)は、下記一般式(II−a)又は(II−b)
Figure 0004360444
(式(II−a)及び(II−b)中、R及びRはそれぞれ独立して炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子で置換されていても良い。)を表し、
は1,4−フェニレン基、1,4−シクロへキシレン基又は1,3−ジオキサン−2,5−ジイル基(これらの基のうち1,4−フェニレン基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
及びCはそれぞれ独立して1,4−フェニレン基、1,4−シクロへキシレン基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ピリダジン−3,6−ジイル基、1,3−ジオキサン−2,5−ジイル基、シクロヘキセン−1,4−ジイル基、デカヒドロナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基、1,3,4−チアジアゾール−2,5−ジイル又はインダン−2,5−ジイル基(これらの基のうち1,4−フェニレン基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基及びインダン−2,5−ジイル基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
及びZはそれぞれ独立して、単結合、−CHCH−、−CHO−、−OCH−、−CHCHO−、−OCHCH−、−CHCHCHO−、−OCHCHCH−、−CH=CH−、−C≡C−、−CFO−、−OCF−、−COO−又は−OCO−を表し、
はフッ素原子、塩素原子、トリフルオロメチル基、トリフルオロメトキシ基、ジフルオロメチル基、イソシアネート基、シアノ基を表し、
は、0、1又は2を表す。ただし、nが2を表す場合、複数あるC及びZは同じであっても異なっていても良い。)
で表される化合物(II)である。
又は、本発明の高分子安定化液晶組成物に用いられる低分子液晶化合物(II)は、一般式(VIII−a)、一般式(IX−a)又は一般式(X)で表される化合物(II)である。
一般式(II−a)又は(II−b)で表される化合物は、幅広い液晶温度範囲、低温域での液晶相安定性及び相溶性、且つ高誘電率、高い比抵抗値の点で具体的には次に記載する一般式(V−a)、一般式(VI−a)、一般式(VI−b)、一般式(VII−a)及び一般式(VII−b)で表される化合物が好ましい。
<一般式(V−a)で表される化合物>
Figure 0004360444
(式(V−a)中、R11は炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)を表し、
11は1,4−フェニレン基又は1,4−シクロヘキシレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、塩素原子、メチル基又はトリフルオロメチル基又はトリフルオロメトキシ基を有することができる。)を表し、
11は単結合又は−CHCH−を表し、
11は、炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)、フッ素原子、塩素原子、イソシアネート基、トリフルオロメチル基、トリフルオロメトキシ基、ジフルオロメトキシ基又は下記一般式(V−b)で表される基を表し、X12からX17はそれぞれ独立して、水素原子、フッ素原子、塩素原子、トリフルオロメチル基、トリフルオロメトキシ基、メチル基、メトキシ基又はエチル基を表し、
11は0又は1を表す。)
ここで、一般式(V−b)は、次に示す式である。
Figure 0004360444
(式(V−b)中、C12は1,4−フェニレン基又は1,4−シクロヘキシレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、塩素原子、メチル基又はトリフルオロメチル基又はトリフルオロメトキシ基を有することができる。)を表し、
18は、炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)、フッ素原子、塩素原子、イソシアネート基、トリフルオロメチル基、トリフルオロメトキシ基、又はジフルオロメトキシ基を表す。)
一般式(V−a)においてR11としては、炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)が好ましく、炭素原子数1から12のアルキル基又は炭素原子数1から12のアルコキシ基がより好ましい。
11としては、単結合が好ましい。X11としては、炭素原子数1から18のアルキル基、炭素原子数1から18のアルコキシ基又はフッ素原子が好ましい。X12からX17は、水素原子、フッ素原子又はメチル基が好ましく、X12からX17の中で1つ以上、3つ以下がフッ素原子又はメチル基であるものがより好ましい。
具体的には、一般式(V−1)から一般式(V−7)
Figure 0004360444
(式中R12、R13、及びR14はそれぞれ独立して、炭素原子数1から18のアルキル基、炭素原子数1から18のアルコキシ基を表し、
141、X151、X161、X171、X181、X191はそれぞれ独立して、水素原子、フッ素原子、又はメチル基を表し、
122、X132、X162、X172、X182、X192はそれぞれ独立して、水素原子、又はフッ素原子を表す。)
で表される化合物が好ましい。これらの中でも、一般式(V−1)から一般式(V−4)においてX141、X151、X161、X171、X181、X191の少なくとも1つ以上、3つ以下がフッ素原子、又はメチル基であるもの、及び一般式(V−5)から一般式(V−7)においてX122、X132、X162、X172、X182、X192の少なくとも1つ以上、3つ以下がフッ素原子であるものがより好ましい。具体的には一般式(V−8)から一般式(V−16)
Figure 0004360444
(式中、R15、R16及びR17はそれぞれ独立して、炭素原子数1から18のアルキル基、炭素原子数1から18のアルコキシ基を表し、
145、X175、X166、X176及びX186はそれぞれ独立して水素原子、又はフッ素原子を表し、
146及びX156はそれぞれ独立して、水素原子、フッ素原子、又はメチル基を表し、
137及びX187はそれぞれ独立して、水素原子、又はフッ素原子を表す。)
で表される化合物が更により好ましい。
<一般式(VI−a)及び一般式(VI−b)で表される化合物>
Figure 0004360444
(式(VI−a)中、R21は、炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)を表し、
21は、1,4−フェニレン基又は1,4−シクロヘキシレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、塩素原子、メチル基又はトリフルオロメチル基又はトリフルオロメトキシ基を有することができる。)を表し、
六員環Y21はベンゼン環又はシクロヘキサン環を表し、
21は、フッ素原子、塩素原子、イソシアネート基、トリフルオロメチル基、トリフルオロメトキシ基又はジフルオロメトキシ基を表し、
22からX26はそれぞれ独立して、水素原子、フッ素原子、塩素原子、トリフルオロメチル基又はトリフルオロメトキシ基を表し、
21は、単結合又は−CHCH−を表し、
22は、単結合、−CHCH−又は−CFO−を表し、
21は0又は1を表す。)
Figure 0004360444
(式(VI−b)中、R31は、炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)を表し、
31は、1,4−フェニレン基又は1,4−シクロヘキシレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、塩素原子、メチル基又はトリフルオロメチル基又はトリフルオロメトキシ基を有することができる。)を表し、
六員環Y31はベンゼン環又はシクロヘキサン環を表し、
31は、フッ素原子、塩素原子、イソシアネート基、トリフルオロメチル基、トリフルオロメトキシ基又はジフルオロメトキシ基を表し、
32からX36はそれぞれ独立して、水素原子、フッ素原子、塩素原子、トリフルオロメチル基又はトリフルオロメトキシ基を表し、
31は、単結合又は−CHCH−を表し、
32は、単結合、−CHCH−又は−CFO−を表し、
31は0又は1を表す。)
一般式(VI−a)及び一般式(VI−b)においてR21及びR31としては、炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)が好ましく、
該アルキル基又はアルケニル基は、式(VI−c)
Figure 0004360444
(式(VI−c)中の各構造式は右端で直接もしくは酸素原子を介して環に連結しているものとする。)で表されるアルケニル基又は炭素原子数1から18のアルキル基がより好ましい。
21及びC31としては、1,4−シクロヘキシレン基が好ましい。
21及びZ31としては、単結合が好ましい。
21及びX31としては、フッ素原子もしくはトリフルオロメトキシ基が好ましく、フッ素原子がより好ましい。
具体的には、一般式(VI−1)から一般式(VI−33)で表される化合物が好ましい。
Figure 0004360444
Figure 0004360444
(式中、R22及びR32は炭素原子数1から18のアルキル基を表す。)
<一般式(VII−a)及び一般式(VII−b)で表される化合物>
Figure 0004360444
(式(VII−a)中、R41は、炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)を表し、
41は、1,4−フェニレン基又は1,4−シクロヘキシレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、塩素原子、メチル基又はトリフルオロメチル基又はトリフルオロメトキシ基を有することができる。)を表し、
六員環Y41はベンゼン環又はシクロヘキサン環を表し、
41は、フッ素原子、塩素原子、イソシアネート基、トリフルオロメチル基、トリフルオロメトキシ基又はジフルオロメトキシ基を表し、
42からX45は、それぞれ独立して、水素原子、フッ素原子、塩素原子、トリフルオロメチル基又はトリフルオロメトキシ基を表し、
41は、単結合又は−CHCH−を表し、
42は、単結合、−CHCH−又は−CFO−を表し、
41は0又は1を表す。)
Figure 0004360444
(式(VII−b)中、R51は、炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)を表し、
51は、1,4−フェニレン基又は1,4−シクロヘキシレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、塩素原子、メチル基又はトリフルオロメチル基又はトリフルオロメトキシ基を有することができる。)を表し、
六員環Y51はベンゼン環又はシクロヘキサン環を表し、
51は、フッ素原子、塩素原子、イソシアネート基、トリフルオロメチル基、トリフルオロメトキシ基又はジフルオロメトキシ基を表し、
52からX55は、それぞれ独立して、水素原子、フッ素原子、塩素原子、トリフルオロメチル基又はトリフルオロメトキシ基を表し、
51は、単結合又は−CHCH−を表し、
52は、単結合、−CHCH−又は−CFO−を表し、
51は0又は1を表す。)
一般式(VII−a)及び一般式(VII−b)においてR41及びR51としては、炭素原子数1から18のアルキル基又は炭素原子数2から6のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)が好ましく、
該アルキル基又はアルケニル基は、式(VII−c)
Figure 0004360444
(式(VII−c)中の構造式は右端で直接もしくは酸素原子を介して環に連結しているものとする。)で表されるアルケニル基又は炭素原子数1から5のアルキル基がより好ましい。
41及びC51としては、1,4−シクロヘキシレン基が好ましい。
41及びZ51としては、単結合が好ましい。
41及びX51としては、フッ素原子もしくはトリフルオロメトキシ基が好ましく、フッ素原子がより好ましい。
具体的には一般式(VII−1)から一般式(VII−42)で表される化合物が好ましい。
Figure 0004360444
Figure 0004360444
Figure 0004360444
Figure 0004360444
(式中、R42及びR52は炭素原子数1から18のアルキル基を表す。)
<一般式(VIII−a)で表される化合物>
Figure 0004360444
(式(VIII−a)中、R61及びR62はそれぞれ独立して、炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)を表し、
61、C62及びC63はそれぞれ独立して1,4−フェニレン基又は1,4−シクロヘキシレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、塩素原子、メチル基又はトリフルオロメチル基又はトリフルオロメトキシ基を有することができる。)を表し、
61及びZ62はそれぞれ独立して、単結合又は−CHCH−を表し、
61は、0、1又は2を表す。ただし、n61が2の場合、複数存在するC61及びZ61はそれぞれ同じであっても、異なっていても良い。)
一般式(VIII−a)においてR61及びR62としては、炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)が好ましく、式(VI−c)で表されるアルケニル基もしくはアルケニルオキシ基(ただしそのアルケニル基が式(VI−c)で表されるもの)又は炭素原子数1から5のアルキル基もしくはアルコキシ基が更により好ましい。
また、特に低粘性を得たい場合は、n61が0であり、C62及びC63が、1,4−シクロへキシレン基であり、Z62が単結合であることが好ましい。
特に液晶温度範囲を拡大するには、n61が0又は1であり、C61及びC62が、1,4−シクロへキシレン基であり、C63が1,4−フェニレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、メチル基を有することができる。)であり、Z61が単結合又は−CHCH−であり、Z62が単結合であることが好ましい。
特に高屈折率を得るためには、n61が1であり、C61が1,4−シクロへキシレン基又は1,4−フェニレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、メチル基を有することができる。)であり、C62及びC63が1,4−フェニレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子又はメチル基を有することができる。)であることが好ましい。
具体的には一般式(VIII−1)から一般式(VIII−5)で表される化合物が好ましい。
Figure 0004360444
(式中、R65及びR66はそれぞれ独立して炭素原子数1から18のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)を表し、X61からX66はそれぞれ独立して水素原子、フッ素原子又はメチル基を表す。)
<一般式(IX−a)で表される化合物>
Figure 0004360444
(式(IX−a)中、R71は炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)を表し、
71、C72及びC73はそれぞれ独立して1,4−フェニレン基、1,4−シクロヘキシレン基又はインダン−2,5−ジイル基(該1,4−フェニレン基及びインダン−2,5−ジイル基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、塩素原子、メチル基又はトリフルオロメチル基又はトリフルオロメトキシ基を有することができる。)を表し、
71及びZ72はそれぞれ独立して、単結合、−CHCH−又は−CFO−を表し、
71はフッ素原子、塩素原子、トリフルオロメチル基又はトリフルオロメトキシ基、ジフルオロメチル基、イソシアネート基を表し、
71は、0、1又は2を表す。ただし、n71が2の場合、複数存在するC71及びZ71はそれぞれ同じあっても、異なっていても良い。)
一般式(IX−a)のR71としては、炭素原子数1から18のアルキル基又は炭素原子数2から6のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)が好ましく、該アルケニル基は式(V−c)で表されるものが好ましく、炭素原子数1から18のアルキル基又は炭素原子数1から18のアルコキシ基が更により好ましい。
71としては、フッ素原子又はトリフルオロメトキシ基が好ましく、フッ素原子がより好ましい。
また、特に高誘電率を得たい場合は、n71が0又は1であり、C71が1,4−シクロへキシレン基であり、C72が1,4−シクロへキシレン基又は1,4−フェニレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、メチル基を有することができる。)であり、C73が2−フルオロ−1,4−フェニレン基、3−フルオロ−1,4−フェニレン基、2,6−ジフルオロ−1,4−フェニレン基又は3,5−ジフルオロ−1,4−フェニレン基であり、Z71及びZ72が単結合であることが好ましい。
特に液晶温度範囲を拡大するには、n71が2であり、C71が1,4−シクロへキシレン基であり、C72が、1,4−シクロへキシレン基又は1,4−フェニレン基であり、C73が2−フルオロ−1,4−フェニレン基、3−フルオロ−1,4−フェニレン基、2,6−ジフルオロ−1,4−フェニレン基又は3,5−ジフルオロ−1,4−フェニレン基であり、Z71及びZ72が単結合又は−CHCH−であることが好ましい。
具体的には一般式(IX−1)から一般式(IX−4)で表される化合物が好ましい。
Figure 0004360444
(式中、R72は炭素原子数1から18のアルキル基又はアルコキシ基を表し、X72からX75はそれぞれ独立に水素原子又はフッ素原子を表し、Z73は単結合又は−CHCH−を表す。)
これら一般式(IX−1)から一般式(IX−4)の中でも、一般式(IX−5)から一般式(IX−7)で表される化合物がより好ましい。
Figure 0004360444
(式中、R77は炭素原子数1から18のアルキル基を表し、X77からX79はそれぞれ独立して水素原子又はフッ素原子を表す。)
<一般式(X)で表される化合物>
Figure 0004360444
(式中、R101及びR102は各々独立に炭素原子数1〜18の直鎖状又は分岐状のアルキル基を示し、但し、1つ又は2つの隣接していない−CH−基が−O−、−S−、−CO−、−CO−O−、−O−CO−、−CO−S−、−S−CO−、−O−CO−O−、−CH=CH−、−C≡C−、シクロプロピレン基又は−Si(CH−で置き換えられてもよく、さらにアルキル基の1つ又はそれ以上の水素原子がフッ素原子あるいはCN基で置き換えられていてもよく、A101は1,4−フェニレン基を表わし、B101及びC101は各々独立に1つ又は2つの水素原子がフッ素原子、CF基、OCF基、あるいはCN基、あるいはこれらの複数の基で置き換えられてもよい1,4−フェニレン基、又は、1,4−シクロヘキシル基を表わし、a、b、及びcは0又は1の整数を示し、(a+b+c)=1又は2である。)
一般式(X)で表される化合物は具体例的には、一般式(X−a)から一般式(X−f)
Figure 0004360444
(式中、Y101、及びXは、各々独立に炭素原子数1から18のアルキル基、又はアルコキシ基、又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)を表し、
101は、炭素原子数1から18のアルキル基、又はアルコキシ基、又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)、又は独立してフッ素原子、塩素原子、トリフルオロメチル基又はトリフルオロメトキシ基、ジフルオロメチル基、イソシアネート基を表し、
81からX96は、それぞれ独立して、水素原子、フッ素原子、又はメチル基を表す。)で表される。
一般式(X−a)から一般式(X−f)で表される化合物の具体例を以下の(X−1)から(X−17)に挙げることができる。
Figure 0004360444
Figure 0004360444
(式中、Y101は炭素原子数1から18のアルキル基、又はアルコキシ基、又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)を表し、
101は、炭素原子数1から18のアルキル基、又はアルコキシ基、又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)、又は独立してフッ素原子、塩素原子、トリフルオロメチル基又はトリフルオロメトキシ基、ジフルオロメチル基、イソシアネート基を表す。)
望ましい液晶相を安定に得て、しかも、高速で応答するためには、一般式(II)の化合物としては、一般式(VIII−a)あるいは、一般式(X)で表される化合物を使うことが望ましい。薄膜トランジスター素子、メタルインシュレーターメタル素子、薄膜ダイオード素子等の能動素子による駆動のため、特に高い比抵抗値が求められる場合には一般式(VIII−a)を使うことが望ましい。能動素子を用いない場合、あるいは、それほど高い比抵抗値が求められない場合には、一般式(X)も一般式(VIII−a)と同等に好適に用いられる。一般式(VIII−a)あるいは一般式(X)は単独で用いても複数の化合物を混合して用いても良いが、2種類以上の異なる化合物を混合することが、液晶相の安定性向上、物性の調節の点からは好ましい。
また、透過率の高い表示素子を得るためには、セル厚に依存して複屈折率(Δn)を調節しなければならない。表示素子の製造の点ではセル厚が厚い方が好ましいが、その場合にはΔnが小さい液晶を使用する必要がある。その場合には、一般式(II)の環構造として、シクロヘキシル、あるいは、1,3,4−チアジアゾール−2,5−ジイル構造を持つものが望ましい。シクロヘキシル構造は、一つの分子中に一つ、あるいは2つ存在することが好ましく、1,3,4−チアジアゾール−2,5−ジイルは一つの分子中に一つ存在することが好ましい。
<重合性液晶化合物(III)>
本発明の高分子安定化液晶組成物に用いられる重合性液晶化合物(III)は、下記一般式(III−a)
Figure 0004360444
(式(III−a)中、R及びRはそれぞれ独立して水素原子又はメチル基を表し、
及びCはそれぞれ独立して1,4−フェニレン基、1,4−シクロへキシレン基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ピリダジン−3,6−ジイル基、1,3−ジオキサン−2,5−ジイル基、シクロヘキセン−1,4−ジイル基、デカヒドロナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基又はインダン−2,5−ジイル基(これらの基のうち1,4−フェニレン基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基及びインダン−2,5−ジイル基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
及びZはそれぞれ独立して単結合又は炭素原子数1から15のアルキレン基(該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキレン基中に存在する1個又は2個以上の水素原子はそれぞれ独立にフッ素原子、メチル基又はエチル基で置換されていても良い。)を表し、
は、単結合、−CHCH−、−CHO−、−OCH−、−CHCHO−、−OCHCH−、−CHCHCHO−、−OCHCHCH−、−CHCHOCO−、−COOCHCH−、−CHCHCOO−、−OCOCHCH−、−CH=CH−、−C≡C−、−CFO−、−OCF−、−COO−又は−OCO−を表し、
は、0、1又は2を表す。ただし、nが2を表す場合、複数あるC及びZは同じであっても異なっていても良い。)、
一般式(III−b)
Figure 0004360444
(式(III−b)中、R及びRはそれぞれ独立して水素原子又はメチル基を表し、Cは1,4−フェニレン基、1,4−シクロへキシレン基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ピリダジン−3,6−ジイル基、1,3−ジオキサン−2,5−ジイル基、シクロヘキセン−1,4−ジイル基、デカヒドロナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基又はインダン−2,5−ジイル基(これらの基のうち1,4−フェニレン基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基及びインダン−2,5−ジイル基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
及びCはそれぞれ独立してベンゼン−1,2,4−トリイル基、ベンゼン−1,3,4−トリイル基、ベンゼン−1,3,5−トリイル基、シクロヘキサン−1,2,4−トリイル基、シクロヘキサン−1,3,4−トリイル基又はシクロヘキサン−1,3,5−トリイル基を表し、Z及びZはそれぞれ独立して単結合又は炭素原子数1から15のアルキレン基(該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキレン基中に存在する1個又は2個以上の水素原子はそれぞれ独立にフッ素原子、メチル基又はエチル基で置換されていても良い。)を表し、
及びZそれぞれ独立して単結合、−CHCH−、−CHO−、−OCH−、−CHCHO−、−OCHCH−、−CHCHCHO−、−OCHCHCH−、−CHCHOCO−、−COOCHCH−、−CHCHCOO−、−OCOCHCH−、−CH=CH−、−C≡C−、−CFO−、−OCF−、−COO−又は−OCO−を表し、
は、0、1又は2を表すが、、nが2を表す場合、複数あるC及びZは同じであっても異なっていても良く、n及びnはそれぞれ独立して1、2及び3を表す。)
及び一般式(III−c)
Figure 0004360444
(式(III−c)中、Rは水素原子又はメチル基を表わし、
6員環T、T及びTはそれぞれ独立的に、
Figure 0004360444
のいずれか(ただしmは1から4の整数を表す。)を表し、
は0又は1の整数を表し、
及びYはそれぞれ独立して単結合、−CHCH−、−CHO−、−OCH−、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH−、−CHCHCHO−、−OCHCHCH−、−CH=CHCHCH−又は−CHCHCH=CH−を表し、
は単結合、−COO−、又は−OCO−を表し、
は炭素原子数1から18の炭化水素基を表す。)からなる群より選ばれる少なくとも1種の重合性化合物(III)である。
より具体的には、一般式(III−d)及び(III−e)
Figure 0004360444
(式(III−d)及び(III−e)中、mは、0又は1を表し、
11及びY12はそれぞれ独立して単結合、−O−、−COO−又は−OCO−を表し、
13及びY14はそれぞれ独立して−COO−又は−OCO−を表し、
15及びY16はそれぞれ独立して−COO−又は−OCO−を表し、
r及びsはそれぞれ独立して2〜14の整数を表す。式中に存在する1,4−フェニレン基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)のいずれかで表される化合物を用いると、機械的強度や耐熱性に優れた光学異方体が得られるので好ましい。
一般式(III−a)で表される化合物の具体例を以下の(III−1)から(III−10)に挙げることができる。
Figure 0004360444
(式中、j及びkはそれぞれ独立的に2〜14の整数を表す。)
また、一般式(III−d)及び(III−e)のいずれかで表される化合物の具体例を以下の(III−12)から(III−21)に挙げることができる。
Figure 0004360444
(式中、j及びkはそれぞれ独立的に2〜14の整数を表す。)
一般式(III−a)で表される化合物の具体例としては、さらに、以下の(III−22)から(III−30)を挙げることができる。
Figure 0004360444
(式中、j及びkはそれぞれ独立的に2〜14の整数を表す。)
一般式(III−b)で表される化合物の具体例を以下の(III−31)、(III−32)に挙げることができる。
Figure 0004360444
(式中、j及びkはそれぞれ独立的に2〜14の整数を表す。)
<カイラル化合物(IV)>
本発明の高分子安定化液晶組成物に用いられるカイラル化合物(IV)は、一般式(IV−a)又は(IV−b)
Figure 0004360444
(式(IV−a)及び(IV−b)中、Rは炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子で置換されていても良い。)を表し、
及びCはそれぞれ独立して1,4−フェニレン基、1,4−シクロへキシレン基、ピリミジン−2,5−ジイル基(これらの基のうち1,4−フェニレン基又は1,4−シクロへキシレン基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、シアノ基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
は単結合、−CHCH−、−C≡C−、−CFO−、−COO−又は−OCO−を表し、
及びYはそれぞれ独立して単結合、酸素原子、炭素数1〜14のアルキレン基、−OCH−、−COO−、−OCO−、−OCHCH−又は−OCOCH−を表し、
は、0、1又は2を表す。ただし、nが2を表す場合、複数あるC及びZは同じであっても異なっていても良い。
及びXはそれぞれ独立して、一般式(IV−c)から(IV−h)
Figure 0004360444
のいずれかの式で表される基を表す。ただし、
式(IV−c)から(IV−h)中、*は炭素原子が不斉炭素原子であることを表し、
、R、R、R及びRはそれぞれ独立して炭素原子数2から20のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)を表し、
、X及びYはそれぞれ独立してフッ素原子、塩素原子、メチル基又はシアノ基を表し、
及びYはそれぞれ独立して水素原子、フッ素原子、塩素原子、メチル基又はシアノ基を表し、
及びYはそれぞれ独立してフッ素原子、塩素原子、メチル基又はシアノ基を表し、
は単結合又はメチレン基を表し、
は酸素原子又は−OC(Re1)(Re2)O−で表される基(ただし、Re1及びRe2はそれぞれ独立して水素原子又は炭素原子数1から18のアルキル基を表す。)を表し、
はカルボニル基又は−CH(Rf1)−で表される基(ただし、Rf1は水素原子又は炭素原子数1から18のアルキル基を表す。)を表し、
は−OCO−、−COO−、−CHO−又は−OCH−を表す。)
で表されるカイラル化合物(IV)である。
及びYがアルキレン基の場合には、大きな自発分極、あるいは、ねじれをキャンセルするための短いらせんピッチを得るために、アルキレン基の中でも特にメチレン基が好ましい。X及びXとしては、大きな自発分極の発現し、良い配向を得て、安定な液晶相を示す目的としては、(IV−c)、(IV−e)が好ましく、その中でも、特に、Xがフッ素原子、あるいは、メチル基のものか、あるいは、Zが酸素原子のものが特に好ましい。カイラル分子は1種類でも、あるいは、複数の化合物を用いても構わない。特に、良配向を得る目的では、コレステリック相、カイラルスメクティック相のピッチをなるべく長くする必要がある。その目的のためには、ピッチの掌性が異なる複数のカイラル化合物を組合わせて、ピッチをキャンセルすることにより長くするのがよい。その場合は、自発分極がキャンセルしないように同一の符号をもつものを選ぶか、あるいは、自発分極の符号が逆であっても、自発分極の大きなものと、小さなものの組み合わせで、差し引き十分な自発分極が得られるようにすることが好ましい。また、このようなピッチキャンセルを行わなくても十分良い配向が得られるようなカイラル材料を選ぶことも重要である。その目的には、Xがフッ素原子のものを用いることが好ましい。
<高分子安定化液晶組成物の組成比>
本発明の高分子安定化液晶組成物は、化合物(II)で表される非重合性低分子液晶化合物と、カイラル化合物(IV)と、重合性化合物(I)及び重合性化合物(III)で表される重合性化合物で構成される。該非重合性低分子液晶化合物とカイラル化合物の合計と、重合性化合物の構成比は、重合性化合物の構成割合が多すぎると高分子安定化液晶組成物としての特性を損なうため最適な構成比が存在する。具体的には、該非重合性低分子液晶化合物とカイラル化合物の合計が92%〜99.9%であることが好ましく、92%〜99%であることがより好ましく、94%〜98%含有であることが特に好ましい。
本発明の高分子安定化液晶組成物は、一般式(II−a)又は(II−b)で表される低分子液晶化合物として、一般式(V−a)、一般式(VI−a)、一般式(VI−b)、一般式(VII−a)、一般式(VII−b)、一般式(VIII−a)、一般式(IX−a)、一般式(X)で表される化合物の少なくとも一種を含む液晶組成物を92から99.9質量%含有し、一般式(I−a)、(III−a)、で表される化合物を含む重合性組成物を0.1から8%を含有していることが好ましく、該液晶組成物を92%から99%含有し、該重合性組成物を1から8質量%含有することがより好ましく、該液晶組成物を94%から98%含有し、該重合性組成物を2から6質量%含有することが特に好ましい。
液晶組成物としては、一般式(VIII−a)あるいは一般式(X)で表される化合物の含有率が5から90%であるものが好ましい。一般式(X)で表される化合物としては、一般式(X−a)、一般式(X−b)、一般式(X−c)で表される化合物群の含有率が50から99%であるものが好ましい。一般式(V−a)、一般式(VI−a)、一般式(VI−b)及び一般式(VII−a)、一般式(VII−b)で表される化合物群、及び一般式(VIII−a)、一般式(IX−a)で表せる化合物群は、目的の該液晶組成物の基礎物性を得るために用いることが好ましい。前記基礎物性は、屈折率異方性、誘電異方性、弾性定数、液晶相の相系列、液晶相の温度範囲、自発分極等を実用には調整する必要があるため目的に応じて化合物を選択して使用することが好ましい。
本発明の高分子安定化液晶組成物は室温でスメクチック相を示すことが好ましく、スメクチック相がキラルスメクチックC相であることがより好ましく、キラルスメクチックC相が強誘電性液晶相であることが特に好ましい。
本発明の高分子安定化液晶組成物においては、重合性化合物(III)の含有率が0.05%から7%であって、重合性化合物(III)と前記重合性化合物(I)との組成比が(III):(I)=1:1から49:1であることが好ましい。
本発明においては、重合性液晶化合物(III)のほかに多官能液晶性モノマーを添加することもできる。この多官能液晶性モノマーとしては、重合性官能基として、アクリロイルオキシ基、メタクリロイルオキシ基、アクリルアミド基、メタクリルアミド基、エポキシ基、ビニル基、ビニルオキシ基、エチニル基、メルカプト基、マレイミド基、ClCH=CHCONH−、CH=CCl−、CHCl=CH−、RCH=CHCOO−(ここでRは塩素、フッ素、又は炭素原子数1〜18の炭化水素基を表す)が挙げられるが、これらの中でもアクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、メルカプト基、ビニルオキシ基が好ましく、メタクリロイルオキシ基又はアクリロイルオキシ基が特に好ましく、アクリロイルオキシ基が最も好ましい。
多官能液晶性モノマーの分子構造としては、2つ以上の環構造を有することを特徴とする液晶骨格、重合性官能基、さらに液晶骨格と重合性官能基を連結する柔軟性基を少なくとも2つ有するものが好ましく、3つの柔軟性基を有するものがさらに好ましい。柔軟性基としては、−(CH−(ここでnは整数を表す)で表されるようなアルキレンスペーサー基や−(Si(CH−O)−(ここでnは整数を表す)で表されるようなシロキサンスペーサー基を挙げることができ、この中ではアルキレンスペーサー基が好ましい。これらの柔軟性基と液晶骨格、もしくは重合性官能基との結合部分には、−O−、−COO−、−CO−のような結合が介在していても良い。
液晶骨格は、通常この技術分野で液晶骨格(メソゲン)と認識されるものであれば、特に制限なく使用することができるが、少なくとも2つ以上の環構造を有するものが好ましい。環構造としては使用できる環は、ベンゼン、ピリジン、ピラジン、ピリダジン、ピリミジン、1,2,4−トリアジン、1,3,5−トリアジン、テトラジン、ジヒドロオキサジン、シクロヘキサン、シクロヘキセン、シクロヘキサジエン、シクロヘキサノン、ピペリジン、ピペラジン、テトラヒドロピラン、ジオキサン、テトラヒドロチオピラン、ジチアン、オキサチアン、ジオキサボリナン、ナフタレン、ジオキサナフタレン、テトラヒドロナフタレン、キノリン、クマリン、キノキサリン、デカヒドロナフタレン、インダン、ベンゾオキサゾール、ベンゾチアゾール、フェナンスレン、ジヒドロフェナンスレン、パーヒドロフェナンスレン、ジオキサパーヒドロフェナンスレン、フルオレン、フルオレノン、シクロヘプタン、シクロヘプタトリエンオン、コレステン、ビシクロ[2.2.2]オクタンやビシクロ[2.2.2]オクテン、1,5−ジオキサスピロ(5.5)ウンデカン、1,5−ジチアスピロ(5.5)ウンデカン、トリフェニレン、トルクセン、ポルフィリン、フタロシアニンを挙げることができる。これらの中でも、ベンゼン、シクロヘキサン、フェナントレン、ナフタレン、テトラヒドロネフタレン、デカヒドロネフタレンが好ましい。これらの環は、炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、又はシアノ基、ハロゲン原子で一つ以上置換されていても良い。アルキル基としてはメチル基、エチル基、n−プロピル基、n−ブチル基が望ましく、メチル基とエチル基が特に好ましい。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基が好ましく、アルカノイル基としてはアセチル基、プロピオニル基、ブチロイル基が好ましく、ハロゲン原子としては、フッ素原子、臭素原子、塩素原子が好ましく、フッ素原子と塩素原子が特に好ましい。また、多官能液晶性モノマーに加えて、単官能液晶性モノマーを添加しても良い。
これらの液晶組成物は不純物等を除去する、又は比抵抗値を更に高くする目的で、シリカ、アルミナ等による精製処理を施しても良い。比抵抗値としては1012Ω・cm以上が好ましく、1013Ω・cm以上がより好ましい。更に、目的に応じて液晶組成物中に、キラル化合物、染料等のドーパントを添加することもできる。
その他、必要に応じて酸化防止剤、紫外線吸収剤、非反応性のオリゴマーや無機充填剤、有機充填剤、重合禁止剤、消泡剤、レベリング剤、可塑剤、シランカップリング剤等を適宜添加しても良い。
本発明の高分子安定化液晶組成物は、化合物(II)で表される非重合性低分子液晶化合物と、カイラル化合物(IV)と、重合性化合物(I)及び重合性化合物(III)で表される重合性化合物で構成されるが、高分子安定化液晶組成物を重合させる場合、重合開始剤を含有していることが好ましい。重合開始剤を含有させる場合の含有量は、重合開始剤以外の材料を98%〜99.9%含有し、重合開始剤を0.1%〜2%含有していることが好ましい。
<高分子安定化液晶組成物の重合方法>
本発明の高分子安定化液晶表示素子用組成物を重合させる場合の重合方法としては、ラジカル重合、アニオン重合、カチオン重合等を用いることが可能であるが、ラジカル重合により重合することが好ましい。
ラジカル重合開始剤としては、熱重合開始剤、光重合開始剤を用いることができるが、光重合開始剤が好ましい。具体的には以下の化合物が好ましい。
ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、ベンジルジメチルケタール、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、1−ヒドロキシシクロヘキシル−フェニルケトン、2−メチル−2−モルホリノ(4−チオメチルフェニル)プロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン等のアセトフェノン系;
ベンゾイン、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン系;
2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド等のアシルホスフィンオキサイド系;
ベンジル、メチルフェニルグリオキシエステル系;
ベンゾフェノン、o−ベンゾイル安息香酸メチル、4−フェニルベンゾフェノン、4,4′−ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4−ベンゾイル−4′−メチル−ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3′,4,4′−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン、3,3′−ジメチル−4−メトキシベンゾフェノン等のベンゾフェノン系;
2−イソプロピルチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジクロロチオキサントン等のチオキサントン系;
ミヒラーケトン、4,4′−ジエチルアミノベンゾフェノン等のアミノベンゾフェノン系;
10−ブチル−2−クロロアクリドン、2−エチルアンスラキノン、9,10−フェナンスレンキノン、カンファーキノン等が好ましい。この中でも、ベンジルジメチルケタールが最も好ましい。
<液晶表示素子>
本発明の液晶表示素子は、液晶中にナノ粒子状に分散して低分子液晶を固定化した高分子安定化液晶表示素子、又は液晶中に三次元網目状の高分子鎖を形成させた高分子安定化液晶表示素子であって、該高分子の低分子液晶分散構造が、上述の本発明に係る高分子安定化液晶物に紫外線露光して低分子液晶の配向を高分子安定化させたものである。
高分子安定化液晶物に紫外線露光する際には、高分子安定化液晶組成物に交流を印加しながら紫外線露光することが好ましい。
また、低分子液晶の液晶相がキラルスメクチックC相を示す温度で交流を印加しながら紫外線露光することが好ましい。印加する交流は、周波数500Hzから10kHzの交流が好ましく、より好ましくは、周波数1kHzから10kHzの矩形波である。
さらに好ましくは、低分子液晶の液晶相がキラルスメクチックC相を示す温度で周波数1kHzから10kHzの矩形波を電圧±15V以下で印加しながら紫外線露光することが望ましい。
さらに好ましくは、高分子安定化液晶組成物が示すスメクチックA相とキラルスメクチックC相との相転移温度をT(℃)とするとき、(T−40)℃以上(T+5)℃以下であってかつ35℃以上の温度にて該高分子安定化液晶組成物に交流を印加しながら紫外線露光することが望ましい。
紫外線露光においては、紫外線1000mJ/cm以上を露光することが望ましい。
本発明の液晶表示素子は、薄膜トランジスター素子、メタルインシュレーターメタル素子、薄膜ダイオード素子等の能動素子により駆動する液晶表示素子に適用することができる。特に、能動素子と液晶画素電極との間に補助容量が並列接続されており、液晶画素電極の静電容量をCflcとし補助容量をCsとした場合、Cs/Cflsが0.1以上、3以下であることが好ましい。
本発明の液晶表示素子は、応答速度が速い特徴を有しすることから、カラーフィルターを用いず高輝度、高解像度化が可能なフィールドシーケンシャル方式による液晶表示素子に好適であり、立体ディスプレイ等の応用も可能である。更に、本発明の液晶表示素子は、携帯用機器、車載用機器等へも好適に使用できる。
以下、実施例をもって本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。また、特に断りのない場合、「%」は「質量%」を意味する。
(高分子安定化液晶表示素子の作製、及び評価法)
実施例中の高分子安定化液晶表示素子は以下の方法で作製した。
高分子安定化液晶組成物のネマチック相転移以上に加熱して真空注入方で注入した。セルは、液晶は一軸配向(ホモジニアス配向)が得られるように、セルギャップ2μmのポリイミド配向膜を塗布したITO付きパラレルラビングの配向セルを用いた。
液晶組成物、ラジカル重合性組成物、光重合開始剤及び微量の重合禁止剤からなる調光層形成材料を真空注入法でガラスセル内に注入した。真空度は2パスカルとなるよう設定した。注入後ガラスセルを取り出し、注入口を封口剤3026E(スリーボンド社製)で封止した。クロスニコルスの偏光顕微鏡で一軸配向であることを確認した後、周波数2KHzで5Vの矩形波を印加してスイッチングさせながら、紫外線カットフィルターL−37(ホーヤ カンデオ オプトロニクス社製)を介して、石英ガラスの光ファイバーで顕微鏡ステージに設置してある液晶セルに紫外線を導いて露光した。セルサンプル表面の照射強度が5mW/cmとなるように調整されたメタルハライドランプを300秒間照射して、高分子安定化液晶組成物の重合性化合物を重合させて高分子分安定化液晶表示素子を得た。
先に印加した電圧を切り、紫外線露光後の配向状態を偏光顕微鏡で観察して電圧印加により得られたベント配向が高分子安定化により無電界で維持されているのか調べた。更に、液晶セルのラビング方向を光入射側の偏光方向に対して45度になるよう顕微鏡ステージに配置して高分子安定化したセルに8Vを印加して透過率を比較した。透過率は、二枚の偏光板を直行した時を0%、平行にした時を100%とした。
(高分子安定化液晶組成物の調整)
カイラル液晶化合物を含む液晶組成物FLC-1と化合物群(I)及び(III)をそれぞれ少なくとも一種含む光重合性アクリレート組成物を配合して高分子安定化液晶組成物を調整した。
低分子液晶組成物FLC-1の各成分の構造及び組成を次に示す。
Figure 0004360444
アクリレート化合物(I-1)、アクリレート化合物の混合物(III-AA)、(III-BB)の構造、及び組成を次に示す。
Figure 0004360444
Figure 0004360444
Figure 0004360444
(比較例1)
液晶組成物FLC-1を94%、(III-AA)を6%の比率で配合して高分子安定化液晶組成物を調製し、上述の高分子安定化液晶表示素子の作製方法によって高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶表示素子を作製した。透過率50%のときの印加電圧Vr50、及び透過率90%のときの印加電圧Vr90を、−5〜60℃の温度範囲で測定した。その結果を表1に示す。
Figure 0004360444
(実施例1)
液晶組成物FLC-1を94%、(III-AA)を5.4%、(I-1)を0.6%の比率で配合して高分子安定化液晶組成物を調製し、上述の高分子安定化液晶表示素子の作製方法によって高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶表示素子を作製した。透過率50%のときの印加電圧Vr50、及び透過率90%のときの印加電圧Vr90を、−5〜50℃の温度範囲で測定した。その結果を表2に示す。
Figure 0004360444
表1及び表2の比較から明らかなように、一般式(I-a)で表される化合物である式(I-1)を含有しない比較例1の高分子安定化液晶組成物を用いた場合高温におけるVrは優れるものの、屋外等の使用において問題となる低温におけるVrが大幅に高くなってしまう。更に、図1及び図2の比較から明らかなように実施例1の高分子安定化液晶組成物は広い温度領域において安定したVrを有している。
(実施例2)
液晶組成物FLC-1を97%、(III-AA)を0.49%、(I-1)を2.205%、イルガキュア651(Irg651)を0.305%の比率で配合して高分子安定化液晶組成物を調製し、上述の高分子安定化液晶表示素子の作製方法によって高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶表示素子を作製した。透過率50%のときの印加電圧Vr50、及び透過率90%のときの印加電圧Vr90を、−5〜50℃の温度範囲で測定した。その結果を表3に示す。
Figure 0004360444
表1及び表3の比較から明らかなように、一般式(I-a)で表される化合物である式(I-1)を含有した実施例2の高分子安定化液晶組成物は、低温におけるVrが低く、図1及び図3の比較から実施例2の高分子安定化液晶組成物は広い温度領域において安定したVrを有している。
(実施例3)
液晶組成物FLC-1を94%、(III-AA)を4.41%、(I-1)を1.47%、イルガキュア651(Irg651)を0.12%の比率で配合して高分子安定化液晶組成物を調製し、上述の高分子安定化液晶表示素子の作製方法によって高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶表示素子を作製した。透過率50%のときの印加電圧Vr50及び透過率90%のときの印加電圧Vr90を室温で測定したところ、Vr50=1.5V、Vr90=5.3Vであった。
(実施例4)
液晶組成物FLC-1を94%、(III-AA)を5.29%、(I-1)を0.59%、イルガキュア651(Irg651)を0.12%の比率で配合して高分子安定化液晶組成物を調製し、上述の高分子安定化液晶表示素子の作製方法によって高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶表示素子を作製した。透過率50%のときの印加電圧Vr50及び透過率90%のときの印加電圧Vr90を室温で測定したところ、Vr50=3.4V、Vr90=7.7Vであった。
(比較例2)
液晶組成物FLC-1を94%、(III-AA)を5.88%、イルガキュア651(Irg651)を0.12%の比率で配合して高分子安定化液晶組成物を調製し、上述の高分子安定化液晶表示素子の作製方法によって高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶表示素子を作製した。透過率50%のときの印加電圧Vr50及び透過率90%のときの印加電圧Vr90を室温で測定したところ、Vr50=5.1V、Vr90=8.7Vであった。
(比較例3)
液晶組成物FLC-1を94%、(III-BB)を5.88%、イルガキュア651(Irg651)を0.12%の比率で配合して高分子安定化液晶組成物を調製し、上述の高分子安定化液晶表示素子の作製方法によって高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶表示素子を作製した。透過率50%のときの印加電圧Vr50及び透過率90%のときの印加電圧Vr90を室温で測定したところ、Vr50=5.2V、Vr90=15.9Vであった。
実施例3、実施例4、比較例2及び比較例3の結果を表4及び図4に表す。
Figure 0004360444
表4及び図4に示すように、(I-1)を配合せずに重合させた比較例2及び3では、Vrが大きいのに対して、(I-1)を配合して重合させた実施例3及び4では、Vrを低下させることができた。
比較例3のVr90とVr50の温度変化を表5及び図5に示す。
Figure 0004360444
(実施例5)
液晶組成物FLC-1を98%、(III-CC)を0.98%、(I-3)を0.98%、イルガキュア651(Irg651)を0.04%の比率で配合して高分子安定化液晶組成物を調製し、上述の高分子安定化液晶表示素子の作製方法によって高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶表示素子を作製した。透過率50%のときの印加電圧Vr50、及び透過率90%のときの印加電圧Vr90及びチルト角を室温で測定した。その結果を表6に示す。
Figure 0004360444
Figure 0004360444
(比較例4)
液晶組成物FLC-1を98%、(III-CC)を1.96%、イルガキュア651(Irg651)を0.04%の比率で配合して高分子安定化液晶組成物を調製し、上述の高分子安定化液晶表示素子の作製方法によって高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶表示素子を作製した。透過率50%のときの印加電圧Vr50及び透過率90%のときの印加電圧Vr90及びチルト角を室温で測定した。その結果を表6に示す。
Figure 0004360444
化合物(I-3)を用いない比較例4は、Vrが実施例5と比較して大幅に増大しており、また、チルト角が大きく減少している。
(実施例6)
液晶組成物FLC-1を97%、(III-AA)を2.42%、(I-1)を0.52%、イルガキュア651(Irg651)を0.06%の比率で配合して高分子安定化液晶組成物を調製し、上述の高分子安定化液晶表示素子の作製方法によって高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶表示素子を作製した。透過率90%のときの印加電圧Vr90及び透過率95%のときの印加電圧Vr95を室温で測定した。
(実施例7)
液晶組成物FLC-1を97%、(III-AA)を2.42%、(I-2)を0.52%、イルガキュア651(Irg651)を0.06%の比率で配合して高分子安定化液晶組成物を調製し、上述の高分子安定化液晶表示素子の作製方法によって高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶表示素子を作製した。透過率90%のときの印加電圧Vr90及び透過率95%のときの印加電圧Vr95を室温で測定した。
Figure 0004360444
(実施例8)
液晶組成物FLC-1を97%、(III-AA)を2.42%、(I-3)を0.52%、イルガキュア651(Irg651)を0.06%の比率で配合して高分子安定化液晶組成物を調製し、上述の高分子安定化液晶表示素子の作製方法によって高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶表示素子を作製した。透過率90%のときの印加電圧Vr90及び透過率95%のときの印加電圧Vr95を室温で測定した。
(比較例5)
液晶組成物FLC-1を97%、(III-AA)を2.94%、イルガキュア651(Irg651)を0.06%の比率で配合して高分子安定化液晶組成物を調製し、上述の高分子安定化液晶表示素子の作製方法によって高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶表示素子を作製した。透過率90%のときの印加電圧Vr90及び透過率95%のときの印加電圧Vr95を室温で測定した。
実施例6、実施例7、実施例8及び比較例5の結果を表7に表す。
Figure 0004360444
一般式(I)に対応する化合物を用いない比較例5においては、実施例6〜8と比較してVrが増大している。
(実施例9)
液晶組成物FLC-1を97%、(III-AA)を2.42%、(I-9)を0.52%、イルガキュア651(Irg651)を0.06%の比率で配合して高分子安定化液晶組成物を調製し、上述の高分子安定化液晶表示素子の作製方法によって高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶表示素子を作製した。透過率50%のときの印加電圧Vr50及び透過率90%のときの印加電圧Vr90を室温で測定したところ、Vr50=2.4V、Vr90=6.1Vであった。
Figure 0004360444
(実施例10)
(高分子安定化強誘電性液晶組成物の調整)
強誘電性液晶組成物と化合物群(I)及び(III)をそれぞれ少なくとも一種以上モノマー成分として配合して高分子安定化強誘電性液晶組成物を調整した。強誘電性液晶組成物(FLC−2)の各成分の構造と割合は下記のとおりである。
Figure 0004360444
強誘電性液晶組成物(FLC−2)と化合物群(I)及び(III)をそれぞれ少なくとも一種以上モノマー成分として配合し、高分子安定化強誘電性液晶組成物(MFLC−1)を調整した。高分子安定化強誘電性液晶組成物(MFLC−1)の各成分の構造あるいは内容と割合は下記のとおりである。
FLC-2 94部
(I-1) 1.2部
(III-AA) 4.8部
イルガキュア651 0.12部
ここで、化合物(I−AA)は一般式(I)より選ばれた非液晶性モノマーであり、(III−AA)は一般式(III)より選ばれた液晶性モノマーである。
このようにして作製した高分子安定化強誘電性液晶組成物(MFLC−1)について、上述の高分子安定化液晶表示素子の作成方法によって高分子安定化強誘電性液晶組成物中のアクリレート化合物を重合させて液晶表示素子を作製した。このようにして得られた表示素子は室温で安定なV型のスイッチング挙動を示し、0℃で測定した透過率50%の時の印加電圧(Vr50)は5Vと低い値を示した。
(比較例6)
モノマー組成物として一般式(I)で表される化合物を含まないこと以外は実施例と同様に強誘電性液晶組成物(FLC−2)、(III−AA)及びイルガキュア651を下記の割合で混合し、比較用高分子安定化強誘電性液晶組成物(MFLC−C1)を作製した。
FLC-2 94部
(III-AA) 6部
イルガキュア651 0.12部
実施例10と同様にして高分子安定化強誘電性液晶組成物中のアクリレート化合物を重合させて液晶表示素子を作製した。0℃で測定した透過率50%の時の印加電圧(Vr50)は7Vと実施例10よりも高い電圧となっていた。
(実施例11〜14)
実施例10と同様にして高分子安定化強誘電性液晶組成物(MFLC−2)〜(MFLC−5)を作製し透過率50%の時の印加電圧(Vr50)を測定した。高分子安定化強誘電性液晶組成物の作製に使用した化合物の構造を次に示し、
Figure 0004360444
それら化合物の混合割合、及び、透過率50%の時の印加電圧(Vr50)の値を表8に記載した。
Figure 0004360444
(比較例7〜11)
比較例7と同様にして、一般式(I)で表される化合物を含まない比較用高分子安定化強誘電性液晶組成物(MFLC−C2)〜(MFLC−C5)を作製し透過率50%の時の印加電圧(Vr50)を測定した。比較用高分子安定化強誘電性液晶組成物に含まれる化合物及びその量比(重量部)、Vr50を表9に示した。比較例は対応する実施例と比べていずれも高いVr50を示した。
Figure 0004360444
(実施例15)
(高分子安定化強誘電性液晶組成物の調整)
強誘電性液晶組成物と化合物群(I)及び(III)をそれぞれ少なくとも一種以上モノマー成分として配合した高分子安定化強誘電性液晶組成物を調整した。強誘電性液晶組成物(FLC−3)の各成分の構造と割合は下記のとおりである。
Figure 0004360444
強誘電性液晶組成物(FLC−3)と化合物群(I)及び(III)をそれぞれ少なくとも一種以上モノマー成分として配合し、高分子安定化強誘電性液晶組成物を調整した(MFLC−6)。高分子安定化強誘電性液晶組成物(MFLC−6)の各成分の構造あるいは内容と割合は下記のとおりである。
FLC-3 94部
I-1 1.2部
III-AA 4.8部
イルガキュア651 0.12部
ここで、化合物(I−1)は一般式(I)より選ばれた非液晶性モノマーであり、(III−AA)は一般式(III)より選ばれた液晶性モノマーである。
このようにして作製した高分子安定化強誘電性液晶組成物(MFLC−6)について、上述の高分子安定化液晶表示素子の作成方法によって高分子安定化強誘電性液晶組成物中のアクリレート化合物を重合させて液晶表示素子を作製した。このようにして得られた表示素子は室温で安定なV型のスイッチング挙動を示し、透過率50%の時の印加電圧(Vr50)は40℃で3V,20℃で3V,0℃で3Vと低い値で、かつ温度依存性が少ない良好なものであった。
(比較例12)
モノマー組成物として一般式(I)で表される化合物を含まないこと以外は実施例と同様に強誘電性液晶組成物(FLC−3)、(III−AA)及びイルガキュア651を下記の割合で混合し、比較用高分子安定化強誘電性液晶組成物(MFLC−C6)を作製した。
FLC-3 94部
III-AA 6部
イルガキュア651 0.12部
実施例15と同様にして高分子安定化強誘電性液晶組成物中のアクリレート化合物を重合させて液晶表示素子を作製し、Vr50を測定すると、40℃で6V,20℃で5V,0℃で4Vと、実施例10よりも電圧が高く、かつ、温度依存が大きく好ましくなかった。
表1に示す結果を表したグラフである。 表2に示す結果を表したグラフである。 表3に示す結果を表したグラフである。 表4に示す結果を表したグラフである。 表5に示す結果を表したグラフである。

Claims (16)

  1. 一般式(I−a)
    Figure 0004360444
    (式(I−a)中、Aは水素原子又はメチル基を表し、
    は単結合又は炭素原子数1から15のアルキレン基(該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキレン基中に存在する1個又は2個以上の水素原子はそれぞれ独立にフッ素原子、メチル基又はエチル基で置換されていても良い。)を表し、
    及びAはそれぞれ独立して水素原子又は炭素原子数1から18のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキル基中に存在する1個又は2個以上の水素原子はそれぞれ独立にハロゲン原子又は炭素原子数1から17のアルキル基で置換されていても良い。)を表し、
    及びAはそれぞれ独立して水素原子又は炭素原子数1から10のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキル基中に存在する1個又は2個以上の水素原子はそれぞれ独立にハロゲン原子又は炭素原子数1から9のアルキル基で置換されていても良い。)を表し、
    kは1から40を表し、
    、B及びBは、それぞれ独立して水素原子、炭素原子数1から10の直鎖もしくは分岐のアルキル基(該アルキル基中に存在する1個もしくは2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い)、又は一般式(I−b)
    Figure 0004360444
    (式(I−b)中、Aは水素原子又はメチル基を表し、
    は単結合又は炭素原子数1から15のアルキレン基(該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキレン基中に存在する1個又は2個以上の水素原子はそれぞれ独立にフッ素原子、メチル基又はエチル基で置換されていても良い。)で表される基を表す。ただし、2k+1個あるB、B及びBのうち前記一般式(I−b)で表される基となるものの個数は0〜3個である。)
    で表される重合性化合物であって、該重合性化合物の重合物のガラス転移温度が−100℃から25℃である重合性化合物(I)と、
    一般式(II−a)又は(II−b)
    Figure 0004360444
    (式(II−a)及び(II−b)中、R及びRはそれぞれ独立して炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子で置換されていても良い。)を表し、
    は1,4−フェニレン基、1,4−シクロへキシレン基又は1,3−ジオキサン−2,5−ジイル基(これらの基のうち1,4−フェニレン基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
    及びCはそれぞれ独立して1,4−フェニレン基、1,4−シクロへキシレン基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ピリダジン−3,6−ジイル基、1,3−ジオキサン−2,5−ジイル基、シクロヘキセン−1,4−ジイル基、デカヒドロナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基、1,3,4−チアジアゾール−2,5−ジイル又はインダン−2,5−ジイル基(これらの基のうち1,4−フェニレン基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基及びインダン−2,5−ジイル基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
    及びZはそれぞれ独立して、単結合、−CHCH−、−CHO−、−OCH−、−CHCHO−、−OCHCH−、−CHCHCHO−、−OCHCHCH−、−CH=CH−、−C≡C−、−CFO−、−OCF−、−COO−又は−OCO−を表し、
    はフッ素原子、塩素原子、トリフルオロメチル基、トリフルオロメトキシ基、ジフルオロメチル基、イソシアネート基又はシアノ基を表し、
    は、0、1又は2を表す。ただし、nが2を表す場合、複数あるC及びZは同じであっても異なっていても良い。)
    で表される化合物(II)と、
    一般式(III−a)
    Figure 0004360444
    (式(III−a)中、R及びRはそれぞれ独立して水素原子又はメチル基を表し、
    及びCはそれぞれ独立して1,4−フェニレン基、1,4−シクロへキシレン基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ピリダジン−3,6−ジイル基、1,3−ジオキサン−2,5−ジイル基、シクロヘキセン−1,4−ジイル基、デカヒドロナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基又はインダン−2,5−ジイル基(これらの基のうち1,4−フェニレン基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基及びインダン−2,5−ジイル基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
    及びZはそれぞれ独立して単結合又は炭素原子数1から15のアルキレン基(該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキレン基中に存在する1個又は2個以上の水素原子はそれぞれ独立にフッ素原子、メチル基又はエチル基で置換されていても良い。)を表し、
    は、単結合、−CHCH−、−CHO−、−OCH−、−CHCHO−、−OCHCH−、−CHCHCHO−、−OCHCHCH−、−CHCHOCO−、−COOCHCH−、−CHCHCOO−、−OCOCHCH−、−CH=CH−、−C≡C−、−CFO−、−OCF−、−COO−又は−OCO−を表し、
    は、0、1又は2を表す。ただし、nが2を表す場合、複数あるC及びZは同じであっても異なっていても良い。)、
    一般式(III−b)
    Figure 0004360444
    (式(III−b)中、R及びRはそれぞれ独立して水素原子又はメチル基を表し、Cは1,4−フェニレン基、1,4−シクロへキシレン基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ピリダジン−3,6−ジイル基、1,3−ジオキサン−2,5−ジイル基、シクロヘキセン−1,4−ジイル基、デカヒドロナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基又はインダン−2,5−ジイル基(これらの基のうち1,4−フェニレン基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基及びインダン−2,5−ジイル基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
    及びCはそれぞれ独立してベンゼン−1,2,4−トリイル基、ベンゼン−1,3,4−トリイル基、ベンゼン−1,3,5−トリイル基、シクロヘキサン−1,2,4−トリイル基、シクロヘキサン−1,3,4−トリイル基又はシクロヘキサン−1,3,5−トリイル基を表し、Z及びZはそれぞれ独立して単結合又は炭素原子数1から15のアルキレン基(該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキレン基中に存在する1個又は2個以上の水素原子はそれぞれ独立にフッ素原子、メチル基又はエチル基で置換されていても良い。)を表し、
    及びZそれぞれ独立して単結合、−CHCH−、−CHO−、−OCH−、−CHCHO−、−OCHCH−、−CHCHCHO−、−OCHCHCH−、−CHCHOCO−、−COOCHCH−、−CHCHCOO−、−OCOCHCH−、−CH=CH−、−C≡C−、−CFO−、−OCF−、−COO−又は−OCO−を表し、
    は、0、1又は2を表すが、nが2を表す場合、複数あるC及びZは同じであっても異なっていても良く、n及びnはそれぞれ独立して1、2及び3を表す。)
    及び一般式(III−c)
    Figure 0004360444
    (式(III−c)中、Rは水素原子又はメチル基を表わし、
    6員環T、T及びTはそれぞれ独立的に、
    Figure 0004360444
    のいずれか(ただしmは1から4の整数を表す。)を表し、
    は0又は1の整数を表し、
    及びYはそれぞれ独立して単結合、−CHCH−、−CHO−、−OCH−、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH−、−CHCHCHO−、−OCHCHCH−、−CH=CHCHCH−又は−CHCHCH=CH−を表し、
    は単結合、−COO−、又は−OCO−を表し、
    は炭素原子数1から18の炭化水素基を表す。)からなる群より選ばれる少なくとも1種の重合性化合物(III)と、
    一般式(IV−a)又は(IV−b)
    Figure 0004360444
    (式(IV−a)及び(IV−b)中、Rは炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子で置換されていても良い。)を表し、
    及びCはそれぞれ独立して1,4−フェニレン基、1,4−シクロへキシレン基、ピリミジン−2,5−ジイル基(これらの基のうち1,4−フェニレン基又は1,4−シクロへキシレン基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、シアノ基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
    は単結合、−CHCH−、−C≡C−、−CFO−、−COO−又は−OCO−を表し、
    及びYはそれぞれ独立して単結合、酸素原子、炭素数1〜14のアルキレン基、−OCH−、−COO−、−OCO−、−OCHCH−又は−OCOCH−を表し、
    は、0、1又は2を表す。ただし、nが2を表す場合、複数あるC及びZは同じであっても異なっていても良い。
    及びXはそれぞれ独立して、一般式(IV−c)から(IV−h)
    Figure 0004360444
    のいずれかの式で表される基を表す。ただし、
    式(IV−c)から(IV−h)中、*は炭素原子が不斉炭素原子であることを表し、
    、R、R、R及びRはそれぞれ独立して炭素原子数2から20のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)を表し、
    、X及びYはそれぞれ独立してフッ素原子、塩素原子、メチル基又はシアノ基を表し、
    及びYはそれぞれ独立して水素原子、フッ素原子、塩素原子、メチル基又はシアノ基を表し、
    及びYはそれぞれ独立してフッ素原子、塩素原子、メチル基又はシアノ基を表し、
    は単結合又はメチレン基を表し、
    は酸素原子又は−OC(Re1)(Re2)O−で表される基(ただし、Re1及びRe2はそれぞれ独立して水素原子又は炭素原子数1から10のアルキル基を表す。)を表し、
    はカルボニル基又は−CH(Rf1)−で表される基(ただし、Rf1は水素原子又は炭素原子数1から10のアルキル基を表す。)を表し、
    は−OCO−、−COO−、−CHO−又は−OCH−を表す。)
    で表されるカイラル化合物(IV)と、
    を含有し、該重合性化合物(III)の含有率が0.1%から8%であって、重合性化合物(III)と重合性化合物(I)との組成比が(III):(I)=1:1から49:1であることを特徴とする高分子安定化液晶組成物。
  2. 室温でスメクチック相を示す、請求項1記載の高分子安定化液晶組成物。
  3. スメクチック相がキラルスメクチックC相である請求項2記載の高分子安定化液晶組成物。
  4. キラルスメクチックC相が強誘電性液晶相である請求項3記載の高分子安定化液晶組成物。
  5. 液晶中にナノ粒子状に分散して低分子液晶を固定化した高分子安定化液晶表示素子、又は液晶中に三次元網目状の高分子鎖を形成させた高分子安定化液晶表示素子であって、該高分子の低分子液晶分散構造が請求項1から4の何れかに記載の高分子安定化液晶物に紫外線露光して低分子液晶の配向を高分子安定化させることを特徴とする液晶表示素子。
  6. 液晶中にナノ粒子又は三次元網目状高分子鎖を形成させて低分子液晶の配向を安定化させた液晶表示素子の製造方法であって、請求項1から4の何れかに記載の高分子安定化液晶組成物に交流電圧を印加しながら紫外線露光して得られる液晶表示素子の製造方法。
  7. 請求項6に記載の液晶表示素子の製造方法において、低分子液晶の液晶相がキラルスメクチックC相を示す温度で交流電圧を印加しながら紫外線露光することを特徴とする液晶表示素子の製造方法。
  8. 請求項6に記載の液晶表示素子の製造方法において、低分子液晶の液晶相がキラルスメクチックC相を示す温度で周波数500Hzから10kHzの交流電圧を印加しながら紫外線露光することを特徴とする液晶表示素子の製造方法。
  9. 請求項6に記載の液晶表示素子の製造方法において、低分子液晶の液晶相がキラルスメクチックC相を示す温度で周波数500Hzから10kHzの矩形波を印加しながら紫外線露光することを特徴とする液晶表示素子の製造方法。
  10. 請求項6に記載の液晶表示素子の製造方法において、低分子液晶の液晶相がキラルスメクチックC相を示す温度で周波数500Hzから10kHzの矩形波を電圧±15V以下で印加しながら紫外線露光することを特徴とする液晶表示素子の製造方法。
  11. 請求項6に記載の液晶表示素子の製造方法において、前記高分子安定化液晶組成物が示すスメクチックA相とキラルスメクチックC相との相転移温度をT(℃)とするとき、(T−40)℃以上(T+5)℃以下であってかつ35℃以上の温度にて該高分子安定化液晶組成物に交流電圧を印加しながら紫外線露光することを特徴とする液晶表示素子の製造方法。
  12. 請求項6から11の何れかに記載の液晶表示素子の製造方法において、紫外線を1000mJ/cm以上を露光することを特徴とする液晶表示素子の製造方法。
  13. 請求項6から12の何れかに記載の製造方法で得られた液晶表示素子。
  14. 請求項5又は13に記載の液晶表示素子において、薄膜トランジスター素子、メタルインシュレーターメタル素子、薄膜ダイオード素子等の能動素子により駆動することを特徴とする液晶表示素子。
  15. 前記能動素子と液晶画素電極との間に補助容量が並列接続されており、液晶画素電極の静電容量をCflcとし補助容量をCsとした場合、Cs/Cflsが0.1以上、3以下であることを特徴とする請求項14記載の液晶表示素子。
  16. フィールドシーケンシャル方式で駆動することを特徴とする請求項14又は15記載の液晶表示素子。
JP2008516653A 2007-03-30 2008-03-25 高分子安定化液晶組成物、液晶表示素子、液晶表示素子の製造方法 Active JP4360444B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007090521 2007-03-30
JP2007090521 2007-03-30
PCT/JP2008/055549 WO2008123235A1 (ja) 2007-03-30 2008-03-25 高分子安定化液晶組成物、液晶表示素子、液晶表示素子の製造方法

Publications (2)

Publication Number Publication Date
JP4360444B2 true JP4360444B2 (ja) 2009-11-11
JPWO2008123235A1 JPWO2008123235A1 (ja) 2010-07-15

Family

ID=39830728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008516653A Active JP4360444B2 (ja) 2007-03-30 2008-03-25 高分子安定化液晶組成物、液晶表示素子、液晶表示素子の製造方法

Country Status (7)

Country Link
US (1) US8405799B2 (ja)
EP (1) EP2138518B1 (ja)
JP (1) JP4360444B2 (ja)
KR (1) KR101384213B1 (ja)
CN (1) CN101646695B (ja)
TW (1) TWI477588B (ja)
WO (1) WO2008123235A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276197A (ja) * 2007-03-30 2008-11-13 Dic Corp 高分子安定化強誘電性液晶組成物及び液晶表示素子

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7563490B2 (en) * 2004-12-06 2009-07-21 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
KR101315198B1 (ko) 2005-09-15 2013-10-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시장치의 제조방법
JP5355879B2 (ja) * 2007-11-28 2013-11-27 日本板硝子株式会社 液晶調光素子とその製造方法
JP5787466B2 (ja) * 2009-02-16 2015-09-30 Dic株式会社 多官能重合性化合物
DE102010012900A1 (de) 2009-04-23 2010-11-25 Merck Patent Gmbh Flüssigkristallanzeige
JP5028452B2 (ja) * 2009-07-06 2012-09-19 株式会社ジャパンディスプレイイースト 液晶表示装置
TWI477589B (zh) * 2009-10-13 2015-03-21 Dainippon Ink & Chemicals Polymerizable compounds
CN102140351B (zh) * 2010-02-01 2014-09-03 群创光电股份有限公司 用于液晶显示器的液晶组合物
JP5720919B2 (ja) * 2010-02-04 2015-05-20 Dic株式会社 重合性化合物を含有する液晶組成物及びそれを使用した液晶表示素子
JP5533257B2 (ja) * 2010-05-25 2014-06-25 Jnc株式会社 重合性液晶化合物、組成物およびその重合体
DE102011105930A1 (de) * 2010-07-21 2012-01-26 Merck Patent Gmbh Polymerisierbare Mischungen und ihre Verwendung in Flüssigkristallanzeigen
KR101691616B1 (ko) * 2010-07-27 2017-01-02 삼성디스플레이 주식회사 표시패널 및 그 제조방법
US9798179B2 (en) 2010-10-14 2017-10-24 Merck Patent Gmbh Liquid crystal display device
US9557605B2 (en) 2010-10-14 2017-01-31 Merck Patent Gmbh Method of producing liquid crystal display device
KR20120042169A (ko) 2010-10-22 2012-05-03 삼성모바일디스플레이주식회사 액정 표시 장치 및 그 제조 방법
JP6056234B2 (ja) * 2011-07-27 2017-01-11 Jnc株式会社 液晶組成物および液晶表示素子
CN103827155B (zh) * 2011-09-15 2016-03-16 日产化学工业株式会社 聚合性液晶组合物和取向膜
TWI589677B (zh) * 2011-11-15 2017-07-01 迪愛生股份有限公司 鐵電性液晶組成物及鐵電性液晶顯示元件
CN104136576B (zh) * 2012-02-22 2020-10-16 默克专利股份有限公司 液晶介质
US9041880B2 (en) * 2012-02-29 2015-05-26 Shenzhen China Star Optoelectronics Technology Co., Ltd. Optical compensated bending mode liquid crystal display panel and method for manufacturing the same
JP2013208882A (ja) * 2012-03-30 2013-10-10 Fujifilm Corp 結晶性の高い液晶性化合物を含む積層フィルムの製造方法
KR101996503B1 (ko) * 2012-04-13 2019-07-05 삼성디스플레이 주식회사 액정표시장치 및 그 제조방법
CN102786936B (zh) * 2012-05-09 2015-03-25 深圳市华星光电技术有限公司 液晶介质组合物
TWI496874B (zh) 2012-06-26 2015-08-21 Ind Tech Res Inst 高分子安定化之光學等向性液晶配方及光學等向性液晶元件
US9150787B2 (en) * 2012-07-06 2015-10-06 Jnc Corporation Liquid crystal composition and liquid crystal display device
JP2014048428A (ja) * 2012-08-30 2014-03-17 Jsr Corp 感放射線性組成物、表示素子用硬化膜の形成方法、表示素子用硬化膜及び表示素子
WO2014044021A1 (zh) * 2012-09-24 2014-03-27 石家庄诚志永华显示材料有限公司 环庚烷衍生物及其制备方法与应用
CN102929044B (zh) * 2012-11-23 2015-08-26 深圳市华星光电技术有限公司 垂直配向型液晶面板
US8866981B2 (en) 2012-11-23 2014-10-21 Shenzhen China Star Optoelectronics Technology Co., Ltd. Vertical alignment liquid crystal panel
TWI721283B (zh) * 2013-02-06 2021-03-11 日商迪愛生股份有限公司 液晶顯示元件及其製造方法
TWI502056B (zh) * 2013-03-07 2015-10-01 Dainippon Ink & Chemicals Liquid crystal display device
US20160194561A1 (en) * 2013-05-31 2016-07-07 Dic Corporation Difluorophenyl liquid crystal composition
CN105518105B (zh) * 2013-09-06 2017-06-16 Dic株式会社 向列液晶组合物及使用该向列液晶组合物的液晶显示元件
KR101628288B1 (ko) 2013-09-30 2016-06-08 주식회사 엘지화학 음성 광학 분산도를 갖는 광학 소자 제조용 조성물 및 이로부터 제조된 광학 이방체
US20150138496A1 (en) 2013-11-18 2015-05-21 Nano And Advanced Materials Institute Limited Polymer Stabilized Electrically Suppressed Helix Ferroelectric Liquid Crystal Cell
WO2015174175A1 (ja) 2014-05-13 2015-11-19 Dic株式会社 ネマチック液晶組成物及びこれを用いた液晶表示素子
CN103995396B (zh) 2014-05-19 2016-06-29 京东方科技集团股份有限公司 一种具有多畴显示的液晶面板及其制备方法
CN104098725B (zh) 2014-06-05 2016-02-10 京东方科技集团股份有限公司 一种组合物、取向层及其制备方法、液晶取向单元、液晶显示面板
KR102230536B1 (ko) * 2014-06-26 2021-03-22 엘지디스플레이 주식회사 초기 투명 디스플레이 장치와 이의 구동 방법
EP3169750A1 (en) * 2014-07-18 2017-05-24 Merck Patent GmbH Liquid-crystalline medium and high-frequency components comprising same
KR102477725B1 (ko) * 2014-11-06 2022-12-14 코우리츠다이가쿠호우징 효고켄리츠다이가쿠 광 반응성 액정 조성물, 조광 소자, 조광 소자의 제조 방법
CN104597661B (zh) * 2014-11-21 2017-06-27 深圳市华星光电技术有限公司 垂直配向液晶显示器及其制作方法
WO2016104165A1 (ja) 2014-12-25 2016-06-30 Dic株式会社 ネマチック液晶組成物及びこれを用いた液晶表示素子
EP3103855A1 (en) * 2015-06-11 2016-12-14 Merck Patent GmbH Liquid-crystalline medium
WO2017026272A1 (ja) * 2015-08-11 2017-02-16 Dic株式会社 液晶表示素子
JP2017062396A (ja) * 2015-09-25 2017-03-30 旭硝子株式会社 光学素子の製造方法および光学素子
WO2017180923A1 (en) 2016-04-13 2017-10-19 Nitto Denko Corporation Liquid crystal compositions, mixtures, elements, and dimmable devices
KR20170136029A (ko) * 2016-05-30 2017-12-11 삼성디스플레이 주식회사 액정 표시 장치 및 이의 제조 방법
US11003008B2 (en) 2016-08-04 2021-05-11 Nitto Denko Corporation Heterocyclic liquid crystal composition, reverse-mode polymer dispersed liquid crystal element, and associated selectively dimmable device
CN106154618A (zh) * 2016-08-31 2016-11-23 张家港康得新光电材料有限公司 调光功能膜、调光功能组件及调光功能器件
WO2018068023A1 (en) 2016-10-07 2018-04-12 Nitto Denko Corporation Liquid crystal composition, liquid crystal mixture, reverse-mode polymer dispersed liquid crystal element, and associated selectively dimmable device
JP6932184B2 (ja) 2017-04-25 2021-09-08 富士フイルム株式会社 液晶組成物、光吸収異方性膜、積層体および画像表示装置
WO2019028439A1 (en) 2017-08-04 2019-02-07 Nitto Denko Corporation HETEROCYCLIC LIQUID CRYSTAL COMPOSITION, DISPERSED LIQUID CRYSTAL ELEMENT IN INVERSE MODE POLYMER, AND SELECTIVELY VARIABLE INTENSITY DEVICE
WO2019131810A1 (ja) * 2017-12-27 2019-07-04 日産化学株式会社 ゼロ面アンカリング膜の製造方法及び液晶表示素子
KR102173872B1 (ko) * 2019-09-16 2020-11-04 계명대학교 산학협력단 홀 기반의 플라스틱 광섬유 센서
TW202138409A (zh) * 2020-04-06 2021-10-16 日商Dic股份有限公司 硬化性樹脂、硬化性樹脂組成物及硬化物
CN112979874B (zh) * 2021-02-26 2021-11-12 北京大学 含萜类化合物的聚合物分散液晶薄膜的制备方法和应用

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196285A (ja) 1982-05-12 1983-11-15 Magune Kk カプセル化液晶物質
JP2513607B2 (ja) 1985-08-02 1996-07-03 富士通株式会社 液晶組成物
JP2797114B2 (ja) * 1989-04-28 1998-09-17 大日本インキ化学工業株式会社 光学活性ラクトン誘導体,その中間体,液晶組成物及び液晶表示素子
US5867238A (en) * 1991-01-11 1999-02-02 Minnesota Mining And Manufacturing Company Polymer-dispersed liquid crystal device having an ultraviolet-polymerizable matrix and a variable optical transmission and a method for preparing same
JP3489129B2 (ja) 1992-03-30 2004-01-19 大日本インキ化学工業株式会社 液晶デバイス
DE69306201T2 (de) 1992-09-01 1997-05-28 Philips Electronics Nv Einrichtung zur optischen Modulation
JPH0913036A (ja) 1995-06-30 1997-01-14 Kashima Sekiyu Kk 強誘電性液晶組成物及び液晶素子
JPH09111239A (ja) 1995-10-19 1997-04-28 Hoechst Ind Kk 強誘電性液晶組成物
JP3771619B2 (ja) 1996-01-31 2006-04-26 駿介 小林 液晶表示素子
JPH09211463A (ja) 1996-01-31 1997-08-15 Shunsuke Kobayashi 液晶表示素子の製造方法
JP4334028B2 (ja) 1997-06-30 2009-09-16 駿介 小林 液晶表示素子の製造方法
JP2000226582A (ja) 1999-02-09 2000-08-15 Aventis Res & Technol Gmbh & Co Kg 電傾効果型液晶組成物および素子
DE60137000D1 (de) * 2000-01-21 2009-01-29 Dainippon Ink & Chemicals Polymerisierbare zusammensetzung mit flüssigkristallphase und mit dieser zusammensetzung hergestellter optisch anisotropischer film
JP2002265945A (ja) 2001-03-06 2002-09-18 Japan Science & Technology Corp 調光用液晶光学材料
JP4058480B2 (ja) 2001-03-12 2008-03-12 日東電工株式会社 液晶性(メタ)アクリレート化合物、該化合物を含有する液晶組成物およびこれらを用いた光学フィルム
JP2003066422A (ja) 2001-08-22 2003-03-05 Fuji Photo Film Co Ltd 液晶表示用プラスチック基板
JP2003082352A (ja) 2001-09-17 2003-03-19 Fuji Photo Film Co Ltd 液晶組成物、選択反射膜、及びその製造方法
JP2003248226A (ja) 2002-02-25 2003-09-05 Matsushita Electric Ind Co Ltd 液晶表示装置、及びその製造方法
JP4105890B2 (ja) * 2002-04-19 2008-06-25 富士フイルム株式会社 光学活性ポリエステル/アミド、光反応型キラル剤、液晶組成物、液晶カラーフィルター、光学フィルム及び記録媒体、並びに液晶の螺旋構造を変化させる方法、液晶の螺旋構造を固定化する方法
JP4461692B2 (ja) * 2003-03-13 2010-05-12 Dic株式会社 重合性液晶組成物及び光学異方体
JP2005010202A (ja) 2003-06-16 2005-01-13 Nec Corp 液晶パネル、該液晶パネルを用いた液晶表示装置および該液晶表示装置を搭載した電子機器
JP4539108B2 (ja) * 2004-02-16 2010-09-08 Dic株式会社 重合性化合物、及び重合性組成物
WO2005116165A1 (ja) * 2004-05-31 2005-12-08 Dainippon Ink And Chemicals, Inc. 重合性液晶組成物及び光学異方体
JP4385997B2 (ja) 2004-05-31 2009-12-16 Dic株式会社 重合性液晶組成物及び光学異方体
JP5099396B2 (ja) * 2004-08-06 2012-12-19 Dic株式会社 光散乱型液晶デバイス
JP4662130B2 (ja) * 2005-03-30 2011-03-30 Dic株式会社 高分子分散型液晶表示素子用組成物及び高分子分散型液晶表示素子
JP2006348133A (ja) 2005-06-15 2006-12-28 Asahi Glass Co Ltd 液晶/高分子複合体および光学素子
JP5055724B2 (ja) * 2005-08-11 2012-10-24 Dic株式会社 高分子分散型液晶表示素子用組成物及び高分子分散型液晶表示素子
JP4911336B2 (ja) * 2005-08-31 2012-04-04 Dic株式会社 高分子分散型液晶表示素子
JP4929663B2 (ja) * 2005-09-29 2012-05-09 Dic株式会社 重合性化合物の製造方法
JP5098355B2 (ja) * 2006-02-17 2012-12-12 Dic株式会社 重合性液晶組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276197A (ja) * 2007-03-30 2008-11-13 Dic Corp 高分子安定化強誘電性液晶組成物及び液晶表示素子

Also Published As

Publication number Publication date
KR101384213B1 (ko) 2014-04-10
EP2138518A4 (en) 2013-04-10
TWI477588B (zh) 2015-03-21
US8405799B2 (en) 2013-03-26
JPWO2008123235A1 (ja) 2010-07-15
TW200907031A (en) 2009-02-16
EP2138518B1 (en) 2015-09-23
EP2138518A1 (en) 2009-12-30
US20100149446A1 (en) 2010-06-17
WO2008123235A1 (ja) 2008-10-16
CN101646695A (zh) 2010-02-10
KR20100014375A (ko) 2010-02-10
CN101646695B (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4360444B2 (ja) 高分子安定化液晶組成物、液晶表示素子、液晶表示素子の製造方法
JP5240486B2 (ja) 高分子安定化液晶表示素子用組成物及び高分子分散型液晶表示素子
JP5040400B2 (ja) 高分子安定化液晶組成物および高分子安定化液晶表示素子
JP5509569B2 (ja) 高分子安定化強誘電性液晶組成物、及び液晶素子及び当該表示素子の製造方法
JP5560532B2 (ja) 高分子安定化強誘電性液晶組成物及び液晶表示素子
JP5309645B2 (ja) 高分子安定化強誘電性液晶組成物及び液晶表示素子
TWI774891B (zh) 液晶組成物及液晶顯示元件
JP5505566B2 (ja) 液晶表示素子
JP5725260B2 (ja) 液晶光変調素子
JP2002145830A (ja) 重合性液晶化合物、該化合物を含有する重合性液晶組成物及びその重合体
WO2013179960A1 (ja) 光学的に等方性の液晶媒体及び光素子
JP6318528B2 (ja) 液晶・ポリマー複合材料、光学素子、及び光学素子の製造方法、並びに、液晶・ポリマー複合材料の製造方法
JP5948832B2 (ja) 単官能性の一環モノマーを含有する光学的等方性の液晶組成物および光素子
JP5453739B2 (ja) 液晶素子
WO2018003658A1 (ja) 光学的に等方性の液晶媒体および光素子
JP5892291B2 (ja) ジフルオロフェニル液晶組成物
JP7092311B2 (ja) 重合性液晶組成物及び液晶表示素子
JP5239194B2 (ja) 液晶表示素子およびその製造方法
JPWO2018216485A1 (ja) 液晶表示素子およびその製造方法
JP7056061B2 (ja) 液晶媒体及び液晶表示素子の製造方法
JP4992198B2 (ja) 液晶表示素子および液晶表示素子の製造方法
JP2020200429A (ja) 重合性化合物含有液晶組成物及び液晶表示素子
JP2012053491A (ja) 液晶表示素子および液晶表示素子の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4360444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250