JP4359123B2 - 産業車両の油圧制御装置 - Google Patents

産業車両の油圧制御装置 Download PDF

Info

Publication number
JP4359123B2
JP4359123B2 JP2003387040A JP2003387040A JP4359123B2 JP 4359123 B2 JP4359123 B2 JP 4359123B2 JP 2003387040 A JP2003387040 A JP 2003387040A JP 2003387040 A JP2003387040 A JP 2003387040A JP 4359123 B2 JP4359123 B2 JP 4359123B2
Authority
JP
Japan
Prior art keywords
oil passage
valve
pilot
pressure
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003387040A
Other languages
English (en)
Other versions
JP2005145670A (ja
Inventor
丈治 松崎
敬之助 市川
滋人 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Nishina Industrial Co Ltd
Original Assignee
Toyota Industries Corp
Nishina Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Nishina Industrial Co Ltd filed Critical Toyota Industries Corp
Priority to JP2003387040A priority Critical patent/JP4359123B2/ja
Publication of JP2005145670A publication Critical patent/JP2005145670A/ja
Application granted granted Critical
Publication of JP4359123B2 publication Critical patent/JP4359123B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Forklifts And Lifting Vehicles (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

本発明は、例えばフォークリフトにおいてフォーク昇降動作用のリフトシリンダを作動させるための産業車両の油圧制御装置に関するものである。
従来、上記油圧制御装置として、昇降レバーによって操作されるリフトコントロールバルブとリフトシリンダとを連通する主流路上にオペレートチェック弁及びフローレギュレータを設け、また、リフトコントロールバルブのスプールに可変絞りを設けたものがある(例えば、特許文献1参照。)。
この特許文献1の油圧制御装置では、スプールが中立ポジション又は上昇ポジションに配置されているときには、リフトコントロールバルブによって背圧室を封止されたオペレートチェック弁が主流路を遮断する向きに付勢される。また、フローレギュレータの第2圧力室にポンプ圧が導入され、その弁体が全開位置に保持される。一方、スプールが下降ポジションに配置されているときには、背圧室にタンク圧が導入されたオペレートチェック弁が、リフトシリンダの油圧によって主流路を開通させる。また、フローレギュレータの第2圧力室にタンク圧が導入され、可変絞りの前後差圧が一定値以下となるように弁体が変位してリフトシリンダから流出する作動油の流量を調節する。
特開2002−327706号公報
しかしながら、特許文献1の上記油圧制御装置では、リフトコントロールバルブのスプールが停止ポジションから下降ポジションに切り換えられたときに、フローレギュレータの弁体が全開位置から閉側に変位する。このため、スプールが下降ポジションに切り換えられてリフトシリンダの油圧がフローレギュレータに加わっても、弁体が全開位置から全閉位置側の所定位置まで変位する間は、フローレギュレータがリフトシリンダから排出される作動油の流量を調節できない。その結果、昇降操作レバーを中立位置から下降位置に切り換えたとき、フォークが下降開始時において一瞬急激に下降する虞がある。
本発明は、上記課題を解決するためになされたものであって、その目的は、例えばフォークリフトにおいて昇降レバーを中立位置から下降位置に切り換えたときに、フォークが下降開始時に急激に下降し難いようにすることができる産業車両の油圧制御装置を提供する。
上記目的を達成するため、請求項1に記載の発明は、単動シリンダに給排油路で接続された方向切替弁が、油圧ポンプから単動シリンダに作動油を供給する供給位置、単動シリンダから油タンクに作動油を排出する排出位置、及び、単動シリンダに対して作動油を給排しない中立位置に切り換えられる油圧制御装置におけるものである。この油圧制御装置は、開閉弁、ばね及び弁制御手段を備える。開閉弁は、前記給排油路を、前記単動シリンダ側のシリンダ側油路と、前記方向切替弁側の弁側油路とに分断可能に設けられ、シリンダ側油路と弁側油路との連通開度を調節可能に変位するとともに、シリンダ側油路における油圧と弁側油路における油圧とが連通開度を大きくする側に変位するように加えられる。ばねは、前記シリンダ側油路と弁側油路との連通を遮断する側に変位させるように前記開閉弁を付勢する。弁制御手段は、前記方向切替弁が中立位置及び供給位置のときには、前記シリンダ側油路の油圧を、シリンダ側油路と弁側油路との連通を遮断する向きに作用するように前記開閉弁の背圧室に加え、また、方向切替弁が排出位置のときには、前記シリンダ側油路の油圧よりも低いパイロット圧を前記開閉弁の背圧室に加えるとともに、弁側油路の油圧が大きいほどパイロット圧の大きさをより大きく調節する。
請求項1に記載の発明には、次の作用がある。方向切替弁が中立位置のときには、弁制御手段が、シリンダ側油路と弁側油路との連通を遮断する向きに作用するようにシリンダ側油路の油圧を開閉弁の背圧室に加える。従って、方向切替弁が中立位置のときには、シリンダ側油路と弁側油路との連通を遮断する閉位置に開閉弁を保持することができるため、単動シリンダからの作動油の排出を規制し、単動シリンダの没入動作を規制することができる。方向切替弁が中立位置から排出位置に切り換えられると、弁制御手段が、シリンダ側油路の油圧よりも低いパイロット圧を開閉弁の背圧室に加える。このため、開閉弁を閉位置から開き側に変位させることができ、単動シリンダから油タンクに作動油を排出することができる。そして、方向切替弁が排出位置のときには、弁制御手段が、弁側油路における油圧が大きいほどより大きなパイロット圧を開閉弁の背圧室に加える。このため、弁側油路から油タンクへの流出量に対応した弁側油路の油圧に応じて、開閉弁の位置が調節され、シリンダ側油路から弁側油路へ流入する作動油の流量が調節されることで、弁側油路の油圧が所定範囲の設定圧に保持される。従って、弁側油路から油タンクに連通する流路の大きさを方向切替弁で調節しても、弁側油路の油圧を所定範囲内の設定圧に調節することができるので、その流路の大きさに応じた流量の作動油を単動シリンダから排出させることができる。また、方向切替弁が中立位置のときには、開閉弁がシリンダ側油路と弁側油路との連通を遮断する閉位置に保持され、中立位置から排出位置に切り換えられたときに閉位置から開き側に変位する。このため、方向切替弁が中立位置から排出位置に切り換えられたときに、単動シリンダから急激に作動油が排出されないので、没入動作開始時に単動シリンダが一瞬急激に没入動作しない。
また、請求項1に記載の発明において、前記弁制御手段は、パイロット圧生成手段、パイロット圧調節手段及び切替手段とからなる。パイロット圧生成手段は、前記シリンダ側油路の油圧よりも低いパイロット圧を生成する。パイロット圧調節手段は、前記弁側油路の油圧が大きいほど前記パイロット圧をより大きく調節する。切替手段は、前記方向切替弁が中立位置及び供給位置のときには前記シリンダ側油路の油圧を前記開閉弁の背圧室に加え、また、排出位置のときには前記パイロット圧を開閉弁の背圧室に加える。
また、請求項に記載の発明には、次の作用がある。パイロット圧生成手段が生成するパイロット圧の大きさを、パイロット圧調節手段が弁側油路の油圧が大きいほどより大きくする。そして、方向切替弁が中立位置及び供給位置のときには、シリンダ側油路の油圧が、シリンダ側油路と弁側油路との連通を遮断する向きに作用するように前記開閉弁の背圧室に加えられ、また、排出位置のときには、同じくパイロット圧が開閉弁の背圧室に加えられる。
また、請求項に記載の発明において、前記パイロット圧生成手段は、前記シリンダ側油路の油圧が大きいほど前記パイロット圧をより大きくする。
また、請求項に記載の発明には、次の作用がある。方向切替弁が中立位置から排出位置に切り換えられ、開閉弁が閉位置から開き側に変位して、シリンダ側油路から弁側油路に作動油が流れたとき、単動シリンダを没入動作させる負荷が大きくシリンダ側油路の油圧が高いほど、シリンダ側油路から弁側油路に流出する作動油の流量がより多くなろうとする。ここで、シリンダ側油路の油圧が高いほどパイロット圧がより高くされるため、弁側油路から油タンクへ連通する流路の大きさが同じであっても、開閉弁がより閉じ側に調節される結果、弁側油路の油圧は、負荷の大きさに関係なく所定範囲内の設定圧に保持される。従って、単動シリンダに加わる負荷の大きさが異なっても、弁側油路の油圧が所定範囲内の設定圧に調節される。このため、弁側油路から油タンクに連通する流路の大きさが同じであれば、単動シリンダから油タンクに排出される作動油の流量がほぼ一定となる。
また、請求項に記載の発明において、前記方向切替弁はスプール弁であって、前記パイロット圧調節手段は、それぞれ以下のようなスプール、パイロットプランジャ及びパイロットスプリングとによって構成される。スプールは、前記弁側油路が連通するパイロット室を備えるとともに、前記パイロット圧生成手段が生成するパイロット圧を内部に導入する第1通路と、タンク圧を内部に導入する第2通路とを備えている。パイロットプランジャは、前記スプール内に設けられたプランジャ室内に変位可能に収容され、その変位位置に応じて前記第1通路と第2通路とを連通する流路の連通開度を調節可能であるとともに、前記弁側油路の油圧が前記パイロット室を通じて前記連通開度を小さくする側に変位するように加えられる。パイロットスプリングは、前記第1通路と第2通路との連通開度を大きくする側に変位させるように前記パイロットプランジャを付勢する。
また、請求項に記載の発明には、次の作用がある。パイロット圧調節手段が、方向切替弁のスプールと、その内部に設けられたパイロットプランジャ及びパイロットスプリングとによって構成されるので、スプールの外部に設けた場合よりも油圧制御装置が小型になる。
また、請求項に記載の発明において、前記パイロット圧生成手段は、前記シリンダ側油路を油タンクに連通するためのパイロット油路上に設けられたオリフィスからなる
また、請求項に記載の発明には、次の作用がある。シリンダ側油路をタンクに連通するパイロット油路上に設けられたオリフィスによって、シリンダ側油路のシリンダ圧よりも低く、かつ、シリンダ圧が大きいほどより大きなパイロット圧がパイロット油路内に生成される。
請求項2に記載の発明は、請求項1に記載の発明において、前記切替手段は前記方向切替弁であって、該方向切替弁は、排出位置のときには前記パイロット油路を油タンクに連通させ、また、中立位置及び供給位置のときには前記パイロット油路を油タンクから遮断する。
請求項2に記載の発明には、請求項1に記載の発明の作用に加えて次の作用がある。方向切替弁がオリフィスの下流でパイロット油路を油タンクに連通又は遮断することによって、開閉弁に対して加わる油圧が切り換えられる。
請求項に記載の発明は、請求項に記載の発明において、前記パイロット油路上には、前記オリフィスよりも油タンク側においてパイロット油路を開閉する切替弁が設けられている。該切替弁は、前記方向切替弁が中立位置及び供給位置のときには前記パイロット油路を閉じ、排出位置のときには前記パイロット油路を開くように制御される。
請求項に記載の発明には、請求項に記載の発明の作用に加えて次の作用がある。延出した単動シリンダを負荷が加わっている状態のままにしても、シリンダ側油路からパイロット油路に導入されている作動油が切替弁から先に漏れず、方向切替弁を通じて油タンクに漏れない。従って、負荷が加わったままの単動シリンダが自然に没入動作し難い。
本発明によれば、例えばフォークリフトトラックにおいてリフトシリンダを昇降制御してフォークを下降させるときの下降速度を昇降レバーの操作位置に応じて調節することができ、しかも、昇降レバーを中立位置から下降位置に切り換えたときに、フォークが下降開始時に急激に下降し難い産業車両の油圧制御装置を提供することができる。
以下、本発明を、フォークリフトトラックにおけるフォーク昇降用リフトシリンダの油圧制御装置に具体化した一実施形態を図1〜図8に従って説明する。
図1に示すように、フォークリフトトラックに設けられた油圧制御装置10は、単動シリンダとしてのリフトシリンダ11a,11bを昇降制御するためのリフトシリンダ制御回路12を備えている。また、油圧制御装置10は、図示しないマストを前傾制御するための図示しないティルトシリンダ制御回路、及び、同じくパワーステアリング系油圧回路を備えている。
リフトシリンダ制御回路12、ティルトシリンダ制御回路及びパワーステアリング系油圧回路には、油圧ポンプ13が供給する作動油がフローディバイダ14を介して供給される。
フローディバイダ14は、油圧ポンプから供給される作動油から一定の油量をパワーステアリング系油圧回路に供給し、その余剰油量をリフトシリンダ制御回路12及びティルトシリンダ制御回路に供給油路15を通じて供給する。
供給油路15は、圧力補償弁16が設けられたバイパス油路17を通じて、油タンク18に連通する戻し油路19に連通されている。
圧力補償弁16は、供給油路15における油圧、すなわち、リフトシリンダ制御回路12及びティルトシリンダ制御回路に供給する作動油の油圧を、各油圧回路の油圧シリンダに加わる負荷の大きさに応じて調節する。圧力補償弁16には、各油圧回路から、負荷の大きさに対応した油圧の作動油が負荷検出油路20を通じて供給される。圧力補償弁16は、供給油路15における油圧と、負荷検出油路20における油圧とによって内部パイロット操作され、供給油路15からバイパス油路17を通じて戻し油路19に還流する作動油の流量を調節する。
なお、負荷検出油路20における油圧は、リフトシリンダ制御回路12及びティルトシリンダ制御回路においてシリンダを作動させていないときにはほぼタンク圧となる。また、いずれか一方又は両方の油圧回路でシリンダを作動させているときには、その負荷に応じた大きさとなる。圧力補償弁16は、負荷検出油路20の油圧がタンク圧のときには、供給油路15から戻し油路19に作動油を絞りなしで還流させることにより、油圧回路における圧力損失を抑制する。また、圧力補償弁16は、負荷検出油路20における油圧がタンク圧よりも大きいときには、負荷の大きさに応じた絞りを通じて還流させることにより、供給油路15における油圧を負荷の大きさに応じて昇圧させる。また、圧力補償弁16に負荷検出油路20を通じて供給される作動油の油圧は、リリーフ弁21によって所定のリリーフ圧以下に制限される。
(リフトシリンダ制御回路)
図1に示すように、リフトシリンダ制御回路12は、方向切替弁としてのリフトコントロールバルブ30、ロジック要素弁31、及び、切替弁としての電磁切替弁32等によって構成されている。
リフトコントロールバルブ30は、負荷チェック弁33を介して供給油路15に接続され、また、戻し油路19に接続されている。また、リフトコントロールバルブ30は、チェック弁34を介して負荷検出油路20に接続されている。また、リフトコントロールバルブ30は、給排油路35を通じてリフトシリンダ11a,11bに連通されている。さらに、リフトコントロールバルブ30には、リリーフ弁21のリリーフ圧を切り換えるためのリリーフ圧設定油路36が接続されている。
リフトコントロールバルブ30は、供給油路15から導入した作動油を、給排油路35を通じてリフトシリンダ11a,11bに供給し、また、リフトシリンダ11a,11bから給排油路35を通じて排出された作動油を、戻し油路19を通じて油タンク18に戻す。
ロジック要素弁31は給排油路35上に設けられ、フォークの停止時には、リフトシリンダ11a,11bからの作動油の排出を規制し、下降時には、リフトシリンダ11a,11bから排出される作動油の流量を制御する。
電磁切替弁32は、リフトコントロールバルブ30とロジック要素弁31とを連通するパイロット油路37上に設けられ、リフトコントロールバルブ30の操作位置に応じてロジック要素弁31の作動を制御する。
図2に示すように、リフトコントロールバルブ30、ロジック要素弁31、電磁切替弁32及びチェック弁34は、共通のバルブボディ40に設けられたバルブユニット41とされている。
リフトコントロールバルブ30は、バルブボディ40に設けられたスプール孔42に、図示しないリフトレバーの操作によって中立位置、上昇領域(供給位置)又は下降領域(排出位置)に切り換えられるスプール43を備えている。そして、上昇領域におけるスプール43の位置に応じてフォークの上昇速度が変化する。また、下降領域におけるスプール43の位置に応じてフォークの下降速度が変化する。
バルブボディ40には、供給油路15が連通するポートP、戻し油路19が連通するポートT1,T2、給排油路35及び負荷検出油路20が連通するポートL、パイロット油路37が連通するポートB、及び、リリーフ圧設定油路36が連通するポートRが設けられている。
図2に示すように、中立位置に配置されたスプール43は、ポートLをポートP,T1のいずれにも連通しない。一方、図3に示すように、上昇領域におけるある上昇位置に配置されたスプール43は、その第1ランド44を介してポートLにポートPを連通し、第2ランド45を介してポートPをポートRに連通する。このとき、スプール43は、第1ランド44に隣接する上昇側ノッチ部63により、上昇領域における操作位置に応じて、ポートLとポートPとの流路断面積を調節する。
また、図4に示すように、下降領域の入口である下降開始位置に配置されたスプール43は、中立位置と同じくポートLをポートP,T1のいずれにも連通しない。さらに、図5に示すように、下降開始位置からさらに下降側に進んだある下降位置、又は、図6に示すように、最も進んだ最大下降位置に配置されたスプール43は、ポートLをポートT1に連通する。このとき、スプール43は、図5に示すように、第1ランド44に隣接する下降側ノッチ部64により、下降領域における操作位置に応じて、ポートLとポートT1との流路断面積を調節する。
また、図8に示すように、スプール43の内部にはプランジャ室46が設けられ、このプランジャ室46にはパイロットプランジャ47が収容されている。プランジャ室46は、パイロット室48を介して上昇側ノッチ部63の底面に連通されている。
パイロットプランジャ47は、プランジャ室46内に設けられたパイロットスプリング49によってパイロット室48側に付勢されているとともに、パイロット室48を通じてポートLから供給される弁側油路61の油圧によってパイロットスプリング49側に付勢される。
また、プランジャ室46には、スプール43が下降領域のときに、図4〜図6に示すように、スプール43に設けられた第1通路50を通じてポートBが連通され、また、同じく第2通路51を通じてポートT2が連通される。そして、第1通路50と第2通路51とは、パイロットプランジャ47に設けられたランド52を介して連通可能である。すなわち、スプール43が下降領域のときには、パイロット油路37が戻し油路19に連通可能とされる。さらに、パイロットプランジャ47は、パイロット室48を通じて加えられる弁側油路61の油圧により、第1通路50と第2通路51とを連通する流路の連通開度を小さく側に変位する。また、パイロットプランジャ47は、パイロットスプリング49の付勢力により、第1通路50と第2通路51との連通開度を大きくする側に変位する。
また、パイロットプランジャ47によってパイロットスプリング49側に形成されるパイロット用背圧室53には、第2通路51と、パイロットプランジャ47の内部に設けられた通路54とにより、スプール43の操作位置に関係なくポートT2が連通される。すなわち、パイロット用背圧室53には、常にタンク圧が導入される。
(ロジック要素弁31)
ロジック要素弁31は、図2〜図6に示すように、バルブボディ40内の給排油路35上に設けられた弁口56を開閉する開閉弁としてのプランジャ57と、このプランジャ57を閉じ側に付勢するばねとしてのプランジャスプリング58と、プランジャスプリング58が配設された背圧室59とによって構成されている。背圧室59には、プランジャ57を閉じ側に変位させるように付勢するための作動油が導入される。
プランジャ57は、バルブボディ40内における給排油路35を、リフトシリンダ11a,11b側のシリンダ側油路60と、スプール43側の弁側油路61とに分断可能に設けられ、両油路60,61間の連通開度をその変位位置に応じて調節可能である。
プランジャ57には、図7に示すように、円環状受圧面57aに作用するシリンダ側油路60の油圧によって開き側に変位する力が矢印の向きに加わる。また、プランジャ57には、円錐状受圧面57bを含む弁口56の開口面積に等しい受圧面に作用する弁側油路61の油圧によっても開き側に変位する力が矢印の向きに加わる。
なお、シリンダ側油路60における作動油の油圧は、リフトシリンダ11a,11bの図示しない油室における油圧とほぼ同じである。一方、弁側油路61における作動油の油圧は、スプール43が上昇領域に配置されているときには、ポートPがポートLに連通されることから、供給油路15から導入される作動油の油圧となる。また、スプール43が下降領域に配置されているときには、油圧制御装置10が制御する所定範囲内の設定圧となる。
背圧室59には、パイロット油路37上に設けられたオリフィス62を介してシリンダ側油路60が連通されている。オリフィス62は、スプール43が下降領域に配置されてシリンダ側油路60が戻し油路19に連通されたときに、シリンダ側油路60の油圧よりも低いパイロット圧をパイロット油路37内に生成する。このパイロット圧は、シリンダ側油路60の油圧、すなわち、フォークの負荷が大きいほどより大きくなる。
本実施形態では、パイロット油路37及びオリフィス62がパイロット圧生成手段を構成し、スプール43、パイロットプランジャ47、パイロット室48及びパイロットスプリング49等がパイロット圧調節手段を構成する。また、スプール43が切替手段である。そして、パイロット圧生成手段、パイロット圧調節手段及び切替手段が弁制御手段を構成する。
(電磁切替弁32)
電磁切替弁32は、図2〜図6に示すように、オリフィス62の下流側においてパイロット油路37を連通又は遮断する。電磁切替弁32は、バルブボディ40に組み付けられた一対のリミットスイッチ55a,55bの作動状態に基づき、図示しない制御装置によって制御される。そして、スプール43が中立位置から上昇領域に変位すると、図3に示すように、リミットスイッチ55aがオフのままでリミットスイッチ55bがオフからオンとなる。また、中立位置から下降領域に変位すると、図4に示すように、同じくリミットスイッチ55bがオフのままでリミットスイッチ55aがオフからオンとなる。そして、両リミットスイッチ55a,55bの作動状態に基づいてスプール43の操作位置が、中立位置、上昇領域及び下降領域のいずれであるかが検出され、この検出結果に基づいて電磁切替弁32への通電が行われる。
電磁切替弁32は、スプール43が中立位置又は上昇領域のときに非通電とされ、オリフィス62の下流側でパイロット油路37を遮断する。これにより、電磁切替弁32で遮断された位置より上流側のパイロット油路37の油圧をシリンダ側油路60の油圧と同じにし、背圧室59にシリンダ側油路60の油圧が導入されるようにする。また、スプール43が下降領域のときには通電され、パイロット油路37を介してシリンダ側油路60を戻し油路19に連通させる。これにより、シリンダ側油路60からパイロット油路37を通じて戻し油路19に作動油を流出させてパイロット油路37内にパイロット圧を生成し、背圧室59にパイロット圧が導入されるようにする。
次に、以上のように構成された本実施形態の動作について説明する。
(フォーク停止時)
昇降レバーが中立位置とされ、図2に示すようにスプール43が中立位置に配置されているときには、ポートP及びポートT1が共にポートLに連通されないため、弁側油路61がほぼタンク圧となる。また、電磁切替弁32が非通電とされ、パイロット油路37が遮断されているため、プランジャ57の背圧室59における油圧がシリンダ側油路60の油圧となる。
このため、プランジャ57を閉じ側に変位させようとする背圧室59の油圧とプランジャスプリング58の付勢力による力が、円環状受圧面57aに作用してプランジャ57を開き側に変位させようとするシリンダ側油路60の油圧による力を上回るため、プランジャ57が閉位置に保持される。この結果、シリンダ側油路60から弁側油路61への作動油の流れが遮断されてリフトシリンダ11a,11bの没入動作が規制されるため、フォークが所定高さに保持される。
(フォーク上昇時)
昇降レバーが中立位置から上昇側に操作され、図3に示すようにスプール43が上昇領域に配置されると、第1ランド44がポートLにポートPを連通するため、弁側油路61に供給油路15が連通される。すると、供給油路15から弁側油路61に作動油が供給され、チェック弁34を通って負荷検出油路20から圧力補償弁16にも作動油が供給される。このため、圧力補償弁16が供給油路15からバイパス油路17を通じて油タンク18に還流させる作動油の流量を制限するため、供給油路15から弁側油路61に供給される作動油の油圧が上昇する。すると、円錐状受圧面57bを含む弁口56の開口面積に等しい受圧面に作用する弁側油路61の油圧がプランジャ57を開き側に変位させようとする力が、プランジャ57を閉じ側に変位させようとする背圧室59のシリンダ圧とプランジャスプリング58の付勢力とによる力を超える。そして、プランジャ57が閉位置から開き側に変位してシリンダ側油路60と弁側油路61とが連通する。その結果、供給油路15から弁側油路61に導入される作動油がシリンダ側油路60さらにリフトシリンダ11a,11bに供給され、リフトシリンダ11a,11bが伸張動作してフォークが上昇する。
(フォーク下降開始時)
また、昇降レバーが中立位置から下降側に操作され、図4に示すようにスプール43が下降開始位置に配置されると、リミットスイッチ55aがオンとなって電磁切替弁32に通電されるため、パイロット油路37が連通される。また、下降準備位置に配置されたスプール43の第1通路50がポートBに連通し、パイロット油路37がポートT2を通じて戻し油路19に連通するため、シリンダ側油路60がオリフィス62及びパイロット油路37を介して戻し油路19に連通する。
このため、シリンダ側油路60からオリフィス62及びパイロット油路37を通じて戻し油路19に作動油が流出し、パイロット油路37さらに背圧室59の油圧が、シリンダ側油路60の油圧よりも低いパイロット圧となる。すると、プランジャ57の円環状受圧面57aに作用してプランジャ57を開き側に変位させようとするシリンダ側油路60の油圧による力よりも、背圧室59のパイロット圧とプランジャスプリング58の付勢力とによるプランジャ57を閉じ側に変位させようとする力の方が小さくなる。その結果、プランジャ57が閉位置から開き側に変位する。
このため、シリンダ側油路60が弁側油路61に連通され、さらに圧力補償弁16を通じて戻し油路19に連通されるため、シリンダ側油路60から弁側油路61に作動油が流れ、弁側油路61の油圧が増大する。すると、弁側油路61からパイロット室48に油圧が導入され、パイロットプランジャ47がパイロットスプリング49側に変位して第1通路50と第2通路51とを連通する流路の流路断面積を小さくする。その結果、シリンダ側油路60からオリフィス62及びパイロット油路37を通じて戻し油路19に流出する作動油が減少する。
このため、パイロット圧が上昇し、背圧室59においてプランジャ57を閉じ側に変位させようとする力が増大するため、プランジャ57が閉じ側に変位する。すると、シリンダ側油路60から弁側油路61に流れる作動油が減少するため、弁側油路61の油圧が低下する。
こうして、弁側油路61の油圧に応じてパイロット圧が生成され、このパイロット圧を用いて弁側油路61の油圧が調節されるので、弁側油路61の油圧が、パイロット用背圧室53内におけるパイロットプランジャ47の受圧面積と、パイロットスプリング49の付勢力とで決定される所定範囲の設定圧に調節される。
(フォーク下降時)
昇降レバーがさらに下降側に操作され、図5に示すようにスプール43が下降領域内のある下降位置に配置されると、下降側ノッチ部64を介してポートLがポートT1に連通され、弁側油路61が戻し油路19に連通される。すると、弁側油路61から戻し油路19に作動油が流出するため、弁側油路61の油圧が、下降開始時に生成された設定圧から低下する。
このため、パイロットプランジャ47がパイロット室48側に変位して第1通路50と第2通路51との間の流路断面積が大きくなるため、パイロット油路37から戻し油路19に作動油が流出し、パイロット圧が低下する。すると、背圧室59においてパイロット圧がプランジャ57を閉じ側に変位させようとする力が減少し、プランジャ57が開き側に変位するため、シリンダ側油路60から弁側油路61に流出する作動油の流量が増大し、一旦低下した弁側油路61の油圧が上昇する。
こうして、弁側油路61から油タンク18に作動油が流出するときにも、弁側油路61の油圧に応じてパイロット圧が生成され、このパイロット圧に基づいて弁側油路61の油圧が調節されるので、作動油が流出するときの弁側油路61の油圧が所定範囲内の設定圧に調節される。
(フォーク最大下降時)
昇降レバーがさらに下降側に最大操作され、図6に示すようにスプール43が最大下降位置に配置されると、第1ランド44を通じたポートLとポートT1との流路断面積が最大となる。
このため、弁側油路61から戻し油路19に流出する作動油が増大し、弁側油路61の油圧がそのときの設定圧から低下する。すると、パイロットプランジャ47がパイロット室48側に変位して第1通路50と第2通路51との間の流路断面積が大きくなるため、パイロット油路37から戻し油路19に流出する作動油の流量が増大し、パイロット圧が低下する。
このため、背圧室59においてプランジャ57を閉じ側に変位させようとするパイロット圧による力が減少するため、プランジャ57が開き側に変位する。すると、シリンダ側油路60から弁側油路61に供給される作動油の流量が増大するため、一旦低下した弁側油路61の油圧が上昇する。
こうして、弁側油路61から油タンク18に流出する作動油が増大したときにも、弁側油路61の油圧に応じてパイロット圧が生成されるので、弁側油路61の油圧が所定範囲の設定圧に調節される。
その結果、フォークの下降時には、シリンダ側油路60の油圧に関係なく、弁側油路61が所定範囲内の設定圧に調節されるので、弁側油路61から戻し油路19に流出する作動油の流量は、シリンダ側油路60の油圧に関係なく一定となる。
従って、昇降レバーが下降側に操作されたとき、リフトシリンダ11a,11bから油タンク18に流出する作動油の流量、すなわち、フォークの下降速度は、フォーク上の負荷の大きさに関係なく一定となる。
また、下降側における昇降レバーの操作位置に対応してリフトシリンダ11a,11bから油タンク18に排出される流量が調節され、フォークの下降速度が昇降レバーの操作位置に応じて調節される。
さらに、昇降レバーが中立位置から下降側に操作され、スプール43が中立位置から下降領域に配置されると、プランジャ57がシリンダ側油路60と弁側油路61との連通を遮断する閉位置から開き側に変位する。そして、プランジャ57は、シリンダ側油路60から弁側油路61に流れる作動油の流量を、負荷の大きさ及び昇降レバーの操作位置に応じて制限する位置に配置される。このため、昇降レバーを中立位置から下降側に操作したときに、リフトシリンダ11a,11bから急激に作動油が排出されることがない。
次に、以上詳述した本実施形態が有する効果を列記する。
(1) 昇降レバーが中立位置から下降側に操作され、スプール43が中立位置から下降領域に切り換えられると、プランジャ57がシリンダ側油路60と弁側油路61との連通を遮断する閉位置から開き側に変位する。
従って、昇降レバーの操作位置に応じてフォークの下降速度を調節することができ、しかも、昇降レバーを中立位置から下降側に切り換えたときに、フォークが一瞬急下降することがない。
(2) オリフィス62がパイロット油路37に生成するパイロット圧は、シリンダ側油路60の油圧、すなわち、負荷が大きいほどより大きくなる。従って、リフトシリンダ11a,11bに加わる負荷の大きさが異なっても、弁側油路61の油圧が所定範囲の設定圧に調節される。このため、弁側油路61を戻し油路19に連通するリフトコントロールバルブ30の流路の大きさが同じであれば、リフトシリンダ11a,11bから油タンク18に排出される作動油の流量がほぼ一定となる。その結果、リフトレバーの操作位置が変わらなければ、負荷の大きさに関係なくフォークの下降速度がほぼ同じになる。
(3) スプール43の内部に設けられたパイロットプランジャ47及びパイロットスプリング49が、弁側油路61の油圧に応じてパイロット圧を調節する。このため、パイロット圧を調節する機構をスプール43の外部に設けた場合に比較して、油圧制御装置10が小型となる。
(4) パイロット油路37上には、オリフィス62よりも油タンク18側においてパイロット油路37を開閉する電磁切替弁(切替弁)32が設けられている。この電磁切替弁32は、リフトコントロールバルブ30が中立位置及び上昇領域のときにはパイロット油路37を閉じ、下降領域のときにはパイロット油路37を開くように制御される。
このため、フォークを上昇させたままにしておいても、シリンダ側油路60からパイロット油路37に導入されている作動油が電磁切替弁32から先に漏れず、スプール43とスプール孔42との隙間を通って油タンク18へ漏れない。従って、上記特許文献1の油圧制御装置に比較してフォークの自然降下量が小さくなる。
次に、上記一実施形態以外の実施形態を列記する。
○ 前記一実施形態で、電磁切替弁に代えて、図9に示すように、フローディバイダ14の上流から導入したパイロット圧で作動する油圧パイロット方式の切替弁70を設けた構成としてもよい。この場合には、電気制御が不要となり、電気配線を用いずにすむ。
○ 前記一実施形態で、シリンダ側油路60の油圧、すなわち、フォークの負荷の大きさが異なってもほぼ一定のパイロット圧を生成するようにし、このパイロット圧を弁側油路61の油圧に基づいて調節する構成としてもよい。この場合には、前記一実施形態の(1),(3),(4)に記載の各効果がある。
○ 前記一実施形態で、リフトコントロールバルブ、ロジック弁及び電磁切替弁がそれぞれ独立したバルブボディを有する構成としてもよい。
○ 本発明を実施する油圧制御装置は、フォークリフトのリフトシリンダ11a,11bを昇降制御するための油圧制御装置に限らない。また、油圧制御装置を備えた産業車両は、フォークリフトトラックに限らない。
以下、前記各実施形態から把握される技術的思想をその効果とともに列記する。
(1) 前記産業車両の油圧制御装置を備えた産業車両。
(2) 上記技術的思想の(1)に記載の産業車両において、産業車両はフォークリフトトラックであり、前記単動シリンダはリフトシリンダである産業車両。
本実施形態の油圧制御装置を示す概略油圧回路図。 スプールが中立位置のときのバルブユニットを示す模式断面図。 スプールが上昇位置のときのバルブユニットを示す模式断面図。 スプールが下降開始位置のときのバルブユニットを示す模式断面図。 スプールが下降領域のときのバルブユニットを示す模式断面図。 スプールが下降領域のときのバルブユニットを示す模式断面図。 プランジャの受圧面を示す模式断面図。 パイロットプランジャを示す模式断面図。 他の実施形態の油圧制御装置を示す概略油圧回路図。
符号の説明
10…油圧制御装置、11a,11b…単動シリンダとしてのリフトシリンダ、13…油圧ポンプ、18…油タンク、30…方向切替弁としてのリフトコントロールバルブ、31…ロジック要素弁、32…切替弁としての電磁切替弁、35…給排油路、37…弁制御手段、パイロット圧生成手段を構成するパイロット油路、43…弁制御手段、パイロット圧調節手段を構成する切替手段としてのスプール、46…プランジャ室、47…弁制御手段、パイロット圧調節手段を構成するパイロットプランジャ、48…同じくパイロット室、49…同じくパイロットスプリング、50…第1通路、51…第2通路、57…開閉弁としてのプランジャ、58…ばねとしてのプランジャスプリング、59…背圧室、60…シリンダ側油路、61…弁側油路、62…弁制御手段、パイロット圧生成手段を構成するオリフィス、70…切替弁。

Claims (3)

  1. 単動シリンダに給排油路で接続された方向切替弁が、油圧ポンプから単動シリンダに作動油を供給する供給位置、単動シリンダから油タンクに作動油を排出する排出位置、及び、単動シリンダに対して作動油を給排しない中立位置に切り換えられる油圧制御装置において、
    前記給排油路を、前記単動シリンダ側のシリンダ側油路と、前記方向切替弁側の弁側油路とに分断可能に設けられ、シリンダ側油路と弁側油路との連通開度を調節可能に変位するとともに、シリンダ側油路における油圧と弁側油路における油圧とが連通開度を大きくする側に変位するように加えられる開閉弁と、
    前記シリンダ側油路と弁側油路との連通を遮断する側に変位させるように前記開閉弁を付勢するばねと、
    前記方向切替弁が中立位置及び供給位置のときには、前記シリンダ側油路の油圧を、シリンダ側油路と弁側油路との連通を遮断する向きに作用するように前記開閉弁の背圧室に加え、また、方向切替弁が排出位置のときには、前記シリンダ側油路の油圧よりも低いパイロット圧を前記開閉弁の背圧室に加えるとともに、弁側油路の油圧が大きいほどパイロット圧の大きさをより大きく調節する弁制御手段とを備え
    前記弁制御手段は、
    前記シリンダ側油路の油圧よりも低いパイロット圧を生成するとともに、前記シリンダ側油路の油圧が大きいほど前記パイロット圧をより大きくするパイロット圧生成手段と、
    前記弁側油路の油圧が大きいほど前記パイロット圧をより大きく調節するパイロット圧調節手段と、
    前記方向切替弁が中立位置及び供給位置のときには前記シリンダ側油路の油圧を前記開閉弁の背圧室に加え、また、排出位置のときには前記パイロット圧を開閉弁の背圧室に加える切替手段とからなり、
    前記パイロット圧生成手段は、前記シリンダ側油路を油タンクに連通するためのパイロット油路上に設けられたオリフィスからなり、
    前記方向切替弁はスプール弁であって、
    前記パイロット圧調節手段は、
    前記弁側油路が連通するパイロット室を備えるとともに、前記パイロット圧生成手段が生成するパイロット圧を内部に導入する第1通路と、タンク圧を内部に導入する第2通路とを備えたスプールと、
    前記スプール内に設けられたプランジャ室に変位可能に収容され、その変位位置に応じて前記第1通路と第2通路とを連通する流路の連通開度を調節可能であるとともに、前記弁側油路の油圧が前記パイロット室を通じて前記連通開度を小さくする側に変位するように加えられるパイロットプランジャと、
    前記第1通路と第2通路との連通開度を大きくする側に変位させるように前記パイロットプランジャを付勢するパイロットスプリングとによって構成された産業車両の油圧制御装置。
  2. 前記切替手段は前記方向切替弁であって、該方向切替弁は、排出位置のときには前記パイロット油路を油タンクに連通させ、また、中立位置及び供給位置のときには前記パイロット油路を油タンクから遮断する請求項1に記載の産業車両の油圧制御装置。
  3. 前記パイロット油路上には、前記オリフィスよりも油タンク側においてパイロット油路を開閉する切替弁が設けられ、該切替弁は、前記方向切替弁が中立位置及び供給位置のときには前記パイロット油路を閉じ、排出位置のときには前記パイロット油路を開くように制御される請求項2に記載の産業車両の油圧制御装置。
JP2003387040A 2003-11-17 2003-11-17 産業車両の油圧制御装置 Expired - Fee Related JP4359123B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003387040A JP4359123B2 (ja) 2003-11-17 2003-11-17 産業車両の油圧制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003387040A JP4359123B2 (ja) 2003-11-17 2003-11-17 産業車両の油圧制御装置

Publications (2)

Publication Number Publication Date
JP2005145670A JP2005145670A (ja) 2005-06-09
JP4359123B2 true JP4359123B2 (ja) 2009-11-04

Family

ID=34694551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003387040A Expired - Fee Related JP4359123B2 (ja) 2003-11-17 2003-11-17 産業車両の油圧制御装置

Country Status (1)

Country Link
JP (1) JP4359123B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102597536A (zh) * 2009-10-26 2012-07-18 卡特彼勒公司 用于控制泵的方法和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263142A (ja) 2006-03-27 2007-10-11 Toyota Industries Corp 油圧制御装置
JP4841369B2 (ja) * 2006-09-11 2011-12-21 カヤバ工業株式会社 アクチュエータ制御装置
WO2014061125A1 (ja) * 2012-10-18 2014-04-24 株式会社 豊田自動織機 昇降装置
CN114955944B (zh) * 2022-05-31 2024-02-27 杭叉集团股份有限公司 一种叉车工作装置速度控制液压***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102597536A (zh) * 2009-10-26 2012-07-18 卡特彼勒公司 用于控制泵的方法和装置
CN102597536B (zh) * 2009-10-26 2015-04-08 卡特彼勒公司 用于控制泵的方法和装置

Also Published As

Publication number Publication date
JP2005145670A (ja) 2005-06-09

Similar Documents

Publication Publication Date Title
KR100706594B1 (ko) 유압 제어 장치
JP4729456B2 (ja) 油圧制御装置
EP2267570B1 (en) Pressure compensated electromagnetic proportional directional flow control valve
EP0042929A1 (en) Dual pilot counterbalance valve
JP4359123B2 (ja) 産業車両の油圧制御装置
JP2007263142A (ja) 油圧制御装置
JP2006234144A (ja) 圧力補償弁を備えた流量制御弁
EP1961973B1 (en) Actuator control device
JP2004019873A (ja) 油圧制御装置および該油圧制御装置を備えた産業車両
JP2001193709A (ja) 油圧制御装置
JP4088606B2 (ja) 建設重装備用流量制御装置
JP4094954B2 (ja) 油圧回路に接続する作動デバイスのための制御デバイス
JP4907974B2 (ja) 産業機械用制御装置
TWI298056B (en) Hydraulic control apparatus
JP3497803B2 (ja) 産業車両用電磁制御弁
JP3181929B2 (ja) 油圧制御装置
JP2002327706A (ja) 油圧制御装置
JP2020093863A (ja) フォークリフトの油圧駆動装置
JP3757126B2 (ja) フォークリフト用コントロールバルブの作動油の流量制御機構
JP2927308B2 (ja) 油圧制御回路
JPS5824641Y2 (ja) 流体制御装置
JP3742729B2 (ja) 油圧制御装置
JPH066244Y2 (ja) 流体制御用バルブ
JP4233203B2 (ja) 油圧制御装置
JP4601377B2 (ja) 産業機械用ネガティブ制御回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4359123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees