JP4347211B2 - Biochip substrate and biochip - Google Patents

Biochip substrate and biochip Download PDF

Info

Publication number
JP4347211B2
JP4347211B2 JP2004374686A JP2004374686A JP4347211B2 JP 4347211 B2 JP4347211 B2 JP 4347211B2 JP 2004374686 A JP2004374686 A JP 2004374686A JP 2004374686 A JP2004374686 A JP 2004374686A JP 4347211 B2 JP4347211 B2 JP 4347211B2
Authority
JP
Japan
Prior art keywords
group
biochip
substrate
phosphorylcholine
substrate according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004374686A
Other languages
Japanese (ja)
Other versions
JP2006184015A (en
Inventor
一彦 石原
創平 舩岡
兼久 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2004374686A priority Critical patent/JP4347211B2/en
Publication of JP2006184015A publication Critical patent/JP2006184015A/en
Application granted granted Critical
Publication of JP4347211B2 publication Critical patent/JP4347211B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、生体試料中の多数の蛋白質、核酸等の並列検出および分析に用いられるバイオチップに関する。より詳細には、本発明は、プロテオミクス、ならびに遺伝子活性の細胞内蛋白質レベルでの測定に用いられるバイオチップ用基板に関する。   The present invention relates to a biochip used for parallel detection and analysis of a large number of proteins and nucleic acids in a biological sample. More specifically, the present invention relates to a biochip substrate used for measurement of proteomics and gene activity at the intracellular protein level.

遺伝子活性の評価や疾患プロセス、薬物効果の生物学的プロセスを含む生物学的プロセスを解読するための試みは、伝統的に、ゲノミクスに焦点が当てられてきたが、プロテオミクスは、細胞の生物学的機能についてより詳細な情報を提供する。プロテオミクスは、遺伝子レベルというよりもむしろ、蛋白質レベルでの発現を検出し、定量することによる、遺伝子活性の定性的かつ定量的な測定を含む。また、蛋白質の翻訳後修飾、蛋白質間の相互作用など遺伝子にコードされない事象の研究を含む。
膨大なゲノム情報の入手が可能となった今日、プロテオミクス研究はますます迅速高効率(ハイスループット)化が求められている。この目的の分子アレイとしてDNAチップが実用化されてきた。一方、生体機能において最も複雑で多様性の高い蛋白質の検出に関しては、プロテインチップが提唱され、最近研究が進められている。プロテインチップとは、蛋白質、またはそれを捕捉する分子をチップ(微小な基板)表面に固定化したものを総称する。
Attempts to decipher biological processes, including assessment of gene activity, disease processes, and biological processes of drug effects, have traditionally focused on genomics, but proteomics Provide more detailed information about functional functions. Proteomics involves qualitative and quantitative measurement of gene activity by detecting and quantifying expression at the protein level rather than at the gene level. It also includes studies of events that are not encoded by genes such as post-translational modifications of proteins and interactions between proteins.
Now that a large amount of genome information is available, proteomics research is required to be faster and more efficient (high throughput). A DNA chip has been put into practical use as a molecular array for this purpose. On the other hand, regarding the detection of the most complex and highly diverse protein in biological functions, a protein chip has been proposed and recently researched. A protein chip is a generic term for a protein or a molecule that captures it immobilized on a chip (micro substrate) surface.

しかし、現状のプロテインチップは一般にDNAチップの延長線上に位置付けられて開発がなされている為、ガラス基板上に蛋白質、またはそれを捕捉する分子をチップ表面に固定化する検討がなされている(例えば、特許文献1参照)。固定化する方法としては2通りの方法が実施されている。その一つはは蛋白質の物理的吸着による固定化の方法である。この方法では、蛋白質を固定化した後に2次抗体の非特異的吸着を防止するため、吸着防止剤のコーティングが行われているが、これらの非特異的吸着防止能は十分でない。また1次抗体を固定化した後に吸着防止剤をコーティングするため固定化した蛋白質の上にコーティングされてしまい、2次抗体と反応できないという問題があった。このため、1次抗体の固定化後、吸着防止剤をコーティングすることなく、生理活性物質の非特異的吸着量の少ないバイオチップが求められている。
もう一つは化学的共有結合により蛋白質を固定化する方法である。基板表面に設けた、活性エステルなどの官能基を介して蛋白質を固定化する方法である。この方法では、蛋白質を固定化した後に、固定化部以外の場所に残存する官能基を処理することが必要であるが、官能基を十分に残存官能基を処理できずに、2次抗体と残存官能基が反応して、固定化され、結果として信号対雑音費を低下させる原因となり、検出制度を低下させる原因となっていた。
特開2001−116750号公報 「DNAマイクロアレイ実戦マニュアル」、林崎良英、岡崎康司編、羊土社、2000年、p.57
However, since current protein chips are generally developed on the extension line of a DNA chip, studies have been made to immobilize a protein or a molecule that captures the protein on a glass substrate on the surface of the chip (for example, , See Patent Document 1). There are two methods for immobilization. One of them is a method of immobilization by protein physical adsorption. In this method, in order to prevent nonspecific adsorption of the secondary antibody after immobilizing the protein, coating with an adsorption inhibitor is performed, but these nonspecific adsorption preventing ability is not sufficient. In addition, since the primary antibody is immobilized, it is coated on the immobilized protein to coat the adsorption inhibitor and cannot react with the secondary antibody. For this reason, there is a need for a biochip with a small amount of nonspecific adsorption of a physiologically active substance without coating an adsorption inhibitor after the primary antibody is immobilized.
The other is a method of immobilizing proteins by chemical covalent bonds. This is a method of immobilizing a protein via a functional group such as an active ester provided on the substrate surface. In this method, after immobilizing the protein, it is necessary to treat the functional group remaining in a place other than the immobilization part, but the functional group cannot be sufficiently treated with the secondary antibody and Residual functional groups react and become immobilized, resulting in a decrease in signal-to-noise cost and a decrease in detection system.
JP 2001-116750 A “DNA Microarray Practice Manual”, Yoshihide Hayashizaki, Koji Okazaki, Yodosha, 2000, p.57

本発明は、化学的共有結合により蛋白質を固定化するバイオチップにおいて、その官能基を完全に処理することにより、2次抗体などとの反応による信号対雑音費を低下させることのない検出精度の高いバイオチップ用基板を提供することを目的とする。   The present invention provides a biochip in which a protein is immobilized by chemical covalent bonding, and has a detection accuracy that does not reduce a signal-to-noise cost due to a reaction with a secondary antibody or the like by completely treating the functional group. An object is to provide a high biochip substrate.

本発明は、
(1) 固相基板の表面に生理活性物質を固定化するバイオチップ用基板であって、基板表面にホスホリルコリン基及び活性エステル基を有する高分子物質を含む層が形成され、前記層の膜厚が1nm以上20未満であることを特徴とするバイオチップ用基板、
(2)ホスホリルコリン基が2−メタクリロイルオキシエチルホスホリルコリン基である(1)記載のバイオチップ用基板、
(3)活性エステル基がp−ニトロフェニル基、N−ヒドロキシスクシンイミド基、コハク酸イミド基、フタル酸イミド基及び5−ノルボルネン-2,3-ジカルボキシイミド基から選ばれる少なくとも1つの基を有するものである(1)又は(2)いずれか記載のバイオチップ用基板、
(4)前記高分子物質がブチルメタクリレート基を含む共重合体である(1)〜(3)いずれか記載のバイオチップ用基板、
(5) 固相基板がプラスチック製である(1)〜(4)いずれか記載のバイオチップ用基板、
(6)プラスチックが飽和環状ポリオレフィン、である(5)記載のバイオチップ用基板、
(7)固相基板がガラス製である(1)〜(4)いずれか記載のバイオチップ用基板、
(8)(1)〜(7)いずれか記載のバイオチップ用基板に生理活性物質を固定化したバイオチップ、
である。
The present invention
(1) A biochip substrate for immobilizing a physiologically active substance on the surface of a solid phase substrate, wherein a layer containing a polymer substance having a phosphorylcholine group and an active ester group is formed on the substrate surface, and the film thickness of the layer Is a substrate for biochips characterized by being 1 nm or more and less than 20;
(2) The biochip substrate according to (1), wherein the phosphorylcholine group is a 2-methacryloyloxyethyl phosphorylcholine group,
(3) The active ester group has at least one group selected from p-nitrophenyl group, N-hydroxysuccinimide group, succinimide group, phthalimide group and 5-norbornene-2,3-dicarboximide group The biochip substrate according to any one of (1) and (2),
(4) The biochip substrate according to any one of (1) to (3), wherein the polymer substance is a copolymer containing a butyl methacrylate group,
(5) The biochip substrate according to any one of (1) to (4), wherein the solid phase substrate is made of plastic.
(6) The biochip substrate according to (5), wherein the plastic is a saturated cyclic polyolefin,
(7) The biochip substrate according to any one of (1) to (4), wherein the solid phase substrate is made of glass,
(8) A biochip in which a physiologically active substance is immobilized on the biochip substrate according to any one of (1) to (7),
It is.

本発明によれば、2次抗体の固定化されることなく、検出対象物質の非特異的な吸着・結合を抑制できる検出精度の高いバイオチップ用基板を得ることができる。     ADVANTAGE OF THE INVENTION According to this invention, the board | substrate for biochips with a high detection accuracy which can suppress nonspecific adsorption | suction and a coupling | bonding of a detection target substance can be obtained, without fixing a secondary antibody.

本発明のバイオチップ用基板は、ホスホリルコリン基と活性エステル基とを有する高分子物質を含む層を1nm以上20nm未満として有することを特徴とする。ホスホリルコリン基と活性エステル基とを有する高分子物質を有する層は、生理活性物質の非特異的吸着を抑制する性質と生理活性物質を固定化する性質とを併せ持つポリマーで、ホスホリルコリン基は生理活性物質の非特異的吸着を抑制する役割を果たし、活性エステルは生理活性物質を固定化する役割を果たす。     The biochip substrate of the present invention is characterized by having a layer containing a polymer substance having a phosphorylcholine group and an active ester group in a range of 1 nm to less than 20 nm. The layer having a polymer substance having a phosphorylcholine group and an active ester group is a polymer having both the property of suppressing nonspecific adsorption of a physiologically active substance and the property of immobilizing the physiologically active substance. The phosphorylcholine group is a physiologically active substance. The active ester plays a role of immobilizing a physiologically active substance.

本発明に使用するバイオチップ用基板の固相基板の素材は、ガラス、プラスチック、金属その他を用いることができるが、表面処理の容易性、量産性の観点から、プラスチックが好ましく、熱可塑性樹脂がより好ましい。
熱可塑性樹脂としては、蛍光発生量の少ないものが好ましく、たとえばポリエチレン、ポリプロピレン等の直鎖状ポリオレフィン、環状ポリオレフィン、ポリメチルメタクリレート、含フッ素樹脂等を用いることが好ましく、耐熱性、耐薬品性、低蛍光性、成形性に特に優れる飽和環状ポリオレフィンを用いることがより好ましい。ここで飽和環状ポリオレフィンとは、環状オレフィン構造を有する重合体単独または環状オレフィンとα−オレフィンとの共重合体を水素添加した飽和重合体をさす。
As the material for the solid phase substrate of the biochip substrate used in the present invention, glass, plastic, metal or the like can be used. However, from the viewpoint of ease of surface treatment and mass productivity, plastic is preferable, and thermoplastic resin is used. More preferred.
As the thermoplastic resin, those having a small amount of fluorescence generation are preferable. For example, linear polyolefins such as polyethylene and polypropylene, cyclic polyolefins, polymethyl methacrylate, fluorine-containing resins, etc. are preferably used, and heat resistance, chemical resistance, It is more preferable to use a saturated cyclic polyolefin that is particularly excellent in low fluorescence and moldability. Here, the saturated cyclic polyolefin refers to a saturated polymer obtained by hydrogenating a polymer having a cyclic olefin structure or a copolymer of a cyclic olefin and an α-olefin.

本発明に使用する高分子物質は、ホスホリルコリン基及び活性エステル基を含む。
本発明に使用するホスホリルコリン基としては、例えば2−メタクリロイルオキシエチルホスホリルコリン、2−メタクリロイルオキシエトキシエチルホスホリルコリン 、6−メタクリロイルオキシヘキシルホスホリルコリン、10−メタクリロイルオキシエトキシノニルホスホリルコリン 、アリルホスホリルコリン、ブテニルホスホリルコリン 、ヘキセニルホスホリルコリン 、オクテニルホスホリルコリン 、デセニルホスホリルコリン 等を挙げられるが、2−メタクリロイルオキシエチルホスホリルコリンが好ましい。
The polymer material used in the present invention contains a phosphorylcholine group and an active ester group.
Examples of the phosphorylcholine group used in the present invention include 2-methacryloyloxyethyl phosphorylcholine, 2-methacryloyloxyethoxyethylphosphorylcholine, 6-methacryloyloxyhexylphosphorylcholine, 10-methacryloyloxyethoxynonylphosphorylcholine, allylphosphorylcholine, butenylphosphorylcholine, hexenylphosphorylcholine. , Octenyl phosphorylcholine, decenyl phosphorylcholine and the like, and 2-methacryloyloxyethyl phosphorylcholine is preferable.

本発明に使用する「活性エステル基」は、エステル基のアルコール側に酸性度の高い電子求引性基を有して求核反応を活性化するエステル群、すなわち反応活性の高いエステル基を意味するものとして、各種の化学合成、たとえば高分子化学、ペプチド合成等の分野で慣用されているものである。実際的には、フェノールエステル類、チオフェノールエステル類、N−ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等がアルキルエステル等に比べてはるかに高い活性を有する活性エステル基として知られている。
このような活性エステル基としては、たとえばp−ニトロフェニル基、N−ヒドロキシスクシンイミド基、コハク酸イミド基、フタル酸イミド基、5−ノルボルネン-2,3-ジカルボキシイミド基等で活性化された活性エステル基が挙げられるが、p−ニトロフェニル基で活性化されたp−ニトロフェニルカルボニルオキシ基が好ましく用いられる。
本発明に使用する高分子物質は、ホスホリルコリン基及び活性エステル基以外に他の基を含んでもよく、ブチルメタクリレート基を含む単量体との共重合体が好ましい。
The “active ester group” used in the present invention means an ester group having an electron-withdrawing group with high acidity on the alcohol side of the ester group to activate the nucleophilic reaction, that is, an ester group with high reaction activity. As such, it is commonly used in various chemical synthesis fields such as polymer chemistry and peptide synthesis. In practice, phenol esters, thiophenol esters, N-hydroxyamine esters, esters of heterocyclic hydroxy compounds, etc. are known as active ester groups having much higher activity than alkyl esters and the like. .
As such an active ester group, it was activated by, for example, p-nitrophenyl group, N-hydroxysuccinimide group, succinimide group, phthalimide group, 5-norbornene-2,3-dicarboximide group, etc. Although an active ester group is mentioned, a p-nitrophenylcarbonyloxy group activated with a p-nitrophenyl group is preferably used.
The polymer substance used in the present invention may contain other groups in addition to the phosphorylcholine group and the active ester group, and is preferably a copolymer with a monomer containing a butyl methacrylate group.

基板表面にホスホリルコリン基と活性エステル基とを有する高分子物質を含む層を導入するには、ホスホリルコリン基と活性エステル基とを有する高分子物質の溶液に基板を浸漬した後に風乾する方法が好ましい。またホスホリルコリン基と活性エステル基とを有する高分子物質の溶液に基板を浸漬した後、良溶媒と貧溶媒の混合溶媒にて基板を洗浄し、風乾あるいは遠心乾燥する方法が好ましい。またスピンコーティングにより層を形成する方法も好ましい。     In order to introduce a layer containing a polymer substance having a phosphorylcholine group and an active ester group on the surface of the substrate, a method in which the substrate is immersed in a solution of a polymer substance having a phosphorylcholine group and an active ester group and then air-dried is preferable. Also preferred is a method of immersing the substrate in a solution of a polymer substance having a phosphorylcholine group and an active ester group, and then washing the substrate with a mixed solvent of a good solvent and a poor solvent, followed by air drying or centrifugal drying. A method of forming a layer by spin coating is also preferable.

ホスホリルコリン基及び活性エステル基を有する高分子物質を含む層の膜厚は、1nm以上20nm未満であることが必要である。1nm未満ではシグナル強度が十分に得られない問題がある。20nmを超えるとバックグランド値が高くなる問題がある。     The film thickness of the layer containing a polymer substance having a phosphorylcholine group and an active ester group needs to be 1 nm or more and less than 20 nm. If it is less than 1 nm, there is a problem that the signal intensity cannot be sufficiently obtained. If it exceeds 20 nm, there is a problem that the background value increases.

ホスホリルコリン基と活性エステル基とを有する高分子物質の溶液に基板を浸漬した後に風乾する方法では、ホスホリルコリン基と活性エステル基とを有する高分子物質の濃度は0.01〜0.3重量%が好ましい。さらに好ましくは0.05〜0.15重量%である。これによって、層の厚みを1〜20nmに調整することが可能になる。     In the method of air drying after immersing the substrate in a solution of a polymer substance having a phosphorylcholine group and an active ester group, the concentration of the polymer substance having a phosphorylcholine group and an active ester group is 0.01 to 0.3% by weight. preferable. More preferably, it is 0.05-0.15 weight%. This makes it possible to adjust the layer thickness to 1-20 nm.

ホスホリルコリン基と活性エステル基とを有する高分子物質の溶液に基板を浸漬した後、良溶媒と貧溶媒の混合溶媒にて基板を洗浄し、風乾あるいは遠心乾燥する方法では、ホスホリルコリン基と活性エステル基とを有する高分子物質の濃度は0.05〜1.0重量%が好ましい。さらに好ましくは0.05〜0.3重量%である。良溶媒としてはアルコール類が好ましく、メタノール、エタノール、イソプロパノール、ブタノールなどが挙げられる。特に好ましくはエタノール、メタノールである。貧溶媒としては水が好ましい。良溶媒と貧溶媒の混合比率は良溶媒:貧溶媒=10:90〜90:10(体積分率)であることが好ましい。特に好ましくは良溶媒:貧溶媒=50:50(体積分率)である。これによって、層の厚みを1〜20nmに調整することが可能になる。     In the method of immersing the substrate in a solution of a polymer substance having a phosphorylcholine group and an active ester group, and then washing the substrate with a mixed solvent of a good solvent and a poor solvent and then air drying or centrifugal drying, the phosphorylcholine group and the active ester group The concentration of the polymer substance having the above is preferably 0.05 to 1.0% by weight. More preferably, it is 0.05 to 0.3% by weight. As the good solvent, alcohols are preferable, and examples thereof include methanol, ethanol, isopropanol, and butanol. Particularly preferred are ethanol and methanol. As the poor solvent, water is preferable. The mixing ratio of the good solvent and the poor solvent is preferably good solvent: poor solvent = 10: 90 to 90:10 (volume fraction). Particularly preferred is good solvent: poor solvent = 50: 50 (volume fraction). This makes it possible to adjust the layer thickness to 1-20 nm.

本発明のバイオチップ用基板を使用して各種の生理活性物質を固定化することができる。固定化する生理活性物質として核酸を用いる場合、活性エステル基との反応性を高めるため、アミノ基の導入位置は分子鎖末端あるいは側鎖であってもよいが、分子鎖末端にアミノ基が導入されていることが好ましい。生理活性物質がアプタマー、蛋白質、オリゴペプチド、糖鎖、糖蛋白質の場合もアミノ基を有することが好ましい。     Various bioactive substances can be immobilized using the biochip substrate of the present invention. When nucleic acid is used as the physiologically active substance to be immobilized, the amino group may be introduced at the end of the molecular chain or at the side chain in order to increase the reactivity with the active ester group, but the amino group is introduced at the end of the molecular chain. It is preferable that When the physiologically active substance is an aptamer, protein, oligopeptide, sugar chain or glycoprotein, it preferably has an amino group.

(実施例1)
飽和環状ポリオレフィン樹脂をスライドガラス形状(寸法:76mm×26mm×1mm)に加工して固相基板を作成した。この固相基板を2−メタクリロイルオキシエチルホスホリルコリン−ブチルメタクリレート−p−ニトロフェニルカルボニルオキシエチルメタクリレート共重合体の0.05重量%エタノール溶液に浸漬、風乾することにより、基板表面にホスホリルコリン基と活性エステル基とを有する高分子物質を有する層を導入した。エリプソメータによる層の厚みは15nmであった。
Example 1
A saturated cyclic polyolefin resin was processed into a slide glass shape (dimensions: 76 mm × 26 mm × 1 mm) to prepare a solid phase substrate. This solid phase substrate was immersed in a 0.05 wt% ethanol solution of 2-methacryloyloxyethyl phosphorylcholine-butyl methacrylate-p-nitrophenylcarbonyloxyethyl methacrylate copolymer and air-dried, whereby phosphorylcholine groups and active esters were formed on the substrate surface. A layer having a polymer material having a group was introduced. The layer thickness by ellipsometer was 15 nm.

(実施例2)
飽和環状ポリオレフィン樹脂をスライドガラス形状(寸法:76mm×26mm×1mm)に加工して固相基板を作成した。この固相基板を2−メタクリロイルオキシエチルホスホリルコリン−ブチルメタクリレート−p−ニトロフェニルカルボニルオキシエチルメタクリレート共重合体の0.3重量%エタノール溶液に浸漬したあと、エタノール/水の混合溶媒にて洗浄、風乾することにより、基板表面にホスホリルコリン基と活性エステル基とを有する高分子物質を有する層を導入した。エリプソメータによる層の厚みは5nmであった。
(Example 2)
A saturated cyclic polyolefin resin was processed into a slide glass shape (dimensions: 76 mm × 26 mm × 1 mm) to prepare a solid phase substrate. This solid phase substrate was immersed in a 0.3 wt% ethanol solution of 2-methacryloyloxyethyl phosphorylcholine-butyl methacrylate-p-nitrophenylcarbonyloxyethyl methacrylate copolymer, washed with a mixed solvent of ethanol / water, and air-dried. As a result, a layer having a polymer substance having a phosphorylcholine group and an active ester group was introduced on the substrate surface. The thickness of the layer measured by an ellipsometer was 5 nm.

(比較例1)
飽和環状ポリオレフィン樹脂をスライドガラス形状(寸法:76mm×26mm×1mm)に加工して固相基板を作成した。固相基板を2−メタクリロイルオキシエチルホスホリルコリン−ブチルメタクリレート−p−ニトロフェニルカルボニルオキシエチルメタクリレート共重合体の0.5重量%エタノール溶液に浸漬することにより、基板表面にホスホリルコリン基と活性エステル基とを有する高分子物質を有する層を導入した。エリプソメータによる層の厚みは60nmであった。
(Comparative Example 1)
A saturated cyclic polyolefin resin was processed into a slide glass shape (dimensions: 76 mm × 26 mm × 1 mm) to prepare a solid phase substrate. By immersing the solid phase substrate in a 0.5 wt% ethanol solution of 2-methacryloyloxyethyl phosphorylcholine-butyl methacrylate-p-nitrophenylcarbonyloxyethyl methacrylate copolymer, phosphorylcholine groups and active ester groups are formed on the substrate surface. A layer having a polymeric material was introduced. The thickness of the layer measured by an ellipsometer was 60 nm.

(比較例2)
飽和環状ポリオレフィン樹脂をスライドガラス形状(寸法:76mm×26mm×1mm)に加工して固相基板を作成した。固相基板を2−メタクリロイルオキシエチルホスホリルコリン−ブチルメタクリレート−p−ニトロフェニルカルボニルオキシエチルメタクリレート共重合体の0.001重量%エタノール溶液に浸漬することにより、基板表面にホスホリルコリン基と活性エステル基とを有する高分子物質を有する層を導入した。エリプソメータによる層の厚みは0.1nmであった。
(Comparative Example 2)
A saturated cyclic polyolefin resin was processed into a slide glass shape (dimensions: 76 mm × 26 mm × 1 mm) to prepare a solid phase substrate. By immersing the solid phase substrate in a 0.001 wt% ethanol solution of 2-methacryloyloxyethyl phosphorylcholine-butyl methacrylate-p-nitrophenylcarbonyloxyethyl methacrylate copolymer, phosphorylcholine groups and active ester groups are formed on the substrate surface. A layer having a polymeric material was introduced. The thickness of the layer measured by an ellipsometer was 0.1 nm.

(実験)
次に該基板上でサンドイッチ法を実施した。詳細はまず、該基板に自動スポッターにより表1に示した希釈倍率で調製された一次抗体である抗マウスIgG2aをスポット後、室温4℃の環境下に24時間静置した。その後、0.1規定の水酸化ナトリウム水溶液に浸漬することにより活性エステルを失活させた。その後1.0%ドデシル硫酸ナトリウム水溶液に1時間浸漬した。
その後、抗原であるマウス IgG2aと抗原抗体反応を実施後、二次抗体であるビオチン標識抗マウス IgG2aと抗原抗体反応を実施した。最後にCy5標識されたストレプトアビジンと反応させ、各スポットについて蛍光量測定を行った。結果を表1に示す。
(Experiment)
Next, a sandwich method was performed on the substrate. Specifically, first, anti-mouse IgG2a, which is a primary antibody prepared at the dilution rate shown in Table 1, was spotted on the substrate using an automatic spotter, and then allowed to stand in an environment at room temperature of 4 ° C. for 24 hours. Thereafter, the active ester was deactivated by dipping in a 0.1 N aqueous sodium hydroxide solution. Thereafter, it was immersed in an aqueous 1.0% sodium dodecyl sulfate solution for 1 hour.
Thereafter, an antigen-antibody reaction was performed with mouse IgG2a as an antigen, and then an antigen-antibody reaction was performed with biotin-labeled anti-mouse IgG2a as a secondary antibody. Finally, it was reacted with Cy5-labeled streptavidin, and the fluorescence amount of each spot was measured. The results are shown in Table 1.

実施例および比較例における蛍光量の測定には、Packard BioChip Technologies社製マイクロアレイスキャナー「ScanArray」を用いた。測定条件は、レーザー出力90%、PMT感度60%、励起波長649nm、測定波長670nm、解像度50μmであった。
実施例は、高いスポットシグナル値、低いバックグランド値が観測されたが、比較例1は高いバックグランド値をしめした。比較例2はバックグランド値は低いがスポットシグナル強度が低かった。
A microarray scanner “ScanArray” manufactured by Packard BioChip Technologies was used to measure the amount of fluorescence in Examples and Comparative Examples. The measurement conditions were laser output 90%, PMT sensitivity 60%, excitation wavelength 649 nm, measurement wavelength 670 nm, and resolution 50 μm.
In Example, a high spot signal value and a low background value were observed, but Comparative Example 1 showed a high background value. In Comparative Example 2, the background value was low, but the spot signal intensity was low.

Figure 0004347211
Figure 0004347211

Claims (8)

固相基板の表面に生理活性物質を固定化するバイオチップ用基板であって、基板表面にホスホリルコリン基及び活性エステル基を有する高分子物質を含む層が形成され、前記層の膜厚が1nm以上20nm未満であることを特徴とするバイオチップ用基板。 A biochip substrate for immobilizing a physiologically active substance on the surface of a solid phase substrate, wherein a layer containing a polymer substance having a phosphorylcholine group and an active ester group is formed on the substrate surface, and the thickness of the layer is 1 nm or more A biochip substrate characterized by being less than 20 nm. ホスホリルコリン基が2−メタクリロイルオキシエチルホスホリルコリン基である請求項1記載のバイオチップ用基板。 The biochip substrate according to claim 1, wherein the phosphorylcholine group is a 2-methacryloyloxyethyl phosphorylcholine group. 活性エステル基がp−ニトロフェニル基、N−ヒドロキシスクシンイミド基、コハク酸イミド基、フタル酸イミド基及び5−ノルボルネン-2,3-ジカルボキシイミド基から選ばれる少なくとも1つの基を有するものである請求項1又は2記載のバイオチップ用基板。 The active ester group has at least one group selected from a p-nitrophenyl group, an N-hydroxysuccinimide group, a succinimide group, a phthalimide group and a 5-norbornene-2,3-dicarboximide group. The biochip substrate according to claim 1 or 2. 前記高分子物質がブチルメタクリレート基を含む単量体との共重合体である請求項1〜3いずれか記載のバイオチップ用基板。 The biochip substrate according to any one of claims 1 to 3, wherein the polymer substance is a copolymer with a monomer containing a butyl methacrylate group. 固相基板がプラスチック製である請求項1〜4いずれか記載のバイオチップ用基板。 The biochip substrate according to any one of claims 1 to 4, wherein the solid phase substrate is made of plastic. プラスチックが飽和環状ポリオレフィン、である請求項5記載のバイオチップ用基板。 The biochip substrate according to claim 5, wherein the plastic is a saturated cyclic polyolefin. 固相基板がガラス製である請求項1〜4いずれか記載のバイオチップ用基板。 The biochip substrate according to any one of claims 1 to 4, wherein the solid phase substrate is made of glass. 請求項1〜7いずれか記載のバイオチップ用基板に生理活性物質を固定化したバイオチップ。 A biochip in which a physiologically active substance is immobilized on the biochip substrate according to claim 1.
JP2004374686A 2004-12-24 2004-12-24 Biochip substrate and biochip Active JP4347211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004374686A JP4347211B2 (en) 2004-12-24 2004-12-24 Biochip substrate and biochip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004374686A JP4347211B2 (en) 2004-12-24 2004-12-24 Biochip substrate and biochip

Publications (2)

Publication Number Publication Date
JP2006184015A JP2006184015A (en) 2006-07-13
JP4347211B2 true JP4347211B2 (en) 2009-10-21

Family

ID=36737253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004374686A Active JP4347211B2 (en) 2004-12-24 2004-12-24 Biochip substrate and biochip

Country Status (1)

Country Link
JP (1) JP4347211B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4530895B2 (en) * 2005-03-29 2010-08-25 住友ベークライト株式会社 Solid phase carrier for peptide immobilization and method of using the same
AU2006248394B2 (en) 2005-05-19 2012-11-01 Sumitomo Bakelite Company, Ltd. High molecular compound for medical material and biochip substrate using such high molecular compound
JP5349838B2 (en) * 2007-11-30 2013-11-20 和光純薬工業株式会社 Small RNA acquisition carrier, acquisition method and acquisition reagent

Also Published As

Publication number Publication date
JP2006184015A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP5552474B2 (en) Polymer compound for medical material and biochip substrate using the polymer compound
JP4821444B2 (en) Polymer compound for bioassay and base material for bioassay using the same
JP2010117189A (en) Substrate for immobilizing physiological active substance
JP2007285835A (en) Plate for bioplate, manufacturing method therefor and the bioplate
JP4376813B2 (en) Biochip substrate and biochip
JP2004198402A (en) Microarray and its manufacturing method
JP4534817B2 (en) Protein detection method and peptide detection method
JP4347211B2 (en) Biochip substrate and biochip
JP4862412B2 (en) Biochip manufacturing method
JP4419715B2 (en) Biochip substrate and biochip
JP5614179B2 (en) Polymer compound for medical material and biochip substrate using the polymer compound
US20160228842A1 (en) Fluoro copolymers, immobilization of biomolecules, and microarrays
JP2008215894A (en) Detection method of protein and detecting method of peptide
JP2013148484A (en) Manufacturing method of biochip, and biochip
JP2007309725A (en) Substance fixing agent for functional substance, fixing method for the functional substance using the substance fixing agent, and base substance with the functional substance fixed thereon by the method
JP2006258630A (en) Substrate for biochip, and manufacturing method of biochip
JP2005030913A (en) Biochip
JP2005069788A (en) Method for detecting phosphorylated protein
JP4352849B2 (en) Plastic surface treatment method, plastic substrate and plastic biochip
JP4706502B2 (en) Method for producing solid phase carrier
JP5344438B2 (en) Substrate for fixing substance, substrate for fixing substance, and analysis method
JP4353091B2 (en) Protein and peptide detection method
JP4353073B2 (en) Biochip and manufacturing method thereof
EP3995828A1 (en) Novel functionalized hydrogel coatings of assay plates and uses thereof
JP5364971B2 (en) Method for immobilizing physiologically active substances

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090715

R150 Certificate of patent or registration of utility model

Ref document number: 4347211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140724

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250