JP2004198402A - Microarray and its manufacturing method - Google Patents

Microarray and its manufacturing method Download PDF

Info

Publication number
JP2004198402A
JP2004198402A JP2003355769A JP2003355769A JP2004198402A JP 2004198402 A JP2004198402 A JP 2004198402A JP 2003355769 A JP2003355769 A JP 2003355769A JP 2003355769 A JP2003355769 A JP 2003355769A JP 2004198402 A JP2004198402 A JP 2004198402A
Authority
JP
Japan
Prior art keywords
group
physiologically active
layer
active substance
microarray according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003355769A
Other languages
Japanese (ja)
Other versions
JP4411926B2 (en
Inventor
Hideyuki Shimaoka
秀行 島岡
Kanehisa Yokoyama
兼久 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003355769A priority Critical patent/JP4411926B2/en
Publication of JP2004198402A publication Critical patent/JP2004198402A/en
Application granted granted Critical
Publication of JP4411926B2 publication Critical patent/JP4411926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microarray of high detection precision requiring no blocking treatment, and reduced in a non-specific adsorption or bonding amount of a detection objective substance. <P>SOLUTION: In this microarray wherein a physiologically active substance is immobilized in one portion of a surface of a solid phase substrate, a layer (layer A) surface-treated for immobilizing the physiologically active substance exists on the substrate surface, a layer (layer B) comprising a substance restraining adsorption of the physiologically active substance is layered on the layer A, at least one portion of the substance forming the layer B is removed from the substrate surface in an immobilization portion for the physiologically active substance, and/or an adsorption restraining effect gets ineffective therein, and/or the physiologically active substance is infiltrated to reach to the layer A therein. The physiologically active substance is, for example, a nucleic acid, an aptamer, a protein, an antibody, an oligopeptide, a peptide nucleic acid, a sugar chain, a glycoprotein or the like. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、生理活性物質を固相基板上に固定化してなるマイクロアレイとその製造方法に関する。   The present invention relates to a microarray having a physiologically active substance immobilized on a solid-phase substrate and a method for producing the same.

近年、創薬研究や臨床検査のハイスループット化を達成するための手段として、生理活性物質を固相基板に固定化したデバイスであるバイオチップが着目されている。固定化される生理活性物質としては、核酸、タンパク質、抗体、糖鎖、糖タンパクなどが代表的なものであり、特に、核酸を固定化したバイオチップである核酸マイクロアレイは、すでに多種の製品が上市されている。また、特定のタンパク質を検出するために、タンパク質に対する抗体を固定化したバイオチップも広く注目されている。また、抗体と同様のタンパク認識機能をもつ分子として、アプタマーが注目されている。アプタマーとは、特定のタンパク質と特異的に強い親和性を示すオリゴヌクレオチドであり、SELEX法と呼ばれるコンビナトリアルケミストリー技術を応用した合成技術の確立により、医薬品などへの利用の可能性が開けた。アプタマーの特徴として、生物由来の抗体とは異なり完全な化学合成が可能であることや、タンパク質に対する特異性が高いことから、医薬品や、タンパク質を捕捉・検出するバイオチップの認識素子としての応用が期待されている。   In recent years, a biochip, which is a device in which a physiologically active substance is immobilized on a solid substrate, has attracted attention as a means for achieving high throughput in drug discovery research and clinical testing. As the physiologically active substance to be immobilized, nucleic acids, proteins, antibodies, sugar chains, glycoproteins, and the like are typical.In particular, nucleic acid microarrays, which are biochips on which nucleic acids are immobilized, are already available in a wide variety of products. Has been launched. Further, in order to detect a specific protein, a biochip on which an antibody against the protein is immobilized has been widely noted. Aptamers have attracted attention as molecules having the same protein recognition function as antibodies. Aptamers are oligonucleotides that exhibit a strong affinity specifically for a specific protein. The establishment of a synthesis technique using a combinatorial chemistry technique called the SELEX method has opened up the possibility of application to pharmaceuticals and the like. Aptamers are characterized by their ability to be completely chemically synthesized, unlike biologically-derived antibodies, and their high specificity for proteins, making them useful as recognition elements for drugs and biochips that capture and detect proteins. Expected.

マイクロアレイのシグナル検出において、マイクロアレイ基板への検出対象物質の非特異的な吸着は信号対雑音比を低下させる原因となり、検出精度を低下させる(たとえば、非特許文献1参照)。基板表面には生理活性物質を効率良く固定化するための化学的修飾が施されることが通常であり、核酸マイクロアレイの場合にはアルデヒド基やアミノ基を導入したものが多用されている。これらの官能基が活性な状態であると、検出対象物質の非特異的な結合が起こるため、官能基の不活性化処理(ブロッキング)を行う必要がある(非特許文献2および非特許文献3参照)。ブロッキングの方法としては、検出反応に影響しない物質を吸着させて官能基を遮蔽する方法と、触媒などの作用により官能基を他の不活性な官能基に変換する方法がある。しかし、ブロッキング処理は一般的に再現性が低く、均一な処理を行うためには熟練を要するなどマイクロアレイを用いた分析技術発展の大きな妨げになっている。また、ブロッキング処理は官能基を不活性化するだけであり、検出対象物質の物理的吸着を抑制することはできない。さらに、固定化する生理活性物質が不安定であり、ブロッキング剤の影響により変性、失活する場合には、ブロッキング処理が不可能であることも考えられる。そこで、ブロッキング処理が不要で、かつ、非特異的な吸着を最小限に抑えることのできるマイクロアレイが求められている。
「DNAマイクロアレイ実戦マニュアル」、林崎良英、岡崎康司編、羊土社、2000年、p.57 「細胞工学別冊 DNAマイクロアレイと最新PCR法」、P.22、秀潤社、2000年 「DNAチップ技術とその応用」、「蛋白質 核酸 酵素 43(13)」、君塚房夫、加藤郁之進著、共立出版、1998年、pp.2004〜2011
In signal detection of a microarray, non-specific adsorption of a substance to be detected on a microarray substrate causes a reduction in a signal-to-noise ratio, thereby lowering detection accuracy (for example, see Non-Patent Document 1). Usually, the surface of the substrate is chemically modified to efficiently immobilize a physiologically active substance. In the case of a nucleic acid microarray, a substrate into which an aldehyde group or an amino group is introduced is often used. When these functional groups are in an active state, non-specific binding of the substance to be detected occurs, so that it is necessary to perform a functional group inactivation treatment (blocking) (Non-Patent Documents 2 and 3). reference). As a blocking method, there are a method of blocking a functional group by adsorbing a substance that does not affect a detection reaction, and a method of converting a functional group into another inactive functional group by the action of a catalyst or the like. However, the blocking process generally has low reproducibility and requires skill to perform a uniform process, which greatly hinders the development of analytical techniques using microarrays. In addition, the blocking treatment only inactivates the functional group and cannot suppress physical adsorption of the detection target substance. Furthermore, when the immobilized physiologically active substance is unstable and denatures or deactivates due to the effect of the blocking agent, it may be impossible to perform the blocking treatment. Therefore, there is a need for a microarray that does not require a blocking treatment and can minimize nonspecific adsorption.
"DNA Microarray Practical Manual", edited by Yoshihide Hayashizaki and Koji Okazaki, Yodosha, 2000, p.57 "Cell Engineering Separate Volume DNA Microarray and Latest PCR Method", P.22, Shujunsha, 2000 "DNA chip technology and its application", "Protein nucleic acid enzyme 43 (13)", Fumio Kimizuka and Ikuyuki Kato, Kyoritsu Shuppan, 1998, pp.2004-2011

本発明は、ブロッキング処理が不要で、検出対象物質の非特異的な吸着・結合量が少なく検出精度の高いマイクロアレイを提供することを目的とする。   An object of the present invention is to provide a microarray which does not require a blocking treatment, has a small amount of nonspecific adsorption and binding of a substance to be detected, and has high detection accuracy.

本発明は、
(1)固相基板の表面の一部に生理活性物質を固定化してなるマイクロアレイであって、基板表面には生理活性物質固定化用の表面処理を施した層(層A)が存在し、かつ、層Aの上には生理活性物質の吸着を抑制する物質からなる層(層B)が重層されており、生理活性物質の固定部分において層Bをなす物質の少なくとも一部が基板表面から除去されている、およびまたは、吸着抑制効果を失っている、およびまたは、生理活性物質が層Aに達するまで浸透していることを特徴とするマイクロアレイ、
(2)層Aは生理活性物質との結合性を有する官能基を含む(1)記載のマイクロアレイ、
(3)層Aはアルデヒド基、アミノ基、エポキシ基、チオール基、水酸基、カルボキシル基、ニトロ基、スルホン基、酸無水物、カルボジイミド基、ビニル基、ハロゲン化アルキル、ハロゲン化アリル、スクシンイミド基、マレイミド基、イソシアナート基、イソチオシアナート基、ヒドラジド基、アジド基、ビオチン誘導体、アビジン誘導体、リン酸基、アズラクトン基、ニトリル基、アミド基、イミノ基、ニトレン基、アセチル基、ポリリジンの内、少なくとも一つを含む(1)記載のマイクロアレイ、
(4)層Aはアルデヒド基、およびまたは、アミノ基を含む(1)記載のマイクロアレイ、
(5)層Aはアミノアルキルシランを介して結合した多官能性アルデヒド由来のアルデヒド基を含む(1)記載のマイクロアレイ、
(6)層Bは高分子物質からなる(1)〜(5)いずれか記載のマイクロアレイ、
(7)高分子物質がホスホリルコリン基を有する(6)記載のマイクロアレイ、
(8)ホスホリルコリン基を有する高分子物質が2−メタクリロイルオキシエチルホスホリルコリンを含む共重合体である(7)記載のマイクロアレイ、
(9)基板がプラスチック製であることを特徴とする(1)〜(8)いずれか記載のマイクロアレイ、
(10)プラスチックが飽和環状ポリオレフィン製である(9)記載のマイクロアレイ、
(11)基板がガラス製である(1)〜(8)いずれか記載のマイクロアレイ、
(12)生理活性物質が核酸、アプタマー、タンパク質、抗体、オリゴペプチド、ペプチド核酸、糖鎖、糖タンパク質の内、少なくとも一つである(1)〜(11)いずれか記載のマイクロアレイ、
(13)生理活性物質がオリゴヌクレオチドである(1)〜(11)いずれか記載のマイクロアレイ、
(14)生理活性物質がアプタマーである(1)〜(11)いずれか記載のマイクロアレイ、
(15)基板表面への生理活性物質固定化用の表面処理層(層A)の形成工程(工程A)、層Aの上部への生理活性物質の吸着を抑制する物質からなる層(層B)の形成工程(工程B)、および、生理活性物質溶液あるいは生理活性物質分散液の基板上への点着工程(工程C)を含み、工程Cで点着部において層Bを形成する物質の少なくとも一部を除去する、およびまたは、吸着抑制効果を失わせる、およびまたは、生理活性物質の少なくとも一部を層Aに達するまで浸透させることを特徴とするマイクロアレイの製造方法、
(16)工程Cの生理活性物質溶液あるいは生理活性物質分散液が、層Bを形成する物質に対して溶解性を示す(15)記載のマイクロアレイの製造方法、
(17)工程Cの生理活性物質溶液あるいは生理活性物質分散液がアルコールを含む(16)記載のマイクロアレイの製造方法、
(18)生理活性物質溶液あるいは生理活性物質分散液が界面活性剤を含む(16)記載のマイクロアレイの製造方法、
(19)層Bがホスホリルコリン基を有する高分子物質から形成される(15)〜(18)いずれか記載のマイクロアレイの製造方法、
(20)ホスホリルコリン基を有する高分子物質が、2−メタクリロイルオキシエチルホスホリルコリンを含む共重合体である(19)記載のマイクロアレイの製造方法、
(21)基板がプラスチック製である(15)〜(20)いずれか記載のマイクロアレイの製造方法、
(22)プラスチックが飽和環状ポリオレフィン製である(21)記載のマイクロアレイの製造方法、
(23)基板がガラス製である(15)〜(20)いずれか記載のマイクロアレイの製造方法、
(24)生理活性物質が核酸、アプタマー、タンパク質、抗体、オリゴペプチド、ペプチド核酸、糖鎖、糖タンパク質の内、少なくとも一つである(15)〜(23)いずれか記載のマイクロアレイの製造方法、
(25)生理活性物質がオリゴヌクレオチドである(15)〜(23)いずれか記載のマイクロアレイの製造方法、
(26)生理活性物質がアプタマーである(15)〜(23)いずれか記載のマイクロアレイの製造方法
である。
The present invention
(1) A microarray in which a physiologically active substance is immobilized on a part of the surface of a solid-phase substrate, and a layer (layer A) subjected to a surface treatment for immobilizing a physiologically active substance is present on the substrate surface; Further, a layer (layer B) made of a substance that suppresses the adsorption of a physiologically active substance is overlaid on the layer A, and at least a part of the substance that constitutes the layer B in the portion where the physiologically active substance is fixed is removed from the substrate surface. A microarray characterized in that it has been removed, and / or has lost its adsorption suppression effect, and / or has penetrated the physiologically active substance until it reaches layer A;
(2) The microarray according to (1), wherein the layer A contains a functional group capable of binding to a physiologically active substance.
(3) Layer A comprises an aldehyde group, an amino group, an epoxy group, a thiol group, a hydroxyl group, a carboxyl group, a nitro group, a sulfone group, an acid anhydride, a carbodiimide group, a vinyl group, an alkyl halide, an allyl halide, a succinimide group, Maleimide group, isocyanate group, isothiocyanate group, hydrazide group, azide group, biotin derivative, avidin derivative, phosphate group, azlactone group, nitrile group, amide group, imino group, nitrene group, acetyl group, polylysine, The microarray according to (1), comprising at least one of:
(4) The microarray according to (1), wherein the layer A contains an aldehyde group and / or an amino group.
(5) The microarray according to (1), wherein the layer A contains an aldehyde group derived from a polyfunctional aldehyde bonded via an aminoalkylsilane.
(6) the microarray according to any one of (1) to (5), wherein the layer B is made of a polymer substance;
(7) The microarray according to (6), wherein the polymer substance has a phosphorylcholine group.
(8) The microarray according to (7), wherein the polymer substance having a phosphorylcholine group is a copolymer containing 2-methacryloyloxyethyl phosphorylcholine.
(9) The microarray according to any one of (1) to (8), wherein the substrate is made of plastic.
(10) The microarray according to (9), wherein the plastic is made of a saturated cyclic polyolefin,
(11) The microarray according to any one of (1) to (8), wherein the substrate is made of glass;
(12) The microarray according to any one of (1) to (11), wherein the physiologically active substance is at least one of a nucleic acid, an aptamer, a protein, an antibody, an oligopeptide, a peptide nucleic acid, a sugar chain, and a glycoprotein.
(13) The microarray according to any one of (1) to (11), wherein the physiologically active substance is an oligonucleotide;
(14) The microarray according to any one of (1) to (11), wherein the physiologically active substance is an aptamer;
(15) Step of Forming Surface Treatment Layer (Layer A) for Immobilizing Physiologically Active Substance on Surface of Substrate (Step A), Layer Made of Substance Suppressing Adsorption of Physiologically Active Substance Above Layer A (Layer B) ), And a step of depositing a physiologically active substance solution or a physiologically active substance dispersion on a substrate (step C). A method for producing a microarray, comprising removing at least a part thereof and / or losing the adsorption suppressing effect, and / or allowing at least a part of a physiologically active substance to penetrate until reaching the layer A.
(16) The method for producing a microarray according to (15), wherein the physiologically active substance solution or the physiologically active substance dispersion liquid in Step C shows solubility in the substance forming the layer B.
(17) The method for producing a microarray according to (16), wherein the physiologically active substance solution or the physiologically active substance dispersion liquid in Step C contains alcohol.
(18) The method for producing a microarray according to (16), wherein the physiologically active substance solution or the physiologically active substance dispersion contains a surfactant.
(19) The method for producing a microarray according to any one of (15) to (18), wherein the layer B is formed from a polymer substance having a phosphorylcholine group.
(20) The method for producing a microarray according to (19), wherein the polymer substance having a phosphorylcholine group is a copolymer containing 2-methacryloyloxyethyl phosphorylcholine.
(21) The method for producing a microarray according to any one of (15) to (20), wherein the substrate is made of plastic;
(22) The method for producing a microarray according to (21), wherein the plastic is made of a saturated cyclic polyolefin.
(23) The method for producing a microarray according to any one of (15) to (20), wherein the substrate is made of glass;
(24) The method for producing a microarray according to any one of (15) to (23), wherein the physiologically active substance is at least one of a nucleic acid, an aptamer, a protein, an antibody, an oligopeptide, a peptide nucleic acid, a sugar chain, and a glycoprotein.
(25) The method for producing a microarray according to any one of (15) to (23), wherein the physiologically active substance is an oligonucleotide;
(26) The method for producing a microarray according to any one of (15) to (23), wherein the physiologically active substance is an aptamer.

本発明によれば、ブロッキング処理が不要で、検出対象物質の非特異的な吸着・結合量が少なく検出精度の高いマイクロアレイを得ることができる。   According to the present invention, it is possible to obtain a microarray which does not require a blocking treatment, has a small amount of nonspecific adsorption and binding of a substance to be detected, and has high detection accuracy.

本発明のマイクロアレイは、基板表面に生理活性物質固定化用の表面処理層(層A)の上部に生理活性物質吸着抑制層(層B)が存在し、生理活性物質の固定化操作時に層Bが無効化(除去あるいは不活性化あるいは生理活性物質を浸透)されることを特徴とする。
層Aの目的はマイクロアレイ作製時に生理活性物質を効率よく固定化することであり、層Bの目的はマイクロアレイ使用時に生理活性物質の基板への非特異的吸着を抑制し、信号対雑音比を向上させることである。層Bの存在は、マイクロアレイ作製時に生理活性物質固定化をも妨げるため、生理活性物質溶液あるいは生理活性物質分散液(以下、液体Cと略記)には、層Bを形成する物質を無効化する性質が必要である。
The microarray of the present invention has a physiologically active substance adsorption suppressing layer (layer B) on a surface treatment layer (layer A) for immobilizing a physiologically active substance on the surface of a substrate. Is inactivated (removed, inactivated, or penetrated by a bioactive substance).
The purpose of layer A is to efficiently immobilize the physiologically active substance during microarray fabrication, and the purpose of layer B is to suppress nonspecific adsorption of the physiologically active substance to the substrate when using the microarray, thereby improving the signal-to-noise ratio. It is to let. Since the presence of the layer B also hinders immobilization of the physiologically active substance during the preparation of the microarray, the substance forming the layer B is invalidated in the physiologically active substance solution or the physiologically active substance dispersion liquid (hereinafter, abbreviated as liquid C). Nature is required.

(層Aの形成)
層Aは生理活性物質との結合性を有する官能基を含む。官能基として、アルデヒド基、アミノ基、エポキシ基、チオール基、水酸基、カルボキシル基、ニトロ基、スルホン基、酸無水物、カルボジイミド基、ビニル基、ハロゲン化アルキル、ハロゲン化アリル、スクシンイミド基、マレイミド基、イソシアナート基、イソチオシアナート基、ヒドラジド基、アジド基、ビオチン誘導体、アビジン誘導体、リン酸基、アズラクトン基、ニトリル基、アミド基、イミノ基、ニトレン基、アセチル基などを用いることができ、好ましくはアルデヒド基、アミノ基、エポキシ基、チオール基、カルボジイミド基、酸無水物であり、より好ましくはアルデヒド基、アミノ基である。
固定化する生理活性物質が核酸の場合は、アミノ基およびアルデヒド基が多用されている。基板表面へのアミノ基の導入には、アミノアルキルシラン処理、窒素雰囲気下でのプラズマ処理、アミノ基含有高分子物質のコーティングなどの方法を用いることができるが、処理の簡便性、均一性の観点から、アミノアルキルシラン処理が好ましい。アミノアルキルシラン処理は、アミノアルキルシラン溶液への基板の浸漬および熱処理によることが好ましい。アミノアルキルシラン溶液の濃度は0.1〜10重量%が好ましく、0.1〜5重量%がより好ましく、さらに好ましくは1〜5重量%である。
基板表面へのアルデヒド基の導入方法として好適に用いられるのは、アミノ基導入の後に多官能性アルデヒドを反応させる方法である。アミノ基導入には、上記の手法を用いることができる。多官能性アルデヒドとしてはグルタルアルデヒドが好ましい。
(Formation of Layer A)
The layer A contains a functional group capable of binding to a physiologically active substance. As a functional group, aldehyde group, amino group, epoxy group, thiol group, hydroxyl group, carboxyl group, nitro group, sulfone group, acid anhydride, carbodiimide group, vinyl group, alkyl halide, allyl halide, succinimide group, maleimide group Can be used isocyanate group, isothiocyanate group, hydrazide group, azide group, biotin derivative, avidin derivative, phosphate group, azlactone group, nitrile group, amide group, imino group, nitrene group, acetyl group, etc. Preferred are aldehyde groups, amino groups, epoxy groups, thiol groups, carbodiimide groups, and acid anhydrides, and more preferred are aldehyde groups and amino groups.
When a physiologically active substance to be immobilized is a nucleic acid, an amino group and an aldehyde group are frequently used. For the introduction of amino groups on the substrate surface, methods such as aminoalkylsilane treatment, plasma treatment under a nitrogen atmosphere, and coating of an amino group-containing polymer substance can be used. From the viewpoint, aminoalkylsilane treatment is preferred. The aminoalkylsilane treatment is preferably performed by immersing the substrate in an aminoalkylsilane solution and performing heat treatment. The concentration of the aminoalkylsilane solution is preferably from 0.1 to 10% by weight, more preferably from 0.1 to 5% by weight, and still more preferably from 1 to 5% by weight.
A preferred method of introducing an aldehyde group to the substrate surface is a method of reacting a polyfunctional aldehyde after introducing an amino group. The above method can be used for amino group introduction. Glutaraldehyde is preferred as the polyfunctional aldehyde.

(層Bの形成)
層Bは生理活性物質の吸着を抑制する物質からなる。生理活性物質の吸着を抑制する物質として、高分子物質を好適に用いる事ができる。高分子物質はホスホリルコリン基を含むことが好ましく、2−メタクリロイルオキシエチルホスホリルコリンを含む共重合体(MPCポリマー)を好適に用いることができる。MPCポリマーは生体膜(リン脂質二重層膜)類似の構造を有し、生理活性物質の吸着を抑制する効果を有する(たとえば、Ishihara K、 Tsuji T、 Kurosaki T、 Nakabayashi N、 Journal of Biomedical Materials Research、 28(2)、 pp.225-232、 (1994) 参照)。MPCポリマー層を形成する方法としては、ディップコート法を用いることができる。すなわち、MPCポリマー溶液に基板を浸漬した後、溶媒を揮発させることにより表面にMPCポリマー層を形成する。MPCポリマーの濃度は、0.01〜10重量%が好ましく、0.01〜5重量%がより好ましく、0.1〜5重量%がさらに好ましい。
検出対象が核酸の場合には、核酸は負電荷を有することから、負電荷をもつ高分子物質を用いて層Bを形成することで、静電的反発により核酸の吸着を抑制することができる。負電荷をもつ高分子物質の代表として、ポリアクリル酸およびその塩、ポリスチレンスルホン酸およびその塩、カルボキシメチルセルロースなどが挙げられる。
(Formation of Layer B)
The layer B is made of a substance that suppresses adsorption of a physiologically active substance. As the substance for suppressing the adsorption of the physiologically active substance, a polymer substance can be suitably used. The polymer substance preferably contains a phosphorylcholine group, and a copolymer (MPC polymer) containing 2-methacryloyloxyethyl phosphorylcholine can be suitably used. MPC polymers have a structure similar to biological membranes (phospholipid bilayer membranes) and have an effect of suppressing adsorption of physiologically active substances (for example, Ishihara K, Tsuji T, Kurosaki T, Nakabayashi N, Journal of Biomedical Materials Research) , 28 (2), pp. 225-232, (1994)). As a method of forming the MPC polymer layer, a dip coating method can be used. That is, after dipping the substrate in the MPC polymer solution, the solvent is volatilized to form an MPC polymer layer on the surface. The concentration of the MPC polymer is preferably 0.01 to 10% by weight, more preferably 0.01 to 5% by weight, and still more preferably 0.1 to 5% by weight.
When the detection target is a nucleic acid, since the nucleic acid has a negative charge, by forming the layer B using a polymer substance having a negative charge, the adsorption of the nucleic acid can be suppressed by electrostatic repulsion. . Representative examples of the polymer substance having a negative charge include polyacrylic acid and its salts, polystyrenesulfonic acid and its salts, and carboxymethylcellulose.

(生理活性物質の固定化)
生理活性物質をマイクロアレイ基板上に固定化する際には、生理活性物質を溶解又は分散した液体(液体C)を点着する方法が一般的である。しかしながら、本発明の基板を用いる場合、層Bはマイクロアレイ作製時においても生理活性物質の固定化を妨げてしまうため、生理活性物質を固定化する部分(スポット)において層Bを無効化する必要がある。層Bを無効化する方法としては、液体Cの接触により層Bを形成する物質を溶解する方法が好ましい。この方法では、スポット以外の部分の層Bは全く影響を受けないまま存在するため、スポット以外の部位への検出対象物質の吸着・結合は抑制される。液体Cは層Bを形成する物質に対する溶解性を示せばよい。層Bを形成する物質がMPCポリマーである場合には、液体Cはアルコール、およびまたは、界面活性剤を含むことが好ましい。アルコールとしてはメタノール、エタノール、1−プロパノール、2−プロパノール、n−ブチルアルコール、tert−ブチルアルコール、グリセリンなどを好ましく用いることができ、エタノールが最も好ましい。界面活性剤としては、ラウリル硫酸ナトリウムが好ましい。液体Cとしてはアルコール以外にも、ジメチルスルホキシド、N−メチルピロリドン、ジメチルホルムアミド、その他の溶媒を用いることができる。液体Cは2種類以上の液体の混合物であってもよい。
液体Cの点着後、固定化されなかった物質を除去するため、純水や緩衝液で洗浄することが好ましい。既存のマイクロアレイ用基板を用いる場合には、未反応の官能基のブロッキング処理が必要であるが、本発明では未反応の官能基は層Bに被覆されているため、ブロッキング処理は不要である。
固定化する生理活性物質としては、他の物質を特異的に捕捉する性質を有することが好ましい。具体的には、たとえば核酸、アプタマー、タンパク質、抗体、オリゴペプチド、ペプチド核酸、糖鎖、糖タンパク質などを用いることができる。
固定化する生理活性物質には、層Aの官能基との反応性を高めるため、予め官能基を導入することが好ましい。層Aの官能基がアルデヒド基の場合、生理活性物質にはアミノ基を導入しておくことが好ましい。アミノ基の導入位置は生理活性物質の分子鎖末端あるいは側鎖であってもよいが、生理活性物質の本来の機能を保持したまま固定化するために、分子鎖末端に導入されていることが好ましい。生理活性物質の本来の機能とは、たとえば核酸の場合はハイブリダイゼーション、抗体やアプタマーの場合は抗原認識能などである。
(Immobilization of biologically active substances)
When a physiologically active substance is immobilized on a microarray substrate, a method of spotting a liquid (liquid C) in which a physiologically active substance is dissolved or dispersed is generally used. However, when the substrate of the present invention is used, the layer B hinders the immobilization of the physiologically active substance even during the preparation of the microarray. Therefore, it is necessary to invalidate the layer B in the portion (spot) where the physiologically active substance is immobilized. is there. As a method of invalidating the layer B, a method of dissolving a substance forming the layer B by contact with the liquid C is preferable. In this method, since the layer B in the portion other than the spot exists without being affected at all, the adsorption and binding of the detection target substance to the portion other than the spot is suppressed. The liquid C only needs to show solubility in the substance forming the layer B. When the substance forming the layer B is an MPC polymer, the liquid C preferably contains an alcohol and / or a surfactant. As the alcohol, methanol, ethanol, 1-propanol, 2-propanol, n-butyl alcohol, tert-butyl alcohol, glycerin and the like can be preferably used, and ethanol is most preferable. As the surfactant, sodium lauryl sulfate is preferred. As the liquid C, dimethyl sulfoxide, N-methylpyrrolidone, dimethylformamide, and other solvents can be used in addition to alcohol. The liquid C may be a mixture of two or more liquids.
After the spotting of the liquid C, it is preferable to wash with pure water or a buffer solution in order to remove a substance that has not been immobilized. When an existing substrate for a microarray is used, a blocking treatment of an unreacted functional group is necessary. However, in the present invention, the unreacted functional group is covered with the layer B, so that the blocking treatment is unnecessary.
The immobilized physiologically active substance preferably has a property of specifically capturing another substance. Specifically, for example, nucleic acids, aptamers, proteins, antibodies, oligopeptides, peptide nucleic acids, sugar chains, glycoproteins and the like can be used.
It is preferable to introduce a functional group into the physiologically active substance to be immobilized in advance in order to increase the reactivity with the functional group of the layer A. When the functional group of the layer A is an aldehyde group, it is preferable to introduce an amino group into the physiologically active substance. The amino group may be introduced at the end of the molecular chain or at the side chain of the physiologically active substance. However, the amino group may be introduced at the end of the molecular chain in order to immobilize the biologically active substance while maintaining its original function. preferable. The primary functions of the physiologically active substance are, for example, hybridization for nucleic acids and antigen recognition ability for antibodies and aptamers.

(基板の素材)
マイクロアレイ用基板の素材は、ガラス、プラスチック、金属その他を用いることができるが、表面処理の容易性、量産性の観点から、熱可塑性樹脂が好ましい。熱可塑性樹脂としては、蛍光発生量の少ないものが好ましく、たとえばポリエチレン、ポリプロピレン等の直鎖状ポリオレフィン、環状ポリオレフィン、含フッ素樹脂等を用いることが好ましく、耐熱性、耐薬品性、低蛍光性、成形性に特に優れる飽和環状ポリオレフィンを用いることがより好ましい。ここで飽和環状ポリオレフィンとは、環状オレフィン構造を有する重合体単独または環状オレフィンとα−オレフィンとの共重合体を水素添加した飽和重合体をさす。
(Substrate material)
Glass, plastic, metal or the like can be used as a material of the microarray substrate, but a thermoplastic resin is preferable from the viewpoint of easy surface treatment and mass productivity. As the thermoplastic resin, those having a small amount of fluorescence are preferable, and for example, polyethylene, linear polyolefin such as polypropylene, cyclic polyolefin, and fluorine-containing resin are preferably used. It is more preferable to use a saturated cyclic polyolefin having particularly excellent moldability. Here, the saturated cyclic polyolefin refers to a saturated polymer obtained by hydrogenating a polymer having a cyclic olefin structure alone or a copolymer of a cyclic olefin and an α-olefin.

(実施例)
飽和環状ポリオレフィン製の基板を親水化処理したのち、1重量%の3−アミノプロピルトリメトキシシランの水溶液に浸漬し、熱処理を施すことにより表面にアミノ基を導入した。続いて基板を1重量%グルタルアルデヒドの水溶液に浸漬し、基板表面にアミノ基を介してアルデヒド基を導入することで層Aを形成した。さらに、基板を2−メタクリロイルオキシエチルホスホリルコリン−ブチルメタクリレート共重合体の0.5重量%エタノール溶液に浸漬後、乾燥することで層Bを形成した。
評価1: 末端にアミノ基を導入したオリゴヌクレオチド(オリゴ1)(24mer)の水溶液(0.1μg/μl)とエタノールを1:1で混合した溶液を基板上に点着した。80℃で1時間熱処理を施したのち、純水で洗浄した。オリゴ1と相補的な配列で、末端にローダミン修飾を施したオリゴヌクレオチド(オリゴ2)を20ng/μlの濃度に調製した溶液を基板上に展開し、65℃で3時間静置することでハイブリダイゼーション反応を進行させたのち、洗浄した。ハイブリダイゼーションによりスポットに結合したオリゴ2の蛍光量を測定することで、ハイブリダイゼーション効率を評価した。
評価2: オリゴ2を20ng/μlの濃度で溶解した溶液を基板上に点着し、洗浄した。基板上に残存したオリゴ2の蛍光量を測定することで、オリゴヌクレオチドの非特異的な吸着量を評価した。
(Example)
After a substrate made of a saturated cyclic polyolefin was subjected to a hydrophilic treatment, the substrate was immersed in an aqueous solution of 1% by weight of 3-aminopropyltrimethoxysilane and subjected to a heat treatment to introduce an amino group into the surface. Subsequently, the substrate was immersed in an aqueous solution of 1% by weight glutaraldehyde, and an aldehyde group was introduced into the surface of the substrate via an amino group to form a layer A. Further, the substrate was immersed in a 0.5% by weight ethanol solution of a 2-methacryloyloxyethyl phosphorylcholine-butyl methacrylate copolymer, and then dried to form a layer B.
Evaluation 1: A solution obtained by mixing an aqueous solution (0.1 μg / μl) of an oligonucleotide (oligo 1) (24mer) having an amino group introduced into the terminal with ethanol at a ratio of 1: 1 was spotted on the substrate. After a heat treatment at 80 ° C. for 1 hour, the substrate was washed with pure water. A solution prepared by preparing an oligonucleotide (oligo 2) having a sequence complementary to oligo 1 and having a rhodamine modification at the end at a concentration of 20 ng / μl is spread on a substrate, and left at 65 ° C. for 3 hours. After allowing the hybridization reaction to proceed, it was washed. Hybridization efficiency was evaluated by measuring the amount of fluorescence of oligo 2 bound to the spot by hybridization.
Evaluation 2: A solution in which oligo 2 was dissolved at a concentration of 20 ng / μl was spotted on a substrate and washed. By measuring the amount of fluorescence of oligo 2 remaining on the substrate, the amount of nonspecific adsorption of oligonucleotide was evaluated.

(比較例)
実施例と同様の方法で基板にアミノ基を導入し、引き続きアルデヒド基を導入することで層Aを形成した。層Bは形成させなかった。
評価1: 実施例と同様の方法でハイブリダイゼーション効率を評価した。
評価2: 実施例と同様の方法でオリゴヌクレオチドの非特異的な吸着量を評価した。
(Comparative example)
The layer A was formed by introducing an amino group into the substrate and then introducing an aldehyde group in the same manner as in the example. Layer B was not formed.
Evaluation 1: Hybridization efficiency was evaluated in the same manner as in the examples.
Evaluation 2: The nonspecific adsorption amount of the oligonucleotide was evaluated in the same manner as in the example.

実施例および比較例における蛍光量の測定には、Packard BioChip Technologies社製マイクロアレイスキャナー「ScanArray」を用いた。評価1の測定条件は、励起波長555nm、測定波長570nm、レーザー出力90%、PMT感度45%、解像度30nmであった。評価2の測定条件は、励起波長555nm、測定波長570nm、レーザー出力90〜100%、PMT感度65〜100%、解像度30nmであった。
評価1の結果を表1に示す。実施例と比較例で同等の蛍光量となり、本発明のマイクロアレイを用いてハイブリダイゼーション反応が検出可能であることが示された。
評価2の結果を表2に示す。実施例において蛍光量を検出することができず、本発明のマイクロアレイが核酸の非特異的吸着の抑制効果を有することが示された。
For the measurement of the amount of fluorescence in Examples and Comparative Examples, a microarray scanner “ScanArray” manufactured by Packard BioChip Technologies was used. The measurement conditions of Evaluation 1 were an excitation wavelength of 555 nm, a measurement wavelength of 570 nm, a laser output of 90%, a PMT sensitivity of 45%, and a resolution of 30 nm. The measurement conditions of Evaluation 2 were an excitation wavelength of 555 nm, a measurement wavelength of 570 nm, a laser output of 90 to 100%, a PMT sensitivity of 65 to 100%, and a resolution of 30 nm.
Table 1 shows the results of Evaluation 1. The amounts of fluorescence were the same in Examples and Comparative Examples, indicating that the hybridization reaction was detectable using the microarray of the present invention.
Table 2 shows the results of Evaluation 2. In Examples, the amount of fluorescence could not be detected, indicating that the microarray of the present invention has an effect of suppressing nonspecific adsorption of nucleic acids.

Figure 2004198402
Figure 2004198402

Figure 2004198402
Figure 2004198402

Claims (26)

固相基板の表面の一部に生理活性物質を固定化してなるマイクロアレイであって、基板表面には生理活性物質固定化用の表面処理を施した層(層A)が存在し、かつ、層Aの上には生理活性物質の吸着を抑制する物質からなる層(層B)が重層されており、生理活性物質の固定部分において層Bをなす物質の少なくとも一部が基板表面から除去されている、およびまたは、吸着抑制効果を失っている、およびまたは、生理活性物質が層Aに達するまで浸透していることを特徴とするマイクロアレイ。 A microarray in which a physiologically active substance is immobilized on a part of the surface of a solid-phase substrate, wherein a layer (layer A) subjected to a surface treatment for immobilizing a physiologically active substance is present on the surface of the substrate. A layer (layer B) made of a substance that suppresses the adsorption of a physiologically active substance is overlaid on A, and at least a part of the substance constituting the layer B is removed from the surface of the substrate at a portion where the physiologically active substance is fixed. A microarray characterized in that it has an adsorption suppression effect and / or that a physiologically active substance has penetrated until it reaches layer A. 層Aは生理活性物質との結合性を有する官能基を含む請求項1記載のマイクロアレイ。 The microarray according to claim 1, wherein the layer A contains a functional group having a binding property with a physiologically active substance. 層Aはアルデヒド基、アミノ基、エポキシ基、チオール基、水酸基、カルボキシル基、ニトロ基、スルホン基、酸無水物、カルボジイミド基、ビニル基、ハロゲン化アルキル、ハロゲン化アリル、スクシンイミド基、マレイミド基、イソシアナート基、イソチオシアナート基、ヒドラジド基、アジド基、ビオチン誘導体、アビジン誘導体、リン酸基、アズラクトン基、ニトリル基、アミド基、イミノ基、ニトレン基、アセチル基、ポリリジンの内、少なくとも一つを含む請求項1記載のマイクロアレイ。 Layer A is aldehyde group, amino group, epoxy group, thiol group, hydroxyl group, carboxyl group, nitro group, sulfone group, acid anhydride, carbodiimide group, vinyl group, alkyl halide, allyl halide, succinimide group, maleimide group, At least one of isocyanate group, isothiocyanate group, hydrazide group, azide group, biotin derivative, avidin derivative, phosphoric acid group, azlactone group, nitrile group, amide group, imino group, nitrene group, acetyl group, and polylysine The microarray according to claim 1, comprising: 層Aはアルデヒド基、およびまたは、アミノ基を含む請求項1記載のマイクロアレイ。 The microarray according to claim 1, wherein the layer A contains an aldehyde group and / or an amino group. 層Aはアミノアルキルシランを介して結合した多官能性アルデヒド由来のアルデヒド基を含む請求項1記載のマイクロアレイ。 2. The microarray according to claim 1, wherein the layer A contains aldehyde groups derived from a polyfunctional aldehyde bonded via an aminoalkylsilane. 層Bは高分子物質からなる請求項1〜5いずれか記載のマイクロアレイ。 The microarray according to any one of claims 1 to 5, wherein the layer B is made of a polymer material. 高分子物質がホスホリルコリン基を有する請求項6記載のマイクロアレイ。 7. The microarray according to claim 6, wherein the polymer substance has a phosphorylcholine group. ホスホリルコリン基を有する高分子物質が2−メタクリロイルオキシエチルホスホリルコリンを含む共重合体である請求項7記載のマイクロアレイ。 The microarray according to claim 7, wherein the polymer substance having a phosphorylcholine group is a copolymer containing 2-methacryloyloxyethyl phosphorylcholine. 基板がプラスチック製であることを特徴とする請求項1〜8いずれか記載のマイクロアレイ。 The microarray according to any one of claims 1 to 8, wherein the substrate is made of plastic. プラスチックが飽和環状ポリオレフィン製である請求項9記載のマイクロアレイ。 10. The microarray according to claim 9, wherein the plastic is made of a saturated cyclic polyolefin. 基板がガラス製である請求項1〜8いずれか記載のマイクロアレイ。 The microarray according to any one of claims 1 to 8, wherein the substrate is made of glass. 生理活性物質が核酸、アプタマー、タンパク質、抗体、オリゴペプチド、ペプチド核酸、糖鎖、糖タンパク質の内、少なくとも一つである請求項1〜11いずれか記載のマイクロアレイ。 The microarray according to any one of claims 1 to 11, wherein the physiologically active substance is at least one of a nucleic acid, an aptamer, a protein, an antibody, an oligopeptide, a peptide nucleic acid, a sugar chain, and a glycoprotein. 生理活性物質がオリゴヌクレオチドである請求項1〜11いずれか記載のマイクロアレイ。 The microarray according to any one of claims 1 to 11, wherein the physiologically active substance is an oligonucleotide. 生理活性物質がアプタマーである請求項1〜11いずれか記載のマイクロアレイ。 The microarray according to any one of claims 1 to 11, wherein the physiologically active substance is an aptamer. 基板表面への生理活性物質固定化用の表面処理層(層A)の形成工程(工程A)、層Aの上部への生理活性物質の吸着を抑制する物質からなる層(層B)の形成工程(工程B)、および、生理活性物質溶液あるいは生理活性物質分散液の基板上への点着工程(工程C)を含み、工程Cで点着部において層Bを形成する物質の少なくとも一部を除去する、およびまたは、吸着抑制効果を失わせる、およびまたは、生理活性物質の少なくとも一部を層Aに達するまで浸透させることを特徴とするマイクロアレイの製造方法。 Step of Forming Surface Treatment Layer (Layer A) for Immobilizing Physiologically Active Substance on Substrate Surface (Step A), Formation of Layer (Layer B) Made of Substance Suppressing Adsorption of Physiologically Active Substance Above Layer A A step (step B) and a step of applying a physiologically active substance solution or a physiologically active substance dispersion onto a substrate (step C), wherein at least a part of the substance forming the layer B in the spotted portion in the step C A method for producing a microarray, comprising: removing an adsorption inhibitory effect; and / or permeating at least a part of a physiologically active substance until the layer A is reached. 工程Cの生理活性物質溶液あるいは生理活性物質分散液が、層Bを形成する物質に対して溶解性を示す請求項15記載のマイクロアレイの製造方法。 The method for producing a microarray according to claim 15, wherein the physiologically active substance solution or the physiologically active substance dispersion liquid in Step C exhibits solubility in the substance forming the layer B. 工程Cの生理活性物質溶液あるいは生理活性物質分散液がアルコールを含む請求項16記載のマイクロアレイの製造方法。 17. The method for producing a microarray according to claim 16, wherein the physiologically active substance solution or the physiologically active substance dispersion liquid in Step C contains alcohol. 生理活性物質溶液あるいは生理活性物質分散液が界面活性剤を含む請求項16記載のマイクロアレイの製造方法。 17. The method for producing a microarray according to claim 16, wherein the physiologically active substance solution or the physiologically active substance dispersion contains a surfactant. 層Bがホスホリルコリン基を有する高分子物質から形成される請求項15〜18いずれか記載のマイクロアレイの製造方法。 The method for producing a microarray according to any one of claims 15 to 18, wherein the layer B is formed from a polymer substance having a phosphorylcholine group. ホスホリルコリン基を有する高分子物質が、2−メタクリロイルオキシエチルホスホリルコリンを含む共重合体である請求項19記載のマイクロアレイの製造方法。 The method for producing a microarray according to claim 19, wherein the polymer substance having a phosphorylcholine group is a copolymer containing 2-methacryloyloxyethyl phosphorylcholine. 基板がプラスチック製である請求項15〜20いずれか記載のマイクロアレイの製造方法。 The method for producing a microarray according to any one of claims 15 to 20, wherein the substrate is made of plastic. プラスチックが飽和環状ポリオレフィン製である請求項21記載のマイクロアレイの製造方法。 22. The method for producing a microarray according to claim 21, wherein the plastic is made of a saturated cyclic polyolefin. 基板がガラス製である請求項15〜20いずれか記載のマイクロアレイの製造方法。 The method for producing a microarray according to any one of claims 15 to 20, wherein the substrate is made of glass. 生理活性物質が核酸、アプタマー、タンパク質、抗体、オリゴペプチド、ペプチド核酸、糖鎖、糖タンパク質の内、少なくとも一つである請求項15〜23いずれか記載のマイクロアレイの製造方法。 The method for producing a microarray according to any one of claims 15 to 23, wherein the physiologically active substance is at least one of a nucleic acid, an aptamer, a protein, an antibody, an oligopeptide, a peptide nucleic acid, a sugar chain, and a glycoprotein. 生理活性物質がオリゴヌクレオチドである請求項15〜23いずれか記載のマイクロアレイの製造方法。 The method for producing a microarray according to any one of claims 15 to 23, wherein the physiologically active substance is an oligonucleotide. 生理活性物質がアプタマーである請求項15〜23いずれか記載のマイクロアレイの製造方法。

The method for producing a microarray according to any one of claims 15 to 23, wherein the physiologically active substance is an aptamer.

JP2003355769A 2002-12-02 2003-10-16 Microarray and manufacturing method thereof Expired - Fee Related JP4411926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003355769A JP4411926B2 (en) 2002-12-02 2003-10-16 Microarray and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002349369 2002-12-02
JP2003355769A JP4411926B2 (en) 2002-12-02 2003-10-16 Microarray and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004198402A true JP2004198402A (en) 2004-07-15
JP4411926B2 JP4411926B2 (en) 2010-02-10

Family

ID=32774971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003355769A Expired - Fee Related JP4411926B2 (en) 2002-12-02 2003-10-16 Microarray and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4411926B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029095A1 (en) * 2003-09-19 2005-03-31 Sumitomo Bakelite Co., Ltd. Biochip
WO2006062009A1 (en) * 2004-12-09 2006-06-15 Sumitomo Bakelite Co., Ltd. Dna chain elongation method, dna chain amplification method and microarray for dna chain elongation
JP2006174788A (en) * 2004-12-24 2006-07-06 Sumitomo Bakelite Co Ltd Method for elongating dna strand, method for amplifying dna strand, and microarray for elongating dna strand
JP2006234712A (en) * 2005-02-28 2006-09-07 Sumitomo Bakelite Co Ltd Dna immobilization method
JP2006230335A (en) * 2005-02-28 2006-09-07 Sumitomo Bakelite Co Ltd Method for detecting gene
JP2006258585A (en) * 2005-03-16 2006-09-28 Sumitomo Bakelite Co Ltd Method of detecting protein and method of detecting peptide
WO2006123647A1 (en) * 2005-05-17 2006-11-23 Sumitomo Bakelite Co., Ltd. Method for detection of gene
WO2007013343A1 (en) * 2005-07-25 2007-02-01 Sumitomo Bakelite Co., Ltd. Method for detection of bacterium
JP2007037473A (en) * 2005-08-04 2007-02-15 Sumitomo Bakelite Co Ltd Method for detecting gene sequence
JP2007074928A (en) * 2005-09-12 2007-03-29 Sumitomo Bakelite Co Ltd Method for amplification of dna strand
WO2007043748A1 (en) * 2005-10-14 2007-04-19 Lg Life Sciences, Ltd. Method of manufacturing plastic substrate using plasma process and plastic substrate manufactured using the method
KR100729953B1 (en) * 2005-10-14 2007-06-20 주식회사 엘지생명과학 Method for manufacturing plastics substrate by plasma process and plastics substrate manufactured using the same
JP2007205753A (en) * 2006-01-31 2007-08-16 Sumitomo Bakelite Co Ltd Manufacturing method of biochip
KR101009475B1 (en) 2007-06-18 2011-01-19 이화여자대학교 산학협력단 A method for constructing a patterned slides for protein chip and protein chip sensors consisting of biomarkers to assess anti-obesity activity using the same and use thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2422335B (en) * 2003-09-19 2008-02-13 Sumitomo Bakelite Co Chip for detection or analysis of biologically active substance
GB2422335A (en) * 2003-09-19 2006-07-26 Sumitomo Bakelite Co Biochip
WO2005029095A1 (en) * 2003-09-19 2005-03-31 Sumitomo Bakelite Co., Ltd. Biochip
KR101140881B1 (en) 2003-09-19 2012-05-03 가즈히코 이시하라 Biochip
WO2006062009A1 (en) * 2004-12-09 2006-06-15 Sumitomo Bakelite Co., Ltd. Dna chain elongation method, dna chain amplification method and microarray for dna chain elongation
JP2006187270A (en) * 2004-12-09 2006-07-20 Sumitomo Bakelite Co Ltd Dna chain elongation method, dna chain amplification method and microarray for dna chain elongation
US8765417B2 (en) 2004-12-09 2014-07-01 Sumitomo Bakelite Co., Ltd. Method of elongating DNA through immobilizing primer DNA chains on a substrate, a method of amplifying a DNA chain
JP2006174788A (en) * 2004-12-24 2006-07-06 Sumitomo Bakelite Co Ltd Method for elongating dna strand, method for amplifying dna strand, and microarray for elongating dna strand
JP2006234712A (en) * 2005-02-28 2006-09-07 Sumitomo Bakelite Co Ltd Dna immobilization method
JP2006230335A (en) * 2005-02-28 2006-09-07 Sumitomo Bakelite Co Ltd Method for detecting gene
JP4534817B2 (en) * 2005-03-16 2010-09-01 住友ベークライト株式会社 Protein detection method and peptide detection method
JP2006258585A (en) * 2005-03-16 2006-09-28 Sumitomo Bakelite Co Ltd Method of detecting protein and method of detecting peptide
US7968290B2 (en) 2005-05-17 2011-06-28 Sumitomo Bakelite Co., Ltd. Method of detecting gene
WO2006123647A1 (en) * 2005-05-17 2006-11-23 Sumitomo Bakelite Co., Ltd. Method for detection of gene
JP5003484B2 (en) * 2005-05-17 2012-08-15 住友ベークライト株式会社 Gene detection method
WO2007013343A1 (en) * 2005-07-25 2007-02-01 Sumitomo Bakelite Co., Ltd. Method for detection of bacterium
JP4922936B2 (en) * 2005-07-25 2012-04-25 住友ベークライト株式会社 Bacteria detection method
JP2007037473A (en) * 2005-08-04 2007-02-15 Sumitomo Bakelite Co Ltd Method for detecting gene sequence
JP2007074928A (en) * 2005-09-12 2007-03-29 Sumitomo Bakelite Co Ltd Method for amplification of dna strand
KR100729953B1 (en) * 2005-10-14 2007-06-20 주식회사 엘지생명과학 Method for manufacturing plastics substrate by plasma process and plastics substrate manufactured using the same
WO2007043748A1 (en) * 2005-10-14 2007-04-19 Lg Life Sciences, Ltd. Method of manufacturing plastic substrate using plasma process and plastic substrate manufactured using the method
JP2007205753A (en) * 2006-01-31 2007-08-16 Sumitomo Bakelite Co Ltd Manufacturing method of biochip
KR101009475B1 (en) 2007-06-18 2011-01-19 이화여자대학교 산학협력단 A method for constructing a patterned slides for protein chip and protein chip sensors consisting of biomarkers to assess anti-obesity activity using the same and use thereof

Also Published As

Publication number Publication date
JP4411926B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP5552474B2 (en) Polymer compound for medical material and biochip substrate using the polymer compound
JP4411926B2 (en) Microarray and manufacturing method thereof
Sola et al. Synthesis of clickable coating polymers by postpolymerization modification: applications in microarray technology
US20200347443A1 (en) Nucleic acid hybridization methods
Gagni et al. A self-assembling peptide hydrogel for ultrarapid 3D bioassays
FR2903120A1 (en) METHOD FOR IMMOBILIZATION OF HYDROGELS ON NON-MODIFIED POLYMERIC MATERIALS, BIOPUCE BASED ON NON-MODIFIED POLYMERIC MATERIALS AND METHOD OF MANUFACTURING THE SAME
JP2010117189A (en) Substrate for immobilizing physiological active substance
Broderick et al. Fabrication of oligonucleotide and protein arrays on rigid and flexible substrates coated with reactive polymer multilayers
JP4534817B2 (en) Protein detection method and peptide detection method
JP4197279B2 (en) Biologically-derived substance detection substrate and manufacturing method thereof
JP4376813B2 (en) Biochip substrate and biochip
JP2006176720A (en) High polymer for medical material and polymer solution using the same
JP2007279028A (en) Biological substance structure with pore and manufacturing method therefor, biological substance carrier using the same, refining method for biological substance, container for affinity chromatography, chip for separation, analytical method for the biological substance, separator for analyzing objective substance, and sensor chip
JP4862412B2 (en) Biochip manufacturing method
JP4419715B2 (en) Biochip substrate and biochip
JP5614179B2 (en) Polymer compound for medical material and biochip substrate using the polymer compound
US20060111517A1 (en) Recognition layers made of hydrogel based on polyacrylamide for use in biosensor technology
JP2013148484A (en) Manufacturing method of biochip, and biochip
JP4170082B2 (en) Microarray and manufacturing method thereof
US20060084159A1 (en) Method for manufacturing of three dimensional composite surfaces for microarrays
JP4347211B2 (en) Biochip substrate and biochip
JP2007101520A (en) Biological material complex, biological material complex carrier, method for purifying object material, container for affinity chromatography, chip for separation, separation apparatus and method for analyzing object material, and sensor chip
JP2006258609A (en) Biomaterial-use polymer compound and polymer solution using the same
JP4352849B2 (en) Plastic surface treatment method, plastic substrate and plastic biochip
JP2008215894A (en) Detection method of protein and detecting method of peptide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees