JP4305081B2 - 炭素繊維製造用油剤及び炭素繊維の製造方法 - Google Patents

炭素繊維製造用油剤及び炭素繊維の製造方法 Download PDF

Info

Publication number
JP4305081B2
JP4305081B2 JP2003207822A JP2003207822A JP4305081B2 JP 4305081 B2 JP4305081 B2 JP 4305081B2 JP 2003207822 A JP2003207822 A JP 2003207822A JP 2003207822 A JP2003207822 A JP 2003207822A JP 4305081 B2 JP4305081 B2 JP 4305081B2
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber
carbon
oil
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003207822A
Other languages
English (en)
Other versions
JP2004316052A (ja
Inventor
信昭 沖
泰正 山本
真 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003207822A priority Critical patent/JP4305081B2/ja
Publication of JP2004316052A publication Critical patent/JP2004316052A/ja
Application granted granted Critical
Publication of JP4305081B2 publication Critical patent/JP4305081B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Inorganic Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、強度の優れた炭素繊維を提供するための炭素繊維製造用油剤及びそれを用いた炭素繊維用前駆体繊維束及び炭素繊維に関する。
【0002】
【従来の技術】
炭素繊維は他の繊維に比べて優れた比強度及び比弾性率を有するため、その優れた機械的特性を利用して樹脂との複合材料用の補強繊維として工業的に広く利用されている。近年、炭素繊維複合材料の優位性はますます高まり、特にゴルフ、釣竿等のスポーツ用途や航空宇宙用途においては、この炭素繊維複合材料に対する高性能化要求が強い。複合材料としての特性、中でも剛性や圧縮強度といった特性は炭素繊維そのものの特性に起因するところが大きく、この要求はとりもなおさず炭素繊維自身への高性能化要求であり、例えば弾性率の向上や高い圧縮強度の発現といった特性が求められている。
【0003】
最も広く利用されているポリアクリロニトリル系炭素繊維は、アクリル系前駆体繊維束を200〜400℃の酸化性雰囲気下で耐炎化繊維へ転換する耐炎化工程、少なくとも1000℃の不活性雰囲気下で炭素化する炭化工程を経て、工業的に製造される。これら焼成工程においては、単繊維同士の接着が発生し、得られる炭素繊維の品質、品位を低下させるという問題があった。
【0004】
この問題に対し、耐熱性の高いシリコーン油剤をアクリル系前駆体繊維束に付与する技術が多数提案され、工業的に広く適用されている。例えば、特定のアミノ変成シリコーン、エポキシ変性シリコーン、アルキレンオキサイド変性シリコーンを混合した油剤は、空気中及び窒素中での加熱時の減量が少なく、接着防止効果が高いことが開示されている(例えば、特許文献1)。しかしながら、このような従来のシリコーン油剤を用いて高性能な炭素繊維を得るために高張力で焼成を行うと、低粘度のため、耐炎化工程において単繊維間に薄く広く介在して単繊維間距離を縮め、またあるいは単繊維同士を実質的に接触させてしまうため、耐炎化反応に必須となる酸素の供給を妨げ、その結果、耐炎化反応の進行度ムラ、いわゆる焼成ムラの発生が誘起され、更にはこれが原因となって、続く炭化工程において糸切れや毛羽発生等の問題を引き起こしやすく、生産性向上の大きな障害となる。高性能な炭素繊維を生産性良く製造するためには、高張力に加えて、より表面が平滑なプリカーサーを高糸条密度で焼成することが有利であるが、このような条件においては、上記焼成ムラの悪影響がよりいっそう顕著となり、糸条密度、張力、処理速度を低下させざるを得ないのが現状である。この問題に対し、シリコーン油剤の硬化挙動を特定することにより、油剤を単繊維間に固まるようにして介在させることによって酸素が供給されるようにして焼成ムラを改善する技術(例えば、特許文献2)が開示されているが、更なる炭素繊維の高性能化については限界があった。
【0005】
【特許文献1】
特公平3−40152号公報(全体)
【0006】
【特許文献2】
特開2001−172880号公報(全体)
【0007】
【発明が解決しようとする課題】
本発明の目的は、上記問題点を解決し、耐炎化工程での単繊維間接着を防ぎ、単繊維間への酸素の供給を円滑に行うことができる炭素繊維製造用油剤を提供せんとするものである。特に高糸条密度、高張力の条件下においても、耐炎化のムラを減少し、優れた性能を有する炭素繊維を製造するための炭素繊維製造用油剤及びそれを用いた炭素繊維用前駆体繊維束及び炭素繊維を提供せんとするものである。
【0008】
【課題を解決するための手段】
本発明は、鋭意検討した結果、特定の反応性界面活性剤を用いることによって、更に炭素繊維が高性能化するという発見に基づいてなされたもので、下記骨子によって上記課題を解決するものである。
【0009】
即ち、本発明は、反応性基がビニル基またはアリル基であり、ノニオン性である反応性界面活性剤とシリコーンを含み、前記反応性界面活性剤の配合利用がシリコーン100重量部に対して20〜40重量部である炭素繊維製造用油剤であり、また、それが付与されてなる炭素繊維用前駆体繊維束であり、また、かかる炭素繊維用前駆体繊維束を、炭化工程で1〜1.3の延伸比で延伸し焼成せしめて得られる炭素繊維の製造方法であって、広角X線により測定される炭素網面の(002)面の結晶サイズLcと配向度(π002)が式(1)を満たす炭素繊維である。
(1)y≧3*Lc+78
y:配向度(π002)(%)
Lc:炭素網面の(002)面の結晶サイズ(nm)
【0010】
【発明の実施の形態】
以下、本発明をより詳細に説明する。
【0011】
本発明の炭素繊維製造用油剤の必須成分である反応性界面活性剤とは、疎水部と親水部からなる界面活性剤に、反応性基が結合したものである。ここでいう界面活性剤とはいわゆる乳化剤や分散剤と呼ばれるものも含むものである。かかる反応性基は界面活性剤の構造の何れに含まれていてもよい。つまり、反応性界面活性剤の界面活性剤たる主骨格に対して付加した基として含まれていてもよいし、主骨格と反応性基との間になんらかの連結基を有していてもよいし、主骨格中に反応性の不飽和結合等が含まれていてもよい。ここで反応性基とは、末端が不飽和結合になるビニル基もしくはアリル基である。また、主骨格と反応性基との間になんらかの連結基を有する例としては、連結基として、エチレンオキサイド等のアルキレンオキサイドやメチレン基等のアルキレン等が一つ以上含まれていても構わない。具体的には、例えば、α−[1−[(アリルオキシ)メチル]−2−(ノニルフェノキシ)エチル]−ω−ヒドロキシポリオキシエチレン等のノニルフェノールのエチレンオキサイド付加物にビニル基やアリル基が連結基を通して結合したり、直接結合した反応性界面活性剤(例えば、旭電化工業(株)製アデカリアソープ(登録商標)のNEシリーズや第一工業製薬(株)製アクアロン(登録商標)のRNシリーズ等)、アルキルエーテルを主骨格とする化合物にビニル基やアリル基が連結基を通して結合したり直接結合した反応性界面活性剤(例えば、旭電化工業(株)製アクアロンのERシリーズ、同SRシリーズ、同KHシリーズ、Clariant社Emulsogen Rシリーズ、花王(株)製ラムテル(登録商標)シリーズ等)、アクリル酸またはメタクリル酸と、ポリエチレングリコール、またはポリエチレングリコールとポリプロピレングリコールの共重合体とのエステル物やその誘導体(例えば、日本油脂(株)製ブレンマー(登録商標)シリーズ)、イソプレンスルホン酸塩(例えば、JSR(株)製)、等が挙げられる。
【0012】
主骨格中に反応性の不飽和結合等が含まれている例としては、具体的には、ポリオキシエチレンひまし油(日本エマルジョン(株)製エマレックスC−シリーズ)、オレイン酸のような不飽和脂肪酸とポリエチレンオキサイド等とのエステル物等が挙げられる。
【0013】
本発明では、反応性界面活性剤として、付着量のコントロールが最も容易であるという点でノニオン性の反応性界面活性剤が用いられる
【0014】
本発明の炭素繊維用油剤は、かかる反応性界面活性剤を後述する主成分(油分)と混合したものであるが、反応性界面活性剤と主成分を混合した、いわゆるストレートオイル状であってもよいし、主成分および反応性界面活性剤を水等の親水性媒体に混合した、いわゆる乳化状態または分散状態であってもよい。また、いずれの場合にも反応性界面活性剤以外の通常の界面活性剤を併用してもよい。ここでいう通常の界面活性剤とは前述の反応性基を有さない界面活性剤をいう。反応性基を有さない界面活性剤としては、例えばポリエチレングリコールのアルキルエーテルやアルキルフェニルエーテル、アルキルアミンエーテルなどを挙げることができる。これら通常の界面活性剤を加えることにより、油剤全体としての反応性を制御することができる。例えば、上記具体例に挙げた日本油脂(株)製ブレンマーシリーズの反応性界面活性剤等を用いた場合には、反応性が高すぎて油剤が反応した時、繊維同士の束縛や擬似的な接着を起こしたり、繊維を痛めるまでに硬化する傾向にあるので、そのような場合に有効である。また、後述するように、主成分を親水性媒体に乳化または分散させる場合、通常の界面活性剤を乳化または分散の助剤として併用できる。
【0015】
反応性界面活性剤に通常の界面活性剤を併用する場合は、反応性界面活性剤の重量が、通常の界面活性剤と同量もしくはそれ以上であるのが好ましい。反応性界面活性剤の量が、通常の界面活性剤よりも少ないと本発明の効果が得られにくい場合がある。
【0016】
また、油剤を水等の親水性媒体に乳化または分散せしめる場合は、反応性界面活性剤の配合量は、油剤の乳化系または分散系の安定性によって適宜決められるが、後述する主成分(シリコーン)100重量部に対して、20〜40重量部である。反応性界面活性剤の配合量が主成分100重量部に対して、20重量部よりも少ないと本発明の効果が得られにくかったり、あるいは乳化または分散安定性が確保でき配合量が40重量部より多いと効果が飽和したり、もしくは後述する反応性界面活性剤の推定する作用において、反応しきれない反応性界面活性剤量が増加し、それらが前駆体繊維束の単繊維内部に浸透し、欠陥の元になって本発明の効果が損なわれる。また、反応性界面活性剤と通常の界面活性剤を併用する場合は、油剤の乳化系または分散系の安定性によって適宜決められるが、反応性界面活性剤と通常の界面活性剤との総量が主成分100重量部に対して、10〜100重量部が好ましく、10〜50重量部が更に好ましく、20〜40重量部がなかんずく好ましい。これら界面活性剤の総量が主成分100重量部に対して10重量部よりも少ないと本発明の効果が得られにくかったり、あるいは乳化または分散安定性が確保できない場合があり、100重量部より多いと効果が飽和したり、もしくは後述する反応性界面活性剤の推定する作用において、反応しきれない反応性界面活性剤量の単繊維内部に浸透し、欠陥の元になって本発明の効果が損なわれる場合がある。
【0017】
上記のごとき反応性界面活性剤を用いると、炭素繊維が高性能化する理由については、必ずしも定かではないが、次のように考えている。即ち、従来の油剤中の乳化剤または分散剤として用いられてきた界面活性剤は、界面活性剤同士あるいは後述する油剤主成分との反応性がないため、油剤を前駆体繊維束に付与した後、界面活性剤の1つ1つの分子が独立で前駆体繊維束の単繊維内部に浸透する。この単繊維内部に侵入した界面活性剤は炭素繊維の欠陥の核となり、強度低下を引き起こす原因であった。一方、界面活性剤に反応性を与えると、界面活性剤同士あるいは後述する油剤の主成分に反応して結合し、反応性界面活性剤はもはや1つ1つの分子が独立して挙動することができず、大きな分子となり、前駆体繊維束の単繊維内部に浸透することができなくなる。
【0018】
また更に、この単繊維内部への拡散による欠陥の核生成については、油剤の主成分についても同様のことが言え、反応性界面活性剤を用いると、主成分は更に巨大分子となり、単繊維内部に拡散しにくくなり、ボイド等の欠陥生成を抑制することになる。また更に、主成分が更に巨大分子化することによって油剤の水分揮発後の粘度も上昇し、繊維間にゴム的な固まり状で残りやすくなり、高糸条密度、高張力の条件下においても、単繊維間接着を防ぎ、耐炎化工程での酸素の供給が円滑に行うことができる、と考えている。
【0019】
本発明の炭素繊維製造用油剤は、上記反応性界面活性剤を必須成分とするが、油剤の役割を果たす主成分が必要である。主成分としては、240℃で2時間、空気中で熱処理した時に、その減量率が70%以下、好ましくは50%以下に抑えられるような耐熱性があるものが好ましく、本発明では特にシリコーン類を用いるものである。シリコーン類は、離型性も高く、好ましく用いられる。また、シリコーン類は、ジメチルポリシロキサン等のジオルガノポリシロキサンや、それを基本にしたアミノ変性やエポキシ変性やポリエーテル変性等の各種変性物が知られており、本発明にも用いられるが、少なくとも本発明の炭素繊維製造用油剤の主成分の一部にはアミノ変性シリコーンが含まれているのは好ましく、アミノ変性シリコーンとポリエーテル変性シリコーンを併用するのは更に好ましく、アミノ変性シリコーンとエポキシ変性シリコーンとポリエーテル変性シリコーンを併用するのが特に好ましい。ここでエポキシ変性シリコーンは耐熱性に、ポリエーテル変性シリコーンは乳化安定性に寄与する効果がある。また、アミノ変性シリコーンの含有量は、主成分中20〜100重量%が好ましく、30〜100重量%がより好ましく、40〜100重量%がなお好ましい。アミノ変性シリコーンの含有量が主成分中20重量%に満たない場合には、前駆体繊維同士の束縛や擬似的な接着が起こって、前駆体繊維を延伸しながら焼成する際に毛羽が立ったり、糸切れを起こすという場合がある。
【0020】
本発明の炭素繊維製造用油剤を前駆体繊維束に付与することにより炭素繊維用前駆体繊維束を得ることができる。前駆体繊維束としては、ピッチ系とポリアクリロニトリル系が挙げられるが、ポリアクリロニトリル系繊維は特に好ましい。
【0021】
本発明の炭素繊維製造用油剤は前駆体繊維束の製糸工程のいずれの段階で付与してもよい。例えば紡糸後、延伸前付与してもよいし、延伸後に付与してもよいし、あるいは製糸工程の最後の段階、すなわち巻取り直前に付与してもよい。延伸における単繊維間接着を防ぐという点で延伸前に付与するのがより好ましい。
【0022】
付与する様態は、上記のように必須成分としての反応性界面活性剤と主成分のみからなる、いわばストレートオイル状で付与しても構わないし、必須成分に水等の親水性媒体を加えて乳化状態もしくは分散状態として、付与しても構わない。これらは、油剤の付与量対比効果で適宜決められるが、炭素繊維製造用油剤中に固形分が1〜5重量%、より好ましくは2〜4重量%含まれた乳化または分散状態として、付与するのが好ましい。なお、固形分の含有量は、水分が蒸発しやすいように、広い底を持った容器中に少量の油剤を入れて薄く拡げた状態で、40℃で12時間オーブン処理し、その前後の重量変化から求められる。乳化または分散した時の主成分の平均粒子径は、0.001〜1μmが好ましく、0.001〜0.5μmがより好ましく、0.05〜0.2μmがなかんずく好ましい。かかる平均粒子径は光散乱等を原理とする粒度分布計で確認することができる。
【0023】
油剤を前駆体繊維束に付与した後は、かかる前駆体繊維束を加熱するのが好ましい。加熱することにより、上述した反応性界面活性剤と主成分との反応がより進行しやすくなる。加熱温度は、120〜220℃が好ましく、140〜210℃がより好ましく、160〜200℃が更に好ましい。220℃を超えると単繊維間接着を起こしやすく、120℃以下では反応に時間が掛かり、効率的ではない場合がある。加熱時間は、油剤がストレートオイルの場合は、5〜120秒が好ましく、10〜90秒がより好ましく、15〜60秒が更に好ましい。加熱時間が5秒に満たないと反応が不十分になり、本発明の効果が十分に発現しない場合があり、120秒を超えても、効果は飽和していることが多い。油剤が水等の親水性媒体を含んでいる場合は、前記の加熱時間に好ましくは5〜30秒、より好ましくは10〜20秒を加えると好ましい加熱時間となる。この時間は、水等の親水性媒体の乾燥に要する時間であるので、加熱温度や加熱の方式、例えば、接触加熱か非接触加熱か等、によって適宜決められる。加熱する形態は、電気ヒーターやスチーム等で加熱した空気の中に前駆体繊維束を通過させるテンターや赤外線加熱装置のような非接触式と、プレート式ヒーターやドラム式ヒーター等のような接触式のいずれもが用いられるが、接触式の方が熱伝達効率の点でより好ましい。
【0024】
このようにして得られた本発明の炭素繊維用前駆体繊維束は、前述のごとく油剤が単繊維間にとどまる傾向が高くなり、繊維内部の欠陥が減少するという効果を有するだけでなく、以下に述べるとおり張力や温度を従来に比べ高めに設定し焼成せしめることが可能となる。従って、本発明の前駆体繊維束を用いることで例えば高い圧縮強度や弾性率を発現する高性能な炭素繊維を得ることができる。尚、本発明でいう炭素繊維とは、黒鉛構造を有する黒鉛化繊維も含むものである。
【0025】
かかる焼成工程は、炭素繊維用前駆体繊維束を例えば200〜400℃の酸化性雰囲気下で耐炎化繊維へ転換する耐炎化工程と、500〜800℃の不活性雰囲気下で処理する前炭化工程と1000〜2000℃の不活性雰囲気下で炭素化する炭化工程を有することができる。耐炎化工程は、220〜270℃で行うのがより好ましい。
【0026】
かかる耐炎化工程を経た、いわゆる耐炎化繊維束は、従来の耐炎化繊維束に比べ、酸化ムラが減少し、酸化進行度が高い傾向にある。具体的には、かかる酸化進行度をギ酸への溶出度から求めることができる。これは、ギ酸に浸漬すると酸化不足の部分が選択的に溶出することを利用して得た指標であり、浸漬前後の耐炎化繊維束の重量差を浸漬前の重量で除すことで求められる。かかる溶出度は0〜2%が好ましく、0〜1.5%がより好ましく、0〜1.1%がなかんずく好ましい。かかる溶出度が2%を超えると酸化ムラが増加し酸化進行度が低下し、焼成ムラの発生が誘起され、前炭化工程での延伸が困難になるという場合がある。
【0027】
前炭化工程においては優れた炭素繊維の機械特性を得るため、特に複合材料において優れた圧縮強度を得るためには、高張力で処理することが好ましく、そのための延伸比1〜1.3とする。延伸比が1未満であると、所定の束状の炭素繊維のストランド弾性率を有するのに、炭化工程において高温で行わなければならなく、高温により後述する結晶サイズを成長させ、後述の式(1)を満たさず、優れた圧縮強度を得られない。また延伸比が1.3を超えると糸切れや毛羽等の発生が起こりやすく、品位の優れた炭素繊維が得られない。
【0028】
炭化工程においては、得ようとする炭素繊維に求める性能によって変わるが、処理温度を1000〜3000℃とすることが好ましい。特に束状の炭素繊維のストランド引張強度が6.5GPaを超えるような高強度炭素繊維を得ることを目的とする場合には、処理温度1200〜1500℃がより好ましい。一方、束状の炭素繊維のストランド弾性率が340GPaを超えるような高弾性率炭素繊維を得ることを目的とする場合は、処理温度1500〜3000℃が好ましく、1800〜3000℃がより好ましい。尚、処理温度が1000℃未満であると油剤に用いてシリコーン類が糸束に付着したままとなり炭素繊維の特性を損なう場合があり、処理温度が3000℃を超えると糸切れや毛羽等の発生が起こりやすく、品位の優れた炭素繊維が得られないという場合がある。
【0029】
前述のごとく本発明の油剤を用いることによって、前載炭化工程での優れた高張力化が行えるため、高性能な炭素繊維を得ることが可能となる。すなわち、本発明の炭素繊維は広角X線回析より測定される炭素網面の(002)面の結晶サイズLcと配向度(π002)が式(1)を満たすものである
(1)y≧3*Lc+78
y:配向度(π002)(%)
Lc:炭素網面の(002)面の結晶サイズ(nm)
ましくは式(2)を満たすものである。
(2)y≧3*Lc+80
y:配向度(π002)(%)
Lc:炭素網面の(002)面の結晶サイズ(nm)
ここで配向度yは炭素繊維の弾性率と相関があり、弾性率が高くなるほど配向度yも高くなる傾向にある。一方、結晶サイズは圧縮強度の発現と逆相関があり結晶サイズが小さくなるほど圧縮強度が高まる傾向にある。すなわち、配向度yと結晶サイズLcとの関係が上記式(1)を満たすことにより、高弾性率と高圧縮強度の発現の両立が可能となり、高性能な繊維強化複合材料の提供が可能となるものである。ここで結晶サイズLcは25(nm)が好ましく、2.4〜4.8(nm)がより好ましく、2.5〜4.5(nm)が更に好ましい。結晶サイズが2未満であると弾性率が低下するという場合があり、5を超えると圧縮強度が低下するという場合がある。ここでいう配向度yおよび結晶サイズLcはX線源としてCuKα(Niフィルター使用)を用いたX線回折法により求められるものである。結晶サイズLcは面指数(002)回折線のピークの半値幅から、次のScherrerの式を用いて計算して求められる。
【0030】
Lc(hkl)=Kλ/β0cosθB
但し、
Lc(hkl):微結晶(hkl)面に垂直な方向の平均の大きさ
K:1.0、λ:0.15418nm(X線の波長)
β0:(βE 2−β1 21/2
βE:見かけの半値幅(測定値)、β1:1.046×10-2rad
θB:Braggの回析角
また、配向度yは面指数(002)回析線の結晶ピークを円周方向にスキャンして得られる強度分布の半値幅から次式により求めた。
【0031】
y=(180−H)/180
但し、
H:見かけの半値幅(deg)
但し、回折強度はローレンツ因子による補正後の値を使用するものである。なかでも、これまで圧縮強度の向上が困難であった束状の炭素繊維のストランド引張弾性率が340GPaを超えるような高弾性率炭素繊維であっても、上記式(1)を満たすことが可能となり、高い弾性率と高い圧縮強度の両立が可能となるものである。
【0032】
本発明の繊維強化複合材料は上記炭素繊維と樹脂硬化物からなるものである。本発明の炭素繊維を用いることによって例えばASTM D695に準拠して測定される圧縮強度が1250MPa以上である繊維強化複合材料を得ることが可能となる。また、JIS R7601による引張弾性率が340GPa以上でかつ圧縮強度が1250MPa以上である繊維強化複合材料を得ることが可能となり、ゴルフクラブ用シャフトや釣竿に好適に用いられる。
【0033】
【実施例】
以下、実施例によって、本発明を更に詳細に説明する。なお、実施例によって本発明が制限されることはない。
【0034】
本実施例において、耐炎化繊維の特性、炭素繊維の各種特性および繊維強化複合材料の圧縮強度は下記方法により測定した。
(1)ギ酸への溶出度
120℃に設定したオーブンで十分に乾燥させた耐炎化繊維束の重量を測定した後、該耐炎化繊維束2.5重量部を100重量部のギ酸に浸漬し、25℃で100分間震盪した。その後、耐炎化繊維束を取り出して十分に水洗及び90℃で2時間湯洗し、120℃に設定したオーブンで十分に乾燥させた。得られたギ酸処理された耐炎化繊維束の重量を量り、ギ酸処理前後の耐炎化繊維束の重量差をギ酸処理前の重量で除すことでギ酸溶出度を求めた。
(2)炭素繊維束のストランド引張強度およびストランド弾性率
JIS R7601に記載の方法に準じて、次の組成の樹脂を炭素繊維束に含浸し、130℃、35分の条件で加熱硬化させ、引張試験片を作製し、引張強度、引張弾性率を測定した。
<樹脂組成>
・3,4−エポキシシクロヘキシルメチル−3,4−エポキシ−シクロヘキシル−カルボキシレート(ERL−4221、ユニオンカーバイド社製)100重量部
・3フッ化ホウ素モノエチルアミン(ステラケミファ株式会社製) 3重量部
・アセトン(和光純薬工業株式会社製) 4重量部
(3)炭素網面(002)面の結晶サイズLcおよび結晶配向度
X線回折法にて下記条件にて測定する面指数(002)の回折線より求めた。本実施例ではX線回折装置として(株)理学電機社製、4036A型(管球)を使用して、透過法により測定した。
A.測定試料の作製
被測定炭素繊維から、長さ4cmの試験片を切り出し、金型とコロジオン・アルコール溶液を用いて固め、角柱形状とし測定試料とした。
B.測定条件
X線源:CuKα(Niフィルター使用)
出力 :40kV、20mA
C.結晶サイズLcの測定
上述した透過法の2θ/θスキャンで得られた面指数(002)のピークの半値幅から、次のScherrerの式を用いて計算して求めた。
【0035】
Lc(hkl)=Kλ/β0cosθB
但し、
Lc(hkl):微結晶(hkl)面に垂直な方向の平均の大きさ
K:1.0、λ:0.15418nm(X線の波長)
β0:(βE 2−β1 21/2
βE:見かけの半値幅(測定値)、β1:1.046×10-2rad
θB:Braggの回析角
D.結晶配向度(π002)yの測定
上述した透過法を用い面指数(002)回析線の結晶ピークを円周方向にスキャンして得られる強度分布の半値幅から次式を用いて計算して求めた。
【0036】
y=(180−H)/180
但し、
H:見かけの半値幅(deg)
(4)プリプレグの作製
次に示す原料樹脂を混合し、30分攪拌して樹脂組成物を得た。
【0037】
Figure 0004305081
次に、前記樹脂組成物をシリコーンを塗布した離型紙にコーティングして得られた樹脂フィルムを円周約2.7mの60〜70℃に温調した鋼製ドラムに巻き付けた。
【0038】
この上に炭素繊維をクリールから巻きだしトラバースを介して配列する。更にその上から、前期樹脂フィルムで再度覆い、ロールで回転しながら、加圧し樹脂を繊維束内に含浸せしめ、幅300mm、長さ2.7mの一方向プリプレグを作製した。ここで、プリプレグの繊維目付はドラムの回転数とトラバースの送り速度を変化させた。
(5)繊維強化複合材料の圧縮強度
上記プリプレグを繊維方向を一方向に引き揃えて積層し、温度130℃、加圧0.3MPaで、2時間硬化させ、厚さが1mmの積層板(繊維強化複合材料)を成形した。
【0039】
かかる積層板から、被破壊部分が中心になるように、厚さ1±0.1mm、幅12.7±0.13mm、長さ80±0.013mm、ゲージ部の長さ5±0.13mmの試験片を切り出した。尚、試験片の両端(各37.5mmづつ)は補強板を接着剤等で固着させてゲージ部長さ5±0.13mmとした。
【0040】
ASTM D695に準拠し、歪み速度1.27mm/分の条件で、試験数n=6について測定し、得られた圧縮強度を繊維体積分率60%に換算して、その平均値を繊維強化複合材料の圧縮強度とした。
実施例1
下記処方の炭素繊維製造用油剤を調製した。
【0041】
アミノ変成シリコーン 50重量部
エポキシ変性シリコーン 25重量部
ポリエーテル変性シリコーン 25重量部
反応性界面活性剤 30重量部
水 4000重量部
反応性界面活性剤としては、ノニルフェノールのエチレンオキサイド付加物にビニル基を連結基を通して結合した化合物(旭電化工業(株)製、アデカリアソープNE−10)を使用した。3種のシリコーンが混合したシリコーン主成分の平均粒子径は、粒度分布計で測定した結果、0.1μmであった。
【0042】
この油剤を、アクリル系繊維(0.7dtex、3000フィラメント)に付着させ、次いで170℃×30秒で乾燥させた。その後、延伸倍率5のスチーム延伸を経て、炭素繊維用前駆体繊維束を得た。
【0043】
かかる炭素繊維用前駆体繊維束を8本合糸して単繊維数24000本とした後、250℃で延伸倍率1.05の耐炎化工程、650℃の前炭化工程、1400℃の炭化工程を経て、炭素繊維を得た。
実施例2
反応性界面活性剤としてメタクリル酸ポリエチレングリコール10mol−ポリプロピレングリコール4molのブロック共重合体を用いた以外は実施例1と同様に炭素繊維製造用油剤、炭素繊維用前駆体繊維束及び炭素繊維を製造した。
実施例3
反応性界面活性剤として、ポリオキシエチレンひまし油(日本エマルジョン(株)製エマレックスC−50)を用いた以外は実施例1と同様に炭素繊維製造用油剤、炭素繊維用前駆体繊維束及び炭素繊維を製造した。
比較例1
ノニルフェノールのエチレンオキサイド付加物にビニル基を連結基を通して結合した化合物をノニルフェノールのエチレンオキサイド10mol付加物に変更した以外は実施例1と同様に炭素繊維製造用油剤、炭素繊維用前駆体繊維束及び炭素繊維を製造した。
比較例2
ノニルフェノールのエチレンオキサイド付加物にビニル基を連結基を通して結合した化合物をポリエチレングリコール10mol−ポリプロピレングリコール4molのブロック共重合体とアクリル酸のエステル物に変更した以外は実施例1と同様に炭素繊維製造用油剤、炭素繊維用前駆体繊維束及び炭素繊維を製造した。
比較例3
ノニルフェノールのエチレンオキサイド付加物にビニル基を連結基を通して結合した化合物をポリオキシエチレン硬化ひまし油(日本エマルジョン(株)製エマレックスHC−50;ポリオキシエチレンひまし油に水素付加して不飽和結合をなくした化合物)に変更した以外は実施例1と同様に炭素繊維用油剤、炭素繊維用前駆体繊維束及び炭素繊維を製造した。
実施例4
実施例1と同様な方法で炭素繊維用前駆体繊維束を作製し、かかる前駆体繊維束を4本合糸して単繊維数12000本とした後、延伸倍率1.00、温度230〜260℃で耐炎化処理した。
【0044】
この耐炎化処理した繊維束を最高温度700℃の前炭化炉で延伸倍率1.20で前炭化処理し、最高温度2000℃の炭化炉で延伸比0.96で炭化処理した後、最高温度2500℃の黒鉛化炉で延伸比1.05で黒鉛化処理した。続いて濃度0.1モル/lの硫酸水溶液を電解液として電解表面処理し、水洗、150℃で乾燥処理したのち、サイジング剤を付与し、毛羽の少ない良好な品位の炭素繊維を得た。
【0045】
この炭素繊維を用い、前述した方法によりプリプレグ及び繊維強化複合材料を作製し、ASTM D695の評価方法に従って、繊維強化複合材料の圧縮強度を測定した。また、得られたプリプレグの繊維目付は190g/m2、樹脂含有量は35重量%であった。
比較例4
比較例1と同じ油剤組成の炭素繊維用前駆体繊維束を用い、実施例4と同様の方法で炭素繊維を得ようとしたが、前炭化延伸率を1.10とすると糸切れが多発するため、前炭化延伸比を0.95にして通過させた。また、前炭化延伸比低下により弾性率が低下するため、最高温度を2700℃にあげ、黒鉛化処理した。
【0046】
前炭化から黒鉛化までの工程で毛羽発生、部分的な糸切れが発生しており、工程通過性は不良であった。得られた炭素繊維は、毛羽が非常に多かった。
【0047】
この炭素繊維を用い、前述した方法によりプリプレグ及び繊維強化複合材料を作製し、ASTM D695の評価方法に従って、繊維強化複合材料の圧縮強度を測定した。また、得られたプリプレグの繊維目付は190g/m2、樹脂含有量は35重量%であった。
【0048】
上記実施例1〜4、比較例1〜4における各結果を表1に示した。実施例はいずれも、比較例に対して酸化が進行しており、高い炭素繊維の強度を示した。
【0049】
【表1】
Figure 0004305081
【0050】
なお、表1において、耐炎化行程での酸化不足度は、耐炎化繊維束をギ酸に浸漬すると、酸化不足の部分が選択的に溶出することを利用して得た指標であり、比較例1を基準とした相対比である。その値が大きい程、酸化不足であることを示す。また、比較例1のギ酸溶出度は、1.2%であった。
実施例5
実施例1と同様の炭素繊維製造用油剤、炭素繊維用前駆体繊維束を用い、かかる炭素繊維用前駆体繊維束を4本合糸して単繊維数12000本とした後、実質的に撚りのない状態で230〜260℃の空気中で、延伸比1.0で耐炎化処理し、この耐炎化処理した繊維束を最高温度700℃の前炭化炉で延伸倍率1.20で前炭化処理し、最高温度2000℃の炭化炉で延伸比0.96で炭化処理した後、最高温度2200℃の黒鉛化炉で延伸比1.05で黒鉛化処理した。続いて濃度0.1モル/lの硫酸水溶液を電解液として電解表面処理し、水洗、150℃で乾燥処理したのち、サイジング剤を付与し、毛羽の少ない良好な品位の炭素繊維を得た。
【0051】
この炭素繊維を用い、前述した方法によりプリプレグ及び繊維強化複合材料を作製し、ASTM D695の評価方法に従って、繊維強化複合材料の圧縮強度を測定した。また、得られたプリプレグの繊維目付は125g/m2、樹脂含有量は24重量%であった。
実施例6
最高温度2500℃の黒鉛化炉で処理した以外は、実施例5と同様に製造し、毛羽の少ない良好な品位の炭素繊維を得た。
実施例7
最高温度2700℃の黒鉛化炉で処理した以外は、実施例5と同様に製造し、毛羽の少ない良好な品位の炭素繊維を得た。
比較例5
比較例1同様の炭素繊維製造用油剤、炭素繊維用前駆体繊維束を用いた以外は実施例5と同様の方法で炭素繊維を得ようとしたが、前炭化延伸率を1.10とすると糸切れが多発するため、前炭化延伸比を0.95にして通過させた。また、前炭化延伸比低下により弾性率が低下するため、最高温度を2500℃にあげ、黒鉛化処理した。前炭化から黒鉛化までの工程で毛羽が発生し、得られた炭素繊維は、毛羽が多いものであった。
比較例6
比較例1同様の炭素繊維製造用油剤、炭素繊維用前駆体繊維束を用いた以外は実施例5と同様の方法で炭素繊維を得ようとしたが、前炭化延伸率を1.10とすると糸切れが多発するため、前炭化延伸比を0.95にして通過させた。また、前炭化延伸比低下により弾性率が低下するため、最高温度を2700℃にあげ、黒鉛化処理した。
【0052】
前炭化から黒鉛化までの工程で毛羽発生、部分的な糸切れが発生しており、工程通過性は不良であった。得られた炭素繊維は、毛羽が非常に多かった。
比較例7
比較例1同様の炭素繊維製造用油剤、炭素繊維用前駆体繊維束を用いた以外は実施例5と同様の方法で炭素繊維を得ようとしたが、前炭化延伸率を1.10とすると糸切れが多発するため、前炭化延伸比を0.95にして通過させた。また、前炭化延伸比低下により弾性率が低下するため、最高温度を3000℃にあげ、黒鉛化処理した。
【0053】
前炭化から黒鉛化までの工程で毛羽発生、部分的な糸切れが発生しており、工程通過性は不良であった。得られた炭素繊維は、毛羽が非常に多かった。
【0054】
上記実施例5〜7、比較例5〜7における各結果を表2に示した。実施例はいずれも、前記式(1)を満たし、実施例5〜7の炭素繊維を用いた繊維強化複合材料の圧縮強度は、比較例対比高い強度を示した。
【0055】
【表2】
Figure 0004305081
【0056】
なお、表2において、耐炎化行程での酸化不足度は、耐炎化繊維束をギ酸に浸漬すると、酸化不足の部分が選択的に溶出することを利用して得た指標であり、比較例1を基準とした相対比である。その値が大きい程、酸化不足であることを示す。また、比較例1のギ酸溶出度は、1.2%であった。
【0057】
【発明の効果】
本発明の炭素繊維製造用油剤によって、耐炎化工程において単繊維間への酸素の供給が円滑になり、耐炎化処理時の焼成ムラが減少する。さらには、耐炎化工程において、高糸条密度、高張力の条件下であっても、単繊維間接着を防ぎ、単繊維間への酸素の供給が円滑であり、前炭化工程での高張力条件が容易なため優れた強度を有する炭素繊維を製造することができる。

Claims (3)

  1. 反応性基がビニル基またはアリル基であり、ノニオン性である反応性界面活性剤とシリコーンを含み、前記反応性界面活性剤の配合量がシリコーン100重量部に対して20〜40重量部である炭素繊維製造用油剤。
  2. 請求項1記載の炭素繊維製造用油剤を付与せしめてなる炭素繊維用前駆体繊維束。
  3. 請求項2記載の炭素繊維用前駆体繊維束を、炭化工程で1〜1.3の延伸比で延伸し焼成せしめて得られる炭素繊維であって、広角X線回析により測定される炭素網面の(002)面の結晶サイズLcと配向度(π002)yが次式(1)を満たす炭素繊維。
    (1)y≧3*Lc+78
    y:配向度(π002)(%)
    Lc:炭素網面の(002)面の結晶サイズ(nm)
JP2003207822A 2002-09-30 2003-08-19 炭素繊維製造用油剤及び炭素繊維の製造方法 Expired - Fee Related JP4305081B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003207822A JP4305081B2 (ja) 2002-09-30 2003-08-19 炭素繊維製造用油剤及び炭素繊維の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002285631 2002-09-30
JP2003052666 2003-02-28
JP2003207822A JP4305081B2 (ja) 2002-09-30 2003-08-19 炭素繊維製造用油剤及び炭素繊維の製造方法

Publications (2)

Publication Number Publication Date
JP2004316052A JP2004316052A (ja) 2004-11-11
JP4305081B2 true JP4305081B2 (ja) 2009-07-29

Family

ID=33479562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003207822A Expired - Fee Related JP4305081B2 (ja) 2002-09-30 2003-08-19 炭素繊維製造用油剤及び炭素繊維の製造方法

Country Status (1)

Country Link
JP (1) JP4305081B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617940B2 (ja) * 2005-03-17 2011-01-26 東レ株式会社 炭素繊維前駆体繊維用ポリアクリロニトリル系重合体および炭素繊維前駆体繊維、炭素繊維の製造方法
US7749479B2 (en) 2006-11-22 2010-07-06 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
JP6020201B2 (ja) * 2013-01-25 2016-11-02 東レ株式会社 炭素繊維束およびその製造方法
KR101624839B1 (ko) 2013-01-25 2016-05-26 도레이 카부시키가이샤 사이징제 도포 탄소 섬유 다발, 탄소 섬유 다발의 제조 방법 및 프리프레그
JP6139318B2 (ja) * 2013-07-26 2017-05-31 東邦テナックス株式会社 炭素繊維の製造方法
EP3705610A4 (en) * 2017-10-31 2022-01-05 Toray Industries, Inc. CARBON FIBER BEAM AND PROCESS FOR ITS PRODUCTION
JP2019151956A (ja) * 2018-03-06 2019-09-12 東レ株式会社 炭素繊維束および炭素繊維ならびに炭素繊維束の製造方法
KR102512031B1 (ko) * 2021-03-26 2023-03-20 재단법인 한국탄소산업진흥원 탄소섬유용 세데니어 전용유제의 안정성 평가 방법
JP7480244B2 (ja) 2021-11-01 2024-05-09 三洋化成工業株式会社 繊維用集束剤組成物、繊維束、繊維製品及び複合材料
CN114622417B (zh) * 2022-03-21 2023-05-30 中复神鹰碳纤维股份有限公司 一种快速交联成膜的碳纤维油剂
CN116657286A (zh) * 2023-06-30 2023-08-29 中复神鹰碳纤维股份有限公司 超高强度碳纤维原丝用油剂及其制备方法

Also Published As

Publication number Publication date
JP2004316052A (ja) 2004-11-11

Similar Documents

Publication Publication Date Title
TWI396786B (zh) 發現機械性能優異的碳纖維束
JP4094670B2 (ja) 「炭素繊維、アクリル系繊維、及び、それらの製造方法」
JPH11241230A (ja) 炭素繊維、炭素繊維用前駆体繊維、複合材料および炭素繊 維の製造方法
JP4305081B2 (ja) 炭素繊維製造用油剤及び炭素繊維の製造方法
JP2010285710A (ja) 炭素繊維束およびその製造方法
JP2006307407A (ja) 炭素繊維および、炭素繊維の製造方法
JPH11217734A (ja) 炭素繊維およびその製造方法
JP2015096664A (ja) 炭素繊維束
JP2957467B2 (ja) 炭素繊維ストランド用サイジング剤、サイズ処理された炭素繊維ストランド、及びその炭素繊維ストランドを強化繊維としたプリプレグ
JP2000160436A (ja) 炭素繊維、及び炭素繊維用プリカーサーの製造方法
JP5741815B2 (ja) 炭素繊維前駆体アクリル繊維束および炭素繊維束
JP2004238761A (ja) 炭素繊維束および繊維強化複合材料
JP2002266173A (ja) 炭素繊維および炭素繊維強化複合材料
JP4400268B2 (ja) 炭素繊維前駆体用油剤
JP4238436B2 (ja) 炭素繊維の製造方法
JP5226238B2 (ja) 炭素繊維及びそれを用いた複合材料
JP4507908B2 (ja) 炭素繊維前駆体繊維用油剤及び炭素繊維前駆体繊維束
JP2017137614A (ja) 炭素繊維束およびその製造方法
JP2011252264A (ja) フィラメントワインディング用炭素繊維束の製造方法
JP2002317383A (ja) フィラメントワインディング用炭素繊維束
JP4370836B2 (ja) 炭素繊維製造用油剤及び炭素繊維の製造方法
JP2002054031A (ja) 炭素繊維及びその製造方法
JP2004277907A (ja) 炭素繊維およびその製造方法
JP2004232133A (ja) 炭素繊維糸条およびその製造方法
JP2001248025A (ja) 炭素繊維の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees