JP4243416B2 - 内燃機関の燃料供給制御装置 - Google Patents

内燃機関の燃料供給制御装置 Download PDF

Info

Publication number
JP4243416B2
JP4243416B2 JP2000170962A JP2000170962A JP4243416B2 JP 4243416 B2 JP4243416 B2 JP 4243416B2 JP 2000170962 A JP2000170962 A JP 2000170962A JP 2000170962 A JP2000170962 A JP 2000170962A JP 4243416 B2 JP4243416 B2 JP 4243416B2
Authority
JP
Japan
Prior art keywords
exhaust gas
gas recirculation
air
valve
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000170962A
Other languages
English (en)
Other versions
JP2001349231A (ja
Inventor
高志 磯部
学 仁木
康次郎 堤
崇 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000170962A priority Critical patent/JP4243416B2/ja
Priority to US09/876,305 priority patent/US6564778B2/en
Publication of JP2001349231A publication Critical patent/JP2001349231A/ja
Application granted granted Critical
Publication of JP4243416B2 publication Critical patent/JP4243416B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排気還流機構を備えた内燃機関の燃料供給制御装置に関し、特に排気還流機構が劣化して排気還流量が目標値からずれた場合を考慮した制御を行うものに関する。
【0002】
【従来の技術】
排気還流機構は、長期間使用すると、排気還流通路や排気還流弁で詰まりが発生し、排気還流量が目標値より小さくなってNOxの排出量が増加することがある。そのためそのような不具合を検知する手法として、内燃機関の運転状態が安定した状態で、排気還流弁を開弁したときの吸気管内圧と、排気還流弁を閉弁したときの吸気管内圧とを測定し、その圧力差が所定値より小さいときに、排気還流機構が故障していると判定する故障判定手法が知られている(特開平7−180615号公報)。
【0003】
また排気還流を実行すると、吸入空気量が減少するため、排気還流量に応じて燃料供給量を減少させるEGR補正係数を用いて燃料供給量の補正を行うことも従来より知られている(例えば特開平7−127494号公報)。
【0004】
【発明が解決しようとする課題】
上述した従来の故障判定手法により確実に故障と判定できる程度まで排気還流機構の劣化が進むと、排気還流量が目標値からずれる(減少する)ことに起因して排気特性が悪化するが、EGR補正係数による燃料供給量の補正を行う場合にはさらに以下のような問題があった。すなわち、排気還流機構の劣化が進むと、実際の排気還流量が目標値より減少しているにも拘わらず、EGR補正係数は、目標値に対応した排気還流が実行されることを前提として算出されるため、EGR補正係数による補正が過剰となって(空燃比が所望値よりリーン化して)かえってNOx排出量を増加させることがあった。
【0005】
さらにそのような過補正による排気特性の悪化は、確実に故障と判定できる劣化度合に達する前から顕在化してくるので、故障とまではいえない程度の排気還流機構の劣化を、精度良く判定することが望まれていた。
本発明はこの点に着目してなされたものであり、故障とまでいえない程度の排気還流機構の劣化を精度良く判定して燃料供給量の補正をより適切に行い良好な排気特性を長期間に亘って維持できる燃料供給制御装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記第1の目的を達成するため請求項1に記載の発明は、吸気管と排気管とを接続する排気還流通路と、該排気還流通路の途中に設けられた排気還流弁とを有する排気還流機構を備える内燃機関に供給する燃料量を制御する燃料供給制御装置において、前記排気還流弁の開弁中に、前記機関の吸入空気量の減少に合わせて前記機関に供給する燃料量を減少させる補正を行うEGR補正手段と、前記排気管に設けられた空燃比センサの出力に応じて空燃比補正係数(KO2)を算出し、該算出した空燃比補正係数(KO2)を用いて前記燃料量を補正する空燃比補正手段と、前記排気還流弁の開弁中に算出される前記空燃比補正係数(KO2WTEGR)と、前記排気還流弁の閉弁中に算出される前記空燃比補正係数(KO2WOEGR)との差(DKO2)に応じて、前記排気還流機構の劣化を判定する劣化判定手段と、前記排気還流弁を開弁したときの吸気管内圧力と、前記排気還流弁を閉弁したときの吸気管内圧力との差圧(DPBEGR)と、前記機関の回転数(NE)に応じて変更される異常判定用所定値(DPBFS80)とを比較し、前記差圧(DPBEGR)が前記異常判定用所定値(DPBFS80)より大きく、かつ前記劣化判定手段により前記排気還流機構が劣化していると判定されたときに、前記EGR補正手段による補正が過補正となっていると判定し、前記差圧(DPBEGR)に応じて前記燃料量を補正する劣化補正手段を備えることを特徴とする。
【0007】
この構成によれば、EGR補正手段により、排気還流弁の開弁中に機関の吸入空気量の減少に合わせて機関に供給する燃料量を減少させる補正が行われるとともに、空燃比センサの出力に応じて算出される空燃比補正係数を用いて燃料量が補正される。そして排気還流弁の開弁中に算出される空燃比補正係数と、排気還流弁の閉弁中に算出される空燃比補正係数との差に応じて、排気還流機構の劣化が判定される。排気還流弁を開弁したときの吸気管内圧力と、排気還流弁を閉弁したときの吸気管内圧力との差圧(DPBEGR)と、機関の回転数に応じて変更される異常判定用所定値(DPBFS80)とが比較され、差圧が異常判定用所定値より大きく、かつ空燃比補正係数の差に応じて排気還流機構が劣化していると判定されたときに、EGR補正手段による補正が過補正となっていると判定され、差圧(DPBEGR)に応じて燃料量が補正される。差圧(DPBEGR)が異常判定用所定値(DPBFS80)より大きく、かつ空燃比補正係数の差に応じて排気還流機構が劣化していると判定されたときは、排気還流機構が故障とまではいえないが劣化した状態にあるため、EGR補正手段による補正が過補正となる。したがって、吸気管内圧力の差圧に応じて燃料供給量を補正することにより、劣化度合に応じた適切な燃料供給量とすることができ、良好な排気特性を長期間に亘って維持することができる。
【0008】
前記劣化補正手段は、前記機関への燃料供給を遮断しているときに前記差圧の算出を行うことが望ましい
【0009】
請求項2に記載の発明は、請求項1に記載の燃料供給制御装置において、前記排気還流弁を開弁したときの吸気管内圧力及び前記排気還流弁を閉弁したときの吸気管内圧力は、前記機関の回転数(NE)に応じて補正されることを特徴とする。
【0010】
この構成によれば、排気還流弁を開弁したときの吸気管内圧力及び排気還流弁を閉弁したときの吸気管内圧力は、機関回転数に応じて補正されるので、機関回転数の変化が吸気管内圧力に与える影響を除くことができる。
【0011】
前記劣化判定手段は、前記排気還流弁の開弁中に算出される前記空燃比補正係数の所定時間内の平均値(KO2WTEGR)と、前記排気還流弁の閉弁中に算出される前記空燃比補正係数の所定時間内の平均値(KO2WOEGR)とを用いて前記差(DKO2)を算出することが望ましい。
【0013】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照して説明する。
図1は本発明の一実施形態にかかる内燃機関及びその燃料供給制御装置の構成を示す図であり、例えば4気筒のエンジン1の吸気管2の途中にはスロットル弁3が配されている。スロットル弁3にはスロットル弁開度(θTH)センサ4が連結されており、当該スロットル弁3の開度に応じた電気信号を出力してエンジン制御用電子コントロールユニット(以下「ECU」という)5に供給する。
【0014】
燃料噴射弁6はエンジン1とスロットル弁3との間かつ吸気管2の図示しない吸気弁の少し上流側に各気筒毎に設けられており、各噴射弁は図示しない燃料ポンプに接続されていると共にECU5に電気的に接続されて当該ECU5からの信号により燃料噴射弁6の開弁時間が制御される。
【0015】
一方、スロットル弁3の直ぐ下流には吸気管内の圧力を検出する吸気管内絶対圧(PBA)センサ7が設けられており、この絶対圧センサ7により電気信号に変換された絶対圧信号は前記ECU5に供給される。また、その下流には吸気温(TA)センサ8が取付けられており、吸気温TAを検出して対応する電気信号を出力してECU5に供給する。
【0016】
エンジン1の本体に装着されたエンジン水温(TW)センサ9はサーミスタ等から成り、エンジン水温(冷却水温)TWを検出して対応する温度信号を出力してECU5に供給する。
エンジン1の図示しないカム軸周囲又はクランク軸周囲には、エンジン回転数(NE)センサ10及び気筒判別(CYL)センサ11が取り付けられている。エンジン回転数センサ10は、エンジン1の各気筒の吸入行程開始時の上死点(TDC)より所定クランク角度前のクランク角度位置で(4気筒エンジンではクランク角180゜毎に)TDC信号パルスを出力し、気筒判別センサ11は、特定の気筒の所定クランク角度位置で気筒判別信号パルスを出力するものであり、これらの各信号パルスはECU5に供給される。
【0017】
排気管12には、排気中のNOx、HC、COの浄化を行う三元触媒16が設けられ、三元触媒16の上流位置には、空燃比センサとしての酸素濃度センサ14(以下「O2センサ14」という)が装着されている。このO2センサ14は排気中の酸素濃度(空燃比)に応じた電気信号を出力し、ECU5に供給する。
【0018】
吸気管2のスロットル弁3の下流側と、排気管12の三元触媒16の上流側との間には、排気還流通路21が設けられており、排気還流通路21の途中には排気還流量を制御する排気還流弁(以下「EGR弁」という)22が設けられている。EGR弁22は、ソレノイドを有する電磁弁であり、その弁開度はECU5により制御される。EGR弁22には、その弁開度(弁リフト量)LACTを検出するリフトセンサ23が設けられており、その検出信号はECU5に供給される。排気還流通路21及びEGR弁22より、排気還流機構が構成される。
【0019】
ECU5には、大気圧PAを検出する大気圧センサ17及びエンジン1により駆動される車両の車速VPを検出する車速センサ18が接続されており、これらのセンサの検出信号がECU5に供給される。
ECU5は、各種センサからの入力信号波形を整形し、電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路5a、中央演算処理回路(以下「CPU」という)5b、CPU5bで実行される各種演算プログラム及び演算結果等を記憶する記憶手段(メモリ)5c、前記燃料噴射弁6に駆動信号を供給する出力回路5d等から構成される。
【0020】
ECU5は、各種エンジンパラメータ信号に基づいてエンジン運転状態を判別し、エンジン回転数NE及び吸気管内絶対圧PBAに応じて設定されるEGR弁22の弁開度指令値LCMDと、リフトセンサ23によって検出される実弁開度LACTとの偏差を零にするようにEGR弁22のソレノイドに制御信号を供給する。
【0021】
CPU5bは上述の各種エンジンパラメータ信号に基づいて、O2センサ14の検出値に応じて空燃比をフィードバック制御するフィードバック制御運転領域やオープンループ制御運転領域等の種々のエンジン運転状態を判別するとともに、エンジン運転状態に応じて下記式(1)により、前記TDC信号パルスに同期して開弁作動する燃料噴射弁6の燃料噴射時間TOUTを演算する。燃料噴射時間TOUTは、燃料噴射弁6による燃料噴射量に比例するので、本明細書中では燃料噴射量ともいう。
TOUT=TIM×KO2×(KEGR+
(1−KEGR)×KEGRFLOW)×KTOTAL (1)
【0022】
ここに、TIMは燃料噴射弁6の基本燃料噴射時間であり、エンジン回転数NE及び吸気管内絶対圧PBAに応じて設定されたTIマップを検索して決定される。TIマップは、マップ上のエンジン回転数NE及び吸気管内絶対圧PBAに対応する運転状態において、エンジンに供給する混合気の空燃比がほぼ理論空燃比になるように設定されている。
【0023】
KO2は、空燃比フィードバック制御運転領域では、O2センサ14の出力に応じて設定される空燃比補正係数である。なお、空燃比補正係数KO2は、オープン制御運転領域ではエンジン運転状態に応じた所定値または学習値に設定される。
【0024】
KEGRは、排気還流を実行しないとき(EGR弁22を閉弁しているとき)は、1.0(無補正値)に設定され、排気還流を実行するとき(EGR弁22を開弁するとき)は、吸入空気量の減少に合わせて燃料噴射量を減少させるべく、1.0より小さい値に設定されるEGR補正係数である。
【0025】
KEGRFLOWは、通常は「0」に設定され、排気還流機構が劣化して排気還流量が減少した場合により大きい値に設定される劣化補正係数であり、排気還流機構が劣化した場合において、EGR補正係数KEGRによる過補正を抑制するために使用される。
【0026】
KTOTALは、エンジン水温TWに応じて設定される水温補正係数KTW,エンジンの高負荷運転で1より大きな値に設定される高負荷増量補正係数KWOTなど、上記以外の他の補正係数をすべて乗算したものである。
CPU5bは上述のようにして求めた燃料噴射時間TOUTに基づいて燃料噴射弁6を開弁させる駆動信号、及びEGR弁22の駆動信号を出力回路5dを介して燃料噴射弁6及びEGR弁22に供給する。
【0027】
図2は、排気還流制御処理のフローチャートであり、本処理は、TDC信号パルスの発生に同期してCPU5bで実行される。
まず、エンジン1 が排気還流実行条件を満足する所定のエンジン運転領域にあるか否かを判別する。すなわち、エンジン1 が始動モード(クランキング中)であるとき(ステップS11)、O2 センサを用いた空燃比フィードバック制御中でないとき(ステップS12)、エンジン1への燃料供給を遮断するフュエルカット運転中のとき(ステップS13)、エンジン回転数NE が所定回転数NHECを越えて高回転であるとき(ステップS14)、スロットル弁全開運転であることを「1」で示すスロットル全開運転フラグFWOT が「1」に設定されているとき(ステップS15)、スロットル開度θTH が所定開度θTHIDLE 以下のアイドリング状態のとき(ステップ16)、冷間始動時等、エンジン水温TWが所定温度TWE1 より低いとき(ステップS17)、吸気管内絶対圧PBA が所定圧PBAECL 以下の低負荷状態であるとき(ステップS18)、吸気管内絶対圧PBAと大気圧PAとの差圧PBGA(=PA−PBA)が所定圧DPBAECH以下の高負荷状態であるとき(ステップS19)は、排気還流を行うとエンジンの始動性能や運転性能を損うので、排気還流を実行することを「1」で示すEGR実行フラグFEGR の値を「0 」に設定して排気還流を禁止する(ステップS20)。
【0028】
一方エンジン1の始動完了後であり、且つ空燃比フィードバック制御中であり、且つフュエルカット実行中でなく、且つNE≦NHECであり、且つFWOT=0であり、且つθTH>θTHIDLEであり、且つTW>TWE1であり、且つPBA>PBAECLであり、且つPBGA>DPBAECHであるときは、排気還流実行条件成立と判定し、エンジン回転数NEおよび吸気管内絶対圧PBAに応じてLCMDマップ(図示せず)を検索し、EGR弁22の弁開度指令値LCMDを算出する(ステップS21)。次いでEGR実行フラグFEGRを「1」に設定して(ステップS22 )、本処理を終了する。
【0029】
図3は、EGR補正係数KEGRを算出する処理のフローチャートであり、本処理は、TDC信号パルスの発生毎に図2の処理の後にCPU5bで実行される。
ステップS31では、予め指定した異常が検知されているか否かを判別し、検知されているときは、後述する第1の係数値KQEGR1及び第2の係数値KQEGR2をともに「1.0」に設定するとともに(ステップS32)、リングバッファに格納されているすべての係数値KEGR(n)〜KEGR(n−NT)を「1.0」に設定し(ステップS45)、前記式(1)に適用するEGR補正係数KEGRを「1.0」に設定して(ステップS46)、本処理を終了する。
【0030】
本実施形態では、還流ガスがEGR弁22からエンジン1の燃焼室に達するまでの時間遅れを考慮して、式(1)に適用するEGR補正係数KEGRとしては、NT回前、すなわちTDC信号パルスがNT回発生する時間前のエンジン運転状態に応じて算出された係数値を用いるようにしているので、本処理を実行する毎に算出される今回算出値KEGR(n)は、順次リングバッファに格納される。上記ステップS45の処理は、このようにして格納された(NT+1)個の数値をすべて「1.0」とするものである。
【0031】
ステップS31の答が否定(NO)であるときは、エンジン1の始動モードであるか否かを判別し(ステップS33)、始動モードでないときは、さらにスロットル全開運転フラグFWOTの値が「1」であるか否かを判別する(ステップS34)。そして、始動モードであるときまたはスロットル全開運転中であるときは、前記ステップS45に進む一方、始動が完了しておりかつスロットル全開運転中でないときは、ステップS35に進む。
【0032】
ステップS35では、基準大気圧PA0(=101.3kPa(760mmHg))と吸気管内絶対圧PBAとの差圧PBG1(=PA0−PBA)に応じて図4に示すKQEGRテーブルを検索し、第1の係数値KQEGR1を算出する。KQEGRテーブルは、差圧PBGが大きくなるほど、係数値KQEGRが増加するように設定されている。図4に示す所定圧PBGTは、例えば28kPa(210mmHg)に設定される。
【0033】
続くステップS36では、その時点の大気圧PAと吸気管内絶対圧PBAとの差圧PBG2に応じて、ステップS35と同様にKQEGRテーブルを検索し、第2の係数値KQEGR2を算出する。
次いでEGR実行フラグFEGRが「1」であるか否かを判別し(ステップS37)、FEGR=0であって排気還流を行っていないときは、EGR補正係数の今回値KEGR(n)を「1.0」に設定して(ステップS43)、ステップS44に進む。またFEGR=1であって排気還流実行中は、EGR弁22の実弁開度LACTが所定開度LACTFGより大きいか否かを判別し(ステップS38)、LACT≦LACTFGであって実弁開度LACTがほぼ0であるときは、前記ステップS43に進む。
【0034】
LACT>LACTFGであるときは、エンジン回転数NE及び吸気管内絶対圧PBAに応じてマップ値KEGRMAPを算出し(ステップS39)、次いで下記式(2)にマップ値KEGRMAP,実弁開度LACT,弁開度指令値LCMD,並びに第1及び第2の係数値KQEGR1,KQEGR2を適用し、EGR補正係数の今回値KEGR(n)を算出する(ステップS40)。
KEGR(n)=1.0−(1.0−KEGRMAP)
×(LACT/LCMD)×(KQEGR2/KQEGR1) (2)
ここでLACT/LCMDは、EGR弁22の弁開度が変化している過渡状態において実弁開度LACTの変化が弁開度指令値LCMDの変化に対して遅れることを補正するための補正項であり、またKQEGR2/KQEGR1は、大気圧PAの変化の影響を補正するための補正項である。
【0035】
続くステップS41では、ステップS40で算出した今回値KEGR(n)がマップ値KEGRMAPより小さいか否かを判別し、KEGR(n)<KEGRMAPであるときは、今回値KEGR(n)をマップ値KEGRMAPに置き換えて(ステップS42)、ステップS44に進む。またKEGR(n)≧KEGRMAPであるときは、直ちにステップS44に進む。
ステップS44では、式(1)に適用するEGR補正係数KEGRを、NT回前の係数値KEGR(n−NT)に設定し、本処理を終了する。
【0036】
図5は、排気還流通路21の流量をモニタ(監視)する処理のフローチャートであり、本処理はTDC信号パルスの発生毎にCPU5bで実行される。
ステップS51では、後述する図の処理で設定され、流量モニタの実施を許可することを「1」で示すモニタ許可フラグFMCND80が「1」であるか否かを判別し、FMCND80=0であるときは、流量モニタのためにEGR弁22を開弁させることを「1」で示す開弁指令フラグFEGROPNを「0」に設定するとともに、EGR弁の開弁前の吸気管内絶対圧PBAの計測を終了したことを「1」で示す吸気圧計測終了フラグFEGRPBBを「0」に設定し(ステップS53)、通常のEGR制御を行う(ステップS75)。
【0037】
ステップS51でモニタ許可フラグFMCND80が「1」であるときは、流量モニタが終了したことを「1」で示す終了フラグFDONE80が「1」であるか否かを判別し(ステップS52)、FDONE80=1であるときは、前記ステップS53に進む。
【0038】
FDONE80=0であるときは、吸気圧計測終了フラグFEGRPBBが「1」であるか否かを判別する。最初はFEGRPBB=0であるので、ステップS56に進み、その時点の吸気管内絶対圧PBAを開弁前吸気圧PBEGRBFとして記憶する。次いでエンジン回転数NEに応じて図6(a)に示すDPBEGFCテーブルを検索し、補正値DPBEGFCを算出し(ステップS57)、この補正値DPBEGFCを開弁前補正値DPBEGRBFとして記憶する(ステップS58)。この開弁前補正値DPBEGRBFは、後述するステップS67で使用される。
【0039】
続くステップS59では、その時点のエンジン回転数NEを開弁前エンジン回転数NEGLMTとして記憶し、次いで吸気圧計測終了フラグFEGRPBBを「1」に設定し(ステップS60)、ステップS71で参照されるダウンカウントタイマTFS80に所定時間TMFS80(例えば1.5秒)をセットしてスタートさせ(ステップS61)、開弁指令フラグFEGROPNを「0」に設定して(ステップS62)、本処理を終了する。
【0040】
ステップS60で吸気圧計測終了フラグFEGRPBBが「1」に設定されると、ステップS55からステップS63に進み、開弁指令フラグFEGROPNを「1」に設定する。そしてその時点の吸気管内絶対圧PBAを開弁後吸気圧PBEGRAFとして記憶し(ステップS64)、ステップS57と同様にエンジン回転数NEに応じて図6(a)に示すDPBEGFCテーブルを検索して補正値DPBEGFCを算出し(ステップS65)、この補正値DPBEGFCを開弁後補正値DPBEGRAFとして記憶する(ステップS66)。
【0041】
ステップS67では、下記式(3)に開弁後吸気圧PBEGRAF,開弁前吸気圧PBEGRBF,開弁後補正値DPBEGRAF及び開弁前補正値DPBEGRBFを適用し、EGR弁22の開弁前と開弁後の吸気圧変化量DPBEGRを算出する(ステップS67)。
DPBEGR=PBEGRAF+DPBEGRBF
−PBEGRBF−DPBEGRAF (3)
ここで補正値DPBEGRBF及びDPBEGRAFは、エンジン回転数NEの変化が吸気管内絶対圧PBAに与える影響を除くために用いられている。
【0042】
続くステップS68では、エンジン回転数NE及び大気圧PAに応じて判定閾値DPBFS80を算出する。具体的には、エンジン回転数NEに応じて図6(b)に示すDPBFS80Hテーブル及びDPBFS80Lテーブルを検索し、平地の大気圧(例えば100kPa(750mmHg))に対応する平地用判定閾値DPBFS80Hと、高地の大気圧(例えば53.3kPa(400mmHg))に対応する高地用判定閾値DPBFS80Lとを算出し、検出した大気圧PAに応じて補間演算を行うことにより、判定閾値DPBFS80を算出する。
【0043】
ステップS69では、ステップS67で算出した吸気圧変化量DPBEGRが判定閾値DPBFS80以上か否かを判別する。EGR弁22の開弁直後は、吸気圧変化量DPBEGRが小さいので、ステップS71に進み、ステップS61でスタートしたタイマTFS80の値が「0」か否かを判別し、TFS80>0である間は、直ちに本処理を終了する。
【0044】
その後ステップS63〜S69及びステップS71を繰り返して実行し、タイマTFS80の値が「0」となる前に、ステップS69でDPBEGR≧DPBFS80となると、EGR流量は正常と判定し、そのことを「1」で示すOKフラグFOK80を「1」に設定する(ステップS70)。次いで、ステップS67で算出した吸気圧変化量DPBEGRを記憶値M6EGRRTとして記憶し(ステップS74)、終了フラグFDONE80を「1」に設定して(ステップS75)、通常のEGR制御を行う(ステップS76)。
【0045】
一方ステップS69でDPBEGR<DPBFS80である状態を継続してタイマTFS80の値が「0」となると、EGR流量異常と判定してOKフラグFOK80を「0」に設定するとともに、異常であることを「1」で示す異常フラグFFSD80を「1」に設定して(ステップS72,S73)、前記ステップS7に進む。
【0046】
図5の処理によれば、EGR弁22の開弁前の吸気管内圧力PBEGRBFと、開弁後の吸気管内圧力PBEGRAFとの差圧(PBEGRAF−PBEGRBF)を、補正値DPBEGRBF及びDPBEGRAFにより補正することにより吸気圧変化量DPBEGRが算出され、この吸気圧変化量DPBEGRが判定閾値DPBFS80より小さいとき、EGR流量異常と判定される。
【0047】
図7は、図5のステップS51で参照されるモニタ許可フラグFMCND80の設定を行うモニタ実施条件判定処理のフローチャートである。本処理は、TDC信号パルスの発生に同期してCPU5bで実行される。
ステップS81では、エンジン回転数NEが所定上下限値NEGRCKH,NEGRCKL(例えばそれぞれ2000rpm、1400rpm)の範囲内にあるか否かを判別し、NE≦NEGRCKLまたはNE≧NEGRCKHであるときは、ダウンカウントタイマTMCND80を所定時間TMMCND80(例えば2秒)にセットしてスタートし(ステップS89)、モニタ許可フラグFMCND80を「0」に設定して(ステップS90)、本処理を終了する。
【0048】
NEGRCKL<NE<NEGRCKHであるときは、エンジン水温TWが所定水温TWEGCK(例えば70℃)より高く、且つ車速VPが所定車速VEGRCK(例えば56km/h)より高く、且つ吸気管内絶対圧PBAが所定圧PBAEGRCK(例えば15kPa)より高いか否かを判別する(ステップS82)。この答が否定(NO)のときは、前記ステップS89に進み、肯定(YES)のときは、当該車両が減速状態にあり、且つエンジン1への燃料供給を遮断する減速フュエルカット運転中であるか否かを判別する(ステップS83)。減速フュエルカット運転中でなければ前記ステップS89に進み、減速フュエルカット運転中であるときは、図5の処理で設定される吸気圧計測終了フラグFEGRPBBが「1」であるか否かを判別する(ステップS84)。フラグFEGRPBBは、モニタ許可がなされないうちは、「0」であるので、直ちにステップS86に進む。
【0049】
また流量モニタが実行されているときはFEGRPBB=1であるので、ステップS85でエンジン回転数NEが、下限値(=NEGLMT−DNEGRCKL)及び上限値(NEGLMT+DNEGRCKH)の範囲内にあるか否かを判別する。ここでNEGLMTは、図5のステップS59で記憶した開弁前エンジン回転数であり、DNEGRCKL及びDNEGRCKHは、それぞれ例えば128rpm及び64rpmに設定される所定回転数である。
【0050】
ステップS85の答が否定(NO)であるときは、エンジン回転数NEが開弁前エンジン回転数NEGLMTから急変したことを示し、誤判定の可能性が高くなるため流量モニタを中止させるべく、前記ステップS89に進む。
ステップS85の答が肯定(YES)であるときは、ステップS86に進み、バッテリ電圧VBが所定電圧VBEGRCKL(例えば11V)より高いか否かを判別する。VB≦VBEGRCKLであるときは、前記ステップS89に進み、VB>VBEGRCKLであるときは、タイマTMCND80の値が「0」か否かを判別する(ステップS87)。TMCND80>0である間は、前記ステップS90に進み、TMCND80=0となると、モニタ許可フラグFMCND80を「1」に設定して、流量モニタの実施を許可する(ステップS88)。
【0051】
図8は、図5及び図7の処理による動作を説明するためのタイムチャートである。時刻t1において減速フュエルカットが開始されると、時刻t2より少し前にモニタ許可フラグFMCND80が「1」に設定され、開弁前吸気圧PBEGRBFの計測が行われ、時刻t2にEGR弁22の開弁指令がなされる(同図(c))。EGR弁22の実弁開度LACTは、同図(d)に示すように徐々に増加し、また吸気管内絶対圧PBAも徐々に増加する。時刻t3において開弁後吸気圧PBEGRAFの計測が行われ、EGR弁22の閉弁指令がなされて、流量モニタが終了する。
【0052】
図9は、前記式(1)に適用される劣化補正係数KEGRFLOWを算出する処理のフローチャートであり、本処理はTDC信号パルスの発生に同期してCPU5bで実行される。
ステップS100では、EGR実行フラグFEGRが「1」であるか否かを判別し、FEGR=0であるときは、直ちにステップS107に進み、劣化補正係数KEGRFLOWを「0」に設定する。FEGR=1であって排気還流実行中であるときは、図5の処理で算出される吸気圧変化量DPBEGRが前記異常判定用の判定閾値DPBFS80より大きくかつ、所定値DPBFLOWJUD(判定閾値DPBFS80より大きい値、例えば2kPa(15mmHg)に設定される)より小さいか否かを判別し(ステップS101)、DPBEGR≧DPBFLOWJUDまたはDPBEGR≦DPBFS80であるときは、前記ステップS107に進む。
【0053】
DPBFS80<DPEGR<DPBFLOWJUDであるときは、図11に示すKO2WTEGR及びKO2WOEGR算出処理を実行する(ステップS102)。図11の処理は、エンジン運転状態が安定している状態でEGR実行中の空燃比補正係数KO2の平均値KO2WTEGR(以下「EGRオンKO2平均値」という)と、EGR停止中の空燃比補正係数KO2の平均値KO2WOEGR(以下「EGRオフKO2平均値」という)とを算出する処理である。両者の算出が終了すると、算出終了フラグFKO2EGRGETが「1」に設定される。
【0054】
ステップS103ではこの算出終了フラグFKO2EGRGETが「1」であるか否かを判別し、FKO2EGRGET=0であるときは、前記ステップS107に進み、FKO2EGRGET=1であってEGRオンKO2平均値KO2WTEGR及びEGRオフKO2平均値KO2WOEGRの算出が終了したときは、下記式により、両平均値の差DKO2を算出する(ステップS104)。
DKO2=KO2WTEGR−KO2WOEGR
【0055】
次いでこの差DKO2が所定値DKO2EGRF(例えば0.03)より大きいか否かを判別し(ステップS105)、DKO2≦DKO2EGRFであるときは、EGR補正係数KEGRによる補正が過補正となっていないと判定し、前記ステップS107に進む。
【0056】
一方DKO2>DKO2EGRFであるときは、EGR実行中においてEGR補正係数KEGRが実際の排気還流量に対応した所望値より小さな値に設定され、EGR補正係数KEGRによる補正が過補正となっている判定し、吸気圧変化量DPBEGRに応じて図10に示すKEGRFLOWテーブルを検索して、劣化補正係数KEGRFLOWを算出する(ステップS106)。KEGRFLOWテーブルは、吸気圧変化量DPBEGRが減少する(排気還流機構の劣化が進行するほど)ほど、劣化補正係数KEGRFLOWが増加するように設定されている。図10に示す所定圧DPBEGR1及びDPBEGR2は、それぞれ例えば0.7kPa(5mmHg)及び2kPa(15mmHg)に設定される。
【0057】
このようにして算出される劣化補正係数KEGRFLOWを前記式(1)に適用することにより、EGR補正係数KEGRによる過補正を是正し、良好な排気特性を長期間に亘って維持することができる。
【0058】
図11は、図9のステップS102における、EGRオンKO2平均値KO2WTEGR及びEGRオフKO2平均値KO2WOEGRを算出する処理のフローチャートである。
ステップS111では、始動モードか否かを判別し、始動モードであるときは、後述するステップで参照されるダウンカウントタイマTEGRDLY、TWTEGR及びTWOEGRを、それぞれ所定時間TMEGRDLY(例えば1秒)、TMWTEGR(例えば12秒)及びTMWOEGR(例えば10秒)にセットしてスタートし(ステップS114,S118,S119)、EGRオンKO2平均値KO2WTEGRの算出が終了したことを「1」で示すEGRオン平均値算出終了フラグFWTEGRが「1」であるか否かを判別する(ステップS120)。フラグFWTEGRは後述するステップS124で「1」に設定されるので、最初はステップS121に進んで、平均値KO2WTEGR及びKOWOEGR並びに空燃比補正係数KO2のなまし値KO2AVE(後述する式(4)参照)をいずれも「1.0」に設定して(ステップS121)、本処理を終了する。
【0059】
始動モードでないとき、すなわち通常運転中のときは、ステップS111からステップS112に進み、算出終了フラグFKO2EGRGETが「1」であるか否かを判別する。最初はFKO2EGRGET=0であるので、エンジン運転状態が所定運転状態であるか否かを判別する(ステップS113)。この所定運転状態は、エンジン1の定常的な運転状態、例えばエンジン回転数NE及び吸気管内絶対圧PBAがほぼ一定の定速クルーズ状態とされる。
【0060】
エンジン運転状態が所定運転状態でないときは、前記ステップS114に進み、所定運転状態であるときは、EGRオン平均値算出終了フラグFTWEGRが「1」であるか否かを判別する(ステップS115)。最初は、FTWEGR=0であるので、ステップS116に進み、通常のEGR制御を実行し、タイマTEGRDLYの値が「0」であるか否かを判別する(ステップS117)。
【0061】
TEGRDLY>0である間は、前記ステップS118に進み、TEGRLDY=0となると、EGRオンKO2平均値KO2WTEGRを、空燃比補正係数KO2のなまし値KO2AVEに設定する(ステップS122)。なまし値KO2AVEは、下記式(4)により算出される。
KO2AVE=A×KO2+(1−A)×KO2AVE (4)
ここで、Aは0から1の間の値(例えば0.5)に設定されるなまし係数であり、右辺のKO2AVEはなまし値の前回算出値である。
【0062】
続くステップS123では、タイマTWTEGRの値が「0」か否かを判別する。最初は、TWTEGR>0であるので直ちに本処理を終了し、以後ステップS122を繰り返し実行することにより、EGRオンKO2平均値KO2WTEGRの更新を行う。そしてTWTEGR=0となると、EGRオン平均値算出終了フラグFWTEGRを「1」に設定し、なまし値KO2AVEを「1.0」に設定するとともに(ステップS124)、タイマTEGRDLY及びTWOEGRをそれぞれ所定時間TMEGRDLY及びTMWOEGRにセットしてスタートさせ(ステップS125)、本処理を終了する。
【0063】
ステップS124でEGRオン平均値算出終了フラグFWTEGRが「1」に設定されると、ステップS115からステップS131に進んでEGR弁22を全閉として排気還流を停止し、次いでタイマTEGRDLYの値が「0」であるか否かを判別する(ステップS132)。そしてTEGRDLY>0である間は、前記ステップS119に進み、TEGRDLY=0となると、EGRオフKO2平均値KO2WOEGRを、前記式(4)による算出されるなまし値KO2AVEに設定し(ステップS133)、タイマTWOEGRの値が「0」であるか否かを判別する(ステップS134)。最初は、TWOEGR>0であるので直ちに本処理を終了し、以後ステップS133を繰り返し実行することにより、EGRオフKO2平均値KO2WOEGRの更新を行う。そしてTWOEGR=0となると、算出終了フラグFKO2EGRGETを「1」に設定し(ステップS135)、排気還流を再開して通常の排気還流制御を実行する(ステップS136)。
以上のように図11の処理により、EGRオンKO2平均値KO2WTEGR及びEGRオフKO2平均値KO2WOEGRが算出される。
【0064】
図12は、エンジン1の空燃比フィードバック制御運転状態において、O2センサ14の出力に応じて空燃比補正係数KO2を算出するKO2フィードバック制御処理のフローチャートであり、本処理はTDC信号パルスの発生に同期してCPU5bで実行される。
【0065】
先ずステップS141では、O2センサ14の出力VO2と基準値VREFとの大小関係が反転したか(VO2>VREFの状態からVO2<VREFの状態への移行、またはその逆の移行があったか)否かを判別する。O2センサ出力VO2と基準値VREFとの大小関係が反転したとき、すなわち比例項PR,PLによる更新タイミングであるときは、出力VO2が基準値VREFより小さいか否かを判別する(ステップS142)。その結果、VO2<VREFであるときは、補正係数KO2を比例項PRを加算することにより更新し(ステップS143)、VO2>VREFであるときは、補正係数KO2を比例項PLを減算することにより更新して(ステップS144)、本処理を終了する。
【0066】
また、ステップS141で前記大小関係が反転していないときは、ステップS145でO2センサ出力VO2が基準値VREFより小さいか否かを判別し、VO2<VREFであるときは、補正係数KO2を積分項IRを加算することにより更新し(ステップS146)、VO2>VREFであるときは、補正係数KO2を積分項ILを減算することにより更新して(ステップS147)、本処理を終了する。
【0067】
このように空燃比補正係数KO2は、O2センサ14の出力VO2に応じて設定されるので、EGR補正係数KEGRの値が小さすぎて過補正になっているときは、これを是正すべくより大きな値となる。したがって、排気還流実行中の空燃比補正係数KO2の平均値であるKO2WTEGRと、排気還流停止中の空燃比補正係数KO2の平均値であるKO2WOEGRとの差DKO2と、所定値DKO2EGRFとを比較することにより、EGR補正係数KEGRによる補正が過補正となっているか否かを判定することができる。
【0068】
以上のように本実施形態では、EGR弁22を開弁し、排気還流を実行しているときの吸気管内圧力と、排気還流を停止したときの吸気管内圧力との差圧に相当する吸気圧変化量DPBEGRに応じて劣化補正係数KEGRFLOWを算出し、吸気圧変化量DPBEGRが減少するほど、すなわち排気還流機構の劣化度合が進行するほど、燃料量供給量を増加方向に補正するようにしたので、EGR補正係数KEGRによる過補正を是正して劣化度合に応じた適切な燃料供給量とすることができ、良好な排気特性を長期間に亘って維持することができる。
【0069】
図13はこの点をより具体的に説明するための図であり、横軸は排気還流機構の劣化度合、すなわち排気還流通路21またはEGR弁22の詰まりレベル、縦軸はNOx排出量である。劣化度合が進んでいくと、NOx排出量が増加し、規制値NOxLMTに近づいていく。劣化度合がレベル1に達したときにEGR弁22を開閉したときの吸気圧変化量DPBEGRを求め、この吸気圧変化量DPBEGRに応じて劣化補正係数KEGRFLOWを算出して、式(1)に適用すると、EGR補正係数KEGRによる過補正が是正され、NOx排出量がステップ状に減少する。その後さらに劣化度合が進むにつれて、またNOx排出量は徐々に増加していき、劣化度合がレベル2に達したときに、レベル1と同様に、劣化補正係数KEGRFLOWの算出を行って式(1)に適用すると、NOx排出量がステップ状に減少する。その後劣化度合がレベル3に達すると、流量異常の判定がなされる(図5,ステップS73参照)。
【0070】
このように劣化補正係数KEGRFLOWを用いることにより、流量異常判定がなされる劣化度合(レベル3)に達する前の劣化状態において、NOx排出量の低減を図り、長期間に亘って良好な排気特性を維持することができる。
また排気還流の実行中に算出される空燃比補正係数KO2の平均値KO2WTEGRと、排気還流の停止中に算出される空燃比補正係数KO2の平均値KO2WOEGRとの差DKO2が、所定値DKO2EGRFを越えたとき、排気還流機構が劣化していると判定するようにしたので、排気還流機構の劣化(明らかな故障といえない程度の劣化)を精度良く判定することができる。そして、劣化していると判定したときは、劣化補正係数KEGRFLOWによる燃料供給量補正を行うことにより、燃料供給量(空燃比)を適切な値とし、排気特性を改善することができる。
【0071】
本実施形態では、ECU5及び燃料噴射弁6が請求項1及び2の燃料供給制御装置を構成し、ECU5のCPU5bが、EGR補正手段、劣化補正手段、空燃比補正手段及び劣化判定手段を構成する。より具体的には、図3の処理がEGR補正手段に相当し、図5の処理及び図9のステップS101及びS106が劣化補正手段に相当し、図12の処理が空燃比補正手段に相当し、図9のステップS10〜S105が劣化判定手段に相当する。
【0072】
なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、上述した実施形態では、式(1)及び劣化補正係数KEGRFLOWにより、燃料供給量(燃料噴射時間TOUT)を補正するようにしたが、これに限るものではなく、例えば下記式(1a)及び劣化補正係数KEGRFLOWAを用いて燃料噴射時間TOUTを補正するようにしてもよい。
Figure 0004243416
【0073】
この場合、劣化補正係数KEGRFLOWAは、吸気圧変化量DPBEGRが大きいとき「1.0」(無補正値)とし、吸気圧変化量DPBEGRが減少するほど増加するように設定する。また、修正EGR補正係数KEGRM=KEGR×KEGRFLOWAを導入し、EGR補正係数KEGRを排気還流機構の劣化度合に応じて修正するという構成としてもよい。
【0074】
また空燃比センサとしては、上述した実施形態では理論空燃比近傍で出力値が急変するいわゆる二値型の酸素濃度センサを用いたが、空燃比にほぼ比例する出力が得られる比例型酸素濃度センサを用いてもよい。その場合空燃比補正係数は、検出空燃比が目標空燃比に一致するように、PID制御などにより設定する。
【0075】
【発明の効果】
以上詳述したように請求項1に記載の発明によれば、EGR補正手段により、排気還流弁の開弁中に機関の吸入空気量の減少に合わせて機関に供給する燃料量を減少させる補正が行われるとともに、空燃比センサの出力に応じて算出される空燃比補正係数を用いて燃料量が補正される。そして排気還流弁の開弁中に算出される空燃比補正係数と、排気還流弁の閉弁中に算出される空燃比補正係数との差に応じて、排気還流機構の劣化が判定される。排気還流弁を開弁したときの吸気管内圧力と、排気還流弁を閉弁したときの吸気管内圧力との差圧(DPBEGR)と、機関の回転数に応じて変更される異常判定用所定値(DPBFS80)とが比較され、差圧が異常判定用所定値より大きく、かつ空燃比補正係数の差に応じて排気還流機構が劣化していると判定されたときに、EGR補正手段による補正が過補正となっていると判定され、差圧(DPBEGR)に応じて燃料量が補正される。差圧(DPBEGR)が異常判定用所定値(DPBFS80)より大きく、かつ空燃比補正係数の差に応じて排気還流機構が劣化していると判定されたときは、排気還流機構が故障とまではいえないが劣化した状態にあるため、EGR補正手段による補正が過補正となる。したがって、吸気管内圧力の差圧に応じて燃料供給量を補正することにより、劣化度合に応じた適切な燃料供給量とすることができ、良好な排気特性を長期間に亘って維持することができる。
【0076】
請求項2に記載の発明によれば、排気還流弁を開弁したときの吸気管内圧力及び排気還流弁を閉弁したときの吸気管内圧力は、機関回転数に応じて補正されるので、機関回転数の変化が吸気管内圧力に与える影響を除くことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる内燃機関及びその燃料供給制御装置の構成を示す図である。
【図2】排気還流制御を実行する処理のフローチャートである。
【図3】EGR補正係数(KEGR)を算出する処理のフローチャートである。
【図4】図3の処理で使用するテーブルを示す図である。
【図5】排気還流量の監視をする処理のフローチャートである。
【図6】図5の処理で使用するテーブルを示す図である。
【図7】図5の処理による流量監視の実施許可フラグの設定を行う処理のフローチャートである。
【図8】図5の処理を説明するためのタイムチャートである。
【図9】劣化補正係数(KEGRFLOW)を算出する処理のフローチャートである。
【図10】図9の処理で使用されるテーブルを示す図である。
【図11】図9の処理の一部を詳細に示すフローチャートである。
【図12】空燃比補正係数(KO2)を算出する処理のフローチャートである。
【図13】劣化補正係数(KEGRFLOW)による補正の効果を説明するための図である。
【符号の説明】
1 内燃機関
2 吸気管
5 電子コントロールユニット(補正手段、空燃比補正手段、劣化判定手段)
6 燃料噴射弁
12 排気管
14 酸素濃度センサ(空燃比センサ)
21 排気還流通路
22 排気還流弁

Claims (2)

  1. 吸気管と排気管とを接続する排気還流通路と、該排気還流通路の途中に設けられた排気還流弁とを有する排気還流機構を備える内燃機関に供給する燃料量を制御する燃料供給制御装置において、
    前記排気還流弁の開弁中に、前記機関の吸入空気量の減少に合わせて前記機関に供給する燃料量を減少させる補正を行うEGR補正手段と、
    前記排気管に設けられた空燃比センサの出力に応じて空燃比補正係数を算出し、該算出した空燃比補正係数を用いて前記燃料量を補正する空燃比補正手段と、
    前記排気還流弁の開弁中に算出される前記空燃比補正係数と、前記排気還流弁の閉弁中に算出される前記空燃比補正係数との差に応じて、前記排気還流機構の劣化を判定する劣化判定手段と、
    前記排気還流弁を開弁したときの吸気管内圧力と、前記排気還流弁を閉弁したときの吸気管内圧力との差圧と、前記機関の回転数に応じて変更される異常判定用所定値とを比較し、前記差圧が前記異常判定用所定値より大きく、かつ前記劣化判定手段により前記排気還流機構が劣化していると判定されたときに、前記EGR補正手段による補正が過補正となっていると判定し、前記差圧に応じて前記燃料量を補正する劣化補正手段を備えることを特徴とする燃料供給制御装置。
  2. 記排気還流弁を開弁したときの吸気管内圧力及び前記排気還流弁を閉弁したときの吸気管内圧力は、前記機関の回転数に応じて補正されることを特徴とする請求項1に記載の燃料供給制御装置。
JP2000170962A 2000-06-07 2000-06-07 内燃機関の燃料供給制御装置 Expired - Fee Related JP4243416B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000170962A JP4243416B2 (ja) 2000-06-07 2000-06-07 内燃機関の燃料供給制御装置
US09/876,305 US6564778B2 (en) 2000-06-07 2001-06-06 Fuel supply control system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000170962A JP4243416B2 (ja) 2000-06-07 2000-06-07 内燃機関の燃料供給制御装置

Publications (2)

Publication Number Publication Date
JP2001349231A JP2001349231A (ja) 2001-12-21
JP4243416B2 true JP4243416B2 (ja) 2009-03-25

Family

ID=18673582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000170962A Expired - Fee Related JP4243416B2 (ja) 2000-06-07 2000-06-07 内燃機関の燃料供給制御装置

Country Status (2)

Country Link
US (1) US6564778B2 (ja)
JP (1) JP4243416B2 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412348C (zh) * 2002-12-11 2008-08-20 株式会社博世汽车*** 废气再循环装置
US6848418B1 (en) 2003-11-10 2005-02-01 Ford Global Technologies, Llc External exhaust gas recirculation on board diagnostic using EGR effect on a combination of engine operating parameters
JP2005256784A (ja) * 2004-03-12 2005-09-22 Toyota Motor Corp 排気ガス還流装置の故障診断装置
JP4720820B2 (ja) * 2007-12-14 2011-07-13 トヨタ自動車株式会社 排気環流装置の異常診断装置
JP4961336B2 (ja) * 2007-12-20 2012-06-27 三菱ふそうトラック・バス株式会社 エンジンの排気浄化装置
JP4442693B2 (ja) 2008-02-13 2010-03-31 トヨタ自動車株式会社 内燃機関の制御装置
JP5074255B2 (ja) * 2008-03-24 2012-11-14 ヤンマー株式会社 ガスエンジン制御装置
JP4277933B1 (ja) 2008-06-11 2009-06-10 トヨタ自動車株式会社 内燃機関装置およびその制御方法並びに車両
JP5136654B2 (ja) * 2009-11-11 2013-02-06 トヨタ自動車株式会社 内燃機関の制御装置
JP5270008B2 (ja) * 2009-12-18 2013-08-21 本田技研工業株式会社 内燃機関の制御装置
DE112012004697B4 (de) * 2011-11-10 2016-01-21 Honda Motor Co., Ltd. Einlass-Steuer-/Regelsystem für einen Verbrennungsmotor
CN105164391B (zh) * 2013-03-21 2017-03-08 日产自动车株式会社 内燃机的点火控制装置以及点火控制方法
JP6451492B2 (ja) * 2015-05-15 2019-01-16 トヨタ自動車株式会社 エンジン装置
US10464030B2 (en) 2017-04-03 2019-11-05 L'oreal System for forming a cosmetic composition
JP6641405B2 (ja) 2018-03-27 2020-02-05 株式会社Subaru エンジン制御装置
JP7415925B2 (ja) * 2018-07-27 2024-01-17 株式会社アイシン 内燃機関

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640257A (en) * 1984-05-01 1987-02-03 Nippondenso Co., Ltd. Engine control with exhaust gas recirculation
US4715348A (en) * 1985-08-31 1987-12-29 Nippondenso Co., Ltd. Self-diagnosis system for exhaust gas recirculation system of internal combustion engine
US4671107A (en) * 1985-09-09 1987-06-09 General Motors Corporation EGR diagnostic system
JPH0323354A (ja) * 1989-06-19 1991-01-31 Japan Electron Control Syst Co Ltd 内燃機関における排気還流装置の排気還流検出装置
JPH0427750A (ja) * 1990-05-22 1992-01-30 Mitsubishi Electric Corp 内燃機関の電子制御装置
US5137004A (en) * 1990-08-28 1992-08-11 Nissan Motor Co., Ltd. Trouble diagnosis device for EGR system
JP2586205B2 (ja) * 1990-11-07 1997-02-26 三菱電機株式会社 排気ガス還流制御装置の故障診断装置
JPH0777110A (ja) * 1993-09-03 1995-03-20 Mitsubishi Motors Corp 排気再循環システムの故障検出装置
JP2869916B2 (ja) 1993-11-01 1999-03-10 本田技研工業株式会社 内燃機関の燃料制御装置
JPH07180615A (ja) 1993-12-24 1995-07-18 Nippondenso Co Ltd 内燃機関の排気還流制御装置
DE19719278B4 (de) * 1997-05-07 2005-03-17 Robert Bosch Gmbh Verfahren zur Diagnose eines Abgasrückführungs (AGR) -Systems einer Brennkraftmaschine

Also Published As

Publication number Publication date
JP2001349231A (ja) 2001-12-21
US6564778B2 (en) 2003-05-20
US20020007821A1 (en) 2002-01-24

Similar Documents

Publication Publication Date Title
JP4243416B2 (ja) 内燃機関の燃料供給制御装置
JP4329799B2 (ja) 内燃機関の空燃比制御装置
JP4315179B2 (ja) 内燃機関の空燃比制御装置
JP4643550B2 (ja) 空燃比制御装置
JP4957559B2 (ja) 内燃機関の空燃比制御装置
JP6098735B2 (ja) 内燃機関の制御装置
JP3535077B2 (ja) 内燃機関の制御装置
JP3886928B2 (ja) 酸素濃度センサの劣化検出装置
JP6269367B2 (ja) 内燃機関の制御装置
JP6344080B2 (ja) 内燃機関の制御装置
JP2987240B2 (ja) 内燃エンジンの空燃比制御方法
JP2019183733A (ja) 空燃比制御装置
JPH0979071A (ja) 内燃機関の空燃比学習制御装置
JPH09112310A (ja) 内燃機関の空燃比制御装置
JP2630371B2 (ja) 内燃エンジンの空燃比フィードバック制御方法
JPH05149166A (ja) 内燃エンジンのアイドリング時燃料供給制御装置
JP4518363B2 (ja) 内燃機関の空燃比制御装置
JP2759917B2 (ja) 内燃エンジンの空燃比制御方法
JPH04143435A (ja) 内燃エンジンの空燃比制御方法
JPH01285635A (ja) 内燃機関の空燃比制御装置
JPS63113149A (ja) エンジンのアイドル回転数制御装置
JP3749213B2 (ja) 内燃機関の空燃比制御装置
JPH09126035A (ja) 多気筒エンジンのアイドル制御装置
JPH0535260B2 (ja)
JPH08312410A (ja) 内燃機関の空燃比制御方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees