JP4315179B2 - 内燃機関の空燃比制御装置 - Google Patents

内燃機関の空燃比制御装置 Download PDF

Info

Publication number
JP4315179B2
JP4315179B2 JP2006280962A JP2006280962A JP4315179B2 JP 4315179 B2 JP4315179 B2 JP 4315179B2 JP 2006280962 A JP2006280962 A JP 2006280962A JP 2006280962 A JP2006280962 A JP 2006280962A JP 4315179 B2 JP4315179 B2 JP 4315179B2
Authority
JP
Japan
Prior art keywords
value
fuel ratio
air
catalyst
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006280962A
Other languages
English (en)
Other versions
JP2008095647A (ja
Inventor
直人 加藤
俊太郎 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006280962A priority Critical patent/JP4315179B2/ja
Priority to US11/869,129 priority patent/US7654252B2/en
Publication of JP2008095647A publication Critical patent/JP2008095647A/ja
Application granted granted Critical
Publication of JP4315179B2 publication Critical patent/JP4315179B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1482Integrator, i.e. variable slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • F02D2041/1419Several control loops, either as alternatives or simultaneous the control loops being cascaded, i.e. being placed in series or nested
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、排気通路に配設された触媒の上流側に空燃比センサを備え触媒の下流側に起電力式の酸素濃度センサを備えた内燃機関に適用され、空燃比センサ、及び酸素濃度センサの出力値に基づいて触媒に流入するガスの空燃比を制御する内燃機関の空燃比制御装置に関する。以下、「触媒に流入するガスの(実際の)空燃比」を、「触媒上流空燃比」、或いは、単に「空燃比」と称呼し、「内燃機関」を、単に「機関」と称呼することもある。
従来より、この種の空燃比制御装置として、例えば、特許文献1に開示されたものが知られている。この空燃比制御装置では、排気通路に配設された触媒の上流に空燃比センサ、同触媒の下流に起電力式の酸素濃度センサがそれぞれ配設されている。酸素濃度センサの出力値と目標空燃比に相当する同出力値の目標値(目標空燃比相当値)との差(下流側偏差)を比例・積分・微分処理(PID処理)してフィードバック補正値が算出される。このフィードバック補正値で補正された空燃比センサの出力値から検出される空燃比と目標空燃比との差がゼロになるように制御して触媒上流空燃比が目標空燃比に一致するようにフィードバック制御されるようになっている。
特開2005−113729号公報
一般に、インジェクタから噴射される燃料の量を決定するために使用されるエアフローメータにより計測される吸入空気流量と実際の空気流量との差(エアフローメータのばらつき)、インジェクタに噴射指示される指令燃料噴射量と実際に噴射された燃料の量との差(インジェクタのばらつき)等(以下、これらを「燃料噴射量の誤差」と総称する。)が不可避的に発生する。更には、上記空燃比センサとして使用されることが多い限界電流式の酸素濃度センサでは、出力値の誤差が発生し易い。以下、燃料噴射量の誤差、及び、上流側空燃比センサの誤差を「吸排気系の誤差」とも総称する。
上記フィードバック補正値には、積分項(I項)の値、即ち、上記下流側偏差を積算して更新されていく偏差積分値にフィードバックゲインを乗じた値が含まれている。これにより、上記吸排気系の誤差が発生していても、上述したフィードバック制御の実行により、吸排気系の誤差が積分項により補償され得、この結果、空燃比を目標空燃比に一致・収束させることができる。換言すれば、この積分項の値(或いは、偏差積分値)は、吸排気系の誤差の大きさを表す値となり得る。
この種の空燃比制御装置では、このような性格を有する積分項の値(或いは、偏差積分値)を記憶するとともに記憶されている積分項の値(以下、「積分項の学習値」とも称呼する。)を所定のタイミング毎に更新(学習)していく積分項の学習が実行される場合が多い。
ところで、この積分項の値(或いは、積分項の学習値)は、上記吸排気系の誤差の大きさを正確に表す値(以下、「収束目標値」と称呼する。)に収束する。積分項の値(或いは、積分項の学習値)が収束目標値に一致していることは、空燃比制御装置が目標空燃比と等しい空燃比であるものとして扱っている実際の空燃比(以下、「制御中心空燃比」と称呼する。)が目標空燃比に一致していることを意味する。
制御中心空燃比が目標空燃比と一致している場合、上記吸排気系の誤差が適切に補償され得、空燃比が目標空燃比に適切に一致し得る。なお、上記文献に記載の装置では、制御中心空燃比が目標空燃比と一致することは、フィードバック補正値で補正された空燃比センサの出力値から検出される空燃比が触媒上流空燃比と一致することに対応する。
一方、積分項の値(或いは、積分項の学習値)が収束目標値からずれている場合、制御中心空燃比が目標空燃比からずれた値となる。この場合、上記吸排気系の誤差が適切に補償され得ず、空燃比が目標空燃比に適切に一致し得ない可能性がある。従って、積分項の値(或いは、積分項の学習値)をできる限り収束目標値、或いは収束目標値近傍に維持させることが好ましい。
ところが、フューエルカット、燃料増量等の空燃比制御に対する外乱が頻繁に発生すると、積分項(或いは、積分項の学習値)が収束目標値からずれていくという問題が発生し得る。例えば、フューエルカットが頻繁になされると、触媒内がリーン雰囲気に偏ることにより酸素濃度センサ出力値がリーン側に偏る。この結果、積分項の値(或いは、積分項の学習値)が収束目標値から空燃比をよりリッチに補正する方向に向けて次第にずれていくという問題が発生し得る。
本発明の目的は、フューエルカット等の空燃比制御に対する外乱が発生した場合において触媒下流の酸素濃度センサ出力値に基づく空燃比フィードバック制御における積分項の値が収束目標値からずれていくことを抑制でき、従って、制御中心空燃比が目標空燃比からずれていくことを抑制し得る内燃機関の空燃比制御装置を提供することにある。
本発明に係る空燃比制御装置は、酸素吸蔵機能を有する触媒と、前記触媒よりも上流の排気通路に配設された空燃比センサと、前記触媒よりも下流の排気通路に配設された起電力式の酸素濃度センサとを備えた内燃機関に適用される。
本発明に係る空燃比制御装置は、出力値推定手段と、積分値算出手段と、補正値算出手段と、空燃比制御手段とを備える。以下、これらについて順に説明していく。
出力値推定手段は、前記触媒と前記酸素濃度センサについてのモデルを使用して前記酸素濃度センサの出力値を推定する。具体的には、このモデルは、前記触媒の酸素吸蔵量を推定する触媒モデルと、前記推定された酸素吸蔵量に基づいて前記推定出力値を推定する酸素濃度センサモデルとを含んで構成される。
触媒モデルとしては、例えば、触媒に流入するガス中の酸素の過不足量を表す値を入力することで酸素吸蔵量を推定する周知のものが使用され得る。酸素濃度センサモデルとしては、例えば、酸素吸蔵量が第1所定値を超えた場合にリッチを示す値からリーンを示す値に反転し、酸素吸蔵量が第1所定値よりも小さい第2所定値を下回った場合にリーンを示す値からリッチを示す値に反転するように推定出力値をリーンを示す値とリッチを示す値の何れかに決定する周知のものが使用され得る。
積分値算出手段は、前記酸素濃度センサの実際の出力値と前記推定出力値との差(以下、「出力値偏差」とも称呼する。)を積算して更新されていく偏差積分値を算出する。即ち、偏差積分値は、上記出力値偏差を積分処理した値である。
なお、係る偏差積分値の学習が実行される場合、この空燃比制御装置は、偏差積分値に基づく値を用いて「偏差積分値に基づく値」の定常的な成分を表す学習値を算出・更新するとともに、前記更新による学習値の変化量に相当する分を前記「偏差積分値に基づく値」から差し引く学習手段を備える。ここにおいて、「偏差積分値に基づく値」とは、例えば、偏差積分値そのもの、偏差積分値にフィードバックゲインを乗じて得られる積分項等である。また、学習値(「偏差積分値に基づく値」の定常的な成分を表す値)とは、例えば、「偏差積分値に基づく値」をローパスフィルタ処理(なまし処理)した値である。
この学習手段は、例えば、所定のタイミングが到来する毎に、「偏差積分値に基づく値」の定常的な成分を学習値更新用の更新値として取得し、取得した更新値をその時点での学習値に積算して学習値を更新するとともに、その更新値に相当する分をその時点での「偏差積分値に基づく値」から差し引く。
補正値算出手段は、少なくとも前記偏差積分値に基づいて、前記空燃比センサの出力値に相当する値、及び/又は目標空燃比を補正するためのフィードバック補正値を算出する。このフィードバック補正値は、例えば、前記偏差積分値に加えて、前記酸素濃度センサの実際の出力値と目標空燃比に相当する同出力値の目標値(目標空燃比相当値)との差(即ち、上記下流側偏差)にも基づいて算出され得る。この場合、例えば、フィードバック補正値は、上記出力値偏差を積分処理した値(即ち、偏差積分値)と、上記下流側偏差を比例処理(或いは、比例・微分処理)した値とに基づいて算出される。
空燃比制御手段は、前記空燃比センサの出力値から検出される検出空燃比と前記目標空燃比との差であって前記フィードバック補正値で補正された値である第1の偏差がゼロになるように制御して前記触媒に流入するガスの空燃比を前記目標空燃比に一致するよう制御する。
ここにおいて、前記第1の偏差は、例えば、フィードバック補正値で補正された空燃比センサの出力値から検出される空燃比と目標空燃比との差、空燃比センサの出力値そのものから検出される空燃比とフィードバック補正値で補正された目標空燃比との差等である。
このように、本発明に係る空燃比制御装置は、触媒と酸素濃度センサについてのモデルが導入された点、並びに、フィードバック補正値に含まれる偏差積分値(積分項)が、上記下流側偏差に代えて上記出力値偏差を積分処理して更新される点において上記文献に記載の装置と主として異なる。
ここで、前記モデルは、前記第1の偏差により得られる前記触媒に流入するガス中の酸素の過不足量を表す値を入力されることで前記推定出力値を推定するように構成されることが好適である。
上記制御中心空燃比が目標空燃比(通常、理論空燃比)と一致している場合(即ち、偏差積分値が収束目標値と一致している場合)、前記空燃比制御手段により前記第1の偏差がゼロになるように制御されると、触媒上流空燃比が制御中心空燃比(=目標空燃比と等しい空燃比)と一致するように制御される。
従って、モデルに入力される「前記第1の偏差により得られる触媒に流入するガス中の酸素の過不足量」は、触媒に実際に流入するガス中の酸素の過不足量と一致し得る。この結果、モデルによる前記推定出力値の推移は酸素濃度センサの実際の出力値の推移と一致し得る。
このことは、フューエルカット等の空燃比制御に対する外乱が発生した場合であっても、その後において、前記出力値偏差がゼロ、或いはゼロ近傍の値に維持されて偏差積分値が収束目標値からずれていかない(ずれていき難い)ことを意味する。以上のことから、上記制御中心空燃比が目標空燃比と一致している場合、フューエルカット等の空燃比制御に対する外乱が発生した場合において偏差積分値(或いは、積分項の値)が収束目標値からずれていくことが抑制され得、従って、制御中心空燃比が目標空燃比からずれていくことが抑制され得る。
一方、上記制御中心空燃比が目標空燃比からずれている場合(即ち、偏差積分値が収束目標値からずれている場合)、前記空燃比制御手段により前記第1の偏差がゼロになるように制御されると、触媒上流空燃比が制御中心空燃比(=目標空燃比からずれた空燃比)と一致するように制御される。
従って、モデルに入力される「前記第1の偏差により得られる触媒に流入するガス中の酸素の過不足量」は、触媒に実際に流入するガス中の酸素の過不足量と一致し得なくなる。この結果、モデルによる前記推定出力値の推移が酸素濃度センサの実際の出力値の推移と一致し得えなくなる(図7を参照)。このように、前記推定出力値と酸素濃度センサの実際の出力値とのずれの発生は、上記制御中心空燃比が目標空燃比からずれていることを意味する。
このように、前記制御中心空燃比が目標空燃比と一致していない場合、前記出力値偏差が偏差積分値を収束目標値に近づける方向の値に設定され得る。この結果、偏差積分値が収束目標値に向けて近づけられ得、制御中心空燃比が目標空燃比に向けて近づけられ得る。
上記本発明に係る空燃比制御装置において、前記フィードバック補正値が前記偏差積分値に加えて上記下流側偏差にも基づいて算出される場合、前記出力値推定手段は、前記第1の偏差(即ち、前記検出空燃比と前記目標空燃比との差であってフィードバック補正値で補正された値)に代えて、第2の偏差、即ち、前記検出空燃比と前記目標空燃比との差であって前記偏差積分値で補正された値、により得られる前記触媒に流入するガス中の酸素の過不足量を表す値を前記モデルに入力して前記推定出力値を推定するように構成してもよい。
ここにおいて、前記第2の偏差は、例えば、偏差積分値で補正された空燃比センサの出力値から検出される空燃比と目標空燃比との差、空燃比センサの出力値そのものから検出される空燃比と偏差積分値で補正された目標空燃比との差等である。
前記空燃比制御手段により前記第1の偏差がゼロになるように制御されている場合(且つ、制御中心空燃比が目標空燃比と一致している場合)において、例えば、酸素濃度センサに対する外乱等により、フィードバック補正値における上記下流側偏差に基づく部分(偏差積分値を除いた部分、例えば、上記下流側偏差を比例・微分処理した値)が大きい値となり、この結果、触媒上流空燃比が目標空燃比から一時的に離れた場合を考える。
この場合、前記第1の偏差はゼロ近傍の値に維持され得る一方、前記第2の偏差は、フィードバック補正値における上記下流側偏差に基づく部分に相当する分だけ前記第1の偏差と異なる値となる。従って、触媒上流空燃比が目標空燃比から一時的に離れた場合であっても、モデルに入力される「前記第2の偏差により得られる触媒に流入するガス中の酸素の過不足量」は、触媒に実際に流入するガスの過不足量と一致し得る。この結果、酸素濃度センサに対する外乱等が発生した場合であっても、モデルによる前記推定出力値の推移を酸素濃度センサの実際の出力値の推移と一致させることができる。
上記本発明に係る空燃比制御装置において、前記モデルが前記触媒モデルと前記酸素濃度センサモデルとを含み、且つ、前記酸素濃度センサモデルが上述のように前記推定出力値を前記リーンを示す値と前記リッチを示す値の何れかに決定するように構成される場合、前記積分値算出手段は、前記酸素濃度センサの実際の出力値が前記目標空燃比相当値を含む所定の範囲内にある場合、前記偏差積分値の更新を行わないように構成されることが好適である。
酸素濃度センサの実際の出力値が目標空燃比相当値に近い値で推移している場合、制御中心空燃比が目標空燃比に一致している(或いは、近い)こと、従って、偏差積分値が収束目標値に一定している(或いは、近い)を意味している。この場合、偏差積分値を更新する必要がない。一方、酸素濃度センサモデルは前記推定出力値をリーンを示す値とリッチを示す値の何れかにしか決定しないから、この場合、前記出力値偏差が大きい値となって偏差積分値が次第に変化していってしまう。即ち、この場合、偏差積分値の更新を禁止する必要がある。
上記構成は、係る知見に基づくものである。これによれば、酸素濃度センサの実際の出力値が目標空燃比相当値に近い値で推移している場合において、制御中心空燃比が目標空燃比から離れていくことを抑制することができる。
また、上記本発明に係る空燃比制御装置において、前記モデルが前記触媒モデルと前記酸素濃度センサモデルとを含む場合、前記出力値推定手段が使用する前記触媒モデルは、前記触媒が吸蔵し得る酸素の量の最大値である最大酸素吸蔵量を使用して前記触媒の酸素吸蔵量を推定するように構成され、前記積分値算出手段は、前記最大酸素吸蔵量が取得される前の段階では前記偏差積分値の更新を行わないように構成されることが好適である。
触媒モデルは、触媒の最大酸素吸蔵量が正確に取得されている状態で、触媒の酸素吸蔵量を正確に推定することができる。従って、触媒の最大酸素吸蔵量が取得されていない段階では、触媒モデルは、触媒の酸素吸蔵量を正確に推定することができず、この結果、酸素濃度センサモデルも前記推定出力値を正確に推定することができない。この状態では、不正確な前記推定出力値に基づいて偏差積分値の更新を行うべきではない。上記構成は係る知見に基づく。
加えて、前記補正値算出手段は、前記最大酸素吸蔵量が取得される前の段階では、前記偏差積分値に代えて、前記下流側偏差を積算して更新されていく積分値に基づいて前記フィードバック補正値を算出するように構成されることが好適である。
これによれば、前記最大酸素吸蔵量が取得される前の段階であっても、上記文献に記載した装置と同様にフィードバック補正値が算出され得、少なくとも上記文献に記載した装置と同等程度には上記吸排気系の誤差が補償され得る。
以下、本発明による内燃機関の空燃比制御装置の各実施形態について図面を参照しつつ説明する。
(第1実施形態)
図1は、本発明の第1実施形態に係る空燃比制御装置を火花点火式多気筒(4気筒)内燃機関10に適用したシステムの概略構成を示している。この内燃機関10は、シリンダブロック、シリンダブロックロワーケース、及びオイルパン等を含むシリンダブロック部20と、シリンダブロック部20の上に固定されるシリンダヘッド部30と、シリンダブロック部20にガソリン混合気を供給するための吸気系統40と、シリンダブロック部20からの排気ガスを外部に放出するための排気系統50とを含んでいる。
シリンダブロック部20は、シリンダ21、ピストン22、コンロッド23、及びクランク軸24を含んでいる。このシリンダブロック部20においては、ピストン22はシリンダ21内を往復動し、ピストン22の往復動がコンロッド23を介してクランク軸24に伝達され、これにより当該クランク軸24が回転するようになっている。シリンダ21とピストン22のヘッドは、シリンダヘッド部30とともに燃焼室25を形成している。
シリンダヘッド部30は、燃焼室25に連通した吸気ポート31、吸気ポート31を開閉する吸気弁32、吸気弁32を駆動するインテークカムシャフトを含むとともに当該インテークカムシャフトの位相角を連続的に変更する可変吸気タイミング装置33、可変吸気タイミング装置33のアクチュエータ33a、燃焼室25に連通した排気ポート34、排気ポート34を開閉する排気弁35、排気弁35を駆動するエキゾーストカムシャフト36、点火プラグ37、点火プラグ37に与える高電圧を発生するイグニッションコイルを含むイグナイタ38、及び燃料を吸気ポート31内に噴射するインジェクタ(燃料噴射手段)39を備えている。
吸気系統40は、吸気ポート31に連通し当該吸気ポート31とともに吸気通路を形成するインテークマニホールドを含む吸気管41、吸気管41の端部に設けられたエアフィルタ42、吸気管41内にあって吸気通路の開口断面積を可変とするスロットル弁43、及びスロットル弁アクチュエータ43aを備えている。ここで、吸気ポート31、及び吸気管41は、吸気通路を構成している。
排気系統50は、排気ポート34に連通したエキゾーストマニホールド51、エキゾーストマニホールド51(実際には、各排気ポート34に連通した各々のエキゾーストマニホールド51が集合した集合部)に接続されたエキゾーストパイプ(排気管)52、エキゾーストパイプ52に配設(介装)された上流側触媒装置53(三元触媒、以下、「第1触媒53」と称呼する。)、及びこの第1触媒53の下流のエキゾーストパイプ52に配設(介装)された下流側触媒装置54(三元触媒、以下、「第2触媒54」と称呼する。)を備えている。排気ポート34、エキゾーストマニホールド51、及びエキゾーストパイプ52は、排気通路を構成している。
一方、このシステムは、エアフローメータ61、スロットルポジションセンサ62、カムポジションセンサ63、クランクポジションセンサ64、水温センサ65、第1触媒53の上流の排気通路(本例では、前記各々のエキゾーストマニホールド51が集合した集合部)に配設された空燃比センサ66(以下、「AFセンサ66」と称呼する。)、第1触媒53の下流であって第2触媒54の上流の排気通路に配設された空燃比センサ67(以下、「O2センサ67」と称呼する。)、及びアクセル開度センサ68を備えている。
エアフローメータ61は、周知の熱線式エアフローメータにより構成されており、吸気管41内を流れる吸入空気の単位時間あたりの質量流量(吸入空気流量Ga)に応じた電圧を出力するようになっている。スロットルポジションセンサ62は、スロットル弁43の開度を検出し、スロットル弁開度TAを表す信号を出力するようになっている。カムポジションセンサ63は、インテークカムシャフトが90°回転する毎に(即ち、クランク軸24が180°回転する毎に)一つのパルスを有する信号(G2信号)を発生するようになっている。クランクポジションセンサ64は、クランク軸24が10°回転する毎に幅狭のパルスを有するとともに当該クランク軸24が360°回転する毎に幅広のパルスを有する信号を出力するようになっている。この信号は、運転速度NEを表す。水温センサ65は、内燃機関10の冷却水の温度を検出し、冷却水温THWを表す信号を出力するようになっている。
AFセンサ66は、限界電流式の酸素濃度センサであり、図2に実線で示したように、空燃比A/Fに応じた電流を出力し、この電流に応じた電圧である出力値Vabyfsを出力するようになっていて、特に、上流側空燃比センサ66の出力値Vabyfsの誤差(AFセンサ66の誤差)がない場合、第1触媒53上流の実際の空燃比(触媒上流空燃比)が理論空燃比AFthであるときには出力値Vabyfsは上流側目標値Vstoichになる。図2から明らかなように、AFセンサ66によれば、広範囲にわたる空燃比A/Fを精度良く検出することができる。
O2センサ67は、起電力式(濃淡電池式)の酸素濃度センサであり、図3に示したように、理論空燃比近傍において急変する電圧である出力値Voxsを出力するようになっている。より具体的に述べると、O2センサ67は、空燃比が理論空燃比よりもリーンのときは略0.1(V)(min、リーンを示す値)、空燃比が理論空燃比よりもリッチのときは略0.9(V)(max、リッチを示す値)、及び空燃比が理論空燃比のときは0.5(V)の電圧を出力するようになっている。アクセル開度センサ68は、運転者によって操作されるアクセルペダル81の操作量を検出し、アクセルペダル81の操作量Accpを表す信号を出力するようになっている。
更にこのシステムは、電気制御装置70を備えている。電気制御装置70は、互いにバスで接続されたCPU71、CPU71が実行するルーチン(プログラム)、テーブル(ルックアップテーブル、マップ)、及びパラメータ等を予め記憶したROM72、CPU71が必要に応じてデータを一時的に格納するRAM73、電源が投入された状態でデータを格納するとともに当該格納したデータを電源が遮断されている間も保持するバックアップRAM(SRAM)74、並びにADコンバータを含むインターフェース75等からなるマイクロコンピュータである。インターフェース75は、前記センサ61〜68と接続され、CPU71にセンサ61〜68からの信号を供給するとともに、同CPU71の指示に応じて可変吸気タイミング装置33のアクチュエータ33a、イグナイタ38、インジェクタ39、及びスロットル弁アクチュエータ43aに駆動信号を送出するようになっている。
(空燃比制御の概要)
次に、上述のように構成された第1実施形態に係る空燃比制御装置(以下、「本装置」とも称呼する。)が行う空燃比制御の概要について説明する。
本装置は、AFセンサ66の出力値を用いた空燃比フィードバック制御(以下、「メインFB制御」と称呼する。)、及び、O2センサ67の出力値を用いた空燃比フィードバック制御(以下、「サブFB制御」と称呼する。)という2つの空燃比フィードバック制御を行う。これらにより、触媒上流空燃比が目標空燃比である理論空燃比に一致するようにフィードバック制御される。
より具体的に述べると、本装置は、機能ブロック図である図4に示したように、A1〜A19の各機能ブロックを含んで構成されている。以下、図4を参照しながら各機能ブロックについて説明していく。
<基本燃料噴射量の算出>
先ず、筒内吸入空気量算出手段A1は、エアフローメータ61が計測している吸入空気流量Gaと、クランクポジションセンサ64の出力に基づいて得られる運転速度NEと、ROM72が記憶しているテーブルMapMcとに基づき、今回の吸気行程において吸気行程を迎える気筒に吸入された新気の量である筒内吸入空気量Mc(k)を求める。ここで、添え字の(k)は、今回の吸気行程に対する値であることを示している(以下、他の物理量についても同様。)。筒内吸入空気量Mcは、各気筒の吸気行程に対応されながらRAM73に記憶されていく。
上流側目標空燃比設定手段A2は、内燃機関10の運転状態である運転速度NE、及びスロットル弁開度TA等に基づいて目標空燃比abyfrを決定する。この上流側目標空燃比abyfrは、例えば、内燃機関10の暖機終了後においては、特殊な場合を除き理論空燃比に設定されている。
制御用目標空燃比設定手段A3は、下記(1)式に従って、目標空燃比abyfrと、後述するサブFB補正量算出手段A19により算出されるサブFB補正量FBsubとに基づいて制御用目標空燃比abyfrs(k)を設定する。
abyfrs(k)=abyfr/(1+FBsub) ・・・(1)
上記(1)式から理解できるように、この制御用目標空燃比abyfrs(k)は、目標空燃比abyfrに対してサブFB補正量FBsubに応じた分だけ異なる空燃比に設定される。制御用目標空燃比abyfrsは、各気筒の吸気行程に対応されながらRAM73に記憶されていく。
基本燃料噴射量算出手段A4は、筒内吸入空気量Mc(k)を制御用目標空燃比abyfrs(k)で除することにより、筒内吸入空気量Mc(k)に対応する、制御用目標空燃比abyfrs(k)を得るための燃料の量である基本燃料噴射量Fbaseを求める。このように、制御用目標空燃比abyfrs(k)は、基本燃料噴射量Fbaseの設定に使用され、且つ、後述するように、メインFB制御に使用される。
<指令燃料噴射量の算出>
指令燃料噴射量算出手段A5は、基本燃料噴射量Fbaseに後述するメインFB補正量算出手段(PIコントローラ)A9により算出されるメインFB補正量FBmainを加えることで、下記(2)式に基づいて指令燃料噴射量Fiを求める。
Fi=Fbase+FBmain ・・・(2)
本装置は、このように算出される指令燃料噴射量Fiの燃料の噴射指示を今回の吸気行程を迎える気筒についてのインジェクタ39に対して行う。これにより、後に詳述するように、メインFB制御、及びサブFB制御が達成される。
<メインFB制御>
テーブル変換手段A6は、AFセンサ66の出力値Vabyfsと、先に説明した図2に示したAFセンサ出力値Vabyfsと空燃比A/Fとの関係を規定したテーブル(実線を参照)とに基づいて、AFセンサ66が検出する現時点(具体的には、今回のFiの噴射指示開始時点)における今回の検出空燃比abyfs(k)を求める。検出空燃比abyfsは、各気筒の吸気行程に対応されながらRAM73に記憶されていく。
AFセンサ応答モデルA7は、AFセンサ出力値Vabyfsの遅れを模擬したモデルであり、目標空燃比遅延手段と、ローパスフィルタとを備えている。この目標空燃比遅延手段は、制御用目標空燃比設定手段A3により吸気行程毎に求められRAM73に記憶されている制御用目標空燃比abyfrsのうち、現時点からNストローク(N回の吸気行程)前の制御用目標空燃比abyfrsをRAM73から読み出し、これを制御用目標空燃比abyfrs(k−N)とする。この値Nは、燃料の噴射指示から、その噴射指示により噴射された燃料の燃焼に基づく排ガスの空燃比がAFセンサ66(の検出部)に到達するまでに要する時間(以下、「遅れ時間L」と称呼する。)に相当するストローク数である。以下、遅れ時間L、及びストローク数Nについて付言する。
一般に、燃料の噴射指示は、吸気行程中(或いは吸気行程よりも前の時点)にて実行され、噴射された燃料は、その後に到来する圧縮上死点近傍の時点で燃焼室25内にて着火(燃焼)させられる。この結果、発生する排ガスは、排気弁35の周囲を介して燃焼室25から排気通路へと排出され、その後、排気通路内を移動していくことで上流側空燃比センサ66(の検出部)に到達する。
以上のことから、上記遅れ時間Lは、燃焼行程に係わる遅れ(行程遅れ)、及び排気通路内での排ガスの移動に係わる遅れ(輸送遅れ)の和で表される。即ち、上流側空燃比センサ66による検出空燃比abyfsは、このようにして得られる遅れ時間Lだけ前に実行された燃料の噴射指示に基づいて発生した排ガスの空燃比を表す値となる。
上述した行程遅れに係る時間は、運転速度NEの増加に応じて短くなるとともに、輸送遅れに係る時間は、運転速度NE及び筒内吸入空気量Mcの上昇に応じて短くなる傾向がある。従って、遅れ時間Lに相当するストローク数Nは、運転速度NE及び筒内吸入空気量Mcの上昇に応じて小さくなる。
上記ローパスフィルタは、AFセンサ66の応答遅れに相当する時定数と等しい時定数τを有する一次のディジタルフィルタであり、上記制御用目標空燃比abyfrs(k−N)を入力するとともに、上記制御用目標空燃比abyfrs(k−N)を時定数τをもってローパスフィルタ処理した値であるローパスフィルタ通過後制御用目標空燃比abyfrslowを出力する。
上流側空燃比偏差算出手段A8は、下記(3)式に基づいて、今回の検出空燃比abyfs(k)からローパスフィルタ通過後制御用目標空燃比abyfrslowを減じることにより、現時点からNストローク前の上流側空燃比偏差DAF(前記「第1の偏差」に対応)を求める。
DAF=abyfs(k)−abyfrslow ・・・(3)
このように、現時点からNストローク前の上流側空燃比偏差DAFを求めるために、今回の検出空燃比abyfs(k)から、ローパスフィルタ通過後制御用目標空燃比abyfrslowを減じるのは、上述したように、今回の検出空燃比abyfs(k)は、現時点から遅れ時間Lだけ前(従って、現時点からNストローク前)に実行された噴射指示に基づいて発生した排ガスの空燃比を表しているからである。この上流側空燃比偏差DAFは、Nストローク前の時点で筒内に供給された燃料の過不足量に対応する値である。
メインFB補正量算出手段A9(PIコントローラ)は、上流側空燃比偏差DAFを比例・積分処理(PI処理)することで、下記(4)式に基づいてNストローク前の燃料供給量の過不足を補償するためのメインFB補正量FBmainを求める。(4)式において、Gpは予め設定された比例ゲイン(比例定数)、Giは予め設定された積分ゲイン(積分定数)であり、SDAFは上流側空燃比偏差DAFの積分値(積算値)である。
FBmain=Gp・DAF+Gi・SDAF ・・・(4)
本装置は、このようにしてメインFB補正量FBmainを求め、指令燃料噴射量Fiを求める際、上述したように、補正後基本燃料噴射量Fbaseに対してメインFB補正量FBmainを加える。これにより、以下のように、メインFB制御がなされる。
例えば、触媒上流空燃比がリーン方向に変化すると、検出空燃比abyfs(k)はローパスフィルタ通過後制御用目標空燃比abyfrslowよりもリーンな値(より大きな値)となる。このため、上流側空燃比偏差DAFは正の値となる。従って、メインFB補正量FBmainが正の値となる。これにより、指令燃料噴射量Fiは、基本燃料噴射量Fbaseよりも大きくなって、空燃比がリッチ方向に制御される。この結果、検出空燃比abyfs(k)が小さくなり、検出空燃比abyfs(k)がローパスフィルタ通過後制御用目標空燃比abyfrslowと一致するように制御される。
反対に、触媒上流空燃比がリッチ方向に変化すると、検出空燃比abyfs(k)はローパスフィルタ通過後制御用目標空燃比abyfrslowよりもリッチな値(より小さな値)となる。このため、上流側空燃比偏差DAFは負の値となる。従って、メインFB補正量FBmainが負の値となる。これにより、指令燃料噴射量Fi(k)は、補正後基本燃料噴射量Fbaseよりも小さくなって、空燃比がリーン方向に制御される。この結果、検出空燃比abyfs(k)が大きくなり、検出空燃比abyfs(k)がローパスフィルタ通過後制御用目標空燃比abyfrslowと一致するように制御される。以上のように、メインFB制御により、検出空燃比abyfs(k)がローパスフィルタ通過後制御用目標空燃比abyfrslowと一致するように(即ち、上流側空燃比偏差DAFがゼロになるように)指令燃料噴射量Fiが制御される。以上、このように触媒上流空燃比を制御する手段が前記空燃比制御手段に対応する。
更には、メインFB補正量FBmainは積分項Gi・SDAFを含んでいるので、定常状態では上流側空燃比偏差DAFがゼロになることが保証される。換言すれば、上述した「燃料噴射量の誤差」が発生している場合、メインFB制御の実行により、定常状態において、積分項Gi・SDAFの値が「燃料噴射量の誤差」の大きさに対応する値に収束するとともに、検出空燃比abyfs(k)がローパスフィルタ通過後制御用目標空燃比abyfrslowに収束すること(即ち、上流側空燃比偏差DAFがゼロになること)が保証される。このように、「燃料噴射量の誤差」は、メインFB制御により補償され得る。
<サブFB制御>
下流側目標値設定手段A10は、上述した上流側目標空燃比設定手段A2と同様、内燃機関10の運転状態である運転速度NE、及びスロットル弁開度TA等に基づいて下流側目標値Voxsref(前記「目標空燃比に相当する目標値」に相当)を決定する。この下流側目標値Voxsrefは、例えば、内燃機関10の暖機終了後においては、特殊な場合を除き理論空燃比に対応する値である0.5(V)に設定されている(図3を参照。)。また、本例では、下流側目標値Voxsrefは、同下流側目標値Voxsrefに対応する空燃比が上述した目標空燃比abyfrと常時一致するように設定される。
下流側偏差算出手段A11は、下記(5)式に基づいて、現時点(具体的には、今回のFiの噴射指示開始時点)での下流側目標値Voxsrefから現時点でのO2センサ67の出力値Voxsを減じることにより、下流側偏差DVoxsを求める。
DVoxs=Voxsref−Voxs ・・・(5)
PDコントローラA12(比例・微分項算出手段)は、下記(6)式に基づいて、下流側偏差DVoxsを比例・微分処理(PD処理)して、サブFB制御におけるPD補正量FBsub1を求める。ここにおいて、Kp,Kdはそれぞれ、予め設定された比例ゲイン(比例定数)、微分ゲイン(微分定数)である。DDVoxsは下流側偏差DVoxsの時間微分値である。「Kp・DVoxs」は比例項に対応し、「Kd・DDVoxs」は微分項に対応する。
FBsub1=Kp・DVoxs+Kd・DDVoxs ・・・(6)
触媒モデルA13は、上流側空燃比偏差算出手段A8により求められる上流側空燃比偏差DAF(前記「第1の偏差」に対応)を入力して、通常、下記(7)式に基づいて、後述するプログラムの実行タイミング毎に第1触媒53の酸素吸蔵量OSAを推定(更新)していく。
OSA=Σ(0.23・DAF・Fi) (0≦OSA≦Cmax)・・・(7)
(7)式において、値0.23は空気中における酸素の質量割合である。「0.23・DAF・Fi」は、上流側空燃比偏差DAFにより得られる、第1触媒53に流入するガス中の一燃料噴射当たりの酸素の過不足量を表す。Cmaxは第1触媒53が吸蔵し得る酸素の最大量(最大酸素吸蔵量)である。最大酸素吸蔵量Cmaxは、周知の手法の一つにより所定のタイミングで取得・更新され得る。
また、フューエルカット中では、触媒モデルA13は、(7)式に代えて下記(8)式に従って、第1触媒53の酸素吸蔵量OSAを推定(更新)していく。ここにおいて、Δtは後述するプログラムの実行時間間隔である。「0.23・Ga・Δt」は、第1触媒53に流入するガス(空気)中の一プログラム実行時間間隔当たりの酸素量を表す。(8)式により、フューエルカット中では、酸素吸蔵量OSAは最大酸素吸蔵量Cmaxを上限として増大していく。
OSA=Σ(0.23・Ga・Δt) (0≦OSA≦Cmax)・・・(8)
O2センサモデルA14は、触媒モデルA13により推定される酸素吸蔵量OSAを入力して、図5に示す出力特性に従ってO2センサ67の出力値の推定値(推定出力値Voxsm)を推定・更新していく。これにより、推定出力値Voxsmは、酸素吸蔵量OSAが最大酸素吸蔵量Cmaxよりも若干小さい第1所定値bを超えた場合にリッチを示す値maxからリーンを示す値minに反転し、酸素吸蔵量OSAが第2所定値a(0<a<b)を下回った場合にリーンを示す値minからリッチを示す値maxに反転するように、リーンを示す値minとリッチを示す値maxの何れかに決定される。なお、図5に示す出力特性は、第1触媒53の実際の酸素吸蔵量に対するO2センサ67の実際の出力値Voxsの出力特性に沿うものである。触媒モデルA13とO2センサモデルA14は、前記出力値推定手段に相当する。
出力値偏差算出手段A15は、下記(9)式に基づいて、現時点(具体的には、今回のFiの噴射指示開始時点)での推定出力値Voxsmから現時点でのO2センサ67の出力値Voxsを減じた値に係数Kmを乗じて、出力値偏差DVoxsmを求める。ここにおいて、係数Kmは、図6に示すテーブルに基づいて決定される。
DVoxsm=(Voxsm−Voxs)・Km ・・・(9)
これにより、出力値偏差DVoxsmは、O2センサ出力値Voxsが下流側目標値Voxsrefを含む値c〜値dの範囲外にある場合、推定出力値VoxsmとO2センサ出力値Voxsの差と等しい値に設定され、O2センサ出力値Voxsが値c〜値dの範囲内にある場合、「0」に設定される。
IコントローラA16(積分項算出手段)は、下記(10)式に基づいて、出力値偏差DVoxsmを積分処理(I処理)してI補正量(積分項)FBsub2を求める。ここにおいて、Kiは予め設定された積分ゲイン(積分定数)である。SDVoxsmは、出力値偏差DVoxsmを積算して更新されていく「出力値偏差DVoxsmの時間積分値(積算値)」である偏差積分値である。従って、偏差積分値SDVoxsmは、O2センサ出力値Voxsが値c〜値dの範囲内にあって出力値偏差DVoxsm=0となる場合、更新されないことになる。IコントローラA16は、前記積分値算出手段に相当する。
FBsub2=Ki・SDVoxsm ・・・(10)
学習処理手段A17は、後に詳述するように、「積分項FBsub2の学習処理」の実行タイミングが到来する毎に、積分項FBsub2の値の定常的な成分を積分項FBsub2の学習値Learn(バックアップRAM74に記憶されている値)に移し変えていく。即ち、各「積分項FBsub2の学習処理」の前後において、積分項FBsub2の値と学習値Learnの和は変化しない。積分項FBsub2の値と学習値Learnの和は、サブFB制御における実質的な積分項として機能する。
総和値算出手段A18は、積分項FBsub2の値と学習値Learnの和を総和値SUMとして算出する。総和値SUMは、上述のごとく、サブFB制御における実質的な積分項として機能する値である。
サブFB補正量算出手段A19は、下記(11)式に従って、上記PD補正量FBsub1に総和値SUMを加えることで、サブFB補正量FBsubを求める(−1<FBsub<1)。これにより、サブFB補正量FBsubは、下流側偏差DVoxsを比例・微分処理した値(FBsub1)と、出力値偏差DVoxsmを積分処理した値(SUM)の和となる。
FBsub=FBsub1+SUM ・・・(11)
このように、本装置は、サブFB補正量FBsubの算出に際し、触媒モデルA13及びO2センサモデルA14を導入して推定出力値Voxsm及び出力値偏差DVoxsmを算出する点、並びに、下流側偏差DVoxsに代えて出力値偏差DVoxsmを積分処理して積分項(=総和値SUM)を算出する点、において特徴を有する。この特徴による作用・効果については後述する。サブFB補正量算出手段A19は、前記補正値算出手段に相当する。
再び、図4を参照すると、上述したように、このサブFB補正量FBsubは、制御用目標空燃比abyfrs(k)の設定に使用される。加えて、サブFB補正量FBsubに基づく制御用目標空燃比abyfrs(k)は、上述したメインFB制御に使用される。これにより、メインFB制御を補完(補正)するように、以下のようにサブFB制御がなされる。
例えば、第1触媒53の下流のガスの空燃比がリーンとなることでO2センサ67の出力値Voxsがリーンを示す値となると、下流側偏差DVoxsが正の値となるので(図3を参照)、サブFB補正量FBsubは正の値となる。これにより、制御用目標空燃比abyfrs(k)(従って、ローパスフィルタ通過後制御用目標空燃比abyfrslow)が目標空燃比abyfr(=理論空燃比)よりも小さい値(即ち、リッチな空燃比)に設定される。この状態で上流側空燃比偏差DAFがゼロになるようにメインFB制御が実行されることにより、指令燃料噴射量Fiが増大させられ、空燃比がリッチ方向に制御される。この結果、O2センサ67の出力値Voxsが下流側目標値Voxsrefと一致するように制御される。
反対に、第1触媒53の下流のガスの空燃比がリッチとなることでO2センサ67の出力値Voxsがリッチを示す値となると、下流側偏差DVoxsが負の値となるので、サブFB補正量FBsubは負の値となる。これにより、制御用目標空燃比abyfrs(k)(従って、ローパスフィルタ通過後制御用目標空燃比abyfrslow)が目標空燃比abyfr(=理論空燃比)よりも大きい値(即ち、リーンな空燃比)に設定される。この状態で上流側空燃比偏差DAFがゼロになるようにメインFB制御が実行されることにより、指令燃料噴射量Fiが減少させられ、空燃比がリーン方向に制御される。この結果、O2センサ67の出力値Voxsが下流側目標値Voxsrefと一致するように制御される。以上のように、サブFB制御により、O2センサ67の出力値Voxsが下流側目標値Voxsrefと一致するように指令燃料噴射量Fiが制御される。
加えて、サブFB補正量FBsubは積分項(即ち、実質的な積分項である総和値SUM)を含んでいる。これにより、上述した「AFセンサ66の誤差」が発生している場合、サブFB制御の実行により、後述するように、総和値SUMが「AFセンサ66の誤差」の大きさに対応する値(上記「収束目標値」に相当)に収束することで、「AFセンサ66の誤差」が補償され得る。
なお、基本燃料噴射量算出手段A4において目標空燃比abyfrに代えて制御用目標空燃比abyfrsを使用して基本燃料噴射量Fbaseが算出されること、並びに、AFセンサ応答モデルA7が備えられていること、により、何らかの理由によりサブFB補正量FBsubが荒れてもメインFB補正量FBmainの荒れが次第に大きくなることが抑制され得、触媒上流空燃比の荒れが増大することを抑制することができる。この点については、特願2005−338113に詳細に記載されている。
ところで、O2センサ67の出力値Voxsが下流側目標値Voxsrefに維持された状態では、サブFB補正量FBsubにおける比例項Kp・DVoxsと微分項Kd・DDVoxsが共にゼロになるから、サブFB補正量FBsubは総和値SUMと等しい。この状態において総和値SUMが「AFセンサ66の誤差」の大きさに対応する値(収束目標値)に収束している場合、制御用目標空燃比abyfrs(=abyfr/(1+FBsub)=abyfr/(1+SUM))が、触媒上流空燃比が目標空燃比abyfr(=理論空燃比AFth)と一致する場合に対応するAFセンサ66の出力値Vabyfsから検出される検出空燃比abyfsと一致する。
より具体的に述べると、例えば、「AFセンサ66の誤差」が発生していて、触媒上流空燃比に対するAFセンサ66の出力特性が図2の破線で示される場合を考える。この場合、触媒上流空燃比が目標空燃比abyfr(=AFth)と一致する場合(Vabyfs=V1)に対応するAFセンサ66による検出空燃比abyfs(値V1と図2の実線とから得られる空燃比)は、値AF1となる。
この場合において、総和値SUMが「AFセンサ66の誤差」の大きさに対応する値(収束目標値)に収束している状態では、制御用目標空燃比abyfrs(=abyfr/(1+SUM))は、値AF1と一致する。この状態においてメインFB制御により、上流側空燃比偏差DAFがゼロになるように制御されることで、触媒上流空燃比が目標空燃比abyfr(=AFth)と一致する。なお、この場合、総和値SUMの収束目標値である「AFセンサ66の誤差」の大きさに対応する値L1=1−AF1/abyfr(<0)となる。
即ち、総和値SUMが収束目標値L1に一致していることは、本装置が目標空燃比abyfr(=AFth)と等しい空燃比であるものとして扱っている実際の空燃比(以下、「制御中心空燃比AFcen」と称呼する。)が目標空燃比abyfr(=AFth)に一致していることを意味する。
換言すれば、メインFB制御により上流側空燃比偏差DAFがゼロになるように制御されることで、触媒上流側空燃比が制御中心空燃比AFcenに一致するように制御される。そして、制御中心空燃比AFcenが目標空燃比abyfr(=AFth)と一致している場合、触媒上流空燃比が目標空燃比abyfr(=AFth)と一致する。この結果、「AFセンサ66の誤差」が適切に補償され得る。
(下流側偏差DVoxsに代えて出力値偏差DVoxsmを積分処理して積分項(=総和値SUM)を算出することによる作用)
上述のように、制御中心空燃比AFcenが目標空燃比abyfr(=AFth)と一致している場合(即ち、総和値SUMが収束目標値と一致している場合)、メインFB制御により上流側空燃比偏差DAFがゼロになるように制御されることで触媒上流空燃比が制御中心空燃比AFcen(=AFth)と一致するように制御される。
従って、触媒モデルA13(具体的には、上記(7)式)にて使用される、第1触媒53に流入するガス中の一燃料噴射当たりの酸素の過不足量を表す値である「0.23・DAF・Fi」は、第1触媒53に実際に流入するガス中の一燃料噴射当たりの酸素の過不足量と一致し得る。この結果、触媒モデルA13により推定される酸素吸蔵量OSAの推移が第1触媒53の実際の酸素吸蔵量OSAactの推移と一致し得、この結果、O2センサモデルA14により推定される推定出力値Voxsmの推移がO2センサ67の実際の出力値Voxsの推移と一致し得る。
このことは、フューエルカット等の空燃比制御に対する外乱が発生した場合であっても、その後において、出力値偏差Voxsmがゼロ、或いはゼロ近傍の値に維持されて総和値SUMが収束目標値からずれていかない(ずれていき難い)ことを意味する。
即ち、制御中心空燃比AFcenが目標空燃比abyfr(=AFth)と一致している場合、フューエルカット等の空燃比制御に対する外乱が発生した場合において総和値SUMが収束目標値からずれていくことが抑制され得る。この結果、制御中心空燃比AFcenが目標空燃比abyfr(=AFth)からずれていくことが抑制され得る。
一方、総和値SUMが収束目標値からずれている場合、制御中心空燃比AFcenが目標空燃比abyfr(=AFth)からずれた値となる。この場合、メインFB制御により上流側空燃比偏差DAFがゼロになるように制御されることで、触媒上流空燃比が制御中心空燃比AFcen(即ち、目標空燃比abyfrからずれた空燃比)と一致するように制御される。
従って、上記値「0.23・DAF・Fi」が、第1触媒53に実際に流入するガス中の一燃料噴射当たりの酸素の過不足量と一致し得なくなる。この結果、酸素吸蔵量OSAの推移が実際の酸素吸蔵量OSAactの推移と一致し得なくなり、この結果、推定出力値Voxsmの推移がO2センサ出力値Voxsの推移と一致し得なくなる。以下、このことについて、図7を参照しながら説明する。なお、AFセンサ66には誤差が発生していて、上述と同様、空燃比に対するAFセンサ66の出力特性は、図2の破線で示されるものとする。
図7では、時刻t1以前において継続されていたフューエルカットが時刻t1にて終了した場合であって、制御中心空燃比AFcenが目標空燃比abyfr(=AFth)よりもリッチ方向にずれている場合(図中の「中心ずれ」を参照)が示されている。即ち、総和値SUMが、上記収束目標値L1よりも大きい値に維持され、値(abyfr/(1+SUM))が、値AF1(図2を参照)よりも上記「中心ずれ」の分だけ小さい場合が示されている。なお、制御中心空燃比AFcenは、検出空燃比abyfsが値(abyfr/(1+SUM))に一致する場合に対応する触媒上流空燃比であるということもできる。
図7では、時刻t1以前のフューエルカット中において、第1触媒53には空気そのものが流入すること、並びに、上記(7)式に代えて上記(8)式に従って酸素吸蔵量OSAが計算されること、により、時刻t1にて、実際の酸素吸蔵量OSAact及び酸素吸蔵量OSAが共に最大酸素吸蔵量Cmaxになっていて、O2センサ出力値Voxs及び推定出力値Voxsmが共に値minになっている場合が示されている。
時刻t1にてフューエルカットが終了すると、上述したメインFB制御及びサブFB制御が開始される。これにより、時刻t1以降、上流側空燃比偏差DAFがゼロになるように制御されることで、触媒上流空燃比が制御中心空燃比AFcen(即ち、理論空燃比AFthよりもリッチな空燃比)と一致するように制御される。
この結果、第1触媒53には理論空燃比AFthよりもリッチな空燃比の(未燃HC,COを多量に含んだ)ガスが流入するから、時刻t1以降、実際の酸素吸蔵量OSAactは最大酸素吸蔵量Cmaxからゼロに向けて減少していく。しかしながら、時刻t2にて実際の酸素吸蔵量OSAactがゼロになるまで、O2センサ出力値Voxsは値minに維持され続ける。
一方、時刻t1以降、上流側空燃比偏差DAFがゼロ、或いはゼロ近傍の値に維持され続けるから、酸素吸蔵量OSAは、時刻t1以降(t2以降も)、最大酸素吸蔵量Cmax、或いは最大酸素吸蔵量Cmax近傍の値に維持され続ける。即ち、時刻t1以降(時刻t2以降も)、推定出力値Voxsmも値minに維持され続ける。この結果、時刻t1〜t2では、推定出力値VoxsmがO2センサ出力値Voxsと一致して出力値偏差DVoxsmがゼロに維持され続けるから、総和値SUMが上記「収束目標値L1よりも大きい値」で一定となる。
時刻t2になると、第1触媒53から多量の未燃HC,COを含んだガスが流出するから、O2センサ出力値Voxsが値minから値maxに反転する。これにより、時刻t2以降、推定出力値VoxsmがO2センサ出力値Voxsと一致し得なくなり、出力値偏差DVoxsmが負の値に維持される。この結果、収束目標値L1よりも大きかった総和値SUMが減少して収束目標値L1に近づいていき、制御中心空燃比AFcenが理論空燃比AFthに近づいていく。
このように、制御中心空燃比AFcenが目標空燃比abyfr(=AFth)と一致していない場合、推定出力値VoxsmとO2センサ出力値Voxsとにおいて差が発生し得、これにより、制御中心空燃比AFcenが目標空燃比abyfr(=AFth)に向けて近づいていく。この結果、「AFセンサ66の誤差」が適切に補償され得る。
(実際の作動)
次に、この第1実施形態の実際の作動について、図8〜図11に示したフローチャートを参照しながら説明する。以下、説明の便宜上、「MapX(a1,a2,…)」は、a1,a2,…を引数とする値Xを求めるためのテーブルを表すものとする。また、引数の値がセンサの検出値である場合、現在値が使用される。
CPU71は、図8にフローチャートにより示した指令燃料噴射量Fiの計算、及び燃料噴射の指示を行うルーチンを、各気筒のクランク角が各吸気上死点前の所定クランク角度(例えば、BTDC90°CA)となる毎に、繰り返し実行するようになっている。
従って、任意の気筒のクランク角度が前記所定クランク角度になると、CPU71はステップ800から処理を開始してステップ805に進んで、テーブルMapMc(NE,Ga)に基づいて、今回の吸気行程を迎える気筒(以下、「燃料噴射気筒」と云うこともある。)に吸入された新気の量である今回の筒内吸入空気量Mc(k)を推定する。
次に、CPU71はステップ810に進んで、フューエルカット中であるか否かを判定し、「Yes」と判定する場合、ステップ895に直ちに進んで本ルーチンを一旦終了する。これにより、フューエルカット中は、燃料噴射が行われない。
一方、フューエルカット中でない場合、CPU71はステップ810にて「No」と判定してステップ815に進み、目標空燃比abyfr(=理論空燃比AFth)と、後述するルーチンにて(前回の燃料噴射時点にて)求められているサブFB補正量FBsubの最新値と、上記(1)式とに基づいて制御用目標空燃比abyfrs(k)を求め、続くステップ820にて、上記筒内吸入空気量Mc(k)を制御用目標空燃比abyfrs(k)で除することにより、基本燃料噴射量Fbaseを決定する。
次いで、CPU71はステップ825に進んで、上記(2)式に従って、上記基本燃料噴射量Fbaseに、後述するルーチンにて(前回の燃料噴射時点にて)求められているメインFB補正量FBmainの最新値を加えることで、今回の指令燃料噴射量Fiを決定する。
続いて、CPU71はステップ830に進んで、指令燃料噴射量Fiの燃料の噴射指示を行った後、ステップ895に進んで本ルーチンを一旦終了する。以上により、メインFB制御、及びサブFB制御が行われる。
次に、上述したメインFB制御においてメインFB補正量FBmainを算出する際の作動について説明すると、CPU71は図9にフローチャートにより示したルーチンを、燃料噴射気筒について燃料噴射開始時期(噴射指示開始時点)が到来する毎に、繰り返し実行するようになっている。
従って、燃料噴射気筒について燃料噴射開始時期が到来すると、CPU71はステップ900から処理を開始し、ステップ905に進んで、メインFB条件が成立しているか否かを判定する。メインFB条件は、例えば、機関の冷却水温THWが第1所定値以上であって、AFセンサ66が正常(活性状態となっていることを含む)であって、筒内吸入空気量Mcが所定値以下であるときに成立する。
いま、メインFB条件が成立しているものとして説明を続けると、CPU71はステップ905にて「Yes」と判定してステップ910に進み、テーブルMapabyfs(Vabyfs)(図2の実線を参照)に基づいて、今回の検出空燃比abyfs(k)を求める。
次に、CPU71はステップ915に進んで、テーブルMapN(Mc(k),NE)に基づいて、ストローク数Nを決定する。次いで、CPU71はステップ920に進み、現時点からNストローク(N回の吸気行程)前の制御用目標空燃比であるabyfrs(k−N)を時定数τをもってローパスフィルタ処理してローパスフィルタ通過後制御用目標空燃比abyfrslowを求める。
続いて、CPU71はステップ925に進み、上記(3)式に従って、検出空燃比abyfs(k)からローパスフィルタ通過後制御用目標空燃比abyfrslowを減ずることにより、上流側空燃比偏差DAFを求める。
次いで、CPU71はステップ930に進み、その時点における上流側空燃比偏差DAFの積分値SDAFにステップ925にて求めた上流側空燃比偏差DAFを加えて、積分値SDAFを更新する。そして、CPU71はステップ935に進んで、上記(4)式に従って、メインFB補正量FBmainを求めた後、ステップ995に進んで本ルーチンを一旦終了する。
以上により、メインFB補正量FBmainが求められ、このメインFB補正量FBmainが前述した図8のステップ825により指令燃料噴射量Fiに反映されることで上述したメインFB制御が実行される。
一方、ステップ905の判定時において、メインFB条件が不成立であると、CPU71は同ステップ905にて「No」と判定してステップ940に進んでメインFB補正量FBmainの値を「0」に設定し、その後ステップ995に進んで本ルーチンを一旦終了する。このように、メインFB条件が不成立であるときは、メインFB補正量FBmainを「0」としてメインFB制御に基づく空燃比フィードバック制御を行わない。
次に、上述したサブFB制御においてサブFB補正量FBsubを算出する際の作動について説明すると、CPU71は図10にフローチャートにより示したルーチンを、燃料噴射気筒について燃料噴射開始時期(噴射指示開始時点)が到来する毎に、繰り返し実行するようになっている。
従って、燃料噴射気筒について燃料噴射開始時期が到来すると、CPU71はステップ1000から処理を開始し、まず、ステップ1005にて、サブFB条件が成立しているか否かを判定する。サブFB条件は、例えば、前述したステップ905でのメインFB条件に加え、機関の冷却水温THWが前記第1所定値よりも高い第2所定値以上のときに成立する。
いま、サブFB条件が成立しているものとして説明を続けると、CPU71はステップ1005にて「Yes」と判定してステップ1010に進み、上記(5)式に従って、下流側目標値Voxsrefから現時点のO2センサ出力値Voxsを減じることにより、下流側偏差DVoxsを求め、続くステップ1015にて、上記(6)式に従って、下流側偏差DVoxsをPD処理してPD補正量FBsub1を求める。
次に、CPU71はステップ1020に進んで、先のステップ825にて求めた指令燃料噴射量Fiの最新値と、先のステップ925にて求めた上流側空燃比偏差DAFの最新値と、上記(7)式(或いは、上記(8)式)とに基づいて酸素吸蔵量OSAを更新する。続いて、CPU71はステップ1025に進み、上記更新された酸素吸蔵量OSAと、図5に示した出力特性とに基づいて推定出力値Voxsmを更新する。
次いで、CPU71はステップ1030に進み、上記推定出力値Voxsmと、O2センサ出力値Voxsと、図6に示したテーブルに基づいて決定される係数Kmと、上記(9)式とに基づいて、出力値偏差DVoxsmを求める。
続いて、CPU71はステップ1035に進んで、その時点における偏差積分値SDVoxsmにステップ1030にて求めた出力値偏差DVoxsmを加えて偏差積分値SDVoxsmを更新し、続くステップ1040にて、上記更新した偏差積分値SDVoxsmと、上記(10)式とに基づいて積分項FBsub2を求め、続くステップ1045にて、上記積分項FBsub2と、後述するルーチンにて設定・更新されている積分項FBsub2の学習値Learnを加えて総和値SUMを求める。
そして、CPU71はステップ1050に進んで、ステップ1015にて求めたPD補正量FBsub1と、ステップ1045にて求めた総和値SUMと、上記(11)式とに基づいてサブFB補正量FBsubを求め、ステップ1095に進んで本ルーチンを一旦終了する。
以上により、サブFB補正量FBsubが求められる。このサブFB補正量FBsubが、前述した図8のステップ815により制御用目標空燃比abyfrs(k)に反映され、この制御用目標空燃比abyfrs(k)に基づいて図9のルーチンが実行される(即ち、メインFB制御が実行される)ことで、上述したサブFB制御が実行される。
一方、ステップ1005の判定時において、サブフィードバック条件が不成立であると、CPU71は同ステップ1005にて「No」と判定してステップ1055に進んで、PD補正量FBsub1、及び積分項FBsub2を共に「0」に設定し、ステップ1045、1050の処理を実行する。このように、サブフィードバック条件が不成立であるときは、サブFB補正量FBsubを学習値Learnと等しい値に維持して「AFセンサの66の誤差」を補償する一方、サブFB制御に基づく空燃比フィードバック制御を行わない。
次に、積分項FBsub2の学習値Learnを更新する際の作動について説明すると、CPU71は図11にフローチャートにより示したルーチンを、燃料噴射気筒について燃料噴射開始時期(噴射指示開始時点)が到来する毎に、繰り返し実行するようになっている。
従って、燃料噴射気筒について燃料噴射開始時期が到来すると、CPU71はステップ1100から処理を開始し、まず、ステップ1105にて、図10のステップ1005のものと同じサブFB条件が成立しているか否かを判定する。
CPU71はステップ1105にて「No」と判定する場合、ステップ1195に直ちに進んで本ルーチンを一旦終了する。この場合、学習値Learnの更新は行われない。一方、CPU71はステップ1105にて「Yes」と判定する場合、ステップ1110に進んで、ステップ1040にて求めた積分項FBsub2の値をローパスフィルタ処理してなまし処理後積分項FBsub2lowを求める。
続いて、CPU71はステップ1115に進み、学習値Learnの更新タイミングが到来したか否かを判定し、「No」と判定する場合、ステップ1195に直ちに進んで本ルーチンを一旦終了する。この場合、学習値Learnの更新は行われない。本例では、学習値Learnの更新タイミングは、燃料噴射が所定回数行われる毎に到来する。
いま、学習値Learnの更新タイミングが到来したものとすると、CPU71はステップ1115にて「Yes」と判定してステップ1120に進み、学習値の更新値DLearnを、先のステップ1110にて更新されている現時点でのなまし処理後積分項FBsub2lowの値に設定する。
続いて、CPU71はステップ1125に進んで、その時点においてバックアップRAM74に記憶されている学習値Learnに上記ステップ1120にて求めた更新値DLearnを加えて、新たな学習値Learnを求める(即ち、学習値Learnを更新する)。
次に、CPU71はステップ1130に進み、その時点での積分項FBsub2から上記更新値DLearnを減じることで、更新値DLearnの分を積分項FBsub2から差し引き、続くステップ1135にて、偏差積分値SDVoxsmを上記差し引かれた後の積分項FBsub2の値に対応させるため、偏差積分値SDVoxsmを値(FBsub2/Ki)に補正する。そして、CPU71はステップ1140に進んで、なまし処理後積分項FBsub2lowの値を「0」にクリアし、ステップ1195に進んで本ルーチンを一旦終了する。
このように、更新タイミングが到来する毎に、積分項FBsub2の値の定常的な成分(=FBsub2low)が学習値Learnに移し変えられていき、これにより、学習値Learnが更新されていく。
以上、説明したように、本発明による内燃機関の空燃比制御装置の第1実施形態によれば、触媒下流のO2センサ67の出力値Voxsに基づくサブFB制御によりサブFB補正量FBsubが算出され、このサブFB補正量FBsubにより目標空燃比が補正される(即ち、制御用目標空燃比abyfrsが計算される)。触媒上流のAFセンサ66の出力値Vabyfsに基づくメインFB制御により、AFセンサ出力値Vabyfsから検出される検出空燃比abyfsと制御用目標空燃比abyfrsとの差(即ち、上流側空燃比偏差DAF)がゼロになるように触媒上流空燃比が制御される。
ここで、サブFB補正量FBsubの算出に際し、上流側空燃比偏差DAFに基づいて第1触媒53の酸素吸蔵量の推定値OSAを算出する触媒モデルA13と、推定された酸素吸蔵量OSAに基づいてO2センサ出力値Voxsの推定値Voxsmを算出するO2センサモデルA14とを導入し、推定出力値VoxsmとO2センサ出力値Voxsの差(出力値偏差DVoxsm)が算出される。加えて、サブFB補正量FBsubは、目標空燃比に相当する下流側目標値VoxsrefとO2センサ出力値Voxsの差(下流側偏差DVoxs)を比例・微分処理した値(PD補正量FBsub1)と、出力値偏差DVoxsmを積分処理した値(積分項SUM)の和の値に算出される。
このように、下流側偏差DVoxsに代えて出力値偏差DVoxsmを積分処理してサブFB制御における積分項(=総和値SUM)を算出することで、以下の作用・効果が発生する。制御中心空燃比AFcenが目標空燃比abyfr(=AFth)と一致している場合(総和値SUMが「AFセンサ66の誤差」の大きさに対応する値(収束目標値)に収束している場合)、フューエルカット等の空燃比制御に対する外乱が発生した場合であっても、その後において、出力値偏差Voxsmがゼロ、或いはゼロ近傍の値に維持されて総和値SUMが収束目標値からずれていかない(ずれていき難い)。これにより、フューエルカット等の空燃比制御に対する外乱が発生した場合において制御中心空燃比AFcenが目標空燃比abyfr(=AFth)からずれていくことが抑制され得、この結果、「AFセンサ66の誤差」が適切に補償され得る。
加えて、制御中心空燃比AFcenが目標空燃比abyfr(=AFth)と一致していない場合(総和値SUMが収束目標値からずれている場合)、出力値偏差DVoxsmが総和値SUMを収束目標値に近づける方向の値に設定され、総和値SUMが収束目標値に向けて近づけられ得る。この結果、制御中心空燃比AFcenが目標空燃比abyfr(=AFth)に向けて近づけられ得、「AFセンサ66の誤差」が適切に補償され得る。
更には、O2センサ出力値Voxsが下流側目標値Voxsrefを含む所定の範囲内(値c〜値dの範囲内)にある場合、出力値偏差DVoxsmが強制的にゼロに設定され(図6、上記(9)式参照)、総和値SUMの更新が行われない。これにより、制御中心空燃比AFcenが目標空燃比abyfr(=AFth)に近い場合(総和値SUMが収束目標値に近い場合)において、総和値SUMが収束目標値から離れていくことで制御中心空燃比AFcenが目標空燃比abyfr(=AFth)から離れていくことを抑制することができる。
(第2実施形態)
次に、本発明の第2実施形態に係る空燃比制御装置について説明する。図12は、第2実施形態の機能ブロック図である。この図12と、第1実施形態の機能ブロック図である図4との比較から理解できるように、第2実施形態は、総和値SUMで補正された目標空燃比とAFセンサ66の検出空燃比abyfsとの差(積分補正用空燃比偏差DAF1)を触媒モデルA13に入力する点で、サブFB補正量FBsubで補正された目標空燃比と検出空燃比abyfsと差(上記上流側空燃比偏差DAF)を触媒モデルA13に入力する上記第1実施形態と異なる。
より具体的に述べると、図12では、図4に対して、A20〜A22の機能ブロックが追加されている。積分補正用目標空燃比設定手段A20は、下記(12)式に従って、目標空燃比abyfrと、総和値SUMとに基づいて積分補正用目標空燃比abyfrsi(k)を設定する。
abyfrsi(k)=abyfr/(1+SUM) ・・・(12)
上記(12)式から理解できるように、この積分補正用目標空燃比abyfrsi(k)は、目標空燃比abyfrに対して総和値SUMに応じた分だけ異なる空燃比に設定される。積分補正用目標空燃比abyfrsiは、各気筒の吸気行程に対応されながらRAM73に記憶されていく。
AFセンサ応答モデルA21は、AFセンサ応答モデルA7と同様のモデルであり、現時点からNストローク(N回の吸気行程)前の積分補正用目標空燃比abyfrsi(k−N)を時定数τをもってローパスフィルタ処理した値であるローパスフィルタ通過後積分補正用目標空燃比abyfrsilowを出力する。
積分補正用空燃比偏差算出手段A22は、下記(13)式に基づいて、今回の検出空燃比abyfs(k)からローパスフィルタ通過後積分補正用目標空燃比abyfrsilowを減じることにより、現時点からNストローク前の積分補正用空燃比偏差DAF1(前記「第2の偏差」に対応)を求める。
DAF1=abyfs(k)−abyfrsilow ・・・(13)
そして、触媒モデルA13は、このようにして求められた積分補正用空燃比偏差DAF1を入力し、上記(7)式に対応する下記(14)式に基づいて酸素吸蔵量OSAを推定(更新)していく。
OSA=Σ(0.23・DAF1・Fi) (0≦OSA≦Cmax)・・・(14)
図13は、第2実施形態に係るCPU71が実行するサブFB補正量FBsubを算出するためのルーチンをフローチャートにより示している。図13のルーチンは、積分補正用目標空燃比設定手段A20に対応するステップ1305、AFセンサ応答モデルA21に対応するステップ1310、及び積分補正用空燃比偏差算出手段A22に対応するステップ1315を挿入した点、並びに、「DAF」を「DAF1」に置き換えて図10のステップ1020をステップ1320とした点においてのみ、図10のルーチンと異なる。図13のルーチンについての詳細な説明は省略する。
以下、第2実施形態の作用・効果について説明する。いま、制御中心空燃比AFcenが目標空燃比abyfr(=AFth)と一致していて、メインFB制御により上流側空燃比偏差DAFがゼロになるように制御されている場合において、O2センサ67の出力値Voxsに外乱が加わったこと等に起因して、サブFB補正量FBsubにおける下流側偏差DVoxsに基づく部分(即ち、PD補正量FBsub1)が大きい値となり、この結果、触媒上流空燃比が目標空燃比abyfr(=AFth)から一時的に離れた場合(急激に変化した場合)を考える。
この場合、上流側空燃比偏差DAFは依然としてゼロ近傍の値に維持され得る。一方、積分補正用空燃比偏差DAF1は、PD補正量FBsub1の値に相当する分だけ上流側空燃比偏差DAFと異なる値となる。従って、触媒上流空燃比が目標空燃比abyfr(=AFth)から一時的に離れた場合であっても、触媒モデルA13(具体的には、上記(14)式)にて使用される、第1触媒53に流入するガス中の一燃料噴射当たりの酸素の過不足量を表す値である「0.23・DAF1・Fi」は、第1触媒53に実際に流入するガス中の一燃料噴射当たりの酸素の過不足量と一致し得る。
この結果、O2センサ67の出力値Voxsに対する外乱等が発生した場合であっても、触媒モデルA13により推定される酸素吸蔵量OSAの推移を、同外乱により変化する第1触媒53の実際の酸素吸蔵量OSAactの推移と一致させることができ、この結果、O2センサモデルA14により推定される推定出力値Voxsmの推移をO2センサ67の実際の出力値Voxsの推移と一致させることができる。
一方、上記第1実施形態では、O2センサ67の出力値Voxsに対する外乱等が発生した場合であっても、上流側空燃比偏差DAFが依然としてゼロ近傍の値に維持されて触媒モデルA13により推定される酸素吸蔵量OSAが略一定に維持されてしまう。即ち、触媒モデルA13により推定される酸素吸蔵量OSAの推移を第1触媒53の実際の酸素吸蔵量OSAactの推移と一致させることができない。この結果、O2センサモデルA14により推定される推定出力値Voxsmの推移をO2センサ67の実際の出力値Voxsの推移と一致させることができない可能性が高くなる。以上より、第2実施形態によれば、上記第1実施形態に比して、推定出力値Voxsmの推移をO2センサ67の実際の出力値Voxsの推移により一層精度良く一致させることができる。
本発明は上記各実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記各実施形態においては、基本燃料噴射量Fbaseを、筒内吸入空気量Mcを制御用目標空燃比abyfrsで除した値に設定しているが、基本燃料噴射量Fbaseを、筒内吸入空気量Mcを目標空燃比abyfrで除した値に設定してもよい。
また、上記各実施形態においては、サブFB補正量FBsubに基づいて目標空燃比abyfr(=理論空燃比AFth)を補正して制御用目標空燃比abyfrsを設定し、検出空燃比abyfsが制御用目標空燃比abyfrsに一致するようにメインFB制御が実行されているが、サブFB補正量FBsubに基づいて検出空燃比abyfs(或いは、上流側空燃比センサの出力値Vabyfs)を補正し、補正された検出空燃比abyfs(或いは、上流側空燃比センサの出力値Vabyfs)が目標空燃比abyfr(=理論空燃比AFth)と一致するようにメインFB制御が実行されてもよい。
また、上記各実施形態においては、上記(7)式、或いは、上記(14)式にて表される簡易な触媒モデルA13が使用されているが、酸素吸蔵量OSAをより精度良く推定するため、より複雑な触媒モデルを使用してもよい。より複雑な触媒モデルは、例えば、特開2004−36475号公報、特開2004−225618号公報等に開示されている。
に開示されている。
また、上記各実施形態においては、第1触媒53の最大酸素吸蔵量Cmaxが既に取得済みであることを前提としていたが、最大酸素吸蔵量Cmaxが未取得の段階をも考慮する場合、図10のルーチンに代えて図14にフローチャートにより示したルーチンを使用してサブフィードバック補正量FBsubが計算されることが好ましい。
図14のルーチンは、ステップ1405、1410が追加された点においてのみ、図10のルーチンと異なる。図14のルーチンについての詳細な説明は省略する。図14のルーチンを使用してサブフィードバック補正量FBsubを計算すれば、最大酸素吸蔵量Cmaxが未取得の段階では、積分項FBsub2がゼロに維持されるから、総和値SUMが更新されない。これにより、不正確な酸素吸蔵量OSA、即ち、不正確な推定出力値Voxsmに基づいて総和値SUMが更新される事態を防止することができる。
加えて、最大酸素吸蔵量Cmaxが未取得の段階をも考慮する場合、図10のルーチンに代えて図15にフローチャートにより示したルーチンを使用してサブフィードバック補正量FBsubが計算されてもよい。
図15のルーチンは、ステップ1505、1510、1515が追加された点においてのみ、図10のルーチンと異なる。図15のルーチンについての詳細な説明は省略する。図15のルーチンを使用してサブフィードバック補正量FBsubを計算すれば、最大酸素吸蔵量Cmaxが未取得の段階では、積分項FBsub2がゼロに維持されることに加え、値FBsub1が下流側偏差DVoxsをPID処理した値に算出される。従って、最大酸素吸蔵量Cmaxが未取得の段階では、上述した特許文献1に記載した装置と同様に、積分項を含むサブFB補正量FBsubが算出され得る。従って、少なくとも特許文献1に記載した装置と同等程度には上記吸排気系の誤差を補償することができる。
本発明の第1実施形態に係る空燃比制御装置を適用した内燃機関の概略図である。 図1に示した上流側空燃比センサの出力電圧と空燃比との関係を示したグラフである。 図1に示した下流側空燃比センサの出力電圧と空燃比との関係を示したグラフである。 図1に示した空燃比制御装置が空燃比フィードバック制御を実行する際の機能ブロック図である。 図1に示した空燃比制御装置が使用するO2センサモデルの出力特性を示したグラフである。 図1に示した空燃比制御装置が出力値偏差の計算に使用する係数の値を決定する際に参照する、O2センサ出力値と係数との関係を規定するテーブルを示したグラフである。 制御中心空燃比が理論空燃比からずれている場合において図1に示した空燃比制御装置により空燃比フィードバック制御が実行された場合の一例を示したタイムチャートである。 図1に示したCPUが実行する指令燃料噴射量の計算、及び噴射指示を行うためのルーチンを示したフローチャートである。 図1に示したCPUが実行するメインFB補正量を計算するためのルーチンを示したフローチャートである。 図1に示したCPUが実行するサブFB補正量を計算するためのルーチンを示したフローチャートである。 図1に示したCPUが実行する学習値の更新を行うためのルーチンを示したフローチャートである。 本発明の第2実施形態に係る空燃比制御装置が空燃比フィードバック制御を実行する際の機能ブロック図である。 本発明の第2実施形態に係る空燃比制御装置のCPUが実行するサブFB補正量を計算するためのルーチンを示したフローチャートである。 本発明の実施形態の変形例に係る空燃比制御装置のCPUが実行するサブFB補正量を計算するためのルーチンを示したフローチャートである。 本発明の実施形態の他の変形例に係る空燃比制御装置のCPUが実行するサブFB補正量を計算するためのルーチンを示したフローチャートである。
符号の説明
10…内燃機関、25…燃焼室、39…インジェクタ、51…エキゾーストマニホールド、53…三元触媒(第1触媒)、66…AFセンサ、67…O2センサ、70…電気制御装置、71…CPU、74…バックアップRAM

Claims (8)

  1. 内燃機関の排気通路に配設された酸素吸蔵機能を有する触媒と、
    前記触媒よりも上流の前記排気通路に配設されて前記触媒に流入するガスの空燃比に応じた値を出力する空燃比センサと、
    前記触媒よりも下流の前記排気通路に配設されて前記触媒から流出するガスの空燃比に応じた値を出力する起電力式の酸素濃度センサと、
    を備えた内燃機関に適用され、
    前記触媒の酸素吸蔵量を推定する触媒モデルと、前記推定された酸素吸蔵量に基づいて前記酸素濃度センサの出力値を推定する酸素濃度センサモデルとを使用して、前記酸素濃度センサの出力値を推定する出力値推定手段と、
    前記酸素濃度センサの実際の出力値と前記推定出力値との差を積算して更新されていく偏差積分値を算出する積分値算出手段と、
    少なくとも前記偏差積分値に基づいて、前記空燃比センサの出力値に相当する値、及び/又は目標空燃比を補正するためのフィードバック補正値を算出する補正値算出手段と、
    前記空燃比センサの出力値から検出される検出空燃比と前記目標空燃比との差であって前記フィードバック補正値で補正された値である第1の偏差がゼロになるように制御して前記触媒に流入するガスの空燃比を前記目標空燃比に一致するよう制御する空燃比制御手段と、
    を備えた内燃機関の空燃比制御装置。
  2. 請求項1に記載の内燃機関の空燃比制御装置において、
    前記出力値推定手段は、
    前記第1の偏差により得られる前記触媒に流入するガス中の酸素の過不足量を表す値を前記触媒モデルに入力して前記推定出力値を推定するように構成された内燃機関の空燃比制御装置。
  3. 請求項1又は請求項2に記載の内燃機関の空燃比制御装置において、
    前記補正値算出手段は、
    前記偏差積分値に加えて、前記酸素濃度センサの実際の出力値と前記目標空燃比に相当する同出力値の目標値との差にも基づいて前記フィードバック補正値を算出するように構成された内燃機関の空燃比制御装置。
  4. 請求項1に記載の内燃機関の空燃比制御装置において、
    前記補正値算出手段は、
    前記偏差積分値に加えて、前記酸素濃度センサの実際の出力値と前記目標空燃比に相当する同出力値の目標値との差にも基づいて前記フィードバック補正値を算出するように構成され、
    前記出力値推定手段は、
    前記検出空燃比と前記目標空燃比との差であって前記偏差積分値で補正された値である第2の偏差により得られる前記触媒に流入するガス中の酸素の過不足量を表す値を前記触媒モデルに入力して前記推定出力値を推定するように構成された内燃機関の空燃比制御装置。
  5. 請求項1乃至請求項4の何れか一項に記載の内燃機関の空燃比制御装置において、
    前記出力値推定手段が使用する前記酸素濃度センサモデルは、前記酸素吸蔵量が第1所定値を超えた場合にリッチを示す値からリーンを示す値に反転し、前記酸素吸蔵量が前記第1所定値よりも小さい第2所定値を下回った場合に前記リーンを示す値から前記リッチを示す値に反転するように前記推定出力値を前記リーンを示す値と前記リッチを示す値の何れかに決定するよう構成された内燃機関の空燃比制御装置。
  6. 請求項に記載の内燃機関の空燃比制御装置において、
    前記積分値算出手段は、
    前記酸素濃度センサの実際の出力値が前記目標空燃比に相当する同出力値の目標値を含む所定の範囲内にある場合、前記偏差積分値の更新を行わないように構成された内燃機関の空燃比制御装置。
  7. 請求項1乃至請求項6の何れか一項に記載の内燃機関の空燃比制御装置において、
    前記出力値推定手段が使用する前記触媒モデルは、前記触媒が吸蔵し得る酸素の量の最大値である最大酸素吸蔵量を使用して前記触媒の酸素吸蔵量を推定するように構成され、
    前記積分値算出手段は、
    前記最大酸素吸蔵量が取得される前の段階では前記偏差積分値の更新を行わないように構成された内燃機関の空燃比制御装置。
  8. 請求項に記載の内燃機関の空燃比制御装置において、
    前記補正値算出手段は、
    前記最大酸素吸蔵量が取得される前の段階では、前記偏差積分値に代えて、前記酸素濃度センサの実際の出力値と前記目標空燃比に相当する同出力値の目標値との差を積算して更新されていく積分値に基づいて前記フィードバック補正値を算出するように構成された内燃機関の空燃比制御装置。
JP2006280962A 2006-10-16 2006-10-16 内燃機関の空燃比制御装置 Expired - Fee Related JP4315179B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006280962A JP4315179B2 (ja) 2006-10-16 2006-10-16 内燃機関の空燃比制御装置
US11/869,129 US7654252B2 (en) 2006-10-16 2007-10-09 Air-fuel ratio control system and method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006280962A JP4315179B2 (ja) 2006-10-16 2006-10-16 内燃機関の空燃比制御装置

Publications (2)

Publication Number Publication Date
JP2008095647A JP2008095647A (ja) 2008-04-24
JP4315179B2 true JP4315179B2 (ja) 2009-08-19

Family

ID=39302035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006280962A Expired - Fee Related JP4315179B2 (ja) 2006-10-16 2006-10-16 内燃機関の空燃比制御装置

Country Status (2)

Country Link
US (1) US7654252B2 (ja)
JP (1) JP4315179B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098709B1 (en) * 2008-03-04 2016-07-06 GM Global Technology Operations LLC A method for operating an internal combustion engine
JP4672048B2 (ja) * 2008-06-09 2011-04-20 三菱電機株式会社 内燃機関制御装置
JP4631937B2 (ja) * 2008-06-18 2011-02-16 株式会社デンソー 学習装置及び燃料噴射システム
FR2969710B1 (fr) * 2010-12-28 2014-08-29 Renault Sa Dispositif de commande d'un moteur a combustion interne avec correction de dispersion et procede correspondant.
DE102012201594B4 (de) * 2012-02-03 2024-05-08 Robert Bosch Gmbh Verfahren zur Signalaufbereitung für einen sammelnden Partikelsensor
JP5915779B2 (ja) * 2013-01-29 2016-05-11 トヨタ自動車株式会社 内燃機関の制御装置
JP6075394B2 (ja) * 2013-01-29 2017-02-08 トヨタ自動車株式会社 内燃機関の制御装置
JP6213085B2 (ja) * 2013-09-17 2017-10-18 株式会社デンソー 内燃機関の気筒別空燃比制御装置
US9605579B2 (en) * 2014-12-12 2017-03-28 General Electric Company Systems and methods for model based control of catalytic converter systems
JP6337819B2 (ja) * 2015-03-30 2018-06-06 トヨタ自動車株式会社 内燃機関
DE102018201378A1 (de) 2018-01-30 2019-08-01 Robert Bosch Gmbh Vorrichtung und Verfahren zur Regelung einer Brennkraftmaschine mit einem Katalysator
DE102018207703A1 (de) * 2018-05-17 2019-11-21 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Abgasnachbehandlungseinrichtung eines Motorsystems mit einem Verbrennungsmotor
RU188012U1 (ru) * 2018-11-30 2019-03-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС) Устройство для диагностирования двигателя внутреннего сгорания в эксплуатационных условиях
DE102018251725A1 (de) * 2018-12-27 2020-07-02 Robert Bosch Gmbh Verfahren zur Regelung einer Füllung eines Abgaskomponentenspeichers eines Katalysators
DE102018251720A1 (de) * 2018-12-27 2020-07-02 Robert Bosch Gmbh Verfahren zur Ermittlung einer maximalen Speicherfähigkeit eines Abgaskomponentenspeichers eines Katalysators
DE102020212710A1 (de) * 2020-10-08 2022-04-14 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren, Recheneinheit und Computerprogramm zum Betreiben einer Brennkraftmaschine
CN112649565B (zh) * 2020-10-30 2022-08-26 华帝股份有限公司 一种烹饪设备的氧传感器校准方法
US11624333B2 (en) 2021-04-20 2023-04-11 Kohler Co. Exhaust safety system for an engine

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3175459B2 (ja) 1993-12-29 2001-06-11 トヨタ自動車株式会社 内燃機関の空燃比制御装置
US20060028689A1 (en) * 1996-11-12 2006-02-09 Perry Burt W Document management with embedded data
JP3621839B2 (ja) 1998-12-17 2005-02-16 本田技研工業株式会社 プラントの制御装置
JP2002318604A (ja) * 2001-04-20 2002-10-31 Unisia Jecs Corp 制御装置
JP3912054B2 (ja) * 2001-08-01 2007-05-09 日産自動車株式会社 内燃機関の排気浄化装置
EP1300571A1 (en) * 2001-10-04 2003-04-09 Visteon Global Technologies, Inc. Fuel controller for internal combustion engine
JP3973922B2 (ja) * 2002-02-15 2007-09-12 本田技研工業株式会社 制御装置
JP3846375B2 (ja) * 2002-07-10 2006-11-15 トヨタ自動車株式会社 触媒劣化判定方法
US7370471B2 (en) * 2003-08-13 2008-05-13 Hitachi, Ltd. Internal combustion engine controller
JP2005113729A (ja) 2003-10-06 2005-04-28 Toyota Motor Corp 内燃機関の空燃比制御装置
JP4312668B2 (ja) * 2004-06-24 2009-08-12 三菱電機株式会社 内燃機関の空燃比制御装置
JP2006022772A (ja) * 2004-07-09 2006-01-26 Mitsubishi Electric Corp 内燃機関の空燃比制御装置
US8037310B2 (en) * 2004-11-30 2011-10-11 Ricoh Co., Ltd. Document authentication combining digital signature verification and visual comparison
US7356985B2 (en) * 2005-07-19 2008-04-15 Denso Corporation Air-fuel ratio controller for internal combustion engine
JP2007198246A (ja) * 2006-01-26 2007-08-09 Toyota Motor Corp 内燃機関の空燃比制御装置
US8219817B2 (en) * 2006-07-11 2012-07-10 Dialogic Corporation System and method for authentication of transformed documents
JP4329799B2 (ja) * 2006-09-20 2009-09-09 トヨタ自動車株式会社 内燃機関の空燃比制御装置

Also Published As

Publication number Publication date
US7654252B2 (en) 2010-02-02
US20080087259A1 (en) 2008-04-17
JP2008095647A (ja) 2008-04-24

Similar Documents

Publication Publication Date Title
JP4315179B2 (ja) 内燃機関の空燃比制御装置
JP4329799B2 (ja) 内燃機関の空燃比制御装置
JP4144272B2 (ja) 内燃機関の燃料噴射量制御装置
JP4957559B2 (ja) 内燃機関の空燃比制御装置
JP4380625B2 (ja) 内燃機関の空燃比制御装置
JP2007162565A (ja) 内燃機関の空燃比制御装置
JP4039380B2 (ja) 内燃機関の空燃比制御装置
JP2009002251A (ja) 内燃機関の空燃比制御装置
JP2009115012A (ja) 内燃機関の空燃比制御装置
JP2007278137A (ja) 内燃機関の燃料噴射割合制御装置
JP4280931B2 (ja) 内燃機関の空燃比制御装置
US10041425B2 (en) Air-fuel ratio controller of internal combustion engine and method for controlling air-fuel ratio of internal combustion engine
JP4919945B2 (ja) エンジンのスライディングモード制御による空燃比制御方法、及びその方法を備えた燃料制御装置
JP4761072B2 (ja) 内燃機関の点火時期制御装置
JP2007231750A (ja) 内燃機関の空燃比制御装置
JP4710716B2 (ja) 内燃機関の空燃比制御装置
JP4725478B2 (ja) 内燃機関の空燃比制御装置
JP4770589B2 (ja) 内燃機関の空燃比制御装置
JP4888397B2 (ja) 内燃機関の空燃比制御装置
JP2009036107A (ja) 内燃機関の空燃比制御装置
JP5067191B2 (ja) 内燃機関の燃料噴射量制御装置
JP2009062899A (ja) 制御装置
JP2009228498A (ja) 内燃機関の空燃比制御装置
JP2016211504A (ja) 内燃機関の制御装置
JP2006090283A (ja) 内燃機関の吸入空気量推定装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R151 Written notification of patent or utility model registration

Ref document number: 4315179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees