JP4218092B2 - スイッチング電源回路 - Google Patents

スイッチング電源回路 Download PDF

Info

Publication number
JP4218092B2
JP4218092B2 JP31938898A JP31938898A JP4218092B2 JP 4218092 B2 JP4218092 B2 JP 4218092B2 JP 31938898 A JP31938898 A JP 31938898A JP 31938898 A JP31938898 A JP 31938898A JP 4218092 B2 JP4218092 B2 JP 4218092B2
Authority
JP
Japan
Prior art keywords
voltage
winding
switching
circuit
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31938898A
Other languages
English (en)
Other versions
JP2000152618A (ja
Inventor
昌之 安村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP31938898A priority Critical patent/JP4218092B2/ja
Priority to TW89109057A priority patent/TW471218B/zh
Publication of JP2000152618A publication Critical patent/JP2000152618A/ja
Application granted granted Critical
Publication of JP4218092B2 publication Critical patent/JP4218092B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種電子機器に電源として備えられるスイッチング電源回路に関するものである。
【0002】
【従来の技術】
スイッチング電源回路として、例えばフライバックコンバータやフォワードコンバータなどの形式のスイッチングコンバータを採用したものが広く知られている。これらのスイッチングコンバータはスイッチング動作波形が矩形波状であることから、スイッチングノイズの抑制には限界がある。また、その動作特性上、電力変換効率の向上にも限界があることが分かっている。
そこで、先に本出願人により、各種共振形コンバータによるスイッチング電源回路が各種提案されている。共振形コンバータは容易に高電力変換効率が得られると共に、スイッチング動作波形が正弦波状となることで低ノイズが実現される。また、比較的少数の部品点数により構成することができるというメリットも有している。
【0003】
図10の回路図は、先に本出願人が提案した発明に基づいて構成することのできるスイッチング電源回路の一例を示している。
この図に示すスイッチング電源回路は、例えば日本或いは米国などの商用交流電源がいわゆるAC100V系とされ、最大負荷電力が150W以上の条件に対応するものとされる。
【0004】
この図に示すスイッチング電源回路においては、商用交流電源ACを整流平滑化するための整流平滑回路として、整流ダイオードDi1,Di2、及び平滑コンデンサCi1,Ci2から成る、いわゆる倍電圧整流回路が備えられる。この倍電圧整流回路においては、例えば交流入力電圧VACのピーク値の1倍に対応する直流入力電圧をEiとすると、その約2倍の直流入力電圧2Eiを生成する。例えば交流入力電圧VAC=144Vであるとすると、直流入力電圧2Eiは約400Vとなる。
このように、整流平滑回路として倍電圧整流回路を採用するのは、上述したように、交流入力電圧がAC100V系とされ、かつ、最大負荷電力が150W以上という比較的重負荷の条件に対応するためである。つまり、直流入力電圧を通常の2倍とすることで、後段のスイッチングコンバータへの流入電流量を抑制し、当該スイッチング電源回路を形成する構成部品の信頼性が確保されるようにするものである。
なお、この図に示す倍電圧整流回路に対しては、その整流電流経路に対して突入電流制限抵抗Riが挿入されており、例えば電源投入時に平滑コンデンサに流入する突入電流を抑制するようにしている。
【0005】
この図における電圧共振形のスイッチングコンバータは、1石のスイッチング素子Q1 を備えた自励式の構成を採っている。この場合、スイッチング素子Q1には、高耐圧のバイポーラトランジスタ(BJT;接合型トランジスタ)が採用されている。
スイッチング素子Q1 のベースは、起動抵抗RS を介して平滑コンデンサCi1(整流平滑電圧2Ei)の正極側に接続されて、起動時のベース電流が整流平滑ラインから得られるようにしている。また、スイッチング素子Q1 のベースと一時側アース間にはインダクタLB,検出駆動巻線NB,共振コンデンサCB ,ベース電流制限抵抗RB の直列接続回路よりなる自励発振駆動用の共振回路が接続される。
また、スイッチング素子Q1 のベースと平滑コンデンサCiの負極(1次側アース)間に挿入されるクランプダイオードDD により、スイッチング素子Q1 のオフ時に流れるダンパー電流の経路を形成するようにされており、また、スイッチング素子Q1 のコレクタは絶縁コンバータトランスPITの一次巻線N1 の一端と接続され、エミッタは接地される。
【0006】
また、上記スイッチング素子Q1 のコレクタ−エミッタ間に対しては、並列共振コンデンサCrが並列に接続されている。この並列共振コンデンサCrは、自身のキャパシタンスと、後述する直交型絶縁コンバータトランスPRTの一次巻線N1側のリーケージインダクタンスL1 、及びチョークコイルPCCのインダクタLcの直列接続により得られる合成インダクタンス(L1+Lc)とにより電圧共振形コンバータの一次側並列共振回路を形成する。そして、ここでは詳しい説明を省略するが、スイッチング素子Q1 のオフ時には、この並列共振回路の作用によって共振コンデンサCrの両端電圧Vcrは、実際には正弦波状のパルス波形となって電圧共振形の動作が得られるようになっている。
【0007】
チョークコイルPCCは、インダクタLcと検出駆動巻線NBをトランス結合した構成を採っている。検出駆動巻線NBは、直交型絶縁コンバ−タトランスPRTの一次巻線N1 からインダクタLcに伝達されたスイッチング出力により、スイッチング周期に対応する交番電圧が励起される。
【0008】
直交型絶縁コンバ−タトランスPRTは、スイッチング素子Q1 のスイッチング出力を二次側に伝送すると共に、二次側出力の定電圧制御を行う機能を有する。
この直交型絶縁コンバ−タトランスPRTは、例えば図11に示すように、4本の磁脚を有する2つのダブルコの字型コア201,202の互いの磁脚の端部を接合するようにして形成される立体型コア200が備えられる。そして、この立体型コア200の所定の2本の磁脚に対して一次巻線N1,二次巻線N2を同じ巻回方向により巻装し、更に、制御巻線NCを、一次巻線N1,二次巻線N2に対して直交する巻回方向となるようにして所定の2本の磁脚に対して巻装していることで、可飽和リアクトルとして構成される。この場合、ダブルコの字型コア201,202の互いの磁脚の対向面は接合しており、ギャップは形成されていない。
【0009】
上記直交型絶縁コンバ−タトランスPRTの一次巻線N1の一端は、スイッチング素子Q1 のコレクタと接続され、他端側は図のようにチョークコイルPCCのインダクタLcの直列接続を介して平滑コンデンサCiの正極(整流平滑電圧2Ei)と接続されている。
【0010】
直交型絶縁コンバータトランスPRTの二次側では、一次巻線N1 により誘起された交番電圧が二次巻線N2に発生する。この場合、二次巻線N2に対しては、二次側並列共振コンデンサC2 が並列に接続されることで、二次巻線N2のリーケージインダクタンスL2と二次側並列共振コンデンサC2のキャパシタンスとによって並列共振回路が形成される。この並列共振回路により、二次巻線N2に励起される交番電圧は共振電圧となる。つまり二次側において電圧共振動作が得られる。
上記ようにして形成される二次側の並列共振回路に対しては、二次巻線N2に対してセンタータップを設けた上で、整流ダイオードDO1,DO2,DO3,DO4及び平滑コンデンサCO1,CO2を図のように接続することで、[整流ダイオードDO1,DO2,平滑コンデンサCO1]の組と、[整流ダイオードDO3,DO4,平滑コンデンサCO2]の組とによる、2組の全波整流回路が設けられる。
[整流ダイオードDO1,DO2,平滑コンデンサCO1]から成る全波整流回路は二次側並列共振回路から供給される共振電圧を入力して直流出力電圧EO1を生成し、[整流ダイオードDO3,DO4,平滑コンデンサCO2]から成る全波整流回路も同様に、二次側並列共振回路から供給される共振電圧を入力して直流出力電圧EO2を生成する。
なお、この場合には、直流出力電圧EO1及び直流出力電圧EO2は制御回路1に対しても分岐して入力される。制御回路1においては、直流出力電圧EO1を検出電圧として利用し、直流出力電圧EO2を制御回路1の動作電源として利用する。
【0011】
制御回路1は、例えば二次側の直流電圧出力EO1のレベルに応じてそのレベルが可変される直流電流を、直交型絶縁コンバータトランスPRTの制御巻線NC に供給することにより次に述べるようにして定電圧制御を行う。
【0012】
例えば、交流入力電圧VAC或いは負荷電力の変動に伴って二次側の直流出力電圧EO1が変動した時は、制御回路1によって制御巻線NC に流れる制御電流を所要の範囲で変化させる。
制御巻線NC は、直交型絶縁コンバ−タトランスPRTに巻装されていることから、可飽和リアクトルである直交型絶縁コンバ−タトランスPRTにおいては漏洩インダクタンス(L1,L2)が変化する動作が得られる。
前述のように、一次巻線N1のリーケージインダクタンスL1は一次側の並列共振回路を形成し、二次巻線N2のリーケージインダクタンスL2は二次側の並列共振回路を形成するのであるが、上記のようにして、制御巻線NC に流れる制御電流が可変されることで、上記インダクタンスL1,L2が共に可変制御されることになる。この動作によって一次側と二次側の共振インピーダンスが変化するために、一次側から二次側に伝達されるスイッチング出力も変化するのであるが、これによって二次側直流電圧(EO1,EO2)の定電圧化が図られることになる。なお、このような定電圧制御方式を、以降は「並列共振周波数制御方式」ということにする。
【0013】
また、図12の回路図に、先に本出願人が提案した発明に基づいて構成することのできるスイッチング電源回路の他の例を示す。この図に示す電源回路も図10に示した電源回路と同様に、例えば日本或いは米国などの商用交流電源がいわゆるAC100V系とされ、最大負荷電力が150W以上の条件に対応するものとされる。また、一次側には1石のスイッチング素子Q1による自励式の電圧共振形コンバータが備えられる。
なお、図12において、図10と同一部分には同一符号を付し、同一構成とされる部位についての説明は省略する。
【0014】
この図に示すスイッチング電源回路においては、直交型制御トランスPRTが備えられる。この直交型制御トランスPRTは、図13に示すように、4本の磁脚を有する2つのダブルコの字型コア201,202の互いの磁脚の端部を接合するようにして形成される立体型コア200が備えられる。そして、この立体型コア200の所定の2本の磁脚に対して被制御巻線NRを所定ターン数巻装し、更に、この被制御巻線NRの巻回方向と直交するようにして所定の2本の磁脚に対して制御巻線NCを巻装することで可飽和リアクトルとして構成される。
この直交型制御トランスPRTは1つの可変インダクタンス素子としてみることができ、例えば図11に示した直交型絶縁コンバータトランスPRTよりもサイズとしては小型となる。
【0015】
この場合、被制御巻線NRは、平滑コンデンサCi1の正極端子と絶縁コンバータトランスPITの一次巻線N1との間に直列に挿入される。従って、この図に示す電源回路では、絶縁コンバータトランスPITの一次巻線N1側のリーケージインダクタンスL1 と被制御巻線NRのインダクタンスLRの直列接続により得られる合成インダクタンス(L1+LR)と、並列共振コンデンサCrのキャパシタンスとにより、一次側のスイッチング動作を電圧共振形とするための並列共振回路を形成する。
【0016】
この図に示す絶縁コンバータトランスPITは、例えば図14に示すようにして、フェライト材による2つのE型コア101,102によりEE型コア100が形成される。この際、中央磁脚には図のようにギャップは形成されない。そして、この中央磁脚に対して、実際には分割ボビンを利用して一次巻線N1(及び検出駆動巻線NB)、二次巻線N2 をそれぞれ分割した状態で巻装して構成される。これにより、一次巻線N1 と二次巻線N2 とでは疎結合(例えば結合係数k≒0.9)の状態が得られることになる。
【0017】
また、絶縁コンバータトランスPITにおいては、一次巻線N1 、二次巻線N2 の極性(巻方向)と整流ダイオードDO (DO1,DO2)の接続との関係によって、一次巻線N1 のインダクタンスL1と二次巻線N2 のインダクタンスL2 との相互インダクタンスMについて、+M(加極性モード)となる場合と−M(減極性モード)となる場合とがある。
例えば、図15(a)に示す接続形態を採る場合の動作では相互インダクタンスは+Mとなり、図15(b)に示す接続形態を採る場合の動作では相互インダクタンスは−Mとなる。この図に示す回路では、一次巻線N1 、二次巻線N2 の極性は加極性モードとなっている。
【0018】
この場合にも、絶縁コンバータトランスPITの二次巻線N2に対しては、二次側並列共振コンデンサC2 が並列に接続されることで並列共振回路が形成される。
この並列共振回路により、二次巻線N2に励起される交番電圧は共振電圧とされ、この共振電圧が整流ダイオードDO1及び平滑コンデンサCO2からなる半波整流回路と、整流ダイオードDO2及び平滑コンデンサCO2からなる半波整流回路との2組の半波整流回路に供給される。そして、これら2組の半波整流回路により、それぞれ直流出力電圧EO1,EO2が得られる。
なお、この半波整流回路を形成する整流ダイオードDO1,DO2は、スイッチング周期の交番電圧を整流するために高速型を使用している。
【0019】
例えば、交流入力電圧VAC或いは負荷電力の変動に伴って二次側の直流出力電圧EO2が変動した時は、制御回路1によって制御巻線NC に流れる制御電流を例えば10mA〜40mAの範囲で変化させる。これにより、被制御巻線NR のインダクタンスLR が例えば0.1mH〜0.6mHの範囲で変化するようにされる。
【0020】
上記被制御巻線NR は、前述のように電圧共振形のスイッチング動作を得るための並列共振回路を形成していることから、固定とされているスイッチング周波数に対して、この並列共振回路の共振条件が変化するようにされる。スイッチング素子Q1と並列共振コンデンサCrの並列接続回路の両端には、スイッチング素子Q1のオフ期間に対応して上記並列共振回路の作用によって正弦波状の共振パルスが発生するが、並列共振回路の共振条件が変化することによって共振パルスの幅が可変制御される。つまり、共振パルスに対するPWM(Pulse Width Moduration)制御動作が得られる。共振パルス幅のPWM制御とは即ちスイッチング素子Q1のオフ期間の制御であるが、これは換言すれば、固定のスイッチング周波数の条件下でスイッチング素子Q1のオン期間を可変制御することを意味する。このようにしてスイッチング素子Q1のオン期間が可変制御されることで、並列共振回路を形成する一次巻線N1から二次側に伝送されるスイッチング出力が変化し、二次側の直流出力電圧(EO1,EO2)の出力レベルも変化するようにされる。これによって二次側直流電圧(EO1,EO2)の定電圧化が図られることになる。なお、このような定電圧制御方式を、ここでは、「一次側電圧共振パルス幅制御方式」ということにする。
【0021】
また、図16の回路図に、先に本出願人が提案した発明に基づいて構成することのできるスイッチング電源回路の他の例を示す。なお、図16において、図10及び図12と同一部分には同一符号を付し、同一構成とされる部位についての説明は省略する。
この図に示す電源回路においては、直交型制御トランスPRTの被制御巻線が二次側に設けられている例が示されている。
この場合、直交型制御トランスPRTの被制御巻線としては、被制御巻線NR,NR1の2つが巻装されて備えられる、そして、被制御巻線NRは二次巻線N2の端部と整流ダイオードDO1のアノード間に対して直列に挿入されるようにして接続される。また、被制御巻線NR1は、二次巻線N2のタップ出力と整流ダイオードDO2のアノードとの間に対して直列に挿入される。このような接続形態では、二次側の並列共振回路は、被制御巻線NR,NR1のインダクタンス成分(LR,LR1)を含んで形成されることになる。
【0022】
このように、直交型制御トランスPRTの被制御巻線(NR,NR1)が二次側に設けられた構成の場合には、インダクタンス制御方式として、被制御巻線NR,NR1のインダクタンスが可変されることで、二次側並列共振コンデンサC2の共振電圧V2のパルス幅、つまり、二次側整流ダイオードの導通角を可変制御するように動作する。これによって、二次側に得られる出力レベルを制御することで定電圧制御が図られる。
【0023】
なお、この図に示す電源回路に備えられる絶縁コンバータトランスPITは、先に図14に示した構造と同様とされる。また、直交型制御トランスPRTについても、被制御巻線NR1が、制御巻線NCと直交する巻回方向により追加的に巻装される点を除いては、図13と同様の構造を採る。但し、図12に示す電源回路の直交型制御トランスPRTの場合には、被制御巻線NRが一次側に挿入されるために、二次側と直流的に接続される制御巻線NCとの絶縁距離を確保しなければならない分、相応のサイズを要求されるが、図16に示す電源回路の直交型制御トランスPRTでは被制御巻線NR1が二次側に設けられるために、制御巻線NCとの絶縁距離が不要となるため、直交型制御トランスPRTのサイズをより小型なものとすることが出来る。
【0024】
【発明が解決しようとする課題】
ところで、上記図10〜図16を参照して説明した構成によるスイッチング電源回路では、交流入力電圧VACがAC100V系で最大負荷電力が150W以上の条件に対応するため、倍電圧整流方式により2Eiのレベルの直流入力電圧を得るようにしている。このため、実際には、スイッチング素子Q1と並列共振コンデンサCrの両端には、スイッチングQ1のオフ時において1800Vの共振電圧Vcrが発生する。
このため、スイッチング素子Q1と並列共振コンデンサCrについては、1800Vの高耐圧品を選定することが要求される。従って、スイッチング素子Q1と並列共振コンデンサCrは相応に大型化してしまう。また、特にスイッチング素子Q1について高耐圧品を選定した場合においては、飽和電圧VCE(SAT)、蓄積時間tSTG、下降時間tfが大きく、電流増幅率hFEが小さくなるため、スイッチング周波数を高く設定することが困難となる。スイッチング周波数が低ければスイッチング損失とドライブ電力が増加するため、それだけ電源回路としての電力損失が大きくなる。また、電源回路内に備えられるトランスや、駆動回路系等に備えられるコンデンサが大型化して高価となり、回路の小型軽量化及び低コスト化の妨げになる。
【0025】
また、図10、図12、及び図16に示した何れの定電圧制御方式においても、一次側と二次側を分離する(直交型)絶縁コンバータトランスPIT(PRT)は、ギャップが形成されないことで得られる所要の結合度を有しており、その上で、一次巻線N1又は二次巻線N2に対して直列に、チョークコイルの巻線(インダクタ)Lc或いは直交型制御トランスPRTの被制御巻線NRが接続される。このため、電源回路内における漏洩インダクタンス成分が増加する。この漏洩インダクタンス成分の増加は即ち漏洩磁束の増加につなり、負荷側の電子回路等に影響を及ぼす可能性がある。
そこで実際には、漏洩磁束の影響を小さくするために、例えばスイッチングコンバータ回路全体を通風穴が形成されたアルミニウム製のシールドケースに収納し、入出力はコネクターを設けて接続するという構造を採っている。このような構造の点においても、回路の小型軽量化及び低コスト化が妨げられており、また、製造時間も相応に長くなっていた。
【0026】
【課題を解決するための手段】
そこで、本発明は上記した課題を考慮して、共振形電源回路の小型軽量化及び低コスト化の促進、更には製造能率の向上と、電力変換効率等をはじめとする共振形電源回路としての諸特性の向上を図ることを目的とする。
【0027】
このため、商用交流電源を入力して、この商用交流電源レベルの等倍に対応するレベルの整流平滑電圧を生成して直流入力電圧として出力する整流平滑手段と、疎結合とされる所要の結合係数が得られるようにギャップが形成されて一次側出力を二次側に伝送するために設けられる絶縁コンバータトランスと、直流入力電圧をスイッチング素子により断続して絶縁コンバータトランスの一次巻線に出力するようにされたスイッチング手段と、少なくとも絶縁コンバータトランスの一次巻線を含む漏洩インダクタンス成分と並列共振コンデンサのキャパシタンスとによって形成されてスイッチング手段の動作を電圧共振形とする一次側並列共振回路と、絶縁コンバータトランスの二次巻線に対して二次側直列共振コンデンサを直列に接続することで絶縁コンバータトランスの二次巻線の漏洩インダクタンス成分と二次側直列共振コンデンサのキャパシタンスとによって直列共振回路を形成する二次側直列共振回路と、整流電流経路に対して二次側直列共振コンデンサを挿入して形成され、絶縁コンバータトランスの二次巻線に得られる交番電圧を入力して倍電圧全波整流動作を行って、入力電圧レベルのほぼ2倍に対応する二次側直流出力電圧を生成可能に構成された直流出力電圧生成手段と、二次側直流出力電圧のレベルに応じてスイッチング素子のスイッチング周波数を可変することで、一次側並列共振回路の共振インピーダンスとスイッチング素子の導通角を複合的に制御するようにして、二次側出力電圧に対する定電圧制御を行うように構成された定電圧制御手段とを備えてスイッチング電源回路を構成することとした。
【0028】
上記構成によれば、一次側に対して電圧共振形コンバータを備えたうえで、絶縁コンバータトランスを疎結合とし、二次側においては二次側直列共振回路と倍電圧全波整流回路によって二次側直流出力電圧を生成して負荷に電力を供給するようにされる。つまり、所要の負荷条件に対しては、基本的に二次側に倍電圧全波整流回路を備えることで対応するようにされる。これに伴い、一次側は倍電圧整流回路ではなく、交流入力電圧レベルの1倍に対応する整流平滑電圧を生成する全波整流回路を備えて構成されることになる。
また、上記構成による定電圧制御の構成では、二次側出力電圧レベルに応じてスイッチング周波数を変化させることで、一次側並列共振回路の共振インピーダンスと上記スイッチング素子の導通角を同時に制御し、この複合的な制御動作によって結果的に制御感度の向上を図っている。
【0029】
【発明の実施の形態】
図1の回路図は、本発明の第1の実施の形態としてのスイッチング電源回路の構成例を示している。この図に示す電源回路においては先に説明した図10,図12及び図16の場合と同様に、一次側に対しては、1石のスイッチング素子(バイポーラトランジスタ)による自励式の電圧共振形スイッチングコンバータが備えられる。なお、この図において、図10,図12及び図16と同一部分については同一符号を付して説明を省略する。
【0030】
この図に示す本実施の形態としての電源回路においては、交流入力電圧VACを入力して直流入力電圧を得るための整流平滑回路として、ブリッジ整流回路Di及び平滑コンデンサCiからなる全波整流回路が備えられ、交流入力電圧VACの1倍のレベルに対応する整流平滑電圧Eiを生成するようにされる。つまり、本実施の形態においては、従来のように倍電圧整流回路は備えられないものである。
なお、本明細書においては、図1に示すようにして、交流入力電圧VACのレベルの1倍に対応する整流平滑電圧Eiを生成する整流回路を「等倍電圧整流回路」ともいうことにする。
【0031】
この図に示す直交型制御トランスPRTは、検出巻線ND,駆動巻線NB,及び制御巻線NCが巻装された可飽和リアクトルである。
この直交型制御トランスPRTの構造としては、図2に示すようにして、4本の磁脚を有する2つのダブルコの字型コア201,202の互いの磁脚の端部を接合するようにして立体型コア200を形成する。そして、この立体型コア200の所定の2本の磁脚に対して、同じ巻回方向に検出巻線ND,駆動巻線NBを巻装し、更に制御巻線NCを、上記検出巻線ND,駆動巻線NBに対して直交する方向に巻装して構成される。
ここで、検出巻線ND,駆動巻線NB,制御巻線NCの各巻数(ターン数)としては、例えば検出巻線ND=1T(ターン)、駆動巻線NB=3T,制御巻線NC=1000Tとされている。なお、本実施の形態の直交型制御トランスPRTとしては、例えば7gr程度に小型軽量化されている。
【0032】
この場合、直交型制御トランスPRTの検出巻線NDは、平滑コンデンサCiの正極と絶縁コンバータトランスPITの一次巻線N1との間に直列に挿入されることで、スイッチング素子Q1のスイッチング出力は、一次巻線N1を介して検出巻線NDに伝達される。直交型制御トランスPRTにおいては、検出巻線NDに得られたスイッチング出力により駆動巻線NBが励起されて、駆動巻線NBに交番電圧が発生する。この交番電圧は、自励発振駆動回路における駆動電圧の源となる。
【0033】
また、制御回路1によって、二次側直流出力電圧レベルの変化に応じて、制御巻線NCに流す制御電流(直流電流)レベルが可変されることで、直交型制御トランスPRTに巻装された駆動巻線NBのインダクタンスLBが可変制御される。これにより、駆動巻線NBのインダクタンスLBを含んで形成されるスイッチング素子Q1のための自励発振駆動回路内の直列共振回路の共振条件が変化する。これは、後に図4にて説明するように、スイッチング素子Q1のスイッチング周波数を可変する動作となるが、この動作によって二次側直流出力電圧を安定化する作用を有する。
【0034】
本実施の形態における絶縁コンバータトランスPITは、図3に示すように、例えばフェライト材によるE型コア101,102を互いの磁脚が対向するように組み合わせたEE型コア100が備えられ、このEE型コア100の中央磁脚に対して、実際には一次側と二次側とで巻装部が分割された分割ボビンを利用して一次巻線N1と、二次巻線N2(及びN2A)をそれぞれ分割した状態で巻装している。そして、本実施の形態では、中央磁脚に対しては図のようにギャップGを形成するようにしている。このギャップGは、E型コア101,102の中央磁脚を、2本の外磁脚よりも短く形成することで形成することが出来る。
これによって、例えば従来例として図14に示した絶縁コンバータトランスPITよりも小さな結合係数による疎結合となるようにして、その分、飽和状態が得られにくいようにしている。この場合の結合係数kとしては、例えばk≒0.85とされる。
【0035】
本実施の形態の絶縁コンバータトランスPITの二次巻線N2は、後述するようにして従来とは異なる巻数により巻装される。この二次巻線N2の一端は二次側アースに接続され、他端は直列共振コンデンサCsの直列接続を介して整流ダイオードDO1のアノードと整流ダイオードDO2のカソードの接続点に対して接続される。整流ダイオードDO1のカソードは平滑コンデンサCO1の正極と接続され、整流ダイオードDO2のアノードは二次側アースに対して接続される。平滑コンデンサCO1の負極側は二次側アースに対して接続される。
また、この場合には、二次巻線N2とは独立して二次巻線N2Aが巻装されてい。この二次巻線N2Aに対してはセンタータップをアースに接地したうえで、整流ダイオードDO3,DO4及び平滑コンデンサCO2からなる全波整流回路が接続されることで、直流出力電圧EO2を生成する。
【0036】
このような接続形態では結果的に、[直列共振コンデンサCs,整流ダイオードDO1,DO2、平滑コンデンサCO1]の組から成る倍電圧全波整流回路が形成されていることになる。ここで、直列共振コンデンサCsは、自身のキャパシタンスと二次巻線N2の漏洩インダクタンス成分(L2)とによって、整流ダイオードDO1,DO2のオン/オフ動作に対応する直列共振回路を形成する。
即ち、本実施の形態の電源回路は、一次側にはスイッチング動作を電圧共振形とするための並列共振回路が備えられ、二次側には、倍電圧全波整流動作(電流共振動作)を得るための直列共振回路が備えられる。なお、本明細書では、このように一次側及び二次側に対して共振回路が備えられて動作する構成のスイッチングコンバータについては、「複合共振形スイッチングコンバータ」ともいうことにする。
【0037】
図4は、図1に示す構成の電源回路の要部の動作を示す波形図であり、図4(a)〜(g)は、最大負荷電力(Pomax)、最小保証交流入力電圧(VAC min)時における各部の動作波形を示し、図4(h)〜(n)は、それぞれ、最小負荷電力(Pomin)、最大保証交流入力電圧(VAC max)時における図4(a)〜(g)と同一部の動作波形を示すものである。
【0038】
この場合、スイッチング素子Q1のための自励発振駆動回路によって、スイッチング素子Q1のベースには図4(d)(k)に示すように、ベース電流(駆動電流)IBが流れる。この駆動電流IBによって、スイッチング素子Q1は、スイッチング動作を行う。この際、スイッチング素子Q1のコレクタに流れるコレクタ電流Icpは、図4(c)(j)に示す波形が得られる。また、スイッチング素子Q1//並列共振コンデンサCrの並列接続回路の両端には、図4(a)(h)に示すようにして、この並列共振回路の作用によって並列共振電圧Vcrが発生する。この並列共振電圧Vcrは、図のように、スイッチング素子Q1がオンとなる期間TONは0レベルで、オフとなる期間TOFFにおいて正弦波状のパルスとなる波形が得られ、電圧共振形としての動作に対応している。
【0039】
上記のような一次側のスイッチング動作により、一次巻線N1にはスイッチング出力が得られる。この動作は、図4(b)(i)の一次巻線N1に得られるスイッチング出力電流I1として示され、電圧共振形の動作により正弦波に近い滑らかな波形が得られている。
【0040】
上記のようにして一次側に得られたスイッチング出力は二次巻線N2に励起される。そして、二次側においては、前述した[直列共振コンデンサCs,整流ダイオードDO1,DO2、平滑コンデンサCO1]の組により、次のようにして倍電圧全波整流動作を得る。
【0041】
ここで、整流ダイオードDO1がオフとなり、整流ダイオードDO2がオンとなる期間T1においては、一次巻線N1と二次巻線N2との極性が−Mとなる減極性モードで動作して、二次巻線N2の漏洩インダクタンスL2と直列共振コンデンサCsによる直列共振作用によって、整流ダイオードDO2により整流した整流電流I3(図4(f)(m))を直列共振コンデンサCsに対して充電する動作が得られる。図4(g)(n)は、整流ダイオードDO2の両端電圧V2を示す。
【0042】
そして、整流ダイオードDO2がオフとなり、整流ダイオードDO1がオンとなって整流動作を行う期間T2においては、一次巻線N1と二次巻線N2との極性が+Mとなる加極性モードとなり、二次巻線N2に誘起された電圧に直列共振コンデンサCsの電位が加わるという直列共振(電流共振)が生じる状態で平滑コンデンサCO1に対して充電が行われる動作となる。このとき、整流ダイオードDO1を介して平滑コンデンサCO1に充電される整流電流I2は、図4(e)(l)に示す波形となる。この波形を、図4(f)(m)に示す整流ダイオードDO2により整流した整流電流I3と比較して分かるように、整流電流I2は、整流電流I3よりもレベルが増加している。これは、上記したように直列共振コンデンサCsの電位が加わる整流動作であることに起因している。
【0043】
上記のようにして、加極性モード(+M;フォワード動作)と減極性モード(−M;フライバック動作)との両者のモードを利用して整流動作が行われることで、平滑コンデンサCO1においては、二次巻線N2の誘起電圧のほぼ2倍に対応する直流出力電圧EO1が得られる。つまり、本実施の形態では、相互インダクタンスが+Mと−Mの動作モードとなる状態を利用して、倍電圧全波整流を行うことで二次側直流出力電圧を得るようにしており、それだけ負荷側に供給される電力も増加して、最大負荷電力の増加が図られることになる。
【0044】
上記した倍電圧全波整流動作を得るための構成は、先に図3にて説明したように、絶縁コンバータトランスPITに対してギャップGを形成して所要の結合係数による疎結合としたことによって、更に飽和状態となりにくい状態を得たことで実現されるものである。例えば、従来のように絶縁コンバータトランスPITに対してギャップGが設けられない場合には、フライバック動作時において絶縁コンバータトランスPITが飽和状態となって動作が異常となる可能性が高く、本実施の形態のような倍電圧整流動作が適正に行われるのを望むのは難しい。
【0045】
また、上記のように、二次巻線N2の励起電圧が正負の両期間において整流動作を行う倍電圧全波整流回路を設けたことで、本実施の形態の回路形態の場合、二次側の倍電圧全波整流回路を形成する整流ダイオードDO1,DO2にかかる電圧は、図4(g)(n)に示す波形から分かるように、オフ時において、二次側出力電圧(EO1)のレベルにクランプされる。このため、実際の二次側出力電圧EO1=135Vであるとすると、整流ダイオードDO1,DO2については、150Vの耐圧品を用いることが出来る。
【0046】
また、倍電圧整流回路によって二次側直流出力電圧を得るようにしていることで、例えば等倍電圧整流回路(半波整流回路)によって得られる二次側直流出力電圧と同等のレベルを得ようとすれば、本実施の形態の二次巻線N2としては、従来の1/2の巻数で済むことになる。この巻数の削減は、絶縁コンバータトランスPITの小型軽量化、及び低コスト化につながる。
【0047】
また、本実施の形態の電源回路では、これまでの説明から分かるように、一次側には電圧共振形コンバータ(並列共振回路)を備え、二次側には直列共振回路及び倍電圧全波整流回路を備えた複合共振形スイッチングコンバータとされている。
ここで図5に、本実施の形態における、スイッチング周波数fsと二次側直流出力電圧EO(E01,E02)との関係を示す。この場合には横軸にスイッチング周波数をとり、縦軸に二次側直流出力電圧EOのレベルをとっている。
破線により示す共振曲線は、図12に示した電源回路における特性を示している。この図から分かるように、例えば、負荷変動に応じて二次側直流出力電圧EO=135Vとなるように定電圧化するためには、スイッチング周波数fsを75KHz〜225KHzのΔ150KHzの範囲で制御する必要がある。但し、前述したように、図12に示した電源回路の構成そのままでは、耐圧の関係でスイッチング素子Q1のスイッチング周波数は、50KHz程度が限度である。
これに対して、図1の回路では、実線による共振曲線として示すように、スイッチング周波数fsを100KHz〜175KHzのΔ75KHzの範囲で制御すればよく、その制御範囲は、約1/2程度に抑えられている。また、後述するようにして、本実施の形態では、スイッチング周波数の高周波化は容易に実現することが出来る。
【0048】
上記のようにして本実施の形態においてスイッチング周波数の制御範囲が縮小されるのは、次のような理由による。
本実施の形態においては、制御回路1及び直交型制御トランスから成る定電圧制御回路系の動作によって、スイッチング素子Q1のスイッチング周波数を可変制御することで定電圧制御作用を有することは前に述べたとおりである。この動作は図4にも示されており、例えば図4(a)(c)(d)と、図4(h)(J)(k)の各波形(Vcr,Icp,IB)を比較して分かるように、スイッチング周波数を可変するのにあたり、この回路では、スイッチング素子Q1がオフとなる期間TOFFは一定とされたうえで、オンとなる期間TONを可変制御するようにしている。つまり、本実施の形態では、定電圧制御動作として、スイッチング周波数を可変制御するように動作することで、スイッチング出力に対する共振インピーダンス制御を行い、これと同時に、スイッチング周期におけるスイッチング素子の導通角制御(PWM制御)も行っているものと見ることが出来る。そして、この複合的な制御動作を1組の制御回路系によって実現している。
実際には、図4(a)(c)(d)に示す動作波形が対応するPomax、VAC min時に対して、図4(h)(J)(k)に示す動作波形が対応するPomin、VAC max時では、期間TONは1/3程度に短縮する。これに伴い、平滑コンデンサCiから電圧共振形コンバータに流入する電流I1の電流量も、図4(b)→図4(i)の遷移として示すように、ほぼ1/3に制限されることになるので、制御感度は向上して実質的な制御範囲は拡大されるものである。これにより、前述したように、スイッチング周波数の可変幅は従来よりも小さくて済むものである。
【0049】
また、図5においては、スイッチング周波数に対して、一次側並列共振回路の並列共振周波数fo1と、二次側直列共振回路の直列共振周波数fo2が示されているが、ここで、例えば図のように、並列共振周波数fo1と直列共振周波数fo2とを75KHzで等しくなるようにインダクタンス、キャパシタンスを選定すれば、共振インピーダンス差が小さくなって一次側から二次側への伝送効率が高まるため、これによっても対応可能な最大負荷電力を向上させることが出来る。
【0050】
また、これまでの説明のようにして最大負荷電力の増加を図ってきていることで、本実施の形態では、直流入力電圧を生成する整流平滑回路としては倍電圧整流方式を採って負荷電力をカバーする必要はない。このため、図1にて説明したように、例えばブリッジ整流回路による通常の等倍電圧整流回路の構成を採ることができる。
これにより、例えば交流入力電圧VAC=144V時における整流平滑電圧Eiは200V程度となる。図4(a)(h)に示すスイッチング素子Q1//二次側並列共振コンデンサCrの並列接続回路の両端に得られる共振電圧Vcrは、整流平滑電圧Eiに対して一次側の並列共振回路が作用することで、スイッチング素子Q1がオフ時に発生するが、本実施の形態では、上記のように整流平滑電圧Eiが倍電圧整流時の約1/2とされていることで、共振電圧Vcrは、先に図10、図12、図16に示した従来例としての電源回路にて発生する共振電圧Vcr(1800V)の約1/2程度に抑えられることになる。また、先に述べたようにしてスイッチング素子Q1の導通角が可変制御(PWM制御)されることで、共振電圧Vcrのピーク値は交流入力電圧VACの上昇に関わらずほぼ一定となるように制御される。この結果、本実施の形態の電源回路では、共振電圧Vcrはピークで900V程度のレベルでほぼ一定に抑えられることになる。
従って、本実施の形態においては、スイッチング素子Q1と並列共振コンデンサCrについては、900Vの耐圧品を選定すればよいことになる。
【0051】
そして、本実施の形態では、スイッチング素子Q1、並列共振コンデンサCr、及び二次側の整流ダイオードについて、従来備えられるべきものよりも低耐圧品を用いることができるため、素子としてはそれだけ安価となる。このため、特にコストアップを考慮することなく、例えばスイッチング素子Q1及びブリッジ整流回路DOについて特性の向上されたもの(スイッチング素子Q1であれば、飽和電圧VCE(SAT)、蓄積時間tSTG、下降時間tf、電流増幅率hFE等の特性の良好なもの、また、整流ダイオードであれば順方向電圧降下VF、逆回復時間trr等の特性の良好なもの)を選定することができる。
このような特性の向上によって、本実施の形態では、従来よりもスイッチング周波数を高く設定できることになり、それだけ電力損失の低減、及び各種部品の小型・軽量化が促進されることにもなる。つまり、従来よりも電力変換効率など諸特性の向上を図ることが可能になると共に、小型軽量化及び低コスト化を促進することが可能になる。
【0052】
更に、電源回路の小型・軽量化の観点からすれば、従来のように直流入力電圧の生成のために倍電圧整流回路を備える構成では、それぞれ2組の整流ダイオードと平滑コンデンサが必要とされたのであるが、本実施の形態では、例えば通常のブリッジ整流回路による全波整流回路とされるため、1組のブロック型の平滑コンデンサとブリッジ整流ダイオードを採用することができるので、それだけ、コストの削減及び部品の小型化が図られるものである。
【0053】
更には、等倍電圧整流回路とされたことで、従来よりも一次巻線N1の巻数が削減されるが、これによっても、定電圧制御感度の向上に寄与している。
【0054】
また、図10、図12又は図16に示した電源回路では、一次巻線N1又は二次巻線N2に対してパワーチョークコイルのインダクタ、或いは直交型制御トランスPRTの被制御巻線NRが直列に接続されていたのに対し、本実施の形態の電源回路では、一次巻線N1又は二次巻線N2に対してはこれらの巻線が直列には接続されない。図1においては、一次巻線N1に対して検出巻線NDが直列に接続されているが、この検出巻線NDの巻数は例えば1Tであり、絶縁コンバータトランスPITにおける漏洩インダクタンスの増加作用という点では無視できる程度のインダクタンス値しか有さない。
このため、スイッチングコンバータ(電源回路)全体としての漏洩磁束の発生源は、絶縁コンバータトランスPITのみとなり、漏洩磁束の対策としては、例えばトランス本体に銅板のショートリングを施すのみで充分となり、例えば、図10、図12又は図16に示した電源回路では必要とされていたアルミニウム製のシールドケースは不要となる。
【0055】
例えば図1に示す電源回路の実際として、最大負荷電力Pomax=200W、最小負荷電力Pomin=0Wとされ、交流入力電圧VACについてはVAC=100V±20%の変動が有るとする条件に対して、絶縁コンバータトランスPITのフェライトEE型コアをEE35型としてギャップGの幅を1mmとし、更に、一次巻線N1=50T、二次巻線N2=25T、並列共振コンデンサCr=4700pF、二次側直列共振コンデンサCs=0.1μFとした構成では、図5により説明したように、スイッチング周波数fs=100KHz〜250KHzの制御範囲によって二次側出力の安定化が可能となり、最大負荷電力Pomax=200W、交流入力電圧VAC=100Vの条件では、93%という高い電力変換効率が得られた。
【0056】
図6は、本発明の第2の実施の形態としてのスイッチング電源回路の構成を示す回路図である。なお、この図において図1と同一部分には同一符号を付して説明を省略する。
【0057】
この図に示す電源回路においては、先ず、スイッチング素子Q1として、バイポーラトランジスタ(BJT)Q11,Q12、ダンパーダイオード(ツェナーダイオード)DD1,ダンパーダイオードDD2、抵抗R11,R12を図のように接続して形成されるダーリントン回路が備えられる。
この場合の、上記ダーリントン回路の接続形態としては、トランジスタQ11のコレクタとトランジスタQ12のコレクタを接続し、トランジスタQ11のエミッタをトランジスタQ12のエミッタと接続し、トランジスタQ12のエミッタをアースに接地している。また、ダンパーダイオードDD1のアノードをトランジスタQ11のエミッタと接続し、ダンパーダイオードDD1のカソードを抵抗R11を介してトランジスタQ11のベースに接続している。ダンパーダイオードDD2のアノードは、トランジスタQ12のエミッタに接続され、カソードはトランジスタQ12のコレクタに接続されている。抵抗R12は、トランジスタQ12のベース−エミッタ間に対して並列に接続されている。このようにして形成したダーリントン回路においては、トランジスタQ11のベースが先の各実施の形態に示したスイッチング素子Q1のベースと等価となり、トランジスタQ11,Q12のコレクタ接点がスイッチング素子Q1のコレクタと等価となる。また、トランジスタQ12のエミッタがスイッチング素子Q1のエミッタと等価となる。
【0058】
また、この場合には、スイッチング素子を自励式により駆動するための自励発振回路は省略され、代わりに発振・ドライブ回路2を備えた、他励式によるスイッチング駆動が行われる構成を採る。
このため、本実施の形態においては、絶縁コンバータトランスPITにおいて巻線N4A,N4Bが設けられる。そして、巻線N4A,整流ダイオードD1,コンデンサCAから成る半波整流回路によって+12Vの直流電圧を生成すると共に、巻線N4B,整流ダイオードD2,コンデンサCBから成る半波整流回路によって−12Vの直流電圧を生成するようにされる。そして、発振・ドライブ回路22に対しては、上記+12V及び−12Vの直流電圧が動作電源として供給される。なお、本実施の形態としての絶縁コンバータトランスPITの構造は、先に図3に示したコアと同様の構造が採られればよい。但し、第1の実施の形態とは、巻線N4A,N4Bが追加的に一次側に巻装される点が異なる。
【0059】
発振・ドライブ回路2は、起動抵抗RSにより起動されるようになっており、所要のスイッチング周波数fsを有する周期の発振信号を生成する。そして、+12V/−12Vの動作電源を利用することで、上記発振信号をスイッチング周期ごとに正(オン)/負(オフ)となるスイッチング駆動電流に変換してスイッチング素子Q1のベース端子に出力する。これによりスイッチング素子Q1は所要のスイッチング周波数でもってスイッチング動作を行うように駆動される。本実施の形態のように、スイッチング素子Q1についてダーリントン回路を採用した場合には、例えばスイッチング素子Q1が1石のバイポーラトランジスタとされる場合よりも更に高い電力変換効率が得られることになる。
【0060】
この図に示す制御回路1では、例えば、検出入力である二次側直流出力電圧EO1のレベルに応じて可変されたレベルの直流信号(検出信号)を発振・ドライブ回路2に対して供給するようにしている。
ここで、発振・ドライブ回路2においては、制御回路1から入力された検出信号に応じて、スイッチング素子Q1のオフ期間は一定として、オン期間を可変制御することによってスイッチング周波数を可変するように構成すれば、図4に示したのと同様の動作が得られることになり、図1の電源回路と同様の効果が得られることになる。
【0061】
これまでの実施の形態の説明においては、スイッチング素子Q1として、1石のバイポーラトランジスタ(BJT)、或いは2本のバイポーラトランジスタを備えたダーリントン回路を採用した場合を例に挙げていたが、本発明の実施の形態としては、以降示すようなスイッチング素子をスイッチング素子Q1に代えて採用することも可能である。
【0062】
図7には、スイッチング素子Q1に代えて、MOS−FET(MOS型電界効果トランジスタ;金属酸化膜半導体)を使用した例が示されている。MOS−FETを用いる場合、ドレイン−ソース間に対して、スイッチングオフ時の帰還電流の経路を形成するためのツェナーダイオードZDが図に示す方向により並列に接続される。つまり、アノードがMOS−FETのソースと接続され、カソードがツェナーダイオードZDのドレインと接続される。この場合、先の実施の形態に示したスイッチング素子Q1のベース、コレクタ、エミッタは、それぞれ、MOS−FETのゲート、ドレイン、ソースに置き換わることになる。
【0063】
図8は、スイッチング素子Q1に代えて、IGBT(絶縁ゲートバイポーラトランジスタ)を使用した例が示されている。IGBTのコレクタ−エミッタ間に対しては、スイッチングオフ時の帰還電流の経路を形成するためのダイオードDが並列に接続される。ここでは、ダイオードDのアノード、カソードはそれぞれIGBTのコレクタ,エミッタに対して接続されている。
この回路では、先の各実施の形態に示したスイッチング素子Q1のベース、コレクタ、エミッタは、それぞれ、IGBTのゲート、コレクタ、エミッタに置き換わる。
【0064】
図9は、スイッチング素子Q1に代えて、SIT(静電誘導サイリスタ)を使用した例が示されている。このSITのコレクタ−エミッタ間に対しても、スイッチングオフ時の帰還電流の経路を形成するためのダイオードDが並列に接続され、ダイオードDのアノード、カソードがそれぞれSITのカソード,アノードに対して接続される。この回路では、先の各実施の形態に示したスイッチング素子Q1のベース、コレクタ、エミッタは、それぞれ、SITのゲート、アノード、カソードに置き換わる。
【0065】
上記図7〜図9に示す何れの構成を採った場合にも、本実施の形態では更なる高効率化を図ることが可能になる。なお、図7〜図9に示す構成を採る場合、ここでは図示しないが、実際にスイッチング素子Q1に代えて採られるべき素子の特質に適合するようにして、その駆動回路の構成が変更されるものであり、例えば、図6に示した構成に準じて、他励式の構成とすることがその安定的な動作を期待する上では好ましい。例えば図7に示したMOS−FETであれば、他励式により電圧駆動する構成を採ればよいものである。
【0066】
【発明の効果】
以上説明したように本発明は、スイッチング電源回路として、一次側に電圧共振形スイッチングコンバータを備えたうえで、絶縁コンバータトランスを疎結合とすることで、一次巻線と二次巻線の相互インダクタンスが互いに逆極性となる動作モード(+M/−M)が得られるようにしている。更に、二次側においては、二次巻線に対して二次側直列共振コンデンサを直列に接続して直列共振回路を形成して、この直列共振回路を利用した倍電圧全波整流回路を備えることで、二次巻線に得られる交番電圧(励起電圧)の二倍に対応する二次側直流出力電圧を得るようにされる。
【0067】
上記のようにして倍電圧全波整流回路によって負荷に電力供給をする結果、本発明では、例えば従来のように全波整流回路又は半波整流回路により等倍の二次側直流出力電圧を得る場合よりも、対応可能な最大負荷電力を向上させることが可能になる。
そしてこれに伴い、一次側は倍電圧整流回路ではなく、通常の全波整流回路により交流入力電圧レベルに対応するレベルの整流平滑電圧を入力するように構成しても、充分に上記した条件に対応することができることになる。
【0068】
また、二次側出力電圧を安定化する定電圧制御のための構成として、二次側出力電圧レベルに応じてスイッチング周波数を変化させることで、電源回路内のの共振インピーダンスと上記スイッチング素子の導通角を複合的に制御するようにしている。
【0069】
以上の構成から次のようなことが言える。
例えば従来においては、上記の条件に対応する場合には、倍電圧整流回路により交流入力電圧レベルの2倍に対応する整流平滑電圧を得る必要があり、このため、スイッチング素子や一次側の並列共振コンデンサには、整流平滑電圧レベルに応じて発生するスイッチング電圧に応じた耐圧品を選定する必要があった。
また、従来として、二次側において半波整流回路により直流出力電圧を生成するようにしていた場合、整流ダイオードの非導通期間において整流平滑電圧の2.5倍〜3.5倍程度の電圧が印加されるため、この電圧レベルに応じた耐圧品を選定していた。
【0070】
これに対して本発明では、整流平滑電圧レベルに依存するスイッチング電圧が従来の1/2となることから、スイッチング素子や一次側の共振コンデンサについて、従来の1/2程度の耐圧品を用いることができる。
また、二次側においては、前述したように、倍電圧全波整流回路が設けられるが、ここで倍電圧全波整流回路は、交番電圧が正/負の両期間で整流動作を行う全波整流動作である結果、整流ダイオードに印加される電圧は整流平滑電圧レベルとほぼ同等に抑制されるため、二次側の整流ダイオードについても従来より耐圧の低いものを選定することができる。
これによって、先ずスイッチング素子、一次側の並列共振コンデンサ、及び二次側整流ダイオード等にかかるコストを削減することができる。また、スイッチング素子及び二次側整流ダイオードの特性の向上したものを選定して、スイッチング周波数を高く設定することも容易に可能となり、これによって、電力変換効率の向上が図られることになる。また、スイッチング素子周辺の回路部品の小型・軽量化を図ることも可能になるものである。
また、前述のように、商用交流電源から整流平滑電圧を得る回路が通常の等倍電圧整流回路とされたことで、例えば通常の1組のブロック型の平滑コンデンサとブリッジ整流ダイオードを採用することができるので、この点でも、コストの削減及び回路規模の縮小が図られる。更には、被制御巻線の巻数が削減されて、定電圧制御に用いる直交型制御トランスの小型軽量化及び低コスト化も図られるものである。
【0071】
更に本発明として、二次側に設けられる整流回路については倍電圧全波整流回路が採用されることで、例えば等倍電圧整流回路が備えられる場合と同等レベルの直流出力電圧を得ようとすれば、二次巻線の巻数を従来の1/2程度にまで少なくすることが可能になる。
【0072】
また、スイッチング周波数を変化させることで、スイッチング出力に対する共振インピーダンスと上記スイッチング素子の導通角を複合的に制御し、この作用によって定電圧制御を行うように構成したことで、結果的に制御感度は向上して制御可能範囲が拡大するため、従来よりも狭いスイッチング周波数の制御範囲で二次側出力電圧の安定化を実現することが可能になる。このようなスイッチング周波数の制御範囲の縮小は、電源回路を形成するトランスに巻装される巻線数の削減や、各種部品素子の小型にも寄与する。
【0073】
また、本発明の定電圧制御回路の構成としては、スイッチング素子を駆動するための回路系が自励式、他励式であるのに関わらず、一次巻線又は二次巻線に対してチョークコイル若しくは直交型制御トランスの被制御巻線等のインダクタンス素子は直列接続されない。このため、電源回路としての漏洩磁束の発生は絶縁コンバータトランスのみに制限されるので、従来のようにシールドケースにより電源回路を覆う必要はなく、例えば銅板のショートリングを施すだけで漏洩磁束を解消できる。これにより、電源回路自体の小型軽量化及び低コスト化に寄与すると共に、製造時間の短縮も図られる。
【0074】
また、スイッチング素子としては、バイポーラトランジスタを備えて形成されるダーリントン回路、又はMOS型電界効果トランジスタ、絶縁ゲートバイポーラトランジスタ、又は静電誘導サイリスタにより構成することが可能であり、この場合には、例えば1石のバイポーラトランジスタにより上記スイッチング手段を形成する場合よりも、更に電力変換効率を向上させることが可能となる。
【0075】
このように本発明では、一次側に電圧共振形コンバータを備えた電源回路の低コスト化、小型軽量化、及び電力変換効率等の諸特性の向上が促進されるものである。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態としての電源回路の構成を示す回路図である。
【図2】図1に示す電源回路に備えられる直交型制御トランスの構造を示す斜視図である。
【図3】図1に示す電源回路に備えられる絶縁コンバータトランスの構造を示す斜視図である。
【図4】図1に示す電源回路における要部の動作を示す波形図である。
【図5】スイッチング周波数と二次側直流出力電圧との関係を示す説明図である。
【図6】本発明の第2の実施の形態としての電源回路の構成を示す回路図である。
【図7】本発明の実施の形態の変形例としての構成を示す回路図である。
【図8】本発明の実施の形態の変形例としての構成を示す回路図である。
【図9】本発明の実施の形態の変形例としての構成を示す回路図である。
【図10】従来例としての電源回路の構成を示す回路図である。
【図11】図10に示す電源回路に備えられる直交型絶縁コンバータトランスの構造を示す斜視図である。
【図12】従来例としての電源回路の構成を示す回路図である。
【図13】図12に示す電源回路に備えられる直交型制御トランスの構造を示す斜視図である。
【図14】図12に示す電源回路に備えられる絶縁コンバータトランスの構造を示す斜視図である。
【図15】相互インダクタンスが+M/−Mの場合の各動作を示す説明図である。
【図16】従来例としての電源回路の構成を示す回路図である。
【符号の説明】
1 制御回路、2 発振・ドライブ回路、Ci,CO1,CO2 平滑コンデンサ、Cr 並列共振コンデンサ、Cs 二次側直列共振コンデンサ、Di ブリッジ整流回路、DO1,DO2,DO3,DO4 整流ダイオード、PIT 絶縁コンバータトランス、PRT 直交型制御トランス、NC 制御巻線、ND 検出巻線、NB 駆動巻線、Q1 スイッチング素子

Claims (6)

  1. 商用交流電源を入力して、この商用交流電源レベルの等倍に対応するレベルの整流平滑電圧を生成して直流入力電圧として出力する整流平滑手段と、
    疎結合とされる所要の結合係数が得られるようにギャップが形成され、一次側出力を二次側に伝送するために設けられる絶縁コンバータトランスと、
    上記直流入力電圧をスイッチング素子により断続して上記絶縁コンバータトランスの一次巻線に出力するようにされたスイッチング手段と、
    少なくとも、上記絶縁コンバータトランスの一次巻線を含む漏洩インダクタンス成分と並列共振コンデンサのキャパシタンスとによって形成されて、上記スイッチング手段の動作を電圧共振形とする一次側並列共振回路と、
    上記絶縁コンバータトランスの二次巻線に対して二次側直列共振コンデンサを直列に接続することで、上記絶縁コンバータトランスの二次巻線の漏洩インダクタンス成分と、上記二次側直列共振コンデンサのキャパシタンスとによって直列共振回路を形成する二次側直列共振回路と、
    整流電流経路に対して上記二次側直列共振コンデンサを挿入して形成され、上記絶縁コンバータトランスの二次巻線に得られる交番電圧を入力して倍電圧全波整流動作を行って、入力電圧レベルのほぼ2倍に対応する二次側直流出力電圧を生成可能に構成された直流出力電圧生成手段と、
    検出巻線と駆動巻線と制御巻線とを有し、上記検出巻線が上記絶縁コンバータトランスの一次巻線と上記整流平滑手段との間に接続される直交型トランスと、
    上記二次側直流出力電圧のレベルに応じて、上記検出巻線に流れる電流の大きさを制御して前記駆動巻線のインダクタンスを変化させて上記スイッチング素子のスイッチング周波数を可変として定電圧制御を行う制御手段回路と
    備えるスイッチング電源回路。
  2. 上記スイッチング手段は、少なくとも駆動巻線及び共振用コンデンサの直列接続により形成される直列共振回路を含んで形成され、この直列共振回路の共振出力に基づいて上記スイッチング素子を自励式により駆動する請求項1に記載のスイッチング電源回路。
  3. 上記スイッチング手段は、バイポーラトランジスタを備えて形成されるダーリントン回路を1つのスイッチング素子として用いるように構成される請求項1に記載のスイッチング電源回路。
  4. 上記スイッチング手段は、スイッチング素子としてMOS型電界効果トランジスタを備えて形成される請求項1に記載のスイッチング電源回路。
  5. 上記スイッチング手段は、スイッチング素子として絶縁ゲートバイポーラトランジスタを備えて形成される請求項1に記載のスイッチング電源回路。
  6. 上記スイッチング手段は、スイッチング素子として静電誘導サイリスタを備えて形成される請求項1に記載のスイッチング電源回路。
JP31938898A 1998-11-10 1998-11-10 スイッチング電源回路 Expired - Fee Related JP4218092B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP31938898A JP4218092B2 (ja) 1998-11-10 1998-11-10 スイッチング電源回路
TW89109057A TW471218B (en) 1998-11-10 2000-05-10 Switching power supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31938898A JP4218092B2 (ja) 1998-11-10 1998-11-10 スイッチング電源回路

Publications (2)

Publication Number Publication Date
JP2000152618A JP2000152618A (ja) 2000-05-30
JP4218092B2 true JP4218092B2 (ja) 2009-02-04

Family

ID=18109619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31938898A Expired - Fee Related JP4218092B2 (ja) 1998-11-10 1998-11-10 スイッチング電源回路

Country Status (2)

Country Link
JP (1) JP4218092B2 (ja)
TW (1) TW471218B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109660125A (zh) * 2017-10-12 2019-04-19 首利实业股份有限公司 高功率电源供应器的电路结构

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215376A (ja) * 2002-12-27 2004-07-29 Sony Corp スイッチング電源回路
KR20110138068A (ko) * 2010-06-18 2011-12-26 페어차일드코리아반도체 주식회사 역률 보상 컨버터 및 그 구동 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109660125A (zh) * 2017-10-12 2019-04-19 首利实业股份有限公司 高功率电源供应器的电路结构

Also Published As

Publication number Publication date
JP2000152618A (ja) 2000-05-30
TW471218B (en) 2002-01-01

Similar Documents

Publication Publication Date Title
US6687137B1 (en) Resonant switching power supply circuit with voltage doubler output
JP2000152617A (ja) スイッチング電源回路
JP2000324831A (ja) スイッチング電源回路
JP2001275351A (ja) スイッチング電源回路
JP2001095247A (ja) スイッチング電源回路
JP4218089B2 (ja) スイッチング電源回路
KR20010050629A (ko) 스위칭 전원 회로
JP2000353627A (ja) 絶縁コンバータトランス及びスイッチング電源回路
JP4218092B2 (ja) スイッチング電源回路
JP2002262568A (ja) スイッチング電源回路
JP2001178127A (ja) スイッチング電源回路
JP4218090B2 (ja) スイッチング電源回路
JP4218095B2 (ja) スイッチング電源回路
JP4240606B2 (ja) 電圧共振形スイッチング電源回路
JP4314700B2 (ja) スイッチング電源回路
JP2002034250A (ja) スイッチング電源回路
JP2000125551A (ja) 電圧共振形スイッチング電源回路
JP4314703B2 (ja) スイッチング電源回路
JP2000166235A (ja) スイッチング電源回路
JP2000125552A (ja) 電圧共振形スイッチング電源回路
JP2002034249A (ja) スイッチング電源回路
JP2000125555A (ja) 電圧共振形スイッチング電源回路
JP2000125554A (ja) 電圧共振形スイッチング電源回路
JP2001119940A (ja) 力率改善コンバータ回路
JP4218094B2 (ja) スイッチング電源回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees