JP4024570B2 - 近視野光発生素子、近視野光記録装置、および近視野光顕微鏡 - Google Patents

近視野光発生素子、近視野光記録装置、および近視野光顕微鏡 Download PDF

Info

Publication number
JP4024570B2
JP4024570B2 JP2002092276A JP2002092276A JP4024570B2 JP 4024570 B2 JP4024570 B2 JP 4024570B2 JP 2002092276 A JP2002092276 A JP 2002092276A JP 2002092276 A JP2002092276 A JP 2002092276A JP 4024570 B2 JP4024570 B2 JP 4024570B2
Authority
JP
Japan
Prior art keywords
light
field
optical
field light
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002092276A
Other languages
English (en)
Other versions
JP2003004622A (ja
Inventor
学 大海
宣行 笠間
英孝 前田
健二 加藤
陽子 篠原
隆 新輪
靖幸 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2002092276A priority Critical patent/JP4024570B2/ja
Priority to EP02252636A priority patent/EP1251383B1/en
Priority to US10/124,355 priority patent/US7034277B2/en
Publication of JP2003004622A publication Critical patent/JP2003004622A/ja
Application granted granted Critical
Publication of JP4024570B2 publication Critical patent/JP4024570B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
    • G01Q60/22Probes, their manufacture, or their related instrumentation, e.g. holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/122Flying-type heads, e.g. analogous to Winchester type in magnetic recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q80/00Applications, other than SPM, of scanning-probe techniques

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optical Head (AREA)
  • Microscoopes, Condenser (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、近視野光を発生させる素子、及びこれを利用した高密度情報記録装置のためのヘッド、高解像顕微鏡のためのプローブに関する。
【0002】
【従来の技術】
近視野光発生素子は、高密度な情報記録を行う光記録装置における光ヘッドや、高解像度での観察を行う近視野光顕微鏡における光プローブなどに用いられている。
【0003】
高密度な光記録装置の開発は、近年の画像や動画などの情報量の爆発的増加に伴い積極的に進められている。CD(コンパクトディスク)に代表される光ディスクは光の回折限界によって記録密度に限界があることが知られている。この限界を超えるために、より波長の短い光を利用する方法や、近視野光を利用する方法が提案されている。近視野光を利用する光記録装置は、波長以下のサイズの光学的微小開口に光を入射し、開口からわずかに広がった近視野光と記録媒体表面とを相互作用させ、透過あるいは反射した散乱光を検出することで微小なデータマークを読み出す方法である。記録再生できる最小マークサイズは入射光の波長ではなく、開口サイズによって限定されるため、微小な開口を作製することで記録密度の向上が可能となる。
【0004】
近視野光を用いた光記録装置においては、開口が記録媒体表面に近接する必要がある。また、高いデータ転送速度を実現するためには開口が高速に記録媒体表面上を走査する必要がある。これらの条件を満たすために、代表的には従来の磁気記録で用いられるフライングヘッド方式が提案されている(Issiki,F.et al,Applied Physics Letters,76(7),804(2000))。ヘッドの構造は平面基板に半導体プロセスによって浮上スライダと微小開口を形成したものである。例えばSi 基板上にSiO2層を積層し、リソグラフィによってティップ用レジストパターンを形成し、SiO2層をエッチングすることによって、SiO2から成る錐状ティップを作製する。これにAlを200nm程度真空蒸着した後にFIB(Focused IonBeam)法によってティップ先端を切断することによって、先端に光学的開口を持つティップを作製する。開口の輪郭形状は上述のティップ用レジストパターンの形状によって決まるが、最終的に微小な開口を形成するためには円、三角形が望ましく、四角形は先端がブレード状になる可能性があるためあまり望まれない。開口形状が円のものが、その後のヘッドとしての扱いにおいて方向を制御する必要がないことなどから普通は円状開口が作製される。
【0005】
近視野光顕微鏡で用いられる光プローブは、光ファイバを加熱・延引・切断し、Al遮光膜を蒸着した後に先端を切断して光学的開口を形成することで作製する。
【0006】
これらの光ヘッドあるいはプローブに向けてレーザ光源からの入射光を入射し、近視野光を発生させる。入射光はレーザから光ファイバで導光したり、空中伝播によって微小開口に照射する。レーザからの光は直線偏光であるが、ファイバで導光する途中で偏光が乱され、また空中伝播方式においても開口形状、走査方向と偏光方向を制御して動作させることはない。
【0007】
【発明が解決しようとする課題】
上述のような近視野光プローブあるいはヘッドの課題は、入射光強度に対して開口から発生する近視野光強度(ここではプローブの光効率と呼ぶ)が小さいという点であった。入射光は開口に到達するまでにプローブ内壁によって反射されたり、吸収されて熱エネルギーとなって失われる。開口まで到達した光も開口が波長以下のサイズであるために、ごくわずかのエネルギーしか透過することができない。発生する近視野光強度が小さいと、十分なコントラストが得られず、顕微鏡の場合には出力画像の精度、データストレージ装置の場合にはデータ転送速度が不十分になる。
【0008】
光効率の向上のために、例えば(Veerman,J.A.et al,Applied Physics Letters,72(24),3115(1998))では、プローブ先端をFIBで切断するときにビームをプローブの真横から当てることで先端を平らにするなどの工夫がなされてきた。また、(Ohtsu,M.,J.Lightwave Tech.,13(7),1200(1995))では逆に、開口面内に微小な突起を形成することによって解像度を向上させる試みもある。
【0009】
しかし、顕微鏡の解像度、あるいはストレージ装置の記録密度向上のために開口サイズを微細にすれば、光効率が劣化することが知られており、光効率の向上方法の模索が続いている。
【0010】
【課題を解決するための手段】
上述の課題を解決するために、本発明においては、入射光の波長以下の大きさを持つ光学的微小開口を有し、微小開口に、入射光を照射することによって、近視野光を発生させる近視野光発生素子において、微小開口の輪郭のうち一ヶ所が、入射光の偏光方向と略直交していることを特徴とする近視野光発生素子とする。
【0011】
これにより、微小開口の輪郭のうち、入射光の偏光方向と略直交する部分のみが大きな強度の近視野光を発生させ、高い解像度と高い光効率が両立できる。
【0012】
また、近視野光発生素子において、輪郭が多角形であり、その一辺が偏光方向と略直交することを特徴とする。
【0013】
これにより、単純な形状のマスクを作製するだけで高性能な近視野光ヘッドが安価に製造できる。さらに、開口輪郭のうち強い近視野光を発生させる部分が一ヶ所になり、解像度向上が可能となる。
【0014】
また、近視野光発生素子において、輪郭が三角形であり、その一辺が偏光方向と略直交することを特徴とする。
【0015】
これにより、頂点が容易に形成される三角錐形状をもとに微小開口を作製することができ、高い歩留まりで安定した近視野光発生素子を作製することができる。
【0016】
また、近視野光発生素子において、微小開口が、光を透過する錐状ティップ先端に形成され、微小開口の周辺部は遮光膜で覆われていることを特徴とする。
【0017】
これにより、リソグラフィで作製可能な構造よりもより微細なサイズの微小開口を作製することができる。
【0018】
また、近視野光発生素子において、輪郭の一辺が、入射光によってプラズモンを励起する材質から成ることを特徴とする。
【0019】
これにより、発生する近視野光が微小開口の一辺に強く局在するため、高S/Nで、高密度記録に対応した近視野光発生素子となる。
【0020】
また、材質が、金、銀、銅のいずれかを含むことを特徴とする。
【0021】
これにより、容易な製造プロセスによって高性能な近視野光発生素子が製造できる。
【0022】
また、光ヘッドと、光源と、記録媒体と、光ヘッドが記録媒体表面を走査する手段と、
光源からの入射光を光ヘッドへ導く光入射手段と、光ヘッドが記録媒体表面と近視野光を介して相互作用した結果発生した散乱光を検出する光検出手段と、を含む近視野光記録装置において、光入射手段が前記入射光の偏光を保持あるいは制御する手段を含み、光ヘッドが上に述べたいずれかに記載の近視野光発生素子であることを特徴とする近視野光記録装置とする。
【0023】
これにより、開口輪郭のうち強い近視野光を発生させる部分が一ヶ所になり、解像度向上が可能となる。また、簡単な方法で安価に高性能な近視野光ヘッドが製造できる。また、データストレージ装置において高密度記録と高転送速度が両立する。
【0024】
また、光プローブと、光源と、光源からの入射光を光プローブへ導く光入射手段と、光プローブが試料表面と近視野光を介して相互作用した結果発生した散乱光を検出する光検出手段と、を含む近視野光顕微鏡において、光入射手段が入射光の偏光を保持あるいは制御する手段を含み、光プローブが上述したいずれかに記載の近視野光発生素子であることを特徴とする近視野光顕微鏡とする。
【0025】
これにより、微小開口の輪郭のうち、入射光の偏光方向と略直交する部分のみが大きな強度の近視野光を発生させ、高い解像度と高い光効率が両立できる。顕微鏡の高解像度と高S/N比が実現される。簡単な方法で安価に高性能な近視野光プローブが製造できる。
【0026】
また、近視野光記録装置あるいは近視野光顕微鏡において、光検出手段が、偏光光学素子を含むことを特徴とする。
【0027】
これにより、記録媒体あるいは試料と近視野光との相互作用によって発生した検出光のうち、特定の偏光成分のみを選択的に検出することにより、記録媒体あるいは試料の微細な光学的状態の相違を検出し、高密度記録あるいは高分解能観察が可能となる。
【0028】
また、近視野光顕微鏡において、微小開口輪郭のうちの、入射光の偏光方向と略直交している一ヶ所が、光プローブにおいて、輪郭の他の部分よりもより先端側に位置していることを特徴とする。
【0029】
これにより、微小開口輪郭のうち、近視野光が強く局在した部分を試料表面に近接することができ、高分解能な顕微鏡が実現できる。
【0030】
また、近視野光顕微鏡において、微小開口輪郭のうちの、入射光の偏光方向と略直交している一ヶ所と、それに対向する部分とを結ぶ線が、光プローブにおいて、光プローブの先端方向と略直交することを特徴とする。
【0031】
これにより、微小開口輪郭のうち、強く近視野光が局在している部分のさらに端の部分のみを試料に近接させることができ、高分解能な顕微鏡が実現できる。
【0032】
【発明の実施の形態】
(実施の形態1)
図1は、本実施の形態1の情報記録再生装置の構成を説明した図である。近視野光を発生する微小開口(図示略)を有する近視野光ヘッド104を、記録媒体105の表面に数十nmまで近接した状態で記録媒体105を図中矢印112で示した方向に高速に回転させる。近視野光ヘッド104が記録媒体105と常に一定の相対配置で浮上するために、フレクシャー108をサスペンションアーム107の先端部に形成している。サスペンションアーム107はボイスコイルモータ(図示略)によって記録媒体105の半径方向に移動可能である。
【0033】
近視野光ヘッド104は、記録媒体105に微小開口が対面するように配置されている。レーザー101からの光束を近視野光ヘッド104に導く為に、レンズ102とサスペンションアーム107に固定されたコアとクラッドからなる光導波路103を用いている。光導波路103は、レーザからの光束の持つ偏光方向を保存するように、コア断面形状を長方形にした偏光保存型の導波路を用いた。必要に応じて、レーザー101は回路系110により強度変調などをかけることもできる。また、記録媒体105に記録された情報を読みだす為の受光ヘッド106がサスペンションアーム109に取り付けられ、サスペンションアーム109はサスペンションアーム107と同じボイスコイルモータ(図示略)に取付けされている。
【0034】
図2は本実施の形態1に係る情報記録再生装置の導波路と近視野光ヘッドについて説明した図である。開口基板111にはヘッド用レンズ機能を実現するために、例えば透明なガラス基板上にマイクロレンズ205を形成し、さらにその記録媒体面側に常に一定の相対配置で浮上するためにエアーベアリングサーフェス204が形成されている。そして、開口基板111は、マイクロレンズ205と、エアーベアリングサーフェス204と、微小開口206以外は遮光膜(図示略)で覆われている。開口基板111の底面の遮光膜には微小開口206が形成されている。マイクロレンズ205は、光導波路103からの光束を微小開口206に集光している。この開口基板111の上部には、200nm厚のAl(図示略)が蒸着されたミラー面203を持つミラー基板210と、コア201とクラッド202からなる光導波路103が固定されている。ここで開口基板111として、使用するレーザーの波長での光を透過するガラス基板を用いたが、シリコン基板等を用い、マイクロレンズ205と光束が透過する部分だけ使用する波長での光を透過する材料で作成してもよい。また、マイクロレンズ205は、通常の球面あるいは非球面レンズ、屈折率分布形レンズ、フレネルレンズなどを用いる事ができる。特にフレネルレンズを用いると平面形のレンズが作成可能であり、径の大きなレンズを作成しても近視野光ヘッドの厚さを薄くすることが可能である。フレネルレンズは、フォトリソグラフィ技術を用いて大量生産可能である。
【0035】
本発明は、図2で示したヘッド構造のうち、微小開口206付近の構造と、入射光偏光に特徴がある。図3は本実施の形態1に係る情報記録再生装置の光ヘッドのうち、底面の微小開口付近を示した図である。開口基板111の上(底面)にSiO2から成る高さ約10ミクロンの三角錐211が形成されている。三角錐211の表面には図示は略すが、Alから成る遮光膜が約200nm製膜されている。三角錐211の頂点は底面と平行な面で切断されて遮光膜が除去されており、光学的微小開口206が形成されている。三角錐211は正四面体であることにより、微小開口206は正三角形の輪郭を持つ。このヘッドを、記録媒体表面に対してxで示した方向に走査し、微小開口206から発生した近視野光と媒体表面の相互作用を起こさせる。
【0036】
図4は本実施の形態1にかかる光ヘッドの断面と底面を示した図である。開口基板111は上面にマイクロレンズ205を持ち、底面に微小開口206付きの三角錐211を持つ。
【0037】
図5は本実施の形態1にかかる光ヘッドが、記録媒体表面のデータマークの上方を走査する状態を示した図である。長さ72nm,幅56nmのデータマーク221はGe2Sb2Te5から成る相変化記録材料表面に形成されたアモルファス領域である。これは(1,7)変調信号による最短マーク長であり、記録密度としては100Gb/in2に相当する。微小開口206はこの記録媒体表面から20nmの高さで浮上し、記録媒体が2.25m/secで回転することによって発生する空気浮上力と、図1に示したサスペンションアーム107にかけられた荷重のバランスによって、一定の姿勢を保っている。微小開口206に入射する光は直線偏光222を持つ。このとき偏光222は微小開口206の右辺に垂直である。
【0038】
このようにして構成された情報記録装置を用いることで、従来の円状あるいは四角形の微小開口を持つものや、偏光を制御しないで入射したものに比較して、信号強度が約10倍、対応する記録密度が約1.5倍に向上した。このメカニズムを計算機シミュレーションによって図6で説明する。
【0039】
図6(a)は従来の円形微小開口231を示す。図6(b)は本発明による三角形微小開口232を示す。図6(c)は両者の形状とサイズを比較した図である。円形微小開口231は三角形微小開口232に内接する。
【0040】
図7は計算機シミュレーションによって微小開口の真下20nmにおける電場エネルギー分布を求めた結果である。開口との相対位置を示すために、図6(a)、(b)に示した開口形状と重ねて表示した。図7(a)は円形微小開口の場合であり、(b)は三角形微小開口の場合である。入射光は図中に示したX方向の直線偏光を持つ。(a)の場合はエネルギーは開口全体に広がって分布しているが、(b)の場合は三角形の右辺に局在している。これは偏光方向に垂直なエッジに光が局在するためである。
【0041】
図8は図7(a),(b)のそれぞれにおいての線分A−A’上のプロファイルを重ねて表示したものである。図7(a)でのプロファイル241に比べて(b)でのプロファイル242は強度が約10倍、半値全幅が0.8倍になっている。強度が大きくなっている理由は、図6に示すように三角形開口の開口面積が円形開口より大きいことが考えられる。また、プロファイルの幅が狭くなっている理由は、図7に示すように三角形開口の光が局在していることが考えられる。
【0042】
実際に入射光偏光を良好に制御し、開口形状を三角形にし、且つ入射光偏光を三角形開口の一辺に垂直になるように配置することによって、出力信号強度と記録密度の両方を同時に向上させることができる。
【0043】
図9に本実施の形態1に係る情報記録再生装置の光ヘッドの製造方法のうち、図3に示す三角錐の製造方法を示す。ステップS301において、400ミクロン厚のSi基板312の上面にプラズマCVD法によって15ミクロン厚のSiO2層311を作製する。ステップS302において、フォトリソグラフィによりパターニングした三角形形状マスクを用いて、等方性エッチングによって三角錐形状314を形成する。次にステップS303において、Al膜317を200nm厚で真空蒸着する。最後にステップS304において、FIB(Focused Ion Beam)法によって先端を切断して光学的微小開口206を作製する。ステップS304はFIBでなくとも、機械的に圧力を加えることによってAl膜317を先端部のみ除去することで、微小開口206を作製することができる。
【0044】
この方法によれば、本実施の形態1で説明したような微小開口206を大量生産することができる。図2に示したヘッド構造のうち、微小開口206以外の部分は既存の半導体プロセスおよび組み立て技術によって作製可能であるので、それらを組み合わせると、本発明に係る近視野光ヘッドあるいはプローブがバッチプロセスによって安価に大量生産が可能である。
【0045】
以上説明したように、実施の形態1に係る情報記録再生装置によると、近視野光を発生する微小開口の輪郭が略正三角形になっていて、その一辺が入射光偏光に略垂直であるために、発生する近視野光がその辺付近に局在する。これにより、従来の円形開口あるいは四角形開口、あるいは三角形開口であっても入射光偏光を良好に制御しない装置に比較して、出力信号強度が大きく、且つ、対応する記録密度の大きい近視野光ヘッドが実現できる。さらに、製造方法においても、従来の円形開口の場合には円錐、四角形開口の場合には四角錐を、高い形状精度を持って作製する必要があったが、本実施の形態における三角形開口の場合は頂点が必ず1点でのみ立つ三角錐を作製すれば良く、より高い歩留まりで作製することができる。
【0046】
本実施の形態においては開口は三角形としているが、この形状はマスクパターニングによって作製するため、任意のものが作製可能である。ただし、入射光偏光の方向に垂直になる辺が1ヶ所だけにあるような輪郭を持たなければならない。例えば、図10(a)(b)は三角形以外の形状の微小開口である。(a)は三角形の一辺が曲線になっている形状である。入射光偏光の方向222に対して垂直な部分251が、開口輪郭の1ヶ所にだけあるために、三角形開口の場合と同様な効果が得られる。また、(b)は、すべての辺が曲線になっている形状である。入射光偏光の方向222に対して垂直な部分252が、やはり開口輪郭の1ヶ所にだけある。これらの形状を持つ開口に、図で示した偏光を持つ入射光を照射すると、上述したように、入射光偏光と略垂直な部分のみに近視野光が局在する。この現象を利用すると、高い信号強度で高解像度のヘッドが得られる。
(実施の形態2)
図11は本発明の実施の形態2に係る情報記録再生装置の構成図である。主な構成は実施の形態1で説明した図1と類似であり、同一部品には同一符号を付けた。相違点は、本実施の形態においては近視野光ヘッド104への光の導入方法として、レーザー101からの光をレンズ102を用いて平行光301にして空中伝播させ、ミラー302で垂直に折り曲げることで導入する方法を採っている点である。その他の点については実施の形態1と同様であるので説明を略す。本実施の形態においてはレーザー101からの光を空中伝播させるため、光の偏光方向が保存された状態で近視野光ヘッド104に導入できる。本発明の重要な点は、近視野光を発生させる微小開口の輪郭のうち、一部が入射光の偏光に垂直であるように配置することによって、近視野光を局在させる点であるが、本実施の形態は、このうち入射光の偏光を良好に制御することができるという利点を持つ。これによって、高S/Nで高密度な情報の記録再生が可能となる。
(実施の形態3)
図12は本発明の実施の形態3に係る情報記録再生装置に使われる近視野光ヘッドのうち、底面の微小開口付近を示した図である。図12は図3とほぼ同様であるが、図12では三角錐の表面に積層されたAl遮光膜411を図示する。三角錐の3面のうちの一面はAlではなくAg膜412になっている。このAl遮光膜411とAg膜412の表面に更に、図示しないがSiO2あるいはAl層を100nm程度積層されている。三角錐の先端は水平に切断されて光学的微小開口206が形成されている。
【0047】
図13は図12に示した微小開口の平面図である。微小開口206は略三角形の輪郭を持ち、そのうち右辺がヘッドの走査方向xに略垂直である。この辺に接する部分がAg膜412になっており、他の2辺はAl膜411から成る。このような構造を持つ近視野光ヘッドに入射光として、図中x方向に偏光方向を持つ光を入射させると、Agの表面プラズモンが励起されることにより、近視野光がAg膜表面に強く局在して発生する。これにより、実施の形態1あるいは2で実施した構造が持つ光の局在効果に加えて、更なる局在化とエネルギーの増強が実現できる。
【0048】
図14は本実施の形態の近視野光ヘッドの製造方法を示す。ステップS401において、400ミクロン厚のSi基板312の上面にプラズマCVD法によって15ミクロン厚のSiO2層311を作製する。ステップS402において、フォトリソグラフィによりパターニングした三角形形状マスクを用いて、等方性エッチングによって三角錐形状314を形成する。次にステップS403においては三角錐形状314のひとつの面にAg膜412を製膜し、他の2 面にはAl膜411を製膜する。これは基板を蒸着源に対して傾けた状態で配置することによって容易に可能である。更にステップS404において全体にAl 膜413を製膜してから、ステップS405において先端を切断して光学的開口206を作製する。実施の形態1でも説明したように、光学的開口206の形成は、FIBによる先端の切断によっても可能であるし、先端に機械的な圧力を加えることによっても可能である。
(実施の形態4)
図15は、本発明の実施の形態4に係る近視野光プローブ1000の概略図である。近視野光プローブ1000は、チップ701、レバー702、基部703、遮光膜704、および微小開口705からなる。錐状のチップ701および薄板の片持ち梁であるレバー702は、一体に形成されており、チップ701は、基部703から真っ直ぐに突き出たレバー702上に基部703とは反対側の面に形成される。遮光膜704は、レバー702の基部703とは反対の面とチップ701の表面に形成される。レバー702の基部703とは反対の面すべてに遮光膜704を形成する必要は無いが、その方が好ましい。
【0049】
微小開口705は、チップ701の遮光膜704が無い部分である。チップ701の頂点は、遮光膜704の端面よりも突出している。また、チップ701の先端は、遮光膜704の端面と同一平面内に位置していても良い。近視野光プローブ1000に外部から入射光999を導入することによって、近視野光プローブ1000は、微小開口705から近視野光を照射することができる。また、微小開口705によって、試料の光情報を検出することも可能である。さらに、微小開口705からの近視野光照射と微小開口での試料の光情報の検出を同時に行うことも可能である。
【0050】
チップ701およびレバー702は、走査型近視野顕微鏡で用いられる入射光999の波長に対して透明な材料で形成される。入射光999の波長が可視領域の場合、二酸化珪素やダイヤモンドなどの誘電体や、ポリイミドをはじめとするポリマーがある。また、入射光999の波長が紫外領域では、チップ701およびレバー702の材料として、二フッ化マグネシウムや二酸化珪素などの誘電体がある。また、入射光999の波長が赤外領域の場合、チップ701およびレバー702の材料として、ジンクセレンやシリコンなどがある。基部703の材料は、シリコンや二酸化珪素などの誘電体や、アルミニウムやチタンなどの金属である。遮光膜704の材料は、アルミニウムや金などの入射光999、または/および、微小開口705によって検出した光の波長に対する遮光率の高い材料で形成される。チップ701の高さは、数ミクロン〜10数ミクロンである。レバー702の長さは、数10ミクロンから数1000ミクロンである。また、レバー702の厚みは、数ミクロン程度である。遮光膜704の厚さは、遮光率によって異なるが、数10nmから数100nmである。図15中下面からみた微小開口705の大きさおよび形状は、直径が入射光999、または/および、微小開口705によって検出した光の波長以下の円に内接する三角形である。
【0051】
このとき、入射光999はレーザ光源からの直線偏光であり、その偏光方向と、微小開口705の輪郭三角形の一辺が略直交している。
【0052】
図16は、本発明の実施の形態4に関わる近視野光プローブ1000を搭載した走査型プローブ顕微鏡20000を示す構成図である。この走査型プローブ顕微鏡20000は、図15に示した近視野光プローブ1000と、光情報測定用の光源601と、光源601の前面に配置したレンズ602と、レンズ602で集光した光を近視野光プローブ1000まで伝搬する光ファイバ603と、試料610の下方に配置されチップの先端で発生した伝搬光を反射するプリズム611と、プリズム611で反射した伝搬光を集光するレンズ614と、集光した伝搬光を受光する光検出部609と、を備えている。光ファイバ603は入射光の偏光方向を保存する偏光保存型のファイバである。
【0053】
また、近視野光プローブ1000の上方には、レーザ光を出力するレーザ発振器604と、図15に示した近視野光プローブ1000のレバー702と遮光膜704の界面で反射したレーザ光を反射するミラー605と、反射したレーザ光を受光して光電変換する上下2分割した光電変換部606と、を備えている。さらに、試料610およびプリズム611をXYZ方向に移動制御する粗動機構613および微動機構612と、これら粗動機構613および微動機構612を駆動するサーボ機構607と、装置全体の制御をするコンピュータ608とを備えている。
【0054】
つぎに、この走査型プローブ顕微鏡20000の動作について説明する。レーザ発振器604から放出したレーザ光は、図15に示した近視野光プローブ1000のレバー702と遮光膜704の界面で反射する。近視野光プローブ1000のレバー702は微小開口705と試料610の表面が接近すると、試料610との間の引力または斥力によってたわむ。このため、反射したレーザ光の光路が変化するため、これを光電変換部606で検出する。
【0055】
光電変換部606により検出した信号は、サーボ機構607に送られる。サーボ機構607は、光電変換部606で検出した信号に基づいて、試料610に対する近視野光プローブ1000のアプローチや、表面の観察の際に、近視野光プローブ1000のたわみが一定となるように、粗動機構613および微動機構612を制御する。コンピュータ608は、サーボ機構607の制御信号から表面形状の情報を受け取る。また、光源601から放出された光は、レンズ602により集光され、光ファイバ603に至る。光ファイバ603内を伝搬した光は、偏光が保存されたまま近視野光プローブ1000のチップ701にレバー702を通して導入され、微小開口705から試料610に照射される。一方、プリズム611により反射した試料610の光学的情報は、レンズ614により集光され、光検出部609に導入される。光検出部609の信号は、コンピュータ608のアナログ入力インタフェースを介して取得され、コンピュータ608により光学的情報として検出される。なお、チップ701への光入射方法は、光ファイバ603を用いずに、光源601から放出された光をレンズによって直接チップ701上へ集光して入射光を導入する方法でも良い。また、図16では、近視野光プローブ1000に光を入射し、微小開口705から試料に近視野光を照射するイルミネーションモードについて説明したが、試料610の表面に発生した近視野光を微小開口705によって検出するコレクションモードにおいても、近視野光プローブ1000を用いることができる。また、イルミネーションモードとコレクションモードを同時に行う観察方法においても、近視野光プローブ1000を用いることができる。
【0056】
さらに、図16では、試料610を透過した光を検出する透過モードについて説明したが、試料610で反射した光を検出する反射モードにおいても近視野光プローブ1000を用いることができる。また、近視野光プローブ1000をバイモルフなどで加振することによって、レバー702を振動させ、チップ701と試料610との間に働く斥力や引力によって生じる、レバー702の振幅の変化や、レバー702の振動の周波数変化を一定に保つようにチップ701と試料610との距離を制御するダイナミックフォースモードでも近視野光プローブ1000を用いる事ができる。
【0057】
このような構成の走査型プローブ顕微鏡を用いて試料表面の観察を行うと、実施の形態1で説明したものと同様の現象が起きる。すなわち、入射光の偏光方向と微小開口の一辺が略直交するために、その一辺近傍に近視野光が強く局在する。これにより、試料表面の微細な領域と強い相互作用が起き、高解像度で高S/Nでの観察が可能となった。微小開口は実施の形態1で説明したような略三角形、あるいは図10(a),(b)に示したような形状でも同様の効果が得られる。主要な点は、微小開口の輪郭のうち、入射光の偏光方向と略直交する部分が一部分に局在しているという点である。
【0058】
図17から図18は、本発明の実施の形態4の近視野光プローブ1000の製造方法を説明した図である。図17(a)は、基板802上にチップ701およびレバー702となる透明体801を堆積した状態を示している。なお、以下では、図の上部をおもて面、下部を裏面と呼ぶ。裏面にマスク材803を有する基板802上に、プラズマCVDやスパッタなどによって、透明体801を堆積する。透明体801の堆積量は、チップ701の高さとレバー702の厚みの和程度、あるいは若干厚めである。
【0059】
透明体801を堆積した後、図17(b)に示すように、透明体801上に、チップ用マスク804をフォトリソグラフィーをはじめとする方法で形成する。チップ用マスク804は、フォトレジストやポリイミドなどの誘電体である。チップ用マスク804を形成した後、ウエットエッチングやドライエッチングなどの等方性エッチングによって、図17(c)に示すようにチップ701を形成する。
【0060】
チップ701を形成した後、図18(a)に示すように、透明体801上にレバー用マスク805を形成する。レバー用マスク805を形成した後、図18(b)に示すように、リアクティブイオンエッチング(RIE)をはじめとする異方性ドライエッチングによって、レバー702を形成する。
【0061】
レバー702を形成した後、フォトリソグラフィーによって、マスク材803をパターニングする。その後、水酸化テトラメチルアンモニウム(TMAH)や水酸化カリウム(KOH)による結晶異方性エッチングや、異方性ドライエッチングなどによって、図18(c)に示すように、レバー702のリリースと基部703の形成を行う。最後に、遮光膜704をおもて面に堆積し、遮光膜704の不要な部分を集束イオンビームや観察時にチップ701を試料に押しつけることによって取り除き、図18(d)に示すように、微小開口705を形成し、近視野光プローブ1000を得ることができる。
(実施の形態5)
図19は本発明の実施の形態5に係る近視野光発生素子の微小開口の形状を示す。入射光偏光222はx方向に平行である。微小開口の輪郭のうち、入射光偏光222に対して略直交する部分の長さ901は、開口の縦幅902よりも短い。近視野光分布903は前述のように、入射光偏光222に対して略直交する部分に局在する。この実施の形態では微小開口の縦幅902よりも近視野光分布903が縦方向に狭く局在している。このような形状の微小開口と入射光偏光の組み合わせによって、図中左右方向のみならず、縦方向にも近視野光を局在させることができる。
【0062】
この近視野光発生素子を光記録装置のヘッドとして利用すると、線方向の密度のみならずトラック方向の記録密度も向上させることができる。また、この近視野光発生素子を近視野光顕微鏡のプローブとして利用すると、試料表面内のどの方向においても高い分解能を持つ近視野光顕微鏡を実現できる。
(実施の形態6)
図20は本発明の実施の形態6に係る近視野光発生素子をヘッドとして利用した近視野光記録装置の構成を説明した図である。実施の形態1で説明した図1と類似の構成であり、同一部分には同一符号を付け、説明を省略する。図1との相違は、散乱光を検出する部分に偏光板911が挿入されている点である。近視野光ヘッド104と記録媒体105との近視野光を介した相互作用によって発生した散乱光から、偏光板911により特定の偏光成分のみを取り出して受光ヘッド106において受光される。本発明においては近視野光ヘッド104に対して偏光方向を制御して光を入射させるが、記録媒体105との相互作用によって偏光が乱される。この乱れは記録媒体105表面の微細な光学的物性の相違であるデータマークに依存するため、これを選択的に検出することによって高コントラストな信号再生が可能となる。これにより、より高密度な記録再生が可能となる。
【0063】
このように偏光板を検出側に設けることは、図示は略すが近視野光発生素子を近視野光顕微鏡のプローブとして利用した場合にも同様の効果を奏する。そして、顕微鏡の場合には高分解能化が可能となる。
(実施の形態7)
図21は本発明の実施の形態7に係る近視野光発生素子を、近視野光顕微鏡のプローブに利用したものを説明した図である。図21(a)は側面図、(b)は開口の平面図である。図21(a)では、カンチレバー921がその先端付近にSiO2からなる三角錐922を持ち、その先端がカンチレバー921に対して平行に切断されることによって光学的微小開口が形成されている。(b)において、入射光は図中左右方向の直線偏光であり、その偏光方向928に略垂直な辺924は、試料表面923からの高さ925が、頂点927の試料表面923からの高さ926よりも低くなっている。前述のように本発明においては、近視野光は入射光偏光928に略垂直な辺924に局在するが、本実施の形態においてはこの部分が試料に近接する構成になっている。これによって分解能が向上し、信号強度、S/N比も向上する。
(実施の形態8)
図22は本発明の実施の形態8に係る近視野光発生素子を、近視野光顕微鏡のプローブに利用したものを説明した図である。本実施の形態の構成は、実施の形態7とほぼ同じであるが、相違は光学的微小開口がカンチレバー921に対して90度回転した配置になっている点と、入射光の偏光方向928が図中縦方向になっている点である。偏光方向928に略垂直な辺931は、試料表面923に対して傾斜する。この辺931の左端932の試料表面923からの高さ925は、右端933の高さ926よりも低い。前述のように近視野光は、入射光偏光928に垂直な辺931付近に局在するが、この近視野光分布のうち、左端932が右端933よりも試料表面923に対して、より近接している。近視野光は試料表面923に向けて空間的に指数関数的に減衰するため、右端933付近の近視野光が試料表面923と強く相互作用することは無い。左端932付近の近視野光のみが試料表面923と相互作用する。従来、光学的開口のサイズによって分解能が決定していたが、本発明により、開口のうちの一辺の長さによって分解能が決定し、さらに本実施の形態においてはその一辺のうちの一端によって分解能が決定する。このため、さらなる高分解能化が可能となる。
【0064】
実施の形態7,8は同様の構造が、近視野光記録装置のヘッドにも利用可能である。 図23は本実施の形態の近視野光ヘッドの製造方法を示す。実施の形態3において図14で説明した製造方法と類似であり、同一部は同一符号を付けた。ステップS401において、400ミクロン厚のSi基板312の上面にプラズマCVD法によって15ミクロン厚のSiO2層311を作製する。ステップS402において、フォトリソグラフィによりパターニングした三角形形状マスクを用いて、等方性エッチングによって三角錐形状314を形成する。次にステップS1003においては三角錐形状314にAl膜1001を製膜する。ステップS1004において、FIBによって三角錐の先端を切断し、開口206を形成する。このとき、基板に対して平行ではなく斜めに切断することにより、実施の形態7,8で説明した形状の開口を作製する。
【0065】
【発明の効果】
以上説明したように、本発明による近視野光発生素子は、入射光の波長以下の大きさを持つ光学的微小開口に、入射光を照射することによって、近視野光を発生させる近視野光発生素子において、微小開口の輪郭のうち一ヶ所が、入射光の偏光方向と略直交していることを特徴としている。
【0066】
これにより、微小開口の輪郭のうち、入射光の偏光方向と略直交する部分のみが大きな強度の近視野光を発生させ、高い解像度と高い光効率が両立できる、という効果を奏する。
【0067】
また、近視野光発生素子において、輪郭が多角形であり、その一辺が偏光方向と略直交することを特徴としている。
【0068】
これにより、単純な形状のマスクを作製するだけで高性能な近視野光ヘッドが安価に製造できる。さらに、開口輪郭のうち強い近視野光を発生させる部分が一ヶ所になり、解像度向上が可能となる、という効果を奏する。
【0069】
また、近視野光発生素子において、輪郭が三角形であり、その一辺が偏光方向と略直交することを特徴としている。
【0070】
これにより、頂点が容易に形成される三角錐形状をもとに微小開口を作製することができ、高い歩留まりで安定した近視野光発生素子を作製することができる、という効果を奏する。
【0071】
また、近視野光発生素子において、微小開口が、光を透過する錐状ティップ先端に形成され、微小開口の周辺部は遮光膜で覆われていることを特徴としている。
【0072】
これにより、リソグラフィで作製可能な構造よりもより微細なサイズの微小開口を作製することができる、という効果を奏する。
【0073】
また、近視野光発生素子において、輪郭の一辺が、入射光によってプラズモンを励起する材質から成ることを特徴としている。
【0074】
これにより、発生する近視野光が微小開口の一辺に強く局在するため、高S/Nで、高密度記録に対応した近視野光発生素子となった、という効果を奏する。
【0075】
また、材質が、金、銀、銅のいずれかを含むことを特徴としている。
【0076】
これにより、容易な製造プロセスによって高性能な近視野光発生素子が製造できる、という効果を奏する。
【0077】
また、輪郭のうちの、偏光方向と略直交している一ヶ所の長さが、開口の偏光と垂直方向の幅よりも短いことを特徴としている。
【0078】
これにより、偏光方向のみならず、それと直交する方向にも高い分解能を持つ近視野光発生素子が実現できる、という効果を奏する。
【0079】
また、光ヘッドと、光源と、記録媒体と、光ヘッドが記録媒体表面を走査する手段と、光源からの入射光を前記光ヘッドへ導く光入射手段と、光ヘッドが記録媒体表面と近視野光を介して相互作用した結果発生した散乱光を検出する光検出手段と、を含む近視野光記録装置において、
光入射手段が入射光の偏光を保持あるいは制御する手段を含み、光ヘッドが上に述べたいずれかに記載の近視野光発生素子であることを特徴とする近視野光記録装置としている。
【0080】
これにより、開口輪郭のうち強い近視野光を発生させる部分が一ヶ所になり、解像度向上が可能となる。また、簡単な方法で安価に高性能な近視野光ヘッドが製造できる。また、データストレージ装置において高密度記録と高転送速度が両立する、という効果を奏する。
【0081】
また、光プローブと、光源と、光源からの入射光を光プローブへ導く光入射手段と、光プローブが試料表面と近視野光を介して相互作用した結果発生した散乱光を検出する光検出手段と、を含む近視野光顕微鏡において、光入射手段が入射光の偏光を保持あるいは制御する手段を含み、光プローブが上述したいずれかに記載の近視野光発生素子であることを特徴とする近視野光顕微鏡としている。
【0082】
これにより、微小開口の輪郭のうち、入射光の偏光方向と略直交する部分のみが大きな強度の近視野光を発生させ、高い解像度と高い光効率が両立できる。顕微鏡の高解像度と高S/N比が実現される。簡単な方法で安価に高性能な近視野光プローブが製造できる、という効果を奏する。
【0083】
また、光検出手段が、偏光光学素子を含むことを特徴としている。
【0084】
これにより、記録媒体あるいは試料表面の微細な光学的物性の分布を、偏光への乱れという形で検出することができ、より高密度な記録装置あるいは高分解能な顕微鏡が実現できる、という効果を奏する。
【0085】
また、微小開口輪郭のうちの、入射光の偏光方向と略直交している一ヶ所が、光プローブにおいて、輪郭の他の部分よりもより先端側に位置していることを特徴としている。
【0086】
これにより、発生する近視野光を試料表面に更に近接させることができ、高分解能な顕微鏡が実現できる、という効果を奏する。
【0087】
また、微小開口輪郭のうちの、入射光の偏光方向と略直交している一ヶ所と、それに対向する部分とを結ぶ線が、光プローブにおいて、光プローブの先端方向と略直交することを特徴としている。
【0088】
これにより、もともと局在化している近視野光のうち、さらに一部のみを利用することができ、更なる高分解能な顕微鏡が実現できる、という効果を奏する。
【図面の簡単な説明】
【図1】本実施の形態1の情報記録再生装置の構成を説明した図である。
【図2】本実施の形態1に係る情報記録再生装置の導波路と近視野光ヘッドについて説明した図である。
【図3】本実施の形態1に係る情報記録再生装置の光ヘッドのうち、底面の微小開口付近を示した図である。
【図4】本実施の形態1にかかる光ヘッドの断面と底面を示した図である。
【図5】本実施の形態1にかかる光ヘッドが、記録媒体表面のデータマークの上方を走査する状態を示した図である。
【図6】(a)は従来の円形微小開口231を、(b)は本発明による三角形微小開口を、(c)は両者の形状とサイズの比較を示す図である。
【図7】図6の微小開口の真下20nmにおける電場エネルギー分布を示す図である。
【図8】図7(a),(b)のそれぞれにおいての線分A−A’上のプロファイルを重ねて表示した図である。
【図9】本実施の形態1に係る情報記録再生装置の光ヘッドの製造方法を示す図である。
【図10】三角形以外の形状の微小開口を示す図である。
【図11】本発明の実施の形態2に係る情報記録再生装置の構成図である。
【図12】本発明の実施の形態3に係る情報記録再生装置に使われる近視野光ヘッドのうち、底面の微小開口付近を示した図である。
【図13】図12に示した微小開口の平面図である。
【図14】近視野光ヘッドの製造方法を示す図である。
【図15】本発明の実施の形態4に係る近視野光プローブの概略図である。
【図16】本発明の実施の形態4に関わる近視野光プローブを搭載した走査型プローブ顕微鏡を示す構成図である。
【図17】本発明の実施の形態4の近視野光プローブ1000の製造方法を説明した図である。
【図18】本発明の実施の形態4の近視野光プローブ1000の製造方法を説明した図である。
【図19】本発明の実施の形態5に係る近視野光プローブの微小開口の形状を示す図である。
【図20】本発明の実施の形態6に係る近視野光発生素子をヘッドとして利用した近視野光記録装置の構成を説明した図である。
【図21】本発明の実施の形態7に係る近視野光発生素子を、近視野光顕微鏡のプローブに利用したものを説明した図である。
【図22】本発明の実施の形態8に係る近視野光発生素子を、近視野光顕微鏡のプローブに利用したものを説明した図である。
【図23】本実施の形態の近視野光ヘッドの製造方法を示す図である。
【符号の説明】
101 レーザー
102 レンズ
103 光導波路
104 近視野光ヘッド
105 記録媒体
106 受光ヘッド
107 サスペンションアーム
108 フレクシャー
109 サスペンションアーム
110 回路系
111 開口基板
112 記録媒体回転方向
201 コア
202 クラッド
203 ミラー面
204 エアベアリングサーフェス
205 マイクロレンズ
206 微小開口
210 ミラー基板
211 三角錐
221 データマーク
222 偏光方向
231 円形微小開口
232 三角形微小開口
241 円形微小開口の場合のエネルギープロファイル
242 三角形微小開口の場合のエネルギープロファイル
251 偏光に対して垂直な部分
252 偏光に対して垂直な部分
301 平行光
302 ミラー
311 SiO2層
312 Si基板
313 SiO2層
314 三角錐形状
317 Al膜
411 Al遮光膜
412 Ag膜
413 Al膜
601 光源
602 レンズ
603 光ファイバ
604 レーザ発振器
605 ミラー
606 光電変換部
607 サーボ機構
608 コンピュータ
609 光検出部
610 試料
611 プリズム
612 微動機構
613 粗動機構
614 レンズ
701 チップ
702 レバー
703 基部
704 遮光膜
705 微小開口
801 透明体
802 基板
803 マスク材
804 チップ用マスク
805 レバー用マスク
901 入射光偏光222に対して略直交する部分の長さ
902 開口の縦幅
903 近視野光分布
911 偏光板
921 カンチレバー
922 SiO2からなる三角錐
923 試料表面
924 入射光偏光928に略垂直な辺
925 試料表面923からの高さ
926 試料表面923からの高さ
927 頂点
928 偏光方向
931 偏光方向928に略垂直な辺
932 左端
933 右端
999 入射光
1000 近視野光プローブ
1001 Al膜
20000 走査型プローブ顕微鏡
S301〜S304,S1003,S1004 光ヘッドの製造方法ステップ

Claims (14)

  1. 入射光の波長以下の大きさを持つ光学的微小開口を有し、前記微小開口に、前記入射光を照射することによって、近視野光を発生させる近視野光発生素子において、前記微小開口の輪郭が三角形であり、その一辺のみが前記入射光の偏光方向と略直交していることを特徴とする近視野光発生素子。
  2. 前記微小開口が、光を透過する錐状ティップ先端に形成され、前記微小開口の周辺部は遮光膜で覆われていることを特徴とする請求項に記載の近視野光発生素子。
  3. 前記輪郭の一辺が、前記入射光によってプラズモンを励起する材質から成ることを特徴とする請求項1又は2のいずれかに記載の近視野光発生素子。
  4. 前記材質が、金、銀、銅のいずれかを含むことを特徴とする請求項に記載の近視野光発生素子。
  5. 入射光の波長以下の大きさを持つ光学的微小開口を有し、前記微小開口に、前記入射光を照射することによって、近視野光を発生させる近視野光発生素子において、
    前記微小開口の輪郭のうち一ヶ所のみは、前記入射光の偏光方向と略直交しており、
    前記輪郭は、第1辺と複数の第2辺とを含み、
    前記第1辺は、前記第1辺の一部分において前記偏光方向と略直交する直線部分を有し、前記直線部分の長さは、前記偏光方向に対して略垂直方向の前記輪郭の最長径の長さよりも短いことを特徴とする近視野光発生素子。
  6. 前記第1辺は、円弧状に形成されていることを特徴とする請求項に記載の近視野光発生素子。
  7. 前記1辺は、前記入射光によってプラズモンを励起する材質から成ることを特徴とする請求項に記載の近視野光発生素子。
  8. 光ヘッドと、
    光源と、
    記録媒体と、
    前記光ヘッドが前記記録媒体表面を走査する手段と、
    前記光源からの入射光を前記光ヘッドへ導く光入射手段と、
    前記光ヘッドが前記記録媒体表面と近視野光を介して相互作用した結果発生した散乱光を検出する光検出手段と、を含む近視野光記録装置において、
    前記光入射手段が前記入射光の偏光を保持あるいは制御する手段を含み、前記光ヘッドが請求項1からのいずれかに記載の近視野光発生素子であることを特徴とする近視野光記録装置。
  9. 前記微小開口の輪郭は、第1辺と複数の第2辺とを含み、
    前記第1辺は、前記記録媒体からの高さが前記第2辺の高さよりも低い位置に配置され、媒体に対して略平行に配置されることを特徴とする請求項に記載の近視野光発生素子。
  10. 光プローブと、
    光源と、
    前記光源からの入射光を前記光プローブへ導く光入射手段と、
    前記光プローブが試料表面と近視野光を介して相互作用した結果発生した散乱光を検出する光検出手段と、を含む近視野光顕微鏡において、
    前記光入射手段が前記入射光の偏光を保持あるいは制御する手段を含み、前記光プローブが請求項1からのいずれかに記載の近視野光発生素子であることを特徴とする近視野光顕微鏡。
  11. 前記光検出手段が、偏光光学素子を含むことを特徴とする請求項に記載の近視野光記録装置。
  12. 前記光検出手段が、偏光光学素子を含むことを特徴とする請求項10に記載の近視野光顕微鏡。
  13. 前記微小開口輪郭のうちの、前記入射光の偏光方向と略直交している一ヶ所が、前記光プローブにおいて、前記輪郭の他の部分よりもより先端側に位置していることを特徴とする請求項10あるいは12記載の近視野光顕微鏡。
  14. 前記微小開口輪郭のうちの、前記入射光の偏光方向と略直交している一ヶ所と、それに対向する部分とを結ぶ線が、前記光プローブにおいて、前記光プローブの先端方向と略直交することを特徴とする請求項10あるいは12に記載の近視野光顕微鏡。
JP2002092276A 2001-04-17 2002-03-28 近視野光発生素子、近視野光記録装置、および近視野光顕微鏡 Expired - Fee Related JP4024570B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002092276A JP4024570B2 (ja) 2001-04-17 2002-03-28 近視野光発生素子、近視野光記録装置、および近視野光顕微鏡
EP02252636A EP1251383B1 (en) 2001-04-17 2002-04-15 Near-field light-generating element, near-field optical recording device, and near-field optical microscope
US10/124,355 US7034277B2 (en) 2001-04-17 2002-04-16 Near-field light-generating element for producing localized near-field light, near-field optical recording device, and near-field optical microscope

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-118543 2001-04-17
JP2001118543 2001-04-17
JP2002092276A JP4024570B2 (ja) 2001-04-17 2002-03-28 近視野光発生素子、近視野光記録装置、および近視野光顕微鏡

Publications (2)

Publication Number Publication Date
JP2003004622A JP2003004622A (ja) 2003-01-08
JP4024570B2 true JP4024570B2 (ja) 2007-12-19

Family

ID=26613710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092276A Expired - Fee Related JP4024570B2 (ja) 2001-04-17 2002-03-28 近視野光発生素子、近視野光記録装置、および近視野光顕微鏡

Country Status (3)

Country Link
US (1) US7034277B2 (ja)
EP (1) EP1251383B1 (ja)
JP (1) JP4024570B2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028536A1 (fr) * 1998-11-09 2000-05-18 Seiko Instruments Inc. Tete optique a champ proche et procede de production associe
JP3793430B2 (ja) * 2001-07-18 2006-07-05 株式会社日立製作所 近接場光を用いた光学装置
JP2011090001A (ja) * 2005-04-26 2011-05-06 Seiko Instruments Inc 近視野光発生素子の製造方法
JP4787557B2 (ja) * 2005-04-26 2011-10-05 セイコーインスツル株式会社 近視野光発生素子の製造方法
JP2007109269A (ja) * 2005-10-11 2007-04-26 Seiko Instruments Inc 近接場光利用ヘッド
US7773342B2 (en) * 2006-01-30 2010-08-10 Tdk Corporation Thin-film magnetic head having near-field-light-generating portion with trapezoidal end
JP5278887B2 (ja) * 2006-11-20 2013-09-04 セイコーインスツル株式会社 近接場光ヘッド及び情報記録再生装置
JP2009004024A (ja) * 2007-06-21 2009-01-08 Seiko Instruments Inc 近接場光ヘッド及び情報記録再生装置
JP5506387B2 (ja) * 2007-10-04 2014-05-28 セイコーインスツル株式会社 近接場光ヘッド及び情報記録再生装置
JP4947794B2 (ja) * 2007-11-21 2012-06-06 セイコーインスツル株式会社 情報記録再生装置
KR100989516B1 (ko) * 2008-07-01 2010-10-25 주식회사 디에스엘시디 발광다이오드 패키지 및 이를 이용하는 백라이트 유닛
US7936531B2 (en) 2008-11-07 2011-05-03 Tdk Corporation Thermally assisted magnetic head having an asymmetric plasmon antenna and manufacturing method thereof
JP4593666B2 (ja) * 2008-12-25 2010-12-08 セイコーインスツル株式会社 近視野光発生素子、近視野光記録装置、および近視野光顕微鏡
US8670295B1 (en) 2010-12-20 2014-03-11 Western Digital (Fremont), Llc Method and system for optically coupling a laser with a transducer in an energy assisted magnetic recording disk drive
CN103858015A (zh) * 2011-05-16 2014-06-11 丹麦技术大学 用于发射电磁辐射的微装置
US8749790B1 (en) 2011-12-08 2014-06-10 Western Digital (Fremont), Llc Structure and method to measure waveguide power absorption by surface plasmon element
US8753903B1 (en) * 2012-05-22 2014-06-17 Western Digital (Fremont), Llc Methods and apparatuses for performing wafer level characterization of a plasmon element
US9441938B1 (en) 2013-10-08 2016-09-13 Western Digital (Fremont), Llc Test structures for measuring near field transducer disc length
JP2016161548A (ja) * 2015-03-05 2016-09-05 国立大学法人京都大学 探針の製造方法及び探針

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288997A (en) * 1990-11-19 1994-02-22 At&T Bell Laboratories Manufacturing method, including near-field optical microscopic examination of a magnetic bit pattern
US5859364A (en) * 1995-06-05 1999-01-12 Olympus Optical Co., Ltd. Scanning probe microscope
US5789742A (en) * 1996-10-28 1998-08-04 Nec Research Institute, Inc. Near-field scanning optical microscope probe exhibiting resonant plasmon excitation
JPH11265520A (ja) * 1998-03-17 1999-09-28 Hitachi Ltd 近接場光ヘッド、近接場光ヘッドの加工方法および光記録再生装置
JP4250257B2 (ja) * 1999-05-14 2009-04-08 キヤノン株式会社 半導体近接場光源、及びその製造方法
US6614742B2 (en) * 1999-12-14 2003-09-02 Fuji Xerox, Ltd. Optical head, magneto-optical head, disk apparatus and manufacturing method of optical head
JP3793430B2 (ja) * 2001-07-18 2006-07-05 株式会社日立製作所 近接場光を用いた光学装置

Also Published As

Publication number Publication date
US7034277B2 (en) 2006-04-25
JP2003004622A (ja) 2003-01-08
US20020166957A1 (en) 2002-11-14
EP1251383B1 (en) 2012-08-22
EP1251383A3 (en) 2004-06-30
EP1251383A2 (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP4024570B2 (ja) 近視野光発生素子、近視野光記録装置、および近視野光顕微鏡
JP4020233B2 (ja) 近視野光ヘッドとその製造方法
JP4094229B2 (ja) 近視野光ヘッドおよびその製造方法
JP3862845B2 (ja) 近接場用光プローブ
JP4184570B2 (ja) 情報記録再生装置
JP4060150B2 (ja) マイクロ集積型近接場光記録ヘッド及びこれを利用した光記録装置
JP4267834B2 (ja) 情報記録再生装置
JP4421742B2 (ja) 光ヘッド
JP4601867B2 (ja) 近視野光ヘッド
JP2006053978A (ja) 近視野光ヘッドおよび該近視野光ヘッドを用いた情報再生装置
JP4260645B2 (ja) 近視野光ヘッドの製造方法
JP4610855B2 (ja) 近視野光発生素子、近視野光記録装置、および近視野光顕微鏡
JP4137718B2 (ja) 近視野光ヘッドおよびその製造方法
JP4593666B2 (ja) 近視野光発生素子、近視野光記録装置、および近視野光顕微鏡
JP4628454B2 (ja) 記録媒体および光情報記録再生装置
JP4087034B2 (ja) 近視野光デバイスとその製造方法
JP4162317B2 (ja) 近視野光メモリヘッド
JP4201232B2 (ja) 記録媒体および光情報記録再生装置
JP3737347B2 (ja) 光プローブ素子および光プローブ素子を用いた記録再生装置
JP4286473B2 (ja) 近視野光ヘッド
JP2001126282A (ja) 光情報記録再生装置
JP2000285502A (ja) 近視野光ヘッド
JP2011018444A (ja) 記録媒体および光情報記録再生装置
JP2003099968A (ja) 光ヘッド

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071003

R150 Certificate of patent or registration of utility model

Ref document number: 4024570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees