JP4017772B2 - Continuous heat treatment method for acrylic fiber bundles - Google Patents

Continuous heat treatment method for acrylic fiber bundles Download PDF

Info

Publication number
JP4017772B2
JP4017772B2 JP33609598A JP33609598A JP4017772B2 JP 4017772 B2 JP4017772 B2 JP 4017772B2 JP 33609598 A JP33609598 A JP 33609598A JP 33609598 A JP33609598 A JP 33609598A JP 4017772 B2 JP4017772 B2 JP 4017772B2
Authority
JP
Japan
Prior art keywords
fiber bundle
furnace
flameproofing
heat treatment
acrylic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33609598A
Other languages
Japanese (ja)
Other versions
JP2000160435A (en
Inventor
俊彦 西田
和茂 三原
英彦 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP33609598A priority Critical patent/JP4017772B2/en
Publication of JP2000160435A publication Critical patent/JP2000160435A/en
Application granted granted Critical
Publication of JP4017772B2 publication Critical patent/JP4017772B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、品質の高い耐炎化繊維を効率よく生産することのできるアクリル系繊維束の連続熱処理方法に関する。
【0002】
【従来の技術】
炭素繊維は他の繊維に比較して優れた比強度、及び比弾性率を具備し、又金属に比較して優れた比抵抗、及び高い耐薬品性を有しており、これらの優れた各種の特性によって樹脂との複合材料の補強用繊維として使用されており、工業用途、スポーツ用途、航空宇宙分野用途等に幅広く利用されている。
【0003】
炭素繊維は、一般的にはポリアクリロニトリル、レーヨン、ピッチ類等の有機繊維を酸化性雰囲気中にて200℃以上で熱処理する耐炎化工程によって耐炎化繊維にした後、続いてこの耐炎化繊維を不活性雰囲気中にて300℃以上で熱処理する炭素化工程を実施することによって得られるが、炭素繊維を得るための工程中の処理時間の最も長い耐炎化工程において酸化反応による激しい発熱を伴うために、該耐炎化工程は通常除熱サイドでの運転条件で行なわれる。
【0004】
炭素繊維の生産性の向上のためには、その製造工程中の処理時間の最も長い耐炎化工程の生産性の向上が必要であり、例えば耐炎化工程での反応時間の短縮により耐炎化工程の生産性を向上させる手段として、20vol.%以上の酸素を含有する酸化性雰囲気中にて耐炎化工程を実施する法が、特開平2−154013号公報に説明されている。
【0005】
しかしながら、上記の特開平2−154013号公報には、品質のよい炭素繊維の生産性を向上させるために、耐炎化繊維にする耐炎化工程での生産性の向上を達成すると共に、単繊維処理斑の小さい処理繊維束からなる耐炎化繊維を炭素化工程に供給することができるようするのに必要な耐炎化工程でのパラメータ、つまり耐炎化炉内の被熱処理繊維束の密度、耐炎化炉内の風速、耐炎化工程での被熱処理繊維束の工程張力等の適正化を図ることについては言及されていない。
【0006】
又、耐炎化工程の生産性の向上を図る方法としては、耐炎化炉内への被熱処理繊維束の投入量を増大させ、耐炎化炉を高容積密度にして被熱処理繊維束を熱処理する、つまり耐炎化炉の底面に対して平行する面で隣接する繊維束同士の間の距離を小さくして耐炎化工程を実施するか、或いは太い被熱処理繊維束を供給して耐炎化工程を実施する等の方法が考えられる。
【0007】
しかるに、隣接する繊維束同士の間の距離を小さくすると、耐炎化炉内での酸化反応に伴う発熱量の増大によって炉内の温度制御が困難になるだけでなく、除熱不良により、有害ガスの発生につながるスモークも生じ易くなる。又、隣接する繊維束同士が発熱の影響を相互に受けることになるために、熱処理温度を上げることができなく、結果として生産性の向上を図ることができない。更に、耐炎化炉の底面に対して平行する面で隣接する繊維束同士の接触により単糸切れが発生し、これが炭素繊維の品質の低下を招くことになる。
【0008】
又太い被熱処理繊維束を供給して耐炎化工程を実施する場合でも、被熱処理繊維束を単に太くするだけでは、耐炎化炉内での除熱不良がさらに顕著になり、有害ガスの発生につながるスモーク発生の要因となるだけでなく、熱処理温度を低くせざるを得ないために、結果として生産性の向上を図ることができない。
【0009】
仮に、被熱処理繊維束を太くし、しかも熱処理時間の短縮を試みると、スモーク発生温度付近での運転を余儀なくされるために、非常に厳しい温度管理が要求されるだけでなく、単繊維処理斑の大きな耐炎化繊維になるために、これが炭素繊維の品質低下を招くことになる。
【0010】
【発明が解決しようとする課題】
従って本発明が解決しようとする課題は、品質の高い炭素繊維を高生産し得ることにつながるアクリル系繊維束の連続熱処理方法、つまり品質の良い耐炎化繊維を効率よく生産することのできるアクリル系繊維束の連続熱処理方法を提供することにある。
【0011】
品質のよい炭素繊維の生産性を向上させるためには、耐炎化繊維にする耐炎化工程での生産性の向上を達成すると共に、単繊維処理斑の小さい処理繊維束からなる耐炎化繊維を炭素化工程に供給することであり、本発明が解決しようとする課題はそのために必要な耐炎化工程でのパラメータである耐炎化炉内の被熱処理繊維束の密度、耐炎化炉内の風速、耐炎化工程での被熱処理繊維束の工程張力等の適正化を図ったアクリル系繊維束の連続熱処理方法を提供することである。
【0012】
【課題を解決するための手段】
上記の課題は、以下に記載する構成による本発明のアクリル系繊維束の連続熱処理方法によって解決される。
すなわち本第1の発明は、アクリル系繊維束の多数本を引き揃えた繊維束シート状物を、熱風循環型対流加熱炉からなる耐炎化炉内に走行させながら熱処理することによって耐炎化繊維にするアクリル系繊維束の連続熱処理方法において、耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率を36〜65%にすると共に、耐炎化炉内の風向きを繊維束シート状物に対して垂直にし、かつその風速を0.3〜1.5m/secにし、しかも耐炎化炉内を走行するアクリル系繊維束の工程張力を0.5〜2.5g/texにするアクリル系繊維束の連続熱処理方法からなる。
【0013】
上記の構成を備えてなる本第1の発明のアクリル系繊維束の連続熱処理方法においては、被熱処理繊維束の走行路の規制を溝ローラーによって行なうことが好ましい。
【0014】
又本第2の発明は、アクリル系繊維束の多数本を引き揃えた繊維束シート状物を、熱風循環型対流加熱炉からなる耐炎化炉内に走行させながら熱処理することによって耐炎化繊維にするアクリル系繊維束の連続熱処理方法において、耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率を36〜65%にすると共に、耐炎化炉内の風向きを繊維束シート状物に対して平行にし、かつその風速を1.5〜5m/secにし、しかも耐炎化炉内を走行するアクリル系繊維束の工程張力を0.5〜2.5g/texにするアクリル系繊維束の連続熱処理方法からなる。
【0015】
上記の構成を備えてなる本第2の発明のアクリル系繊維束の連続熱処理方法においては、被熱処理繊維束の走行路の規制を溝ローラーによって行なうことが好ましい。
【0016】
上記の構成による本各発明のアクリル系繊維束の連続熱処理方法において、耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率は、使用する耐炎化炉の有効炉長と有効炉幅との積(=耐炎化炉の底面の有効面積)に対する耐炎化炉内に導入する繊維束シート状物の平面積の比率である。
【0017】
耐炎化炉内に導入する繊維束シート状物の平面積は、耐炎化炉内に繊維束シート状物を導入するときのローラー上で測定した単一の繊維束の巾×耐炎化炉の有効炉長×アクリル系繊維束の本数であり、耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率(%)=(単一のアクリル系繊維束の巾×アクリル系繊維束の本数×100/耐炎化炉の有効炉幅)である。
又、耐炎化炉内の風速は、常温時における測定値である。
【0018】
【発明の実施の形態】
本発明のアクリル系繊維束の連続熱処理方法において被熱処理繊維束として使用するアクリル系繊維束は、アクリロニトリル100%のアクリル繊維、又はアクリロニトリルを90モル%以上含有するアクリル共重合繊維が好適である。アクリル共重合繊維における共重合成分としては、アクリル酸、メタクリル酸、イタコン酸、及びこれらのアルカリ金属塩、アンモニウム金属塩、アクリルアミド、アクリル酸メチル等が好ましいが、被熱処理繊維束としてのアクリル系繊維束の化学的性状、物理的性状、寸法等は特に制限されるものではない。
【0019】
アクリル系繊維束の耐炎化処理を行なう熱風循環型対流加熱炉内を、200℃〜360℃の酸化性雰囲気に維持し、この熱風循環型対流加熱炉内にアクリル系繊維束の多数本を引き揃えた繊維束シート状物を導入し、該シート状物を複数本のローラーを介して複数段に亙って並行状態で走行させながら熱処理することによって耐炎化繊維にする。
【0020】
単一のチャンバーに対する繊維束シート状物の段数は、被熱処理繊維束であるアクリル系繊維束の性状、該アクリル系繊維束に付与すべき熱履歴、加熱炉内の風向き、風量(風速)、熱風温度等によって異なる。なお、整流効果及び安全性確保の面から、各段毎に仕切を入れることもできる。
【0021】
被熱処理繊維束の耐炎化反応を制御するうえでの最も重要なパラメータは、発熱反応により生じる繊維束内の蓄熱の除去であり、過剰蓄熱が生じた場合にはスモークの発生、繊維束切れ、単糸間同士の間の融着などの問題を生じる。
【0022】
つまり、繊維束シート状物を形成している多数本の繊維束の全てに均一な風速と温度を与えることによって前述の問題を回避することができ、工程安定性を向上させることができる。このためには、耐炎化炉内への被熱処理繊維束の投入量を少なくして、発熱反応により生じる繊維束内の蓄熱を無くすると共に、被熱処理繊維束のバタツキによる相互干渉を無くせばよいが、これには工程生産性の犠牲が伴う。
【0023】
しかるに、アクリル系繊維束の多数本を引き揃えた繊維束シート状物を熱風循環型対流加熱炉からなる耐炎化炉内に走行させながら連続熱処理する耐炎化工程を、耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率を36〜65%にすると共に、耐炎化炉内の風向きを繊維束シート状物に対して垂直にし、かつその風速を0.3〜1.5m/secにし、しかも耐炎化炉内を走行するアクリル系繊維束の工程張力を0.5〜2.5g/texにして行なうことにより、品質の良い耐炎化繊維を高い工程生産性の維持の下に得ることができる。
【0024】
又、耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率を36〜65%にすると共に、耐炎化炉内の風向きを繊維束シート状物に対して平行にし、かつその風速を1.5〜5m/secにし、しかも耐炎化炉内を走行するアクリル系繊維束の工程張力を0.5〜2.5g/texにして行なうことにより、品質の良い耐炎化繊維を高い工程生産性の維持の下に得ることができる。
【0025】
なお、耐炎化炉内を走行する繊維束シート状物の面占有率を36%未満にすると、工程安定性はより向上する。しかしながら、耐炎化炉内へのアクリル系繊維束からなる被熱処理繊維束の投入量の減少、及びユーティリティーコストの増大によって工程生産性が著しくダウンし、これによって耐炎化繊維の製造コストが増大し、ひいては炭素繊維の製造コストの増大に繋がる。
【0026】
又、耐炎化炉内を走行する繊維束シート状物の面占有率を65%よりも高くすると、工程安定性が急激に低下し、過剰蓄熱によるスモークの発生、糸切れ、及び単糸同士の間の融着が発生するために、品質の良い耐炎化繊維を得ることが難しくなり、これによって品質のよい炭素繊維が得られなくなり、又歩留まりの低下により工程生産性がダウンする。
【0027】
更に本発明のアクリル系繊維束の連続熱処理方法においては、耐炎化炉として熱風循環型対流加熱炉を使用しており、対流加熱方式によって被熱処理繊維束を加熱しているので、熱風によって被熱処理繊維束であるアクリル系繊維束を加熱して酸化反応及び環化反応を促進させると同時に、被熱処理繊維束の蓄熱の除熱を有効に行なえる。
【0028】
本発明のアクリル系繊維束の連続熱処理方法においては、熱風循環型対流加熱炉からなる耐炎化炉内の風速を、風向きを繊維束シート状物に対して垂直にする場合には、0.3m/sec〜1.5m/secの範囲内にし、又風向きを繊維束シート状物に対して平行にする場合には、1.5m/sec〜5m/secの範囲内にすることが必要である。
【0029】
つまり風向きを被熱処理繊維束であるアクリル系繊維束の多数本を引き揃えた繊維束シート状物に対して垂直にする場合に、その風速を0.3m/sec未満にしたり、或いは風向きを被熱処理繊維束であるアクリル系繊維束の多数本を引き揃えた繊維束シート状物に対して平行にする場合に、その風速を1.5m/sec未満にしたりすると、耐炎化炉内の風による被熱処理繊維束の蓄熱の除熱作用が得られなくなり、除熱不良によるスモークを生じ易くなる。
【0030】
又風向きを被熱処理繊維束であるアクリル系繊維束の多数本を引き揃えた繊維束シート状物に対して垂直にする場合に、その風速が1.5m/secを超えたり、或いは風向きを被熱処理繊維束であるアクリル系繊維束の多数本を引き揃えた繊維束シート状物に対して平行にする場合に、その風速が5m/secを超えたりすると、耐炎化炉内の風による繊維束のバタツキが大きくなり、耐炎化炉の底面に対して平行する面で隣接する繊維束同士の接触による単糸切れを生じ、毛羽の多い耐炎化繊維が得られ易くなる。
【0031】
更に、熱風循環型対流加熱炉からなる耐炎化炉内を走行するアクリル系繊維束の工程張力を0.5g/tex未満にすると、被熱処理繊維束のバタツキによる単糸切れや、耐炎化炉の底面に対して平行する面で隣接する繊維束同士の接触に伴なう単糸同士の間の融着が生じやすくなり、更にローラーで規制した繊維束形状が保持できなくなることがある。又、2.5g/texよりも高くすると、工程張力切れを起こしやすくなるだけでなく、耐炎化炉の出入り口での物理的接触に対する被熱処理繊維束の耐久性が弱くなる。
【0032】
アクリル系繊維束からなる被熱処理繊維束を連続熱処理して耐炎化繊維にする本発明方法において、被熱処理繊維束の走行路の規制やトウ幅の規制を行なうための手段としては、例えばガイドを使用することができ、何らの制限を受けるものではないが、溝ローラーを使用するのが最も好ましい。この溝ローラーの溝の断面形状は、図1に示すような平底型、図2に示すような丸底型、図3に示すような波底型のいずれでもよく、その溝形状や溝ピッチは被熱処理繊維束の総繊度、及びローラーの製作上の問題点を考慮した上で適宜決定される。
【0033】
【実施例】
以下、本発明のアクリル系繊維束の連続熱処理方法の具体的な構成を実施例に基づいて説明する。
なお、各実施例及び比較例において使用した被熱処理繊維束及び耐炎化炉は、下記の通りのものである。
被熱処理繊維束:アクリロニトリル96モル%を含有するアクリル共重合体繊維による単糸テックス0.13のアクリル系繊維束
耐炎化炉:熱風循環型対流加熱炉
【0034】
実施例1
図4及び図5において、有効炉長L1 :10m、有効炉幅L2 :1m、炉内の風向き:繊維束シート状物に対して垂直、炉内温度:230℃、炉内の風速:0.6m/secの耐炎化炉1内に、フィラメント数36,000の被熱処理繊維束Sの120本によって形成される繊維束シート状物2を、3往復半に亙って走行させる連続熱処理を行なうことにより耐炎化繊維3を得た。このときの耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率は43%である。
【0035】
なお、上記のアクリル系繊維束の連続熱処理においては、耐炎化炉1内に導入する1本当たりの被熱処理繊維束Sの幅を、溝ローラー4によって3.6mmに規制し、繊維束S,S同士のピッチ、すなわち耐炎化炉1内に耐炎化炉の底面に対して平行する面で並列させて導入する被熱処理繊維束Sの中心から隣接する被熱処理繊維束Sの中心迄の距離を8.0mmに規制した。又耐炎化炉内を走行するアクリル系繊維束の工程張力を1.4g/tex(1本当たり6kg)にした。
【0036】
上記のアクリル系繊維束の連続熱処理工程中には、暴走反応によるスモークの発生がなく安定した連続運転ができた。又、耐炎化炉内で隣接する繊維束同士の接触による単糸切れ、単糸間の融着、繊維表面の汚染等がなく、繊維束シート状物の幅方向の処理斑や単糸処理斑の少ない耐炎化繊維が得られた。この連続熱処理によるアクリル系繊維の耐炎化密度上昇度は0.06g/cm3 /17min.であった。
【0037】
実施例2
有効炉長:14m、有効炉幅:1m、炉内の風向き:繊維束シート状物に対して垂直、炉内温度:240℃、炉内の風速:1.0m/secの耐炎化炉内に、フィラメント数12,000の被熱処理繊維束の200本からなる繊維束シート状物を通してアクリル系繊維束の連続熱処理を行なうことにより、耐炎化繊維を得た。このときの耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率は40%である。
【0038】
なお、上記のアクリル系繊維束の連続熱処理においては、溝ローラーによって1本当たりの被熱処理繊維束の幅を2.0mm、繊維束同士のピッチを5.0mmに規制し、又耐炎化炉内を走行するアクリル系繊維束の工程張力を0.8g/tex(1本当たり1.2kg)にした。
【0039】
上記のアクリル系繊維束の連続熱処理工程中には、暴走反応によるスモークの発生がなく安定した連続運転ができた。又、隣接する繊維束同士の接触による単糸切れ、単糸間の融着、繊維表面の汚染等がなく、繊維束シート状物の幅方向の処理斑や単糸処理斑の少ない耐炎化繊維が得られた。この連続熱処理によるアクリル系繊維の耐炎化密度上昇度は0.06g/cm3 /15min.であった。
【0040】
実施例3
有効炉長:10m、有効炉幅:1m、炉内の風向き:繊維束シート状物に対して垂直、炉内温度:220℃、炉内の風速:0.5m/secの耐炎化炉内に、フィラメント数72,000の被熱処理繊維束の60本からなる繊維束シート状物を通してアクリル系繊維束の連続熱処理を行なうことにより、耐炎化繊維を得た。このときの耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率は48%である。
【0041】
なお、上記のアクリル系繊維束の連続熱処理においては、溝ローラーによって1本当たりの被熱処理繊維束の幅を8.0mm、繊維束同士のピッチを16.0mmに規制し、又耐炎化炉内を走行するアクリル系繊維束の工程張力を1.4g/tex(1本当たり12kg)にした。
【0042】
上記のアクリル系繊維束の連続熱処理工程中には、暴走反応によるスモークの発生がなく安定した連続運転ができた。又、隣接する繊維束同士の接触による単糸切れ、単糸間の融着、繊維表面の汚染等がなく、繊維束シート状物の幅方向の処理斑や単糸処理斑の少ない耐炎化繊維が得られた。この連続熱処理によるアクリル系繊維の耐炎化密度上昇度は0.06g/cm3 /24min.であった。
【0043】
実施例4
有効炉長:14m、有効炉幅:1.5m、炉内の風向き:繊維束シート状物に対して平行、炉内温度:220℃、炉内の風速:2.8m/secの耐炎化炉内に、フィラメント数72,000の被熱処理繊維束の90本からなる繊維束シート状物を通して、アクリル系繊維束の連続熱処理を行なうことにより耐炎化繊維を得た。このときの耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率は48%である。
【0044】
なお、上記のアクリル系繊維束の連続熱処理においては、溝ローラーによって1本当たりの被熱処理繊維束の幅を8.0mm、繊維束同士のピッチを16.0mmに規制し、又耐炎化炉内を走行するアクリル系繊維束の工程張力を1.0g/tex(1本当たり9kg)にした。
【0045】
上記のアクリル系繊維束の連続熱処理工程中には、暴走反応によるスモークの発生がなく安定した連続運転ができた。又、隣接する繊維束同士の接触による単糸切れ、単糸間の融着、繊維表面の汚染等のない耐炎化繊維が得られた。なお、若干の単糸処理斑が確認されたが、繊維束シート状物の幅方向の処理斑は小さく、十分に満足し得る耐炎化繊維になった。この連続熱処理によるアクリル系繊維の耐炎化密度上昇度は0.06g/cm3 /20min.であった。
【0046】
実施例5
有効炉長:14m、有効炉幅:1.5m、炉内の風向き:繊維束シート状物に対して平行、炉内温度:215℃、炉内の風速:2.8m/secの耐炎化炉内に、フィラメント数72,000の被熱処理繊維束の90本からなる繊維束シート状物を通してアクリル系繊維束の連続熱処理を行なうことにより、耐炎化繊維を得た。このときの耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率は56%である。
【0047】
なお、上記のアクリル系繊維束の連続熱処理においては、平ローラーとコームガイドとによって1本当たりの被熱処理繊維束の幅を10.5mm、繊維束同士のピッチを17.0mmに規制し、又耐炎化炉内を走行するアクリル系繊維束の工程張力を1.4g/tex(1本当たり2kg)にした。
【0048】
上記のアクリル系繊維束の連続熱処理工程中には、暴走反応によるスモークの発生がなく安定した連続運転ができた。又、隣接する繊維束同士の接触による単糸切れ、単糸間の融着、繊維表面の汚染等のない耐炎化繊維が得られた。なお、若干の単糸処理斑が確認されたが、繊維束シート状物の幅方向の処理斑は小さく、十分に満足し得る耐炎化繊維になった。この連続熱処理によるアクリル系繊維の耐炎化密度上昇度は0.06g/cm3 /27min.であった。
【0049】
比較例1
有効炉長:10m、有効炉幅:1m、炉内の風向き:繊維束シート状物に対して垂直、炉内温度:230℃、炉内の風速:0.6m/secの耐炎化炉内に、フィラメント数36,000の被熱処理繊維束の50本からなる繊維束シート状物を通してアクリル系繊維束の連続熱処理を行なった。このときの耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率は30%である。
【0050】
なお、上記のアクリル系繊維束の連続熱処理においては、溝ローラーによって1本当たりの被熱処理繊維束の幅を6.0mm、繊維束同士のピッチを14.0mmに規制し、又耐炎化炉内を走行するアクリル系繊維束の工程張力を1.4g/tex(1本当たり6kg)にした。
【0051】
上記のアクリル系繊維束の連続熱処理工程中には、暴走反応によるスモークの発生がなく安定した連続運転ができた。又、隣接する繊維束同士の接触による単糸切れ、単糸間の融着、繊維表面の汚染等がなく、繊維束シート状物の幅方向の処理斑や単糸処理斑の少ない耐炎化繊維が得られた。この連続熱処理によるアクリル系繊維の耐炎化密度上昇度は0.06g/cm3 /17min.であり、耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率の低下をアクリル系繊維の耐炎化密度上昇度でカバーすることはできなかった。
【0052】
比較例2
有効炉長:10m、有効炉幅:1m、炉内の風向き:繊維束シート状物に対して垂直、炉内温度:230℃、炉内の風速:0.6m/secの耐炎化炉内に、フィラメント数36,000の被熱処理繊維束の120本からなる繊維束シート状物を通してアクリル系繊維束の連続熱処理を行なった。このときの耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率は72%である。
【0053】
なお、上記のアクリル系繊維束の連続熱処理においては、溝ローラーによって1本当たりの被熱処理繊維束の幅を6.0mm、繊維束同士のピッチを8.0mmに規制し、又耐炎化炉内を走行するアクリル系繊維束の工程張力を1.4g/tex(1本当たり6kg)にした。
【0054】
上記のアクリル系繊維束の連続熱処理工程中には、耐炎化炉の底面に対して平行する面で隣接する繊維束同士の接触による単糸切れが多発し、しかも繊維束内の単糸処理斑の多い耐炎化繊維が得られた。この連続熱処理によるアクリル系繊維の耐炎化密度上昇度は0.06g/cm3 /17min.であり、工程安定性が非常に悪かった。
【0055】
比較例3
有効炉長:14m、有効炉幅:1m、炉内の風向き:繊維束シート状物に対して垂直、炉内温度:240℃、炉内の風速:1.0m/secの耐炎化炉内に、フィラメント数12,000の被熱処理繊維束の200本からなる繊維束シート状物を通してアクリル系繊維束の連続熱処理を行なった。このときの耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率は40%である。
【0056】
なお、上記のアクリル系繊維束の連続熱処理においては、溝ローラーによって1本当たりの被熱処理繊維束の幅を2.0mm、繊維束同士のピッチを5.0mmに規制し、又耐炎化炉内を走行するアクリル系繊維束の工程張力を0.3g/tex(1本当たり0.5kg)にした。
【0057】
上記のアクリル系繊維束の連続熱処理工程中に、耐炎化炉の底面に対して平行する面で隣接する繊維束同士の接触による束切れ発生した。この連続熱処理によるアクリル系繊維の耐炎化密度上昇度は0.06g/cm3 /15min.であり、工程安定性が非常に悪かった。
【0058】
比較例4
有効炉長:14m、有効炉幅:1m、炉内の風向き:繊維束シート状物に対して垂直、炉内温度:240℃、炉内の風速:2.0m/secの耐炎化炉内に、フィラメント数12,000の被熱処理繊維束の200本からなる繊維束シート状物を通してアクリル系繊維束の連続熱処理を行なった。このときの耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率は40%である。
【0059】
なお、上記のアクリル系繊維束の連続熱処理においては、溝ローラーによって1本当たりの被熱処理繊維束の幅を2.0mm、繊維束同士のピッチを5.0mmに規制し、又耐炎化炉内を走行するアクリル系繊維束の工程張力を0.3g/tex(1本当たり0.5kg)にした。
【0060】
上記のアクリル系繊維束の連続熱処理工程中には、暴走反応によるスモークの発生はなかったが、耐炎化炉内の風からなる繊維束のバタツキが大きく、耐炎化炉の底面に対して平行する面で隣接する繊維束同士の接触による単糸切れを生じ、毛羽の多い耐炎化繊維が得られた。この連続熱処理によるアクリル系繊維の耐炎化密度上昇度は0.06g/cm3 /15min.であった。
【0061】
比較例5
有効炉長:14m、有効炉幅:1.5m、炉内の風向き:繊維束シート状物に対して平行、炉内温度:215℃、炉内の風速:1.0m/secの耐炎化炉内に、フィラメント数72,000の被熱処理繊維束の90本からなる繊維束シート状物を通してアクリル系繊維束の連続熱処理を行なった。このときの耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率は56%である。
【0062】
なお、上記のアクリル系繊維束の連続熱処理においては、平ローラーとコームガイドとによって1本当たりの被熱処理繊維束の幅を10.5mm、繊維束同士のピッチを17.0mmに規制し、又耐炎化炉内を走行するアクリル系繊維束の工程張力を1.4g/tex(1本当たり2.0kg)にした。
【0063】
上記のアクリル系繊維束の連続熱処理工程中には、除熱不良からなるスモークの発生があった。又、この熱処理によるアクリル系繊維の耐炎化密度上昇度は0.06g/cm3 /27min.であった。
【0064】
以上の実施例及び比較例における耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率、工程生産性、及び得られた耐炎化繊維の目視による性状をまとめて表1に示す。
【0065】
【表1】

Figure 0004017772
【0066】
【発明の効果】
本発明のアクリル系繊維束の連続熱処理方法によれば、品質の良い耐炎化繊維を効率よく生産することができるので、高品質の炭素繊維を高生産することが可能になり、炭素繊維製造のためのコストの低減を図ることができる。
【図面の簡単な説明】
【図1】平底型溝ロールの溝の概略形状を示す切断端面図である。
【図2】丸底型溝ロールの溝の概略形状を示す切断端面図である。
【図3】波底型溝ロールの溝の概略形状を示す切断端面図である。
【図4】耐炎化炉内を走行する繊維束シート状物の状態を示す耐炎化炉の縦断面略示図である。
【図5】図4の耐炎化炉のX−Y線断面略示図である。
【符号の説明】
1・・・・耐炎化炉
2・・・・繊維束シート状物
3・・・・耐炎化繊維
4・・・・溝ローラー
S・・・・被熱処理繊維束
1・・・有効炉長
2・・・有効炉幅[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous heat treatment method for an acrylic fiber bundle capable of efficiently producing high-quality flame-resistant fibers.
[0002]
[Prior art]
Carbon fiber has excellent specific strength and specific elastic modulus compared to other fibers, and has excellent specific resistance and high chemical resistance compared to metal. It is used as a reinforcing fiber for composite materials with resin due to its characteristics, and is widely used in industrial applications, sports applications, aerospace applications and the like.
[0003]
Carbon fibers are generally made into flame-resistant fibers by a flame-resistant process in which organic fibers such as polyacrylonitrile, rayon, and pitches are heat-treated at 200 ° C. or higher in an oxidizing atmosphere. It is obtained by carrying out a carbonization process in which heat treatment is performed at 300 ° C. or higher in an inert atmosphere, but it involves intense heat generation due to an oxidation reaction in the flameproofing process having the longest processing time in the process for obtaining carbon fibers. In addition, the flameproofing step is usually performed under operating conditions on the heat removal side.
[0004]
In order to improve the productivity of carbon fiber, it is necessary to improve the productivity of the flameproofing process with the longest processing time in the manufacturing process, for example, by reducing the reaction time in the flameproofing process. As a means for improving productivity, 20 vol. JP-A-2-154013 describes a method for carrying out the flameproofing step in an oxidizing atmosphere containing at least% oxygen.
[0005]
However, in the above-mentioned Japanese Patent Application Laid-Open No. 2-154003, in order to improve the productivity of high-quality carbon fibers, the improvement in productivity in the flameproofing process to make flameproof fibers is achieved, and the single fiber treatment Parameters in the flameproofing process necessary to be able to supply flameproofing fibers consisting of bundles of treated fibers with small spots to the carbonization process, that is, the density of the heat treated fiber bundles in the flameproofing furnace, the flameproofing furnace No mention is made of optimization of the wind speed and the process tension of the heat-treated fiber bundle in the flameproofing process.
[0006]
Further, as a method for improving the productivity of the flameproofing process, the amount of the fiber bundle to be heat-treated into the flameproofing furnace is increased, the heat-treating fiber bundle is heat-treated with the flameproofing furnace having a high volume density, That is, the flameproofing process is performed by reducing the distance between adjacent fiber bundles in a plane parallel to the bottom surface of the flameproofing furnace, or the flameproofing process is performed by supplying a thick heat-treated fiber bundle. Such a method is conceivable.
[0007]
However, if the distance between adjacent fiber bundles is reduced, not only does the temperature control inside the furnace become difficult due to an increase in the amount of heat generated by the oxidation reaction in the flame-proofing furnace, but harmful gases are removed due to poor heat removal. Smoke that leads to the occurrence of this is also likely to occur. Moreover, since adjacent fiber bundles are mutually affected by heat generation, the heat treatment temperature cannot be raised, and as a result, productivity cannot be improved. Furthermore, single yarn breakage occurs due to contact between adjacent fiber bundles in a plane parallel to the bottom surface of the flameproofing furnace, which leads to a deterioration in the quality of the carbon fiber.
[0008]
Even when a flame-resistant process is carried out by supplying a thick heat-treated fiber bundle, simply increasing the thickness of the heat-treated fiber bundle makes the heat removal failure in the flame-resistant furnace more prominent, resulting in the generation of harmful gases. Not only is it a cause of connected smoke generation, but the heat treatment temperature must be lowered, and as a result, productivity cannot be improved.
[0009]
If the bundle of fibers to be heat-treated is thickened and the heat treatment time is shortened, operation near the smoke generation temperature is forced, so not only extremely strict temperature control is required, but also the single fiber treatment spots. This leads to a deterioration in the quality of the carbon fiber.
[0010]
[Problems to be solved by the invention]
Therefore, the problem to be solved by the present invention is a continuous heat treatment method for an acrylic fiber bundle that leads to high production of high-quality carbon fibers, that is, an acrylic system that can efficiently produce high-quality flame-resistant fibers. The object is to provide a continuous heat treatment method for fiber bundles.
[0011]
In order to improve the productivity of high-quality carbon fibers, it is possible to improve the productivity in the flame-proofing process to make flame-resistant fibers, and to convert the flame-resistant fibers made of treated fiber bundles with small single fiber treatment spots into carbon. The problem to be solved by the present invention is the density of the heat-treated fiber bundle in the flameproofing furnace, the wind speed in the flameproofing furnace, and the flame resistance. Another object of the present invention is to provide a continuous heat treatment method for an acrylic fiber bundle in which the process tension of the heat treated fiber bundle in the process is optimized.
[0012]
[Means for Solving the Problems]
Said subject is solved by the continuous heat processing method of the acrylic fiber bundle of this invention by the structure described below.
That is, in the first invention, the fiber bundle sheet-like material in which a large number of acrylic fiber bundles are arranged is heat-treated while being run in a flame-resistant furnace comprising a hot-air circulation type convection heating furnace. In the continuous heat treatment method for an acrylic fiber bundle, the surface occupancy ratio of the fiber bundle sheet to be introduced into the flameproofing furnace with respect to the bottom face of the flameproofing furnace is set to 36 to 65%, and the wind direction in the flameproofing furnace is set to fiber. The process tension of the acrylic fiber bundle that is perpendicular to the bundle sheet and has a wind speed of 0.3 to 1.5 m / sec and travels in the flameproofing furnace is 0.5 to 2.5 g / tex. It consists of a continuous heat treatment method for the acrylic fiber bundle.
[0013]
In the continuous heat treatment method for an acrylic fiber bundle according to the first aspect of the present invention having the above-described configuration, it is preferable that the travel path of the fiber bundle to be heat treated is regulated by a groove roller.
[0014]
In the second aspect of the invention, the fiber bundle sheet-like material in which a large number of acrylic fiber bundles are aligned is heat-treated while being run in a flame-resistant furnace composed of a hot air circulation type convection heating furnace. In the continuous heat treatment method for an acrylic fiber bundle, the surface occupancy ratio of the fiber bundle sheet to be introduced into the flameproofing furnace with respect to the bottom face of the flameproofing furnace is set to 36 to 65%, and the wind direction in the flameproofing furnace is set to fiber. Parallel to the bundle sheet, the wind speed is 1.5 to 5 m / sec, and the process tension of the acrylic fiber bundle running in the flameproofing furnace is 0.5 to 2.5 g / tex. It consists of a continuous heat treatment method for an acrylic fiber bundle.
[0015]
In the continuous heat treatment method for an acrylic fiber bundle according to the second aspect of the present invention having the above-described configuration, it is preferable that the travel path of the fiber bundle to be heat treated is regulated by a groove roller.
[0016]
In the continuous heat treatment method for acrylic fiber bundles of the present invention according to the above-described configurations, the area occupation ratio of the fiber bundle sheet material introduced into the flameproofing furnace with respect to the bottom surface of the flameproofing furnace is the effective furnace of the flameproofing furnace used. This is the ratio of the flat area of the fiber bundle sheet material introduced into the flameproofing furnace to the product of the length and the effective furnace width (= effective area of the bottom of the flameproofing furnace).
[0017]
The flat area of the fiber bundle sheet to be introduced into the flameproofing furnace is the width of a single fiber bundle measured on the roller when the fiber bundle sheetlike material is introduced into the flameproofing furnace x the effective flameproofing furnace. Furnace length x number of acrylic fiber bundles. Area occupancy (%) of fiber bundle sheet to be introduced into flameproofing furnace with respect to bottom of flameproofing furnace = (width of single acrylic fiber bundle x acrylic) Number of fiber bundles × 100 / effective furnace width of the flameproofing furnace).
The wind speed in the flameproofing furnace is a measured value at normal temperature.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The acrylic fiber bundle used as the heat-treated fiber bundle in the continuous heat treatment method of the acrylic fiber bundle of the present invention is preferably 100% acrylonitrile acrylic fiber or acrylic copolymer fiber containing 90% by mole or more of acrylonitrile. As the copolymer component in the acrylic copolymer fiber, acrylic acid, methacrylic acid, itaconic acid, and their alkali metal salts, ammonium metal salts, acrylamide, methyl acrylate, etc. are preferable. The chemical properties, physical properties, dimensions, etc. of the bundle are not particularly limited.
[0019]
The hot air circulation type convection heating furnace that performs the flame resistance treatment of the acrylic fiber bundle is maintained in an oxidizing atmosphere of 200 ° C. to 360 ° C., and a large number of acrylic fiber bundles are drawn into the hot air circulation type convection heating furnace. The aligned fiber bundle sheet material is introduced, and the sheet material is subjected to heat treatment while running in parallel over a plurality of stages via a plurality of rollers, thereby forming flame-resistant fibers.
[0020]
The number of stages of the fiber bundle sheet for a single chamber is the properties of the acrylic fiber bundle that is the heat-treated fiber bundle, the heat history to be applied to the acrylic fiber bundle, the wind direction in the heating furnace, the air volume (wind speed), Varies depending on hot air temperature. In addition, from the aspect of ensuring the rectification effect and ensuring safety, a partition can be provided for each stage.
[0021]
The most important parameter for controlling the flameproofing reaction of the heat-treated fiber bundle is the removal of the heat storage in the fiber bundle caused by the exothermic reaction. If excessive heat storage occurs, the occurrence of smoke, the fiber bundle being broken, Problems such as fusion between single yarns occur.
[0022]
That is, by giving uniform wind speed and temperature to all of the many fiber bundles forming the fiber bundle sheet-like material, the above-mentioned problems can be avoided and the process stability can be improved. For this purpose, it is only necessary to reduce the amount of fiber bundles to be heat-treated into the flameproofing furnace to eliminate heat accumulation in the fiber bundles caused by the exothermic reaction and to eliminate mutual interference due to fluttering of the fiber bundles to be heat-treated. However, this comes at the expense of process productivity.
[0023]
However, a flameproofing process for continuously heat-treating a fiber bundle sheet-like material in which a large number of acrylic fiber bundles are arranged in a flameproofing furnace consisting of a hot air circulation type convection heating furnace is performed on the bottom of the flameproofing furnace. The surface occupancy ratio of the fiber bundle sheet to be introduced into the forming furnace is set to 36 to 65%, the wind direction in the flameproofing furnace is made perpendicular to the fiber bundle sheet and the wind speed is set to 0.3 to By setting the process tension of the acrylic fiber bundle running at 1.5 m / sec and the inside of the flameproofing furnace to 0.5 to 2.5 g / tex, high-quality flameproof fiber can be produced with high process productivity. Can be obtained under maintenance.
[0024]
In addition, the surface occupancy ratio of the fiber bundle sheet to be introduced into the flameproofing furnace with respect to the bottom surface of the flameproofing furnace is set to 36 to 65%, and the wind direction in the flameproofing furnace is made parallel to the fiber bundle sheet. In addition, by setting the wind speed at 1.5 to 5 m / sec and setting the process tension of the acrylic fiber bundle running in the flameproofing furnace to 0.5 to 2.5 g / tex, high quality flame resistance can be achieved. Fibers can be obtained while maintaining high process productivity.
[0025]
In addition, process stability improves more when the surface occupation rate of the fiber bundle sheet-like thing which drive | works the inside of a flame-proofing furnace shall be less than 36%. However, process productivity is significantly reduced due to a decrease in the input amount of heat-treated fiber bundles consisting of acrylic fiber bundles in the flameproofing furnace and an increase in utility costs, thereby increasing the manufacturing cost of flameproofing fibers, As a result, the production cost of the carbon fiber is increased.
[0026]
Also, if the surface occupancy of the fiber bundle sheet running in the flameproofing furnace is higher than 65%, the process stability is drastically reduced, the occurrence of smoke due to excessive heat storage, yarn breakage, and Since fusion occurs in the meantime, it becomes difficult to obtain a high-quality flame-resistant fiber, which makes it impossible to obtain a high-quality carbon fiber, and also reduces the process productivity due to a decrease in yield.
[0027]
Furthermore, in the continuous heat treatment method of the acrylic fiber bundle of the present invention, a hot air circulation type convection heating furnace is used as a flameproofing furnace, and the heat treated fiber bundle is heated by a convection heating method. The acrylic fiber bundle as the fiber bundle is heated to promote the oxidation reaction and the cyclization reaction, and at the same time, the heat removal of the heat-treated fiber bundle can be effectively performed.
[0028]
In the continuous heat treatment method for acrylic fiber bundles according to the present invention, the wind speed in a flameproofing furnace comprising a hot air circulation type convection heating furnace is 0.3 m when the wind direction is perpendicular to the fiber bundle sheet. / Sec to 1.5 m / sec, and when the wind direction is parallel to the fiber bundle sheet, it is necessary to set the range to 1.5 m / sec to 5 m / sec. .
[0029]
In other words, when the wind direction is perpendicular to the fiber bundle sheet-like material in which a large number of acrylic fiber bundles as heat treated fiber bundles are aligned, the wind speed is set to less than 0.3 m / sec, or the wind direction is covered. If the wind speed is set to less than 1.5 m / sec when parallel to the fiber bundle sheet-like material in which a large number of acrylic fiber bundles that are heat treated fiber bundles are aligned, it is caused by the wind in the flameproofing furnace. The heat removal effect of the heat storage of the heat-treated fiber bundle cannot be obtained, and smoke due to poor heat removal tends to occur.
[0030]
Also, when the wind direction is perpendicular to the fiber bundle sheet material in which a large number of acrylic fiber bundles that are heat-treated fiber bundles are aligned, the wind speed exceeds 1.5 m / sec, or the wind direction is covered. When a large number of acrylic fiber bundles that are heat treated fiber bundles are made parallel to a bundle of fiber bundle sheets, if the wind speed exceeds 5 m / sec, the fiber bundles caused by wind in the flameproofing furnace The fluttering of the fiber increases, and a single yarn breakage occurs due to contact between adjacent fiber bundles on a surface parallel to the bottom surface of the flameproofing furnace, so that flameproof fiber with a lot of fluff is easily obtained.
[0031]
Furthermore, if the process tension of the acrylic fiber bundle running in the flameproofing furnace consisting of a hot air circulation type convection heating furnace is less than 0.5 g / tex, single yarn breakage due to fluttering of the heat-treated fiber bundle, Fusion between single yarns due to contact between adjacent fiber bundles in a plane parallel to the bottom surface is likely to occur, and the fiber bundle shape regulated by a roller may not be maintained. On the other hand, if it is higher than 2.5 g / tex, not only the process tension is easily broken, but also the durability of the heat-treated fiber bundle against physical contact at the entrance and exit of the flameproofing furnace is weakened.
[0032]
In the method of the present invention in which a heat-treated fiber bundle made of an acrylic fiber bundle is continuously heat-treated to make flame-resistant fibers, as means for regulating the travel path of the heat-treated fiber bundle and toe width, for example, a guide is used. Although it can be used and is not subject to any restrictions, it is most preferred to use a grooved roller. The cross-sectional shape of the groove of this groove roller may be either a flat bottom type as shown in FIG. 1, a round bottom type as shown in FIG. 2, or a wave bottom type as shown in FIG. It is determined appropriately in consideration of the total fineness of the heat-treated fiber bundle and problems in the production of the roller.
[0033]
【Example】
Hereinafter, the concrete structure of the continuous heat processing method of the acrylic fiber bundle of this invention is demonstrated based on an Example.
The heat-treated fiber bundle and the flameproofing furnace used in each example and comparative example are as follows.
Heat-treated fiber bundle: Acrylic fiber bundle of 0.13 single yarn tex made of acrylic copolymer fiber containing 96 mol% of acrylonitrile
Flameproofing furnace: Hot air circulation type convection heating furnace
[0034]
Example 1
4 and 5, the effective furnace length L 1 : 10m, effective furnace width L 2 1 m, wind direction in the furnace: perpendicular to the fiber bundle sheet, furnace temperature: 230 ° C., wind speed in the furnace: 0.6 m / sec. The flame-resistant fiber 3 was obtained by performing a continuous heat treatment in which the fiber bundle sheet-like material 2 formed of 120 heat-treated fiber bundles S was run over 3 reciprocating halves. At this time, the surface occupation ratio of the fiber bundle sheet-like material introduced into the flameproofing furnace with respect to the bottom surface of the flameproofing furnace is 43%.
[0035]
In the continuous heat treatment of the acrylic fiber bundle, the width of the fiber bundle S to be heat-treated introduced into the flameproofing furnace 1 is regulated to 3.6 mm by the groove roller 4, and the fiber bundles S, The pitch between S, that is, the distance from the center of the heat-treated fiber bundle S introduced in parallel to the flame-proofing furnace 1 in parallel to the bottom face of the flame-proofing furnace 1 to the center of the adjacent heat-treated fiber bundle S Regulated to 8.0 mm. The process tension of the acrylic fiber bundle running in the flameproofing furnace was set to 1.4 g / tex (6 kg per one).
[0036]
During the above-described continuous heat treatment step for the acrylic fiber bundle, smoke was not generated due to runaway reaction, and stable continuous operation was possible. Also, there is no breakage of single yarn due to contact between adjacent fiber bundles in the flameproofing furnace, fusion between single yarns, contamination of the fiber surface, etc. A flame-resistant fiber with a small amount was obtained. The degree of increase in flame resistance density of acrylic fiber by this continuous heat treatment is 0.06 g / cm. Three / 17 min. Met.
[0037]
Example 2
Effective furnace length: 14 m, effective furnace width: 1 m, wind direction in the furnace: perpendicular to the fiber bundle sheet, furnace temperature: 240 ° C., wind speed in the furnace: 1.0 m / sec. Flame-resistant fibers were obtained by performing continuous heat treatment of acrylic fiber bundles through a fiber bundle sheet-like material consisting of 200 heat-treated fiber bundles having 12,000 filaments. The area ratio of the fiber bundle sheet to be introduced into the flameproofing furnace with respect to the bottom face of the flameproofing furnace at this time is 40%.
[0038]
In the above-mentioned continuous heat treatment of the acrylic fiber bundle, the width of the fiber bundle to be heat treated per groove is regulated to 2.0 mm and the pitch between the fiber bundles is regulated to 5.0 mm by the groove roller, and the inside of the flameproofing furnace The process tension of the acrylic fiber bundle running on the machine was 0.8 g / tex (1.2 kg per one).
[0039]
During the above-described continuous heat treatment step for the acrylic fiber bundle, smoke was not generated due to runaway reaction, and stable continuous operation was possible. In addition, there is no breakage of single yarn due to contact between adjacent fiber bundles, fusion between single yarns, contamination of the fiber surface, etc., and there are few flame-resistant fibers and single yarn treatment spots in the width direction of the fiber bundle sheet. was gotten. The degree of increase in flame resistance density of acrylic fiber by this continuous heat treatment is 0.06 g / cm. Three / 15 min. Met.
[0040]
Example 3
Effective furnace length: 10 m, effective furnace width: 1 m, wind direction in the furnace: perpendicular to the fiber bundle sheet, furnace temperature: 220 ° C., wind speed in the furnace: 0.5 m / sec. Flame-resistant fibers were obtained by continuous heat treatment of acrylic fiber bundles through a fiber bundle sheet-like material comprising 60 heat-treated fiber bundles having a filament number of 72,000. At this time, the surface occupation ratio of the fiber bundle sheet-like material introduced into the flameproofing furnace with respect to the bottom surface of the flameproofing furnace is 48%.
[0041]
In the above-mentioned continuous heat treatment of the acrylic fiber bundle, the width of the fiber bundle to be heat treated per groove is regulated to 8.0 mm and the pitch between the fiber bundles is controlled to 16.0 mm by the groove roller, and the inside of the flameproofing furnace The process tension of the acrylic fiber bundle traveling on the road was set to 1.4 g / tex (12 kg per one).
[0042]
During the above-described continuous heat treatment step for the acrylic fiber bundle, smoke was not generated due to runaway reaction, and stable continuous operation was possible. In addition, there is no breakage of single yarn due to contact between adjacent fiber bundles, fusion between single yarns, contamination of the fiber surface, etc., and there are few flame-resistant fibers and single yarn treatment spots in the width direction of the fiber bundle sheet. was gotten. The degree of increase in flame resistance density of acrylic fiber by this continuous heat treatment is 0.06 g / cm. Three / 24 min. Met.
[0043]
Example 4
Effective furnace length: 14 m, effective furnace width: 1.5 m, wind direction in the furnace: parallel to the fiber bundle sheet, furnace temperature: 220 ° C., furnace air velocity: 2.8 m / sec The acrylic fiber bundle was subjected to continuous heat treatment through a fiber bundle sheet-like material comprising 90 heat-treated fiber bundles having a filament number of 72,000 to obtain flame-resistant fibers. At this time, the surface occupation ratio of the fiber bundle sheet-like material introduced into the flameproofing furnace with respect to the bottom surface of the flameproofing furnace is 48%.
[0044]
In the above-mentioned continuous heat treatment of the acrylic fiber bundle, the width of the fiber bundle to be heat treated per groove is regulated to 8.0 mm and the pitch between the fiber bundles is controlled to 16.0 mm by the groove roller, and the inside of the flameproofing furnace The process tension of the acrylic fiber bundle traveling on the road was 1.0 g / tex (9 kg per one).
[0045]
During the above-described continuous heat treatment step for the acrylic fiber bundle, smoke was not generated due to runaway reaction, and stable continuous operation was possible. In addition, flame resistant fibers free from breakage of single yarn due to contact between adjacent fiber bundles, fusion between single yarns, contamination of the fiber surface, and the like were obtained. In addition, although some single yarn treatment spots were confirmed, the treatment spots in the width direction of the fiber bundle sheet were small, and the flame-resistant fibers were sufficiently satisfactory. The degree of increase in flame resistance density of acrylic fiber by this continuous heat treatment is 0.06 g / cm. Three / 20 min. Met.
[0046]
Example 5
Effective furnace length: 14 m, effective furnace width: 1.5 m, wind direction in the furnace: parallel to the fiber bundle sheet, furnace temperature: 215 ° C., furnace wind speed: 2.8 m / sec Inside, the acrylic fiber bundle was subjected to continuous heat treatment through a fiber bundle sheet-like material composed of 90 heat-treated fiber bundles having a filament number of 72,000 to obtain flame-resistant fibers. The area ratio of the fiber bundle sheet to be introduced into the flameproofing furnace with respect to the bottom surface of the flameproofing furnace at this time is 56%.
[0047]
In the above-mentioned continuous heat treatment of the acrylic fiber bundle, the width of the fiber bundle to be heat treated per one is regulated to 10.5 mm and the pitch between the fiber bundles is regulated to 17.0 mm by a flat roller and a comb guide. The process tension of the acrylic fiber bundle running in the flameproofing furnace was 1.4 g / tex (2 kg per one).
[0048]
During the above-described continuous heat treatment step for the acrylic fiber bundle, smoke was not generated due to runaway reaction, and stable continuous operation was possible. In addition, flame resistant fibers free from breakage of single yarn due to contact between adjacent fiber bundles, fusion between single yarns, contamination of the fiber surface, and the like were obtained. In addition, although some single yarn treatment spots were confirmed, the treatment spots in the width direction of the fiber bundle sheet were small, and the flame-resistant fibers were sufficiently satisfactory. The degree of increase in flame resistance density of acrylic fiber by this continuous heat treatment is 0.06 g / cm. Three / 27 min. Met.
[0049]
Comparative Example 1
Effective furnace length: 10 m, effective furnace width: 1 m, wind direction in the furnace: perpendicular to the fiber bundle sheet, furnace temperature: 230 ° C., furnace wind speed: 0.6 m / sec in a flameproof furnace The acrylic fiber bundle was subjected to continuous heat treatment through a fiber bundle sheet-like material comprising 50 heat-treated fiber bundles having 36,000 filaments. The area ratio of the fiber bundle sheet to be introduced into the flameproofing furnace with respect to the bottom face of the flameproofing furnace at this time is 30%.
[0050]
In the above-mentioned continuous heat treatment of the acrylic fiber bundle, the width of the fiber bundle to be heat treated per groove is regulated to 6.0 mm and the pitch between the fiber bundles is regulated to 14.0 mm by the groove roller, and the inside of the flameproofing furnace The process tension of the acrylic fiber bundle running on the road was 1.4 g / tex (6 kg per one).
[0051]
During the above-described continuous heat treatment step for the acrylic fiber bundle, smoke was not generated due to runaway reaction, and stable continuous operation was possible. In addition, there is no breakage of single yarn due to contact between adjacent fiber bundles, fusion between single yarns, contamination of the fiber surface, etc., and there are few flame-resistant fibers and single yarn treatment spots in the width direction of the fiber bundle sheet. was gotten. The degree of increase in flame resistance density of acrylic fiber by this continuous heat treatment is 0.06 g / cm. Three / 17 min. Thus, it was impossible to cover the decrease in the surface occupancy ratio of the fiber bundle sheet to be introduced into the flameproofing furnace with respect to the bottom surface of the flameproofing furnace with the increase in the flameproofing density of the acrylic fiber.
[0052]
Comparative Example 2
Effective furnace length: 10 m, effective furnace width: 1 m, wind direction in the furnace: perpendicular to the fiber bundle sheet, furnace temperature: 230 ° C., furnace wind speed: 0.6 m / sec in a flameproof furnace The acrylic fiber bundle was continuously heat-treated through a fiber bundle sheet-like material comprising 120 heat-treated fiber bundles having 36,000 filaments. At this time, the surface occupation ratio of the fiber bundle sheet-like material introduced into the flameproofing furnace with respect to the bottom surface of the flameproofing furnace is 72%.
[0053]
In the above-mentioned continuous heat treatment of the acrylic fiber bundle, the width of the fiber bundle to be heat treated per groove is regulated to 6.0 mm and the pitch between the fiber bundles is regulated to 8.0 mm by the groove roller, and the inside of the flameproofing furnace The process tension of the acrylic fiber bundle running on the road was 1.4 g / tex (6 kg per one).
[0054]
During the above-mentioned continuous heat treatment of the acrylic fiber bundle, single yarn breakage frequently occurs due to contact between adjacent fiber bundles on a surface parallel to the bottom surface of the flameproofing furnace, and the single yarn treatment spots in the fiber bundle As a result, a flame-resistant fiber with a large amount was obtained. The degree of increase in flame resistance density of acrylic fiber by this continuous heat treatment is 0.06 g / cm. Three / 17 min. And the process stability was very poor.
[0055]
Comparative Example 3
Effective furnace length: 14 m, effective furnace width: 1 m, wind direction in the furnace: perpendicular to the fiber bundle sheet, furnace temperature: 240 ° C., wind speed in the furnace: 1.0 m / sec. The acrylic fiber bundle was subjected to continuous heat treatment through a fiber bundle sheet-like material composed of 200 heat-treated fiber bundles having 12,000 filaments. The area ratio of the fiber bundle sheet to be introduced into the flameproofing furnace with respect to the bottom face of the flameproofing furnace at this time is 40%.
[0056]
In the above-mentioned continuous heat treatment of the acrylic fiber bundle, the width of the fiber bundle to be heat treated per groove is regulated to 2.0 mm and the pitch between the fiber bundles is regulated to 5.0 mm by the groove roller, and the inside of the flameproofing furnace The process tension of the acrylic fiber bundle traveling on the road was set to 0.3 g / tex (0.5 kg per one).
[0057]
During the continuous heat treatment step for the acrylic fiber bundle, bundle breakage occurred due to contact between adjacent fiber bundles on a surface parallel to the bottom surface of the flameproofing furnace. The degree of increase in flame resistance density of acrylic fiber by this continuous heat treatment is 0.06 g / cm. Three / 15 min. And the process stability was very poor.
[0058]
Comparative Example 4
Effective furnace length: 14 m, effective furnace width: 1 m, wind direction in the furnace: perpendicular to the fiber bundle sheet, furnace temperature: 240 ° C., furnace wind speed: 2.0 m / sec in a flameproof furnace The acrylic fiber bundle was subjected to continuous heat treatment through a fiber bundle sheet-like material composed of 200 heat-treated fiber bundles having 12,000 filaments. The area ratio of the fiber bundle sheet to be introduced into the flameproofing furnace with respect to the bottom face of the flameproofing furnace at this time is 40%.
[0059]
In the above-mentioned continuous heat treatment of the acrylic fiber bundle, the width of the fiber bundle to be heat treated per groove is regulated to 2.0 mm and the pitch between the fiber bundles is regulated to 5.0 mm by the groove roller, and the inside of the flameproofing furnace The process tension of the acrylic fiber bundle traveling on the road was set to 0.3 g / tex (0.5 kg per one).
[0060]
During the continuous heat treatment process of the acrylic fiber bundle, smoke did not occur due to a runaway reaction, but the flutter of the fiber bundle consisting of wind in the flameproofing furnace was large and parallel to the bottom of the flameproofing furnace. Single yarn breakage was caused by contact between adjacent fiber bundles on the surface, and flame-resistant fibers with a lot of fluff were obtained. The degree of increase in flame resistance density of acrylic fiber by this continuous heat treatment is 0.06 g / cm. Three / 15 min. Met.
[0061]
Comparative Example 5
Effective furnace length: 14 m, effective furnace width: 1.5 m, wind direction in the furnace: parallel to the fiber bundle sheet, furnace temperature: 215 ° C., furnace wind speed: 1.0 m / sec Inside, a continuous heat treatment of the acrylic fiber bundle was performed through a fiber bundle sheet-like material comprising 90 heat-treated fiber bundles having 72,000 filaments. The area ratio of the fiber bundle sheet to be introduced into the flameproofing furnace with respect to the bottom surface of the flameproofing furnace at this time is 56%.
[0062]
In the above-mentioned continuous heat treatment of the acrylic fiber bundle, the width of the fiber bundle to be heat treated per one is regulated to 10.5 mm and the pitch between the fiber bundles is regulated to 17.0 mm by a flat roller and a comb guide. The process tension of the acrylic fiber bundle running in the flameproofing furnace was set to 1.4 g / tex (2.0 kg per one).
[0063]
During the continuous heat treatment process for the acrylic fiber bundle, smoke was generated due to poor heat removal. The degree of increase in flame resistance density of acrylic fiber by this heat treatment is 0.06 g / cm. Three / 27 min. Met.
[0064]
The table occupancy ratio of the fiber bundle sheet to be introduced into the flameproofing furnace with respect to the bottom face of the flameproofing furnace in the above examples and comparative examples, process productivity, and visual properties of the obtained flameproofing fiber are collectively shown. It is shown in 1.
[0065]
[Table 1]
Figure 0004017772
[0066]
【The invention's effect】
According to the continuous heat treatment method for an acrylic fiber bundle of the present invention, it is possible to efficiently produce high-quality flame-resistant fibers, so that it becomes possible to produce high-quality carbon fibers at a high production rate. For this reason, the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a cut end view showing a schematic shape of a groove of a flat bottom groove roll.
FIG. 2 is a cut end view showing a schematic shape of a groove of a round bottom groove roll.
FIG. 3 is a cut end view showing a schematic shape of a wave bottom groove roll.
FIG. 4 is a schematic longitudinal sectional view of a flameproofing furnace showing a state of a fiber bundle sheet traveling in the flameproofing furnace.
5 is a schematic cross-sectional view taken along line XY of the flameproofing furnace of FIG. 4;
[Explanation of symbols]
1. Flame proofing furnace
2. Fiber bundle sheet
3. Flame resistant fiber
4 .... Groove roller
S ... Fiber bundle to be heat treated
L 1 ... Effective furnace length
L 2 ... Effective furnace width

Claims (3)

アクリル系繊維束の多数本を引き揃えた繊維束シート状物を、熱風循環型対流加熱炉からなる耐炎化炉内に走行させながら熱処理することによって耐炎化繊維にするアクリル系繊維束の連続熱処理方法において、耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率を36〜65%にすると共に、耐炎化炉内の風向きを繊維束シート状物に対して垂直にし、かつその風速を0.3〜1.5m/secにし、しかも耐炎化炉内を走行するアクリル系繊維束の工程張力を0.5〜2.5g/texにすることを特徴とするアクリル系繊維束の連続熱処理方法。Continuous heat treatment of acrylic fiber bundles to make flame-resistant fibers by heat-treating fiber bundle sheet-like material with a large number of acrylic fiber bundles running in a flame-resistant furnace consisting of a hot air circulation type convection heating furnace In the method, the area occupation ratio of the fiber bundle sheet to be introduced into the flameproofing furnace with respect to the bottom surface of the flameproofing furnace is set to 36 to 65%, and the wind direction in the flameproofing furnace is perpendicular to the fiber bundle sheet. And the wind speed is 0.3 to 1.5 m / sec, and the process tension of the acrylic fiber bundle running in the flameproofing furnace is 0.5 to 2.5 g / tex. Continuous heat treatment method for fiber bundles. アクリル系繊維束の多数本を引き揃えた繊維束シート状物を、熱風循環型対流加熱炉からなる耐炎化炉内に走行させながら熱処理することによって耐炎化繊維にするアクリル系繊維束の連続熱処理方法において、耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シート状物の面占有率を36〜65%にすると共に、耐炎化炉内の風向きを繊維束シート状物に対して平行にし、かつその風速を1.5〜5m/secにし、しかも耐炎化炉内を走行するアクリル系繊維束の工程張力を0.5〜2.5g/texにすることを特徴とするアクリル系繊維束の連続熱処理方法。Continuous heat treatment of acrylic fiber bundles to make flame-resistant fibers by heat-treating fiber bundle sheet-like material with a large number of acrylic fiber bundles running in a flame-resistant furnace consisting of a hot air circulation type convection heating furnace In the method, the surface occupancy ratio of the fiber bundle sheet to be introduced into the flameproofing furnace with respect to the bottom surface of the flameproofing furnace is set to 36 to 65%, and the wind direction in the flameproofing furnace is parallel to the fiber bundle sheet. Acrylic fiber characterized in that the wind speed is 1.5 to 5 m / sec and the process tension of the acrylic fiber bundle running in the flameproofing furnace is 0.5 to 2.5 g / tex. A continuous heat treatment method for bundles. 被熱処理繊維束の走行路の規制を溝ローラーによって行なうことを特徴とする請求項1又は請求項2に記載のアクリル系繊維束の連続熱処理方法。The continuous heat treatment method for an acrylic fiber bundle according to claim 1 or 2, wherein the travel path of the fiber bundle to be heat treated is regulated by a groove roller.
JP33609598A 1998-11-26 1998-11-26 Continuous heat treatment method for acrylic fiber bundles Expired - Lifetime JP4017772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33609598A JP4017772B2 (en) 1998-11-26 1998-11-26 Continuous heat treatment method for acrylic fiber bundles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33609598A JP4017772B2 (en) 1998-11-26 1998-11-26 Continuous heat treatment method for acrylic fiber bundles

Publications (2)

Publication Number Publication Date
JP2000160435A JP2000160435A (en) 2000-06-13
JP4017772B2 true JP4017772B2 (en) 2007-12-05

Family

ID=18295652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33609598A Expired - Lifetime JP4017772B2 (en) 1998-11-26 1998-11-26 Continuous heat treatment method for acrylic fiber bundles

Country Status (1)

Country Link
JP (1) JP4017772B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102767058A (en) * 2012-07-03 2012-11-07 镇江奥立特机械制造有限公司 Driving roller of carbon fiber softening machine
US20210310158A1 (en) * 2018-11-26 2021-10-07 Toray Industries, Inc. Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5087267B2 (en) * 2006-12-15 2012-12-05 三菱レイヨン株式会社 Flameproofing method for carbon fiber precursor
JP5556994B2 (en) * 2009-12-21 2014-07-23 三菱レイヨン株式会社 Method for producing flame resistant fiber
JP7354840B2 (en) 2018-09-28 2023-10-03 東レ株式会社 Method for producing flame-resistant fiber bundles and method for producing carbon fiber bundles
JP6729819B1 (en) * 2018-11-12 2020-07-22 東レ株式会社 Method for producing flame resistant fiber bundle and carbon fiber bundle, and flame resistant furnace
JP6680417B1 (en) * 2018-11-26 2020-04-15 東レ株式会社 Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
CN115279958B (en) * 2020-03-18 2024-04-16 东丽株式会社 Flame-retardant fiber bundle, method for producing carbon fiber bundle, and flame-retardant furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102767058A (en) * 2012-07-03 2012-11-07 镇江奥立特机械制造有限公司 Driving roller of carbon fiber softening machine
US20210310158A1 (en) * 2018-11-26 2021-10-07 Toray Industries, Inc. Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle
US12012671B2 (en) * 2018-11-26 2024-06-18 Toray Industries, Inc. Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle

Also Published As

Publication number Publication date
JP2000160435A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
EP0848090A3 (en) A heat treatment furnace for fiber and a yarn guide roller for the same
JP4017772B2 (en) Continuous heat treatment method for acrylic fiber bundles
JP5496214B2 (en) Carbon fiber bundle manufacturing method
US4186179A (en) Process for producing oxidized or carbon fibers
JP5556994B2 (en) Method for producing flame resistant fiber
US20220251736A1 (en) Method of producing flame-resistant fiber bundle and carbon fiber bundle and flameproofing furnace
JP5081409B2 (en) Carbon fiber manufacturing method
JP2001073232A (en) Flameproofing of carbon filament bundle precursor and apparatus for flameproofing
JP2005060871A (en) Method for producing flame-proofed fiber and method for producing carbon fiber
JP4021972B2 (en) Carbon fiber manufacturing method
JPH0681223A (en) Production of carbon fiber
JP3733688B2 (en) Carbon fiber manufacturing method
JP2001020140A (en) Device for driving carbon fiber precursor
JP5899949B2 (en) Carbon fiber manufacturing method
KR20220146497A (en) Flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and flame-resistant furnace
JP2971498B2 (en) Flame-resistant treatment equipment
GB1592144A (en) Process for producing carbon fibres
JP3899649B2 (en) Carbon fiber manufacturing method
JP2002105766A (en) Method for flame resisting
JP5133112B2 (en) Carbon fiber bundle manufacturing method
JP5037977B2 (en) Flameproofing furnace and method for producing flameproofed fiber
JP2008115481A (en) Flame-resisting treatment furnace
JP2010144274A (en) Method for producing carbon fiber
JP2002115125A (en) Heat treatment oven and method for producing carbon fiber using the same
JP2998354B2 (en) Flame-resistant fiber manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term