JP5133112B2 - Carbon fiber bundle manufacturing method - Google Patents

Carbon fiber bundle manufacturing method Download PDF

Info

Publication number
JP5133112B2
JP5133112B2 JP2008090939A JP2008090939A JP5133112B2 JP 5133112 B2 JP5133112 B2 JP 5133112B2 JP 2008090939 A JP2008090939 A JP 2008090939A JP 2008090939 A JP2008090939 A JP 2008090939A JP 5133112 B2 JP5133112 B2 JP 5133112B2
Authority
JP
Japan
Prior art keywords
groove
yarn
fiber bundle
roll
folding roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008090939A
Other languages
Japanese (ja)
Other versions
JP2009242993A (en
Inventor
暁 加地
禎雄 鮫島
篤志 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2008090939A priority Critical patent/JP5133112B2/en
Publication of JP2009242993A publication Critical patent/JP2009242993A/en
Application granted granted Critical
Publication of JP5133112B2 publication Critical patent/JP5133112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Fibers (AREA)

Description

本発明は、多フィラメントポリアクリロニトリル系前駆体繊維束を大量に耐炎化処理する方法に関する。   The present invention relates to a method for flameproofing a large number of multifilament polyacrylonitrile-based precursor fiber bundles.

アクリル系前駆体繊維束を耐炎化する方法としては、図1に示すように耐炎化炉1の両側に折り返しロール2を配置し、前駆体繊維束糸条3をジグザグ状に耐炎化炉内に通す方法が一般的である。このような耐炎化工程においては、処理糸条同士の絡み、ガイドロール乗り越え、処理斑等を防止する方法として、溝付きロールを多数使用し、前駆体繊維束をロールの溝内に案内することによって、糸条を分離、独立させている。   As a method for making the acrylic precursor fiber bundle flame resistant, as shown in FIG. 1, folding rolls 2 are arranged on both sides of the flame resistant furnace 1, and the precursor fiber bundle yarn 3 is zigzag-shaped in the flame resistant furnace. The method of passing is common. In such a flameproofing process, as a method of preventing entanglement between the treated yarns, overcoming the guide roll, processing spots, etc., a number of grooved rolls are used, and the precursor fiber bundle is guided into the groove of the roll. The yarns are separated and made independent.

しかしながら、このような方法では、処理糸条1本当たりのフィラメント数が多くなると、その断面形状が円形の場合、糸の最大厚みが大きくなり、蓄熱による糸切れが発生しやすくなるという問題を生ずる。   However, in such a method, when the number of filaments per one processed yarn increases, when the cross-sectional shape is circular, the maximum thickness of the yarn becomes large, and a problem that yarn breakage due to heat accumulation tends to occur. .

特許文献1には、耐炎化炉の両側に配置された溝付きロールの溝形状を規定することによって、略矩形断面をしたポリアクリロニトリル系前駆体繊維束の平均扁平率と平均繊度を制御する方法が記載されている。これにより、均一な耐炎化進行度の耐炎化繊維束を得られ、後の炭化工程での毛羽立ち、糸傷み等が発生せず、高品質、高品位の炭素繊維束を得られるとしている。
特許第3733688号公報
Patent Document 1 discloses a method for controlling the average flatness and average fineness of a polyacrylonitrile-based precursor fiber bundle having a substantially rectangular cross section by defining the groove shape of a grooved roll disposed on both sides of a flameproofing furnace. Is described. As a result, a flame-resistant fiber bundle having a uniform progress of flame resistance can be obtained, and no fluffing, yarn damage or the like in the subsequent carbonization process occurs, and a high-quality, high-quality carbon fiber bundle can be obtained.
Japanese Patent No. 3733688

ところで上記特許文献1の方法では、溝底部角部の丸みの半径が小さいため、特に糸幅/糸厚み比で規定される平均扁平率が大きくて単位幅当たりのみかけの平均繊度が小さい場合、溝付きロールを通過時に略矩形に保たれた前駆体繊維束糸条の端が折れたり厚み斑となる可能性があり、次いで耐炎化炉内に入ることで、耐炎化斑や蓄熱による糸切れを引き起こす原因となる。また、溝内での糸条の走行位置が片側の山の斜面部にずれた場合、溝底部角部の丸みの半径が小さいため、前記角部を境に糸条が折れやすくなり、走行する糸条の形態が不安定になるという問題を生ずる。また、特許文献1の方法では、折り返しロールに溝付きロールを用いているため溝付きロールの交換が容易ではない。   By the way, in the method of Patent Document 1, since the radius of roundness at the corner of the groove bottom is small, particularly when the average flatness defined by the yarn width / thread thickness ratio is large and the apparent average fineness per unit width is small, The end of the precursor fiber bundle thread that is kept in a substantially rectangular shape when passing through the grooved roll may break or become thick, and then enter the flameproofing furnace to break the flame due to flameproof spots or heat accumulation. Cause. In addition, when the running position of the yarn in the groove is shifted to the slope of the mountain on one side, the radius of the roundness at the corner of the groove bottom is small, so the yarn is likely to break at the corner and travels. This causes a problem that the shape of the yarn becomes unstable. Moreover, in the method of patent document 1, since the grooved roll is used for the return | turnback roll, replacement | exchange of a grooved roll is not easy.

本発明はこうした従来の様々な課題を解決することを目的としてなされたものであり、具体的には、多フィラメントポリアクリロニトリル系前駆体繊維束を耐炎化処理するのに際し、糸条の走行位置規制や略矩形の形態を極力維持することが可能な溝形状を規定することにより、溝部材通過時の糸条の折れや厚み斑を防止するとともに溝部材の交換が容易な炭素繊維束の製造方法を提供することにある。   The present invention has been made for the purpose of solving such various conventional problems. Specifically, when the multifilament polyacrylonitrile-based precursor fiber bundle is flameproofed, the running position of the yarn is restricted. And a method for producing a carbon fiber bundle in which a groove shape capable of maintaining a substantially rectangular shape as much as possible is defined, thereby preventing breakage and thickness unevenness of the yarn when passing through the groove member and easy replacement of the groove member Is to provide.

本発明は、総繊度が40,000dtex以上のポリアクリロニトリル系前駆体繊維束を、耐炎化炉に折り返しロールでジグザグ状に折り返して通して200〜300℃で耐炎化処理し、次いで600℃を超える温度で炭素化処理する炭素繊維束の製造方法において、前記耐炎化炉と前記折り返しロールとの間に、下記式(1)〜(3)を満足する溝部材を配置し、前記溝部材の通過後の前記ポリアクリロニトリル系前駆体繊維束の幅1mm当たりのみかけの平均繊度を2,400〜5,000dtexに保つ炭素繊維束の製造方法である。   In the present invention, a polyacrylonitrile-based precursor fiber bundle having a total fineness of 40,000 dtex or more is passed through a flame-proofing furnace in a zigzag shape with a folding roll and passed through a flameproofing treatment at 200 to 300 ° C., and then exceeds 600 ° C. In the method for producing a carbon fiber bundle that is carbonized at a temperature, a groove member that satisfies the following formulas (1) to (3) is disposed between the flameproofing furnace and the folding roll, and passes through the groove member. This is a method for producing a carbon fiber bundle in which the apparent average fineness per 1 mm width of the subsequent polyacrylonitrile-based precursor fiber bundle is maintained at 2,400 to 5,000 dtex.

0.6≦b/a≦0.9 (1)
0.2×a≦h≦0.5×a (2)
1×(a−b)≦R≦2×(a−b) (3)
(式中、aは溝頂部の幅(mm)、bは溝底部の幅(mm)、hは溝の深さ(mm)、Rは溝底部角部の丸みの半径(mm)である)
さらに、前記溝部材が前記折り返しロールの入り側に配置されており、前記溝部材と前記折り返しロールとの中心間距離が250mm以上であることが好ましい。
0.6 ≦ b / a ≦ 0.9 (1)
0.2 × a ≦ h ≦ 0.5 × a (2)
1 × (ab) ≦ R ≦ 2 × (ab) (3)
(Where, a is the width of the groove top (mm), b is the width of the groove bottom (mm), h is the depth of the groove (mm), and R is the radius (mm) of the round corner of the groove bottom)
Furthermore, it is preferable that the groove member is disposed on the entry side of the folding roll, and a center-to-center distance between the groove member and the folding roll is 250 mm or more.

また、前記溝部材前記が折り返しロールの出側に配置されており、前記溝部材と前記折り返しロールとの中心間距離が400mm以上であることが好ましい。   Moreover, it is preferable that the said groove member is arrange | positioned at the exit side of the folding | turning roll, and the distance between the centers of the said groove member and the said folding | turning roll is 400 mm or more.

本発明の炭素繊維束の製造方法によれば、総繊度が40,000dtex以上の多フィラメントポリアクリロニトリル系前駆体繊維束を耐炎化するのに際し、溝部材の溝形状を規定することにより、前駆体繊維束糸条の走行位置規制や糸条の形態制御が可能である。特に溝底部角部の丸みの半径を規定する効果として、溝部材通過時に糸条の折れや厚み斑等の形態不良を防止することにつながり、略矩形シート状に保つことができる。すなわち、耐炎化工程中の糸切れや毛羽立ちの抑制につながり、安定したプロセスで高品位の炭素繊維束の製造が可能となる。また、耐炎化炉と折り返しロールの間に溝部材を配置することで、溝部材の交換が容易になり、作業性の向上を図ることが可能である。   According to the method for producing a carbon fiber bundle of the present invention, when the multifilament polyacrylonitrile-based precursor fiber bundle having a total fineness of 40,000 dtex or more is made flame resistant, the precursor is defined by defining the groove shape of the groove member. It is possible to control the running position of the fiber bundle yarn and control the form of the yarn. In particular, as an effect of defining the radius of roundness at the corners of the groove bottom portion, it leads to prevention of form defects such as yarn breakage and thickness unevenness when passing through the groove member, and can be maintained in a substantially rectangular sheet shape. That is, it leads to suppression of yarn breakage and fluff during the flameproofing process, and high-quality carbon fiber bundles can be produced by a stable process. In addition, by disposing the groove member between the flameproofing furnace and the folding roll, the groove member can be easily replaced, and workability can be improved.

本発明において耐炎化処理される前駆体繊維束糸条は、総繊度が40,000dtex以上のポリアクリロニトリル系前駆体繊維束である。特に、総繊度が50,000〜60,000dtexのポリアクリロニトリル系前駆体繊維束を耐炎化処理するのに好適である。本発明では、このポリアクリロニトリル系前駆体繊維束を200〜300℃で耐炎化処理し、次いで600℃を超える温度で炭素化処理することで、炭素繊維束を製造することができる。   The precursor fiber bundle yarn subjected to flame resistance treatment in the present invention is a polyacrylonitrile-based precursor fiber bundle having a total fineness of 40,000 dtex or more. In particular, it is suitable for flameproofing a polyacrylonitrile-based precursor fiber bundle having a total fineness of 50,000 to 60,000 dtex. In the present invention, a carbon fiber bundle can be produced by subjecting this polyacrylonitrile-based precursor fiber bundle to flameproofing treatment at 200 to 300 ° C. and then carbonizing treatment at a temperature exceeding 600 ° C.

本発明において耐炎化処理される前駆体繊維束糸条の断面形状は、略矩形に保たれ、その平均扁平率が15〜70の範囲に制御される。ここで略矩形とは、ほぼ平行な2組の直線で囲まれた形状を指し、角が曲線であっても構わない。   In the present invention, the cross-sectional shape of the precursor fiber bundle yarn subjected to the flameproofing treatment is maintained in a substantially rectangular shape, and the average flatness is controlled in the range of 15 to 70. Here, “substantially rectangular” refers to a shape surrounded by two sets of substantially parallel straight lines, and the corners may be curved.

略矩形の糸条断面の平均扁平率は以下のように定義した。走行する糸条の駆動を止めて、一般に知られるレーザー変位計を用い、糸条の幅方向に10msで1点の割合で測定し、それを平均して糸条厚みAとし、糸条の幅をノギスを用いて長手方向に5cm間隔で5点測定して平均したものをBとし、BをAで割ったものを平均扁平率とした。   The average flatness of the substantially rectangular yarn cross section was defined as follows. Stop driving the running yarn, measure it at a rate of 1 point in the width direction of the yarn at 10 ms using a generally known laser displacement meter, average it to the yarn thickness A, and the width of the yarn Was measured by averaging 5 points at 5 cm intervals in the longitudinal direction using calipers, and B was obtained, and B divided by A was taken as the average flatness.

平均扁平率が15未満になると、糸条厚みが増大し、耐炎化工程での反応による蓄熱で糸切れ等が起こりやすくなる。また、平均扁平率が70を超えると糸幅が増大するため、耐炎化炉幅に対する処理糸条数が減少し設備生産性が低下する。従って、平均扁平率は15〜70の範囲が好ましく、25〜50の範囲がより好ましい。   When the average flatness is less than 15, the yarn thickness increases, and yarn breakage or the like is likely to occur due to heat accumulation by reaction in the flameproofing process. Moreover, since the yarn width increases when the average flatness ratio exceeds 70, the number of treated yarns with respect to the flameproofing furnace width decreases, and the equipment productivity decreases. Therefore, the average flatness is preferably in the range of 15 to 70, and more preferably in the range of 25 to 50.

略矩形の前駆体繊維束の幅1mm当たりのみかけの平均繊度は、2,400dtex未満であると処理糸条数が少なくなり、設備生産性が下がる。また、みかけの平均繊度が5,000dtexを超えると厚みが増大して、耐炎化反応による蓄熱で毛羽立ちや糸切れが起こりやすくなり、それを抑制するために耐炎化処理温度を下げる必要があるため、生産性が低下する。従って、耐炎化での処理糸条のみかけの平均繊度は2,400〜5,000dtexの範囲にすることが好ましく、2,700〜4,000dtexの範囲にすることがより好ましい。   When the apparent average fineness per 1 mm width of the substantially rectangular precursor fiber bundle is less than 2,400 dtex, the number of treated yarns decreases, and the equipment productivity decreases. Further, when the apparent average fineness exceeds 5,000 dtex, the thickness increases, and fuzzing and yarn breakage are likely to occur due to heat accumulation by the flameproofing reaction, and it is necessary to lower the flameproofing treatment temperature to suppress it. , Productivity decreases. Therefore, the apparent average fineness of the treated yarn in flame resistance is preferably in the range of 2,400 to 5,000 dtex, and more preferably in the range of 2,700 to 4,000 dtex.

上記のような平均扁平率やみかけの平均繊度を達成するには、前駆体繊維束を耐炎化炉にジグザグに、例えば水平方向に複数回往復するようにジグザグに通し、耐炎化炉と折り返しロールの間に以下のような形状の溝部材を配置すればよい。   In order to achieve the above average flatness and apparent average fineness, the precursor fiber bundle is passed through the flameproofing furnace in a zigzag manner, for example, a zigzag so as to reciprocate several times in the horizontal direction. A groove member having the following shape may be disposed between the two.

そして、上記溝部材は、下記式(1)〜(3)を満足するものを用いる。   And the said groove member uses what satisfies following formula (1)-(3).

0.6≦b/a≦0.9 (1)
0.2×a≦h≦0.5×a (2)
1×(a−b)≦R≦2×(a−b) (3)
ただし、式中、aは溝頂部の幅(mm)、bは溝底部の幅(mm)、hは溝の深さ(mm)、Rは溝底部角部の丸みの半径(mm)をそれぞれ示している。ここで溝底部の幅とは、溝底部角部の丸みの半径部分と溝を形成する山の斜面部との変曲点を端とした時の幅をいう。溝部材5が有する溝4の断面における各寸法を図2に示す。
0.6 ≦ b / a ≦ 0.9 (1)
0.2 × a ≦ h ≦ 0.5 × a (2)
1 × (ab) ≦ R ≦ 2 × (ab) (3)
Where a is the width of the groove top (mm), b is the width of the groove bottom (mm), h is the depth of the groove (mm), and R is the radius (mm) of the round corner of the groove bottom. Show. Here, the width of the groove bottom means the width when the inflection point between the rounded radius portion of the corner of the groove bottom and the slope of the mountain forming the groove is the end. Each dimension in the cross section of the groove | channel 4 which the groove member 5 has is shown in FIG.

前駆体繊維束糸条の断面形状を扁平な略矩形シート状に保つには、溝底部に幅をもたせる必要がありる。溝頂部の幅aと溝底部の幅bとの比b/aが0.6未満になると、溝形状がV字形に近くなり、略矩形シート状に保てなくなる。また、b/aが0.9を超えると、溝を形成する山の斜面部の傾きが溝底部に対し大きくなり、走行中の前駆体繊維束糸条の端が折れる可能性が高く、糸条の形態維持性が低下する。好ましくは、0.75≦b/a≦0.85である。   In order to keep the cross-sectional shape of the precursor fiber bundle yarn in a flat, substantially rectangular sheet shape, it is necessary to give a width to the groove bottom. When the ratio b / a of the width a of the groove top part to the width b of the groove bottom part is less than 0.6, the groove shape becomes nearly V-shaped and cannot be maintained in a substantially rectangular sheet shape. If b / a exceeds 0.9, the slope of the slope of the mountain forming the groove becomes larger than the bottom of the groove, and it is highly possible that the end of the running precursor fiber bundle yarn will break. The form maintainability of the strip is reduced. Preferably, 0.75 ≦ b / a ≦ 0.85.

溝深さhが溝頂部の幅aの0.2倍未満であると、走行糸条の一部が溝を乗り越えることがあり、隣接糸条が絡んで毛羽立ちを生じることがある。また、溝深さhが溝頂部の幅aの0.5倍を超える場合には、溝断面積に対する、略矩形シート状の糸条断面積比が小さくなり、加工コストが増大し経済的ではない。よって、溝深さhは、溝頂部の幅aの0.2〜0.5倍の範囲にする。好ましくは、0.3×a≦h≦0.4×aである。   When the groove depth h is less than 0.2 times the width a of the groove top, a part of the running yarn may get over the groove, and the adjacent yarn may get tangled and cause fluffing. In addition, when the groove depth h exceeds 0.5 times the width a of the groove top, the ratio of the cross-sectional area of the substantially rectangular sheet to the groove cross-sectional area is reduced, which increases the processing cost and is economical. Absent. Therefore, the groove depth h is set to a range of 0.2 to 0.5 times the width a of the groove top. Preferably, 0.3 × a ≦ h ≦ 0.4 × a.

溝底部角部の丸みの半径Rが1×(a−b)未満であると、略矩形である前駆体繊維束糸条の端の折れや、溝底部角部の丸みの半径部分で厚みむらが生じやすくなる。また、溝底部角部の丸みの半径Rが2×(a−b)より大きくなると、溝底部の幅における溝底部角部の丸みの半径部分が大きくなるため、溝を乗り越えやすくなり、隣接糸条が絡んで毛羽立ちを生じることがある。また、溝底部角部の丸みの半径を大きくしていくと、溝の形状として溝山部の斜面部と溝底部を滑らかにつなぐことができず、前駆体繊維束糸条の端が折れる原因となる可能性がある。よって、溝底部角部の丸みの半径Rは、1×(a−b)≦R≦2×(a−b)の範囲にする。好ましくは、1.3×(a−b)≦R≦1.7×(a−b)である。   When the radius R of the roundness at the corner of the groove bottom is less than 1 × (ab), the thickness is uneven at the end of the precursor fiber bundle yarn that is substantially rectangular, or at the radius of the roundness at the corner of the groove bottom Is likely to occur. Further, when the radius R of the round corner of the groove bottom portion is larger than 2 × (ab), the radius portion of the round corner of the groove bottom portion in the width of the groove bottom portion becomes large, so that it is easy to get over the groove, and the adjacent yarn The strip may get tangled and fluffy. Also, if the radius of the round corner of the groove bottom is increased, the slope of the groove peak and the groove bottom cannot be smoothly connected as the groove shape, causing the end of the precursor fiber bundle yarn to break There is a possibility. Therefore, the radius R of the roundness at the corner of the groove is set to a range of 1 × (ab) ≦ R ≦ 2 × (ab). Preferably, 1.3 × (ab) ≦ R ≦ 1.7 × (ab).

また、溝底部を平底とせず、円弧をつけた溝形状にしてもよい。溝底部に円弧をつけることで、前駆体繊維束糸条の幅方向の走行の振れを抑制し、走行位置制御性の向上が図れる。   Further, the groove bottom may not be a flat bottom but may be a groove shape with an arc. By attaching an arc to the bottom of the groove, it is possible to suppress the run-out of the precursor fiber bundle yarn in the width direction and improve the running position controllability.

図3に、耐炎化炉1に対する溝部材5と折り返しロール2との配置関係を示した一例を示す。耐炎化炉1を出た前駆体繊維束糸条3は、溝部材5を経て平ロールである折り返しロール2により方向転換し、再び耐炎化炉内へ入ることになる。   In FIG. 3, the example which showed the arrangement | positioning relationship of the groove member 5 and the folding | turning roll 2 with respect to the flame-proofing furnace 1 is shown. The precursor fiber bundle yarn 3 exiting the flameproofing furnace 1 is changed in direction by the folding roll 2 which is a flat roll through the groove member 5 and enters the flameproofing furnace again.

ここで、図3に示すように、溝部材が折り返しロールの入り側にある場合、溝部材と折り返しロールの間隔は250mm以上であることが好ましい。この間隔は、溝部材の中心と折り返しロールの中心との間の距離(中心間距離)である。前駆体繊維束糸条は、溝部材の通過時に溝に沿った形状となるため、溝部材と折り返しロールが250mm未満と間隔が小さい場合、糸条の幅が狭まった状態で折り返しロールに到達し、次いで耐炎化炉へ投入される可能性がある。中心間距離は、300mm以上がより好ましい。中心間距離は、溝部材を耐炎化炉の外に配置している限り長くても構わないが、550mm以下が好ましい。   Here, as shown in FIG. 3, when the groove member is on the side of the folding roll, the interval between the groove member and the folding roll is preferably 250 mm or more. This interval is a distance (center distance) between the center of the groove member and the center of the folding roll. Since the precursor fiber bundle yarn has a shape along the groove when passing through the groove member, when the distance between the groove member and the folding roll is less than 250 mm and the gap is small, the yarn reaches the folding roll with the width of the yarn narrowed. Then, it may be put into a flameproofing furnace. The center distance is more preferably 300 mm or more. The center-to-center distance may be long as long as the groove member is disposed outside the flameproofing furnace, but is preferably 550 mm or less.

また、図示はしていないが、溝部材を折り返しロールの出側に配置することもできる。この場合、溝部材と折り返しロールの間隔は400mm以上であることが好ましい。この間隔は、溝部材の中心と折り返しロールの中心との間の距離(中心間距離)である。折り返しロールの出側で糸条を制御する場合、糸条の幅方向の拘束力が強いため、溝部材と折り返しロールの間隔が400mm未満では溝とびを起こす可能性が高い。中心間距離は、450mm以上がより好ましい。中心間距離は、溝部材を耐炎化炉の外に配置している限り長くても構わないが、700mm以下が好ましい。   Although not shown, the groove member can be disposed on the exit side of the folding roll. In this case, the distance between the groove member and the folding roll is preferably 400 mm or more. This interval is a distance (center distance) between the center of the groove member and the center of the folding roll. When controlling the yarn on the exit side of the folding roll, since the binding force in the width direction of the yarn is strong, if the distance between the groove member and the folding roll is less than 400 mm, there is a high possibility that the groove will jump. The center distance is more preferably 450 mm or more. The center-to-center distance may be long as long as the groove member is disposed outside the flameproofing furnace, but is preferably 700 mm or less.

溝部材5は、溝付きロールやプレートに同溝を加工した溝付きプレートでもよく、前記式(1)〜(3)を満足する溝形状を有したものであれば何ら差し支えない。   The groove member 5 may be a grooved roll or a grooved plate obtained by processing the groove on the plate, and may be anything as long as it has a groove shape satisfying the above formulas (1) to (3).

耐炎化炉内に搬送された糸条にかかる張力は、6.6×10-2g/dtex未満にすると、糸条が懸垂し耐炎化炉の底にこすれ毛羽が発生し、後の炭素化工程で得られる炭素繊維束の品位、および引張り強度低下を招くおそれがある。また、張力を2×10-1g/dtexよりも大きくすると、耐炎化工程での単糸切れによる毛羽立ちが増長し、ロール上で巻付きを発生するおそれがある。従って、安定した耐炎化工程で所望の耐炎化繊維束を得るには、糸条にかかる張力を6.6×10-2〜2×10-1g/dtexにするのが好ましく、1×10-1〜1.7×10-1g/dtexにするのがより好ましい。 If the tension applied to the yarn conveyed into the flameproofing furnace is less than 6.6 × 10 −2 g / dtex, the yarn will be suspended and rubbing will occur at the bottom of the flameproofing furnace, resulting in subsequent carbonization There is a risk of degrading the quality of the carbon fiber bundle obtained in the process and lowering the tensile strength. On the other hand, if the tension is greater than 2 × 10 −1 g / dtex, fluffing due to single yarn breakage in the flameproofing process increases, and there is a risk of winding on the roll. Therefore, in order to obtain a desired flameproof fiber bundle in a stable flameproofing process, the tension applied to the yarn is preferably 6.6 × 10 −2 to 2 × 10 −1 g / dtex, preferably 1 × 10. -1 to 1.7 × 10 -1 g / dtex is more preferable.

以下、実施例および比較例によって本発明をさらに詳しく説明するが、本発明はこれら実施例によって制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not restrict | limited by these Examples.

(実施例1)
総繊度が60,000dtexのポリアクリロニトリル系前駆体繊維束糸条を、折り返しロールの入り側450mmの位置に、a=20mm、b=17mm、h=6mm、R=5.0mm[すなわち、b/a=0.85、h=0.30×a、R=1.67×(a−b)]の溝形状である溝付きロールAを設置し、溝付きロールAの通過後の糸条形態を観察した。この時、平均扁平率は50、糸条幅1mmに対するみかけの平均繊度は2,900dtex、糸条にかかる張力は0.7×10-1g/dtexであり、溝付きロールA通過後の前記前駆体繊維束糸条の形態は制御されていた。
Example 1
A polyacrylonitrile-based precursor fiber bundle having a total fineness of 60,000 dtex is placed at a position of 450 mm on the entry side of the folding roll, a = 20 mm, b = 17 mm, h = 6 mm, R = 5.0 mm [ie, b / a = 0.85, h = 0.30 × a, R = 1.67 × (a−b)], a grooved roll A is installed, and the thread form after passing through the grooved roll A Was observed. At this time, the average flatness is 50, the apparent average fineness for a yarn width of 1 mm is 2,900 dtex, the tension applied to the yarn is 0.7 × 10 −1 g / dtex, and the precursor after passing through the grooved roll A The form of the body fiber bundle yarn was controlled.

(実施例2)
実施例1と同様のポリアクリロニトリル系前駆体繊維束糸条を、実施例1と同位置にa=17.5mm、b=13mm、h=6.5mm、R=5.0mm[すなわち、b/a=0.74、h=0.37×a、R=1.1×(a−b)]の溝形状である溝付きロールBを設置し、溝付きロールBの通過後の糸条形態を観察した。この時、平均扁平率は20、糸条幅1mmに対するみかけの平均繊度は4,600dtex、糸条にかかる張力は1.4×10-1g/dtexであり、溝付きロールB通過後の前記前駆体繊維束糸条の形態は制御されていた。
(Example 2)
The same polyacrylonitrile-based precursor fiber bundle yarn as in Example 1 was placed at the same position as in Example 1 at a = 17.5 mm, b = 13 mm, h = 6.5 mm, R = 5.0 mm [ie, b / a = 0.74, h = 0.37 × a, R = 1.1 × (a−b)] in which the grooved roll B having a groove shape is installed, and the thread form after passing the grooved roll B Was observed. At this time, the average flatness ratio is 20, the apparent average fineness for a yarn width of 1 mm is 4,600 dtex, and the tension applied to the yarn is 1.4 × 10 −1 g / dtex. The form of the body fiber bundle yarn was controlled.

(実施例3)
実施例1と同様のポリアクリロニトリル系前駆体繊維束糸条を、実施例1と同位置に、実施例2と同じ溝形状をもつ溝付きプレートAを設置し、溝付きプレートAの通過後の糸条形態を観察した。この時、平均扁平率、糸条幅1mmに対するみかけの平均繊度、糸条にかかる張力は実施例2と同じであり、溝付きプレートA通過後の前記前駆体繊維束糸条の形態は制御されていた。
(Example 3)
A polyacrylonitrile-based precursor fiber bundle yarn similar to that in Example 1 is installed with a grooved plate A having the same groove shape as in Example 2 at the same position as in Example 1, and after passing through the grooved plate A The yarn morphology was observed. At this time, the average flatness ratio, the apparent average fineness with respect to the yarn width of 1 mm, and the tension applied to the yarn are the same as in Example 2, and the form of the precursor fiber bundle yarn after passing through the grooved plate A is controlled. It was.

実施例1〜3の結果を表1にまとめた。   The results of Examples 1 to 3 are summarized in Table 1.

Figure 0005133112
Figure 0005133112

実施例1および2のように、式(1)〜(3)を満たす形状をもつ溝付きロールで前駆体繊維束糸条の走行位置や形態を制御した場合、糸条の端の折れや厚み斑、溝とび等のトラブルは発生しなかった。また、表1の結果は、同じ溝形状をもつ溝付きロールと溝付きプレートの糸条形態制御性は同等であり、溝を加工する部材によって大きな差異がないことを示している。   When the running position and form of the precursor fiber bundle yarn are controlled by a grooved roll having a shape satisfying the formulas (1) to (3) as in Examples 1 and 2, the end fold and thickness of the yarn are controlled. Troubles such as spots and grooves did not occur. Moreover, the result of Table 1 has shown that the thread form controllability of the grooved roll and grooved plate which have the same groove shape is equivalent, and there is no big difference by the member which processes a groove | channel.

次に溝底部角部の丸みの半径が、走行する前駆体繊維束糸条に及ぼす影響を把握するため、実施例1と同様のポリアクリロニトリル系前駆体繊維束糸条を、折り返しロールの入り側250mmの位置に、以下に示す溝付きロールを設置し、溝付きロール通過後の糸条形態を観察した。この時、溝付きロール通過前の糸条の平均扁平率は30、糸条幅1mmに対するみかけの平均繊度は4,000dtex、糸条にかかる張力は1.0×10-1g/dtexであった。 Next, in order to grasp the influence of the radius of roundness at the corner of the groove bottom portion on the traveling precursor fiber bundle yarn, the same polyacrylonitrile-based precursor fiber bundle yarn as in Example 1 was placed on the entry side of the folding roll. The grooved roll shown below was installed in the position of 250 mm, and the thread form after passing through the grooved roll was observed. At this time, the average flatness of the yarn before passing through the grooved roll was 30, the apparent average fineness with respect to the yarn width of 1 mm was 4,000 dtex, and the tension applied to the yarn was 1.0 × 10 −1 g / dtex. .

(実施例4)
実施例1と同じ溝付きロールAを用いて、溝付きロールAの通過後と折り返しロール上での糸条形態を観察したところ、前記前駆体繊維束糸条の形態は制御されていた。また、糸条の幅方向に溝付きロールAの設置位置をずらし、溝山の斜面部に片あたりさせて走行させたが、糸条の形態は制御可能であった。
Example 4
Using the same grooved roll A as in Example 1, the form of the precursor fiber bundle yarn was controlled after passing through the grooved roll A and observing the form of the yarn on the folding roll. Moreover, although the installation position of the roll A with a groove | channel was shifted in the width direction of the thread | yarn and it was made to run by making it contact with the slope part of a groove mountain, the form of the thread was controllable.

(実施例5)
実施例2と同じ溝付きロールBを用いて、溝付きロールBの通過後と折り返しロール上での糸条形態を観察したところ、前記前駆体繊維束糸条の形態は制御されていた。また、糸条の幅方向に溝付きロールBの設置位置をずらし、溝山の斜面部に片あたりさせて走行させたが、糸条の形態は制御可能であった。
(Example 5)
Using the same grooved roll B as in Example 2, the shape of the yarn after passing through the grooved roll B and on the folding roll was observed, and the form of the precursor fiber bundle yarn was controlled. Moreover, although the installation position of the roll B with a groove | channel was shifted in the width direction of the thread | yarn, and it was made to run by making it contact with the slope part of a groove mountain, the form of the thread was controllable.

(比較例1)
a=20mm、b=17.9mm、h=6mm、R=5.0mm[すなわち、b/a=0.90、h=0.30×a、R=2.4×(a−b)]の形状である溝付きロールCを用いて、溝付きロールCの通過後と折り返しロール上での糸条形態を観察したところ、前記前駆体繊維束糸条の形態は制御されていたが、糸条の幅方向に溝付きロールCの設置位置をずらし、溝山の斜面部に片あたりさせて走行させた場合、糸条の端が厚くなり厚み斑が生じた。
(Comparative Example 1)
a = 20 mm, b = 17.9 mm, h = 6 mm, R = 5.0 mm [ie, b / a = 0.90, h = 0.30 × a, R = 2.4 × (ab)] The shape of the precursor fiber bundle yarn was controlled after the passage of the grooved roll C and the shape of the yarn on the folding roll was observed using the grooved roll C having the shape of When the installation position of the grooved roll C was shifted in the width direction of the strip and was allowed to run on the sloping portion of the groove mountain, the end of the yarn became thick and thickness spots were generated.

(比較例2)
a=20mm、b=17.6mm、h=5mm、R=2.0mm[すなわち、b/a=0.88、h=0.25×a、R=0.83×(a−b)]の形状である溝付きロールDを用いて、溝付きロールDの通過後と折り返しロール上での糸条形態を観察したところ、前記前駆体繊維束糸条の形態は制御されていたが、糸条の幅方向に溝付きロールDの設置位置をずらし、溝山の斜面部に片あたりさせて走行させた場合、糸条の端が折れた状態で折り返しロールを通過する結果となった。
(Comparative Example 2)
a = 20 mm, b = 17.6 mm, h = 5 mm, R = 2.0 mm [ie, b / a = 0.88, h = 0.25 × a, R = 0.83 × (a−b)] The shape of the precursor fiber bundle yarn was controlled when the shape of the yarn was observed after passing through the grooved roll D and on the folding roll using the grooved roll D having the shape of When the installation position of the grooved roll D was shifted in the width direction of the strip and was allowed to run on a sloping portion of the groove mountain, the result was that the end of the yarn passed through the folding roll in a broken state.

実施例4、5および比較例1、2の結果を表2にまとめた。   The results of Examples 4 and 5 and Comparative Examples 1 and 2 are summarized in Table 2.

Figure 0005133112
Figure 0005133112

溝形状が式(1)、(2)を満足していても、溝山の斜面部と溝底部を滑らかに接続する溝底部角部の丸みの半径でなければ、特に糸条が片あたりして走行した場合に糸条の端が折れるなどのトラブルが発生することになる。従って、式(3)を満足する範囲内に溝底部角部の丸みの半径はしなければならない。   Even if the groove shape satisfies the formulas (1) and (2), if the radius is not the radius of the round corner of the groove bottom that smoothly connects the slope of the groove and the bottom of the groove, the yarn will not touch Troubles such as breaking the end of the thread. Therefore, the radius of the roundness of the corner of the groove bottom must be within a range satisfying the expression (3).

次に、折り返しロールの入り側に溝部材を配し、実施例1と同様のポリアクリロニトリル系前駆体繊維束糸条を、実施例2と同じ溝付きロールBを使用して、溝部材と折り返しロールの中心間距離を変えていき、溝付きロールB通過後と折り返しロール上での糸条の形態とトラブルの有無を確認した。この時、溝付きロール通過前の糸条の平均扁平率は40、糸条幅1mmに対するみかけの平均繊度は3,300dtex、糸条にかかる張力は0.7×10-1g/dtexであった。 Next, a groove member is arranged on the entry side of the folding roll, and the same polyacrylonitrile-based precursor fiber bundle yarn as in Example 1 is folded back with the groove member using the same grooved roll B as in Example 2. The distance between the centers of the rolls was changed, and the shape of the yarn after passing through the grooved roll B and on the folding roll and the presence or absence of trouble were confirmed. At this time, the average flatness of the yarn before passing through the grooved roll was 40, the apparent average fineness for a yarn width of 1 mm was 3,300 dtex, and the tension applied to the yarn was 0.7 × 10 −1 g / dtex. .

(実施例6)
折り返しロールと溝部材の中心間距離を300mmに設定したところ、トラブルもなく糸条の走行位置、形態制御が可能であった。
(Example 6)
When the distance between the center of the folding roll and the groove member was set to 300 mm, the running position and form of the yarn could be controlled without any trouble.

(実施例7)
折り返しロールと溝部材の中心間距離を250mmに設定したところ、トラブルもなく糸条の走行位置、形態制御が可能であった。
(Example 7)
When the distance between the center of the folding roll and the groove member was set to 250 mm, the running position and form of the yarn could be controlled without any trouble.

(比較例3)
折り返しロールと溝部材の中心間距離を200mmに設定したところ、折り返しロール上での糸条の幅が溝部材を設置しない時に比較して0.8〜0.9倍程度と糸条の幅が縮小したままの状態で通過する結果となった。
(Comparative Example 3)
When the distance between the centers of the folding roll and the groove member is set to 200 mm, the width of the yarn on the folding roll is about 0.8 to 0.9 times that when the groove member is not installed, and the width of the yarn is As a result, it passed in a reduced state.

(比較例4)
折り返しロールと溝部材の中心間距離を150mmに設定したところ、折り返しロール上での糸条の幅が溝部材を設置しない時に比較して0.8〜0.9倍程度と糸条の幅が縮小したままの状態で通過する結果となった。
(Comparative Example 4)
When the distance between the center of the folding roll and the groove member is set to 150 mm, the width of the yarn on the folding roll is about 0.8 to 0.9 times that when the groove member is not installed. As a result, it passed in a reduced state.

実施例6、7および比較例3、4の結果を表3にまとめた。   The results of Examples 6 and 7 and Comparative Examples 3 and 4 are summarized in Table 3.

Figure 0005133112
Figure 0005133112

折り返しロールの入り側に溝部材を配する場合、前駆体繊維束糸条は溝部材通過時に溝に沿った形状になり、走行位置規制と糸条の形態制御がなされる。そして溝部材通過後に略矩形の形状に戻り折り返しロールを通過する。しかし、溝部材と折り返しロールの間隔が小さい場合、糸条の形態が略矩形に戻らず、糸条の端が厚みをもった、幅の狭まった状態で折り返しロールに到達し、次いで耐炎化炉へ投入されることになる。これを防止するため、折り返しロールと溝部材の中心間距離は250mm以上が必要であることを示している。   When the groove member is arranged on the entry side of the folding roll, the precursor fiber bundle yarn has a shape along the groove when passing through the groove member, and travel position regulation and yarn shape control are performed. Then, after passing through the groove member, it returns to a substantially rectangular shape and passes through the folding roll. However, when the distance between the groove member and the folding roll is small, the shape of the yarn does not return to a substantially rectangular shape, the end of the yarn has a thickness, reaches the folding roll in a narrowed state, and then the flameproofing furnace Will be thrown into. In order to prevent this, the distance between the centers of the folding roll and the groove member needs to be 250 mm or more.

次に折り返しロールの出側に溝部材を配し、実施例1と同様のポリアクリロニトリル系前駆体繊維束糸条を、実施例2と同じ溝付きロールBを使用して、溝部材と折り返しロールの中心間距離を変えていき、溝付きロールB通過後の糸条の形態やトラブルの有無を確認した。この時、溝付きロール通過前の糸条の平均扁平率は40、糸条幅1mmに対するみかけの平均繊度は3,000dtex、糸条にかかる張力は0.74×10-1g/dtexであった。 Next, a groove member is arranged on the exit side of the folding roll, and the polyacrylonitrile-based precursor fiber bundle yarn similar to that in Example 1 is used as the groove member and the folding roll using the same grooved roll B as in Example 2. The center distance was changed, and the form of the yarn after passing the grooved roll B and the presence or absence of trouble were confirmed. At this time, the average flatness of the yarn before passing through the grooved roll was 40, the apparent average fineness for a yarn width of 1 mm was 3,000 dtex, and the tension applied to the yarn was 0.74 × 10 −1 g / dtex. .

(実施例8)
折り返しロールと溝部材の中心間距離を450mmに設定したところ、トラブルもなく糸条の走行位置、形態制御が可能であった。
(Example 8)
When the distance between the centers of the folding roll and the groove member was set to 450 mm, the running position and form of the yarn could be controlled without any trouble.

(実施例9)
折り返しロールと溝部材の中心間距離を400mmに設定したところ、トラブルもなく糸条の走行位置、形態制御が可能であった。
Example 9
When the distance between the center of the folding roll and the groove member was set to 400 mm, the running position and form of the yarn could be controlled without any trouble.

(比較例5)
折り返しロールと溝部材の中心間距離を350mmに設定したところ、溝山の斜面部に片あたりをする前駆体繊維束糸条においては、前駆体繊維束糸条の端が折れる結果となった。
(Comparative Example 5)
When the distance between the centers of the folding roll and the groove member was set to 350 mm, in the precursor fiber bundle yarn that hits the slant portion of the groove mountain, the end of the precursor fiber bundle yarn was bent.

(比較例6)
折り返しロールと溝部材の中心間距離を300mmに設定したところ、走行位置制御性が悪く、溝とびが発生する結果となった。
(Comparative Example 6)
When the distance between the centers of the folding roll and the groove member was set to 300 mm, the traveling position controllability was poor, resulting in the occurrence of groove skipping.

実施例8、9および比較例5、6の結果を表4にまとめた。   The results of Examples 8 and 9 and Comparative Examples 5 and 6 are summarized in Table 4.

Figure 0005133112
Figure 0005133112

折り返しロールの出側に溝部材を配する場合、前駆体繊維束糸条が折り返しロールによって拘束されているため、折り返しロールの入り側に溝部材を配する場合と比較して、間隔を長く取らなければならない。折り返しロールと溝部材の間隔が小さい場合、溝部材による走行位置規制が行いにくく、溝とびが起こる可能性が高い。また、略矩形をした前駆体繊維束糸条の形態制御を可能とするために、溝部材と折り返しロールの間隔は400mm以上が必要であることを示している。   When the groove member is arranged on the exit side of the folding roll, the precursor fiber bundle yarn is constrained by the folding roll, so that the interval is made longer than when the groove member is arranged on the entry side of the folding roll. There must be. When the distance between the folding roll and the groove member is small, it is difficult to restrict the travel position by the groove member, and there is a high possibility that the groove jumps. Moreover, in order to enable the shape control of the precursor fiber bundle yarn having a substantially rectangular shape, it is indicated that the gap between the groove member and the folding roll needs to be 400 mm or more.

耐炎化炉と折り返しロールの配置を示す概略図である。It is the schematic which shows arrangement | positioning of a flame-resistant furnace and a folding | turning roll. 溝部材が有する溝部の断面図である。It is sectional drawing of the groove part which a groove member has. 耐炎化炉に対する折り返しロールと溝部材との配置を示す概略図である。It is the schematic which shows arrangement | positioning of the return | turnback roll and a groove member with respect to a flameproofing furnace.

符号の説明Explanation of symbols

1 耐炎化炉
2 折り返しロール
3 前駆体繊維束糸条
4 溝
5 溝部材
DESCRIPTION OF SYMBOLS 1 Flame-resistant furnace 2 Folding roll 3 Precursor fiber bundle yarn 4 Groove 5 Groove member

Claims (3)

総繊度が40,000dtex以上のポリアクリロニトリル系前駆体繊維束を、耐炎化炉に折り返しロールでジグザグ状に折り返して通して200〜300℃で耐炎化処理し、次いで600℃を超える温度で炭素化処理する炭素繊維束の製造方法において、
前記耐炎化炉と前記折り返しロールとの間に、下記式(1)〜(3)を満足する溝部材を配置し、
前記溝部材の通過後の前記ポリアクリロニトリル系前駆体繊維束の幅1mm当たりのみかけの平均繊度を2,400〜5,000dtexに保つ炭素繊維束の製造方法。
0.6≦b/a≦0.9 (1)
0.2×a≦h≦0.5×a (2)
1×(a−b)≦R≦2×(a−b) (3)
(式中、aは溝頂部の幅(mm)、bは溝底部の幅(mm)、hは溝の深さ(mm)、Rは溝底部角部の丸みの半径(mm)である。)
A polyacrylonitrile-based precursor fiber bundle having a total fineness of 40,000 dtex or more is passed through a flame-proofing furnace in a zigzag manner with a folding roll, passed through a flame-resistant treatment at 200 to 300 ° C., and then carbonized at a temperature exceeding 600 ° C. In the method for producing a carbon fiber bundle to be treated,
Between the flameproofing furnace and the folding roll, a groove member that satisfies the following formulas (1) to (3) is arranged,
A method for producing a carbon fiber bundle, wherein an apparent average fineness per 1 mm width of the polyacrylonitrile-based precursor fiber bundle after passing through the groove member is maintained at 2,400 to 5,000 dtex.
0.6 ≦ b / a ≦ 0.9 (1)
0.2 × a ≦ h ≦ 0.5 × a (2)
1 × (ab) ≦ R ≦ 2 × (ab) (3)
(Wherein, a is the groove top width (mm), b is the groove bottom width (mm), h is the groove depth (mm), and R is the radius (mm) of the round corner of the groove bottom. )
前記溝部材が前記折り返しロールの入り側に配置されており、前記溝部材と前記折り返しロールとの中心間距離が250mm以上である請求項1記載の炭素繊維束の製造方法。   2. The method for producing a carbon fiber bundle according to claim 1, wherein the groove member is disposed on an entry side of the folding roll, and a center-to-center distance between the groove member and the folding roll is 250 mm or more. 前記溝部材が前記折り返しロールの出側に配置されており、前記溝部材と前記折り返しロールとの中心間距離が400mm以上である請求項1記載の炭素繊維束の製造方法。   The method for producing a carbon fiber bundle according to claim 1, wherein the groove member is disposed on the exit side of the folding roll, and a center-to-center distance between the groove member and the folding roll is 400 mm or more.
JP2008090939A 2008-03-31 2008-03-31 Carbon fiber bundle manufacturing method Active JP5133112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008090939A JP5133112B2 (en) 2008-03-31 2008-03-31 Carbon fiber bundle manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008090939A JP5133112B2 (en) 2008-03-31 2008-03-31 Carbon fiber bundle manufacturing method

Publications (2)

Publication Number Publication Date
JP2009242993A JP2009242993A (en) 2009-10-22
JP5133112B2 true JP5133112B2 (en) 2013-01-30

Family

ID=41305205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008090939A Active JP5133112B2 (en) 2008-03-31 2008-03-31 Carbon fiber bundle manufacturing method

Country Status (1)

Country Link
JP (1) JP5133112B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5457736B2 (en) * 2009-06-24 2014-04-02 三菱レイヨン株式会社 Carbon fiber bundle manufacturing method and carbon fiber bundle manufacturing apparatus

Also Published As

Publication number Publication date
JP2009242993A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP4630193B2 (en) Method and apparatus for producing carbon fiber precursor fiber bundle
EP0909842B1 (en) Precursor carbon fiber bundle, apparatus and method of manufacturing thereof
WO2010053170A1 (en) Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber
JP3833654B2 (en) Carbon fiber manufacturing apparatus and manufacturing method thereof
JP2004100132A (en) Precursor fiber bundle for carbon fiber, method for producing the same, apparatus for producing the same, and method for producing the carbon fiber from the fiber bundle
JP5133112B2 (en) Carbon fiber bundle manufacturing method
WO2012014892A1 (en) Method for producing carbon-fiber bundles
JPS5846122A (en) Continuous process for producing carbon fiber
JP5457736B2 (en) Carbon fiber bundle manufacturing method and carbon fiber bundle manufacturing apparatus
JP4017772B2 (en) Continuous heat treatment method for acrylic fiber bundles
JP4801621B2 (en) Method for producing carbon fiber precursor tow
JP3733688B2 (en) Carbon fiber manufacturing method
JP2001020140A (en) Device for driving carbon fiber precursor
JP5899949B2 (en) Carbon fiber manufacturing method
JP2001073232A (en) Flameproofing of carbon filament bundle precursor and apparatus for flameproofing
JP2012188783A (en) Apparatus for producing carbon fiber bundle
JP2014214386A (en) Method for manufacturing carbon fiber bundle
JP3899649B2 (en) Carbon fiber manufacturing method
JP2012188782A (en) Apparatus for producing carbon fiber bundle
JP2008019526A (en) Method for producing carbon fiber
JP5573531B2 (en) Wet spinning machine and carbon fiber manufacturing apparatus equipped with a guide roll unit for fiber tow and the same guide roll unit
JP4412656B2 (en) Carbon fiber manufacturing method
JP2008115481A (en) Flame-resisting treatment furnace
JPH11200159A (en) Production of carbon fiber and device therefor
JP2009249086A (en) Guide device, and manufacturing method of carbon fiber using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5133112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250