JP4021972B2 - Carbon fiber manufacturing method - Google Patents

Carbon fiber manufacturing method Download PDF

Info

Publication number
JP4021972B2
JP4021972B2 JP21082297A JP21082297A JP4021972B2 JP 4021972 B2 JP4021972 B2 JP 4021972B2 JP 21082297 A JP21082297 A JP 21082297A JP 21082297 A JP21082297 A JP 21082297A JP 4021972 B2 JP4021972 B2 JP 4021972B2
Authority
JP
Japan
Prior art keywords
furnace
carbon fiber
flameproofing
fiber
pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21082297A
Other languages
Japanese (ja)
Other versions
JPH1161574A (en
Inventor
英彦 大橋
省治 林
伸之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP21082297A priority Critical patent/JP4021972B2/en
Publication of JPH1161574A publication Critical patent/JPH1161574A/en
Application granted granted Critical
Publication of JP4021972B2 publication Critical patent/JP4021972B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は炭素繊維の製造方法に関し、詳しくは、炭素繊維前駆体アクリル繊維を耐炎化繊維に転換する工程の改良に関する。
【0002】
【従来の技術】
アクリル繊維を原料とした炭素繊維は、一般的には炭素繊維前駆体アクリル繊維(以下、前駆体繊維ともいう。)を空気雰囲気中で加熱するいわゆる耐炎化工程とこれに引き続く不活性雰囲気中で加熱する炭素化工程との二つの工程で製造される。
【0003】
耐炎化工程は200〜300℃に加熱された酸化性気体が循環する耐炎化炉内に多数のローラーを設け、前駆体繊維を多数回往復させながら処理するのが一般的である。
【0004】
前駆体繊維を所望の物性の耐炎化繊維に転換するために耐炎化炉を通過させる回数(以下、耐炎化炉パス数という。)は、ライン速度および耐炎化炉の水平炉長に依存する。炭素繊維の生産性を向上させる目的で、ライン速度を上げると耐炎化炉を一回通過する間の炉内滞在時間(以下、1パス滞在時間という。)は減少する。しかしながら従来の耐炎化水平炉長は15m未満であっため、耐炎化工程で所望の処理を施すためには、耐炎化炉パス数は20〜50回程度にもなる。
前駆体繊維を多数回耐炎化炉内を往復させて耐炎化する方法においては以下の問題点がある。
【0005】
まず、耐炎化炉を出入りするたびに前駆体繊維は冷却、加熱を繰り返すため、往復回数が増えるほど処理効率が低減する。次に耐炎化炉の開口部が増えると、炉内温度を恒温に保つために必要なエネルギーが増大する。このような問題点は炭素繊維の生産性を向上させるために耐炎化炉内への糸条供給速度を上げた場合より顕著になる。この耐炎化の効率の低さは炭素繊維製造工程全体の生産性を低め、最終的に得られる炭素繊維の価格を引き上げる要因となっていた。
【0006】
この欠点を克服するために、例えば特公昭53−21396号公報には前駆体繊維に冷却するいとまを与えずに加熱ロールに断続的に接触させ耐炎化反応を短時間に進行させる方法が開示されている。この方法は確かに耐炎化時間の短縮には有効である。しかし、繊維を加熱したロールに直接接触させるために耐炎化処理中に繊維の融着を生じやすく、また処理面が片側のみとなるため厚み方向に耐炎化の程度の斑ができやすいという問題点があり、十分な性能をもつ炭素繊維が得られなかった。このような伝導加熱方式による前駆体繊維の耐炎化は工業的に適用するのは困難であり、現実的には対流加熱による耐炎化が工業的手法として用いられている。
【0007】
また、前駆体繊維を多数回耐炎化炉内を往復させて得られた耐炎化繊維を用いた炭素繊維は、強度がおよび品質が十分でないという問題があった。
【0008】
一方、耐炎化水平炉長が長くなると炉内での前駆体繊維の撓みが大きくなり、隣接する繊維間でマージングが起きやすくなる問題があった。
【0009】
【発明が解決しようとする課題】
本発明は、このような問題点に鑑みてなされたものであり、対流加熱方式の耐炎化方法を用いたときに、耐炎化水平炉長が長くなった場合に、耐炎化を効率よくかつ安定して行うことができると同時に、機械的特性および品質の優れた炭素繊維を製造することができる炭素繊維の製造方法を提供することを目的とする。
さらに本発明は、耐炎化水平炉長が長くなった場合であっても前駆体繊維間のマージングが起こりにくく、さらに耐炎化を効率よくかつ安定して行うことができると同時に、機械的特性および品質の優れた炭素繊維を製造することができる炭素繊維の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、対流加熱方式による1パス炉長15m以上の水平炉中で炭素繊維前駆体アクリル繊維を耐炎化繊維に転換する耐炎化工程を有する炭素繊維の製造方法において、前記水平炉中を通過する炭素繊維前駆体アクリル繊維糸条のラインスピードV(m/min)が(1)式を満足することを特徴とする炭素繊維の製造方法に関する。
【0011】
V≦L/k (1)
但し、Lは前記水平炉の長さ(m)で、L≧15である。またkは限界1パス滞在時間を表し、炭素繊維前駆体アクリル繊維を耐炎化水平炉中を10回通過させたときの合計の炉内滞在時間(tt)と、水平炉中に炭素繊維前駆体アクリル繊維を固定したときに水平炉中を10回通過させたときと等しい密度が得られる時間(ts)を比較し、耐炎化処理効率ts/tt×100を求め、1パス滞在時間に対する耐炎化処理効率の変化率が6%/minとなるときの1パス滞在時間(t1=tt/10(min))をkとすることで得られる。
【0012】
また本発明は、対流加熱方式による1パス炉長15m以上の水平炉中で、(2)式で定義される最大撓み量が30mm以上の状態で炭素繊維前駆体アクリル繊維を耐炎化繊維に転換する耐炎化工程を有する炭素繊維の製造方法において、前記炭素繊維前駆体アクリル繊維の交絡度が7以上であることを特徴とする炭素繊維の製造方法に関する。
dmax=L’ 2 /(7.2×10 7 ×T) (2)
(但し、dmaxは最大撓み量(mm)、Tは張力(g/d)、L’は1パスロール間距離長(mm)である。)
【0013】
【発明の実施の形態】
ある1パス炉長の対流加熱方式炉で耐炎化する場合、生産性を向上させる目的で前駆体繊維の供給速度を上げると、1パス分の炉長に前駆体繊維が滞在する時間(L/V)(以下、1パス滞在時間という。)は減少する。一方、冷却状態にある前駆体繊維が炉内に入った後、実質的に耐炎化反応が進行しない時間(以下、1パス遅れ時間という。)を考慮すると、実質1パス耐炎化処理時間は1パス滞在時間から1パス遅れ時間を引いた時間に相当すると考えられる。
【0014】
本発明者の検討によれば、1パス滞在時間がその条件下で特有の限界1パス滞在時間k値(min)を下回ると耐炎化効率が急激に低下する。k値を下回る1パス滞在時間で生産を行う場合、耐炎化炉パス数を増大させる必要があり、炭素繊維の生産性および耐炎化工程での効率が低くなり焼成コストが押し上げられる。さらに単に製造コストだけの問題ではなく、耐炎化炉パス数を増大させて所定の物性をもつ耐炎化繊維を得たとしても、これを処理して得られる炭素繊維は機械的強度や品質が悪く、k値以上の1パス滞在時間で生産を行うこと、即ち(1)式を満たすように製造条件を設定することが極めて重要であることがわかった。
【0015】
k値は▲1▼前駆体繊維の伝熱係数、▲2▼耐炎化温度によって若干変化し、前駆体繊維の伝熱係数は炉内風速、熱風循環の方式(平行流、垂直流)、前駆体繊維糸条の構成(構成フィラメント数)に依存する。
【0016】
即ち、k値は、炭素繊維前駆体アクリル繊維を耐炎化水平炉中を10回通過させたときの合計の炉内滞在時間(tt)と、水平炉中に炭素繊維前駆体アクリル繊維を固定したときに水平炉中を10回通過させたときと等しい密度が得られる時間(ts)を比較し、耐炎化処理効率ts/tt×100を求め、1パス滞在時間に対する耐炎化処理効率の変化率が6%/minとなるときの1パス滞在時間(t1=tt/10(min))をkとすることで得られる。
【0017】
具体的には、次のようなステップで実験的に求められる。
▲1▼ 耐炎化炉内に前駆体繊維を種々の時間固定して得た糸の密度を測定する。
▲2▼ ▲1▼の結果から処理時間に対する密度上昇曲線(マスターカーブ)を作成する。
▲3▼ 前駆体繊維を耐炎化炉を10回通過させて処理した糸の密度を測定する。
▲4▼ ▲3▼の10回の炉内滞在時間の合計を算出し、これを炉内滞在時間(tt)を求める。
▲5▼ ▲3▼の密度を得るために必要な耐炎化処理時間をマスターカーブから読み取り、これにより炉内に固定したときに等しい密度が得られる時間(ts)を求める。▲6▼ 次式により耐炎化処理効率を求める。
(耐炎化処理効率)=ts/tt×100[%]
▲7▼ 1パス滞在時間(t1)を変えて実験を行い、耐炎化処理効率を種々の1パス滞在時間について求め、1パス滞在時間に対する耐炎化処理効率の変化率が6%/minとなる1パス滞在時間をk値とする。
【0018】
次に具体的に、垂直流熱風循環方式、水平炉長16mの耐炎化炉を用い、種々の耐炎化温度において炉内風速、構成フィラメント数を変化させてk値を求めた例を示す。
【0019】
まず、図1に示すような水平炉長16mの耐炎化炉において、耐炎化温度240℃、炉内風速0.5m/sとし、単繊維デニール1.1、フィラメント数12000本の前駆体繊維を用い、ラインスピードVを変化させて、耐炎化処理効率を求めた。その結果を表1に示す。
【0020】
【表1】

Figure 0004021972
この表から、1パス滞在時間1.6〜1.8minの間で1パス滞在時間に対する耐炎化処理効率の変化率が6%/minを越えていることがわかる。従ってk値は1.7minと求めることができる。
【0021】
同様にしてフィラメント数24000、48000の前駆体繊維について炉内風速を0.5、0.7および1.0m/sと変化させてk値を求めた結果をまとめて表2に示す。
【0022】
【表2】
Figure 0004021972
さらに同様の手法で耐炎化温度230℃および250℃についてもk値を求めたが、240℃の場合とほぼ同じ値が得られた。
【0023】
また、Lが変化した場合も同様にしてk値を求めることができる。Lが大きい場合には、(1)式を満足する範囲でVを大きくとることができので、本発明のようにLが15m以上と大きい場合には特に生産性良く耐炎化を行うことができる。つまり、(1)式は従来用いられていなかったLが15m以上というような大きい水平炉を用いた場合に、最も効率よく安定に品質の良い炭素繊維を得るための製造条件を明らかにしたものである。
【0024】
図2は、表1のときと同じ前駆体繊維を、水平炉長24mの耐炎化炉を用いて、耐炎化温度240℃、炉内風速0.7m/sの条件で処理するときの耐炎化処理効率と1パス滞在時間の関係を示した図である。この場合も同様にk=1.7minが得られる。即ち、このようにLが大きい場合には、Vを大きくとることができるので、さらに生産性良く耐炎化を行うことができる。
【0025】
一方Lが大きくなると、図3に示すように炉内での前駆体繊維の撓み量が大きくなる。炉内中央部での撓み量(以下最大撓み量という)は(2)式で与えられる。
【0026】
dmax=L’2 /(7.2×107 ×T) (2)
ここでdmaxは最大撓み量(mm)、Tは張力(g/d)、L’は1パスロール間距離長(mm)である。通常L’≒Lと考えることができる。
【0027】
工業的には耐炎化は同時に複数本の前駆体繊維を並行に5〜10mm程度の間隔で並べて行う。最大撓み量が大きくなると隣接する前駆体繊維の間でのマージングが起こりやすくなる。本発明者らの検討では最大撓み量30mm未満では前駆体繊維に特別の交絡処理を施さなくても隣接トウ間のマージングは起こらないが、最大撓み量が30mm以上となるとマージングが発生しやすくなることがわかった。
【0028】
そこで、前駆体繊維に交絡処理を施し、隣接する前駆体繊維間でのマージング低減効果を調べると、交絡度7回/m未満では交絡処理を施さないものとマージング発生度合いは変わらなかったが、交絡度7回/m以上ではマージング発生度合いが急減し、最大撓み量が増加してもマージング発生度合いは変化しなかった。
【0029】
即ち、前駆体繊維の交絡度を7回/m以上とすることで、耐炎化炉長が長くなり、例えば15mを越える場合でもマージングを効果的に防止し、生産性良く炭素繊維を製造することができる。
【0030】
交絡処理の方法としては特に限定なく、加撚方式や、圧縮空気を糸条に吹き付けるいわゆる流体噴射方式(インターレース)あるいはそれに準じた方法など種々の方法を用いることができる。
【0031】
交絡度は次のようにして求めることができる。
▲1▼ 前駆体繊維を約1メートルボビンから巻きだし、一端をクリップで固定する。
▲2▼ 他端に錘(約100g)をつるす。
▲3▼ つるした前駆体繊維がよじれないよう修正して、固定点から約10cmのところに約2gの錘をつけたフックを差し込む。
▲4▼ フックを差し込んだ手を離し、差し込んだところから落下停止したところまでの距離(交絡間距離)を測定する。
▲5▼ 上記▲1▼〜▲4▼の手順で交絡間距離を30回測定する。
▲6▼ 測定した30点のうち上下5点を除き、残った20点の平均値(M(cm)を求める。
▲7▼ 交絡度(回/m)=100/M から交絡度を求める。
【0032】
また、耐炎化工程で前駆体繊維にかける張力は、通常前駆体繊維デニール当たり70〜200g/dである。70g/d未満では得られる炭素繊維の強度、弾性率を低下することがあり、また、200g/dを越えると耐炎化工程での糸切れ、巻き付きが発生しやすくなる。
【0033】
【実施例】
以下に実施例を示して、本発明をさらに具体的に説明する。
【0034】
[前駆体繊維の製造]
アクリロニトリルを96モル%含有し、共重合成分としてメタクリル酸2モル%、アクリル酸メチル2モル%を含有する単糸繊度1.2デニール、構成フィラメント数12000本の前駆体繊維を用意した。前駆体繊維糸条の密度は1.18g/cm3であった。
【0035】
[耐炎化炉と耐炎化方法]
耐炎化を行う炉として水平炉長Lが8m、16mおよび24mの垂直流熱風循環式炉を用意した。風速は0.7m/sとした。炉内温度は240℃とした。耐炎化処理を施した後、炉の反対側から炉外に取り出し、フリーロールで方向転換し、再び炉内に供給した、炉内通過回数を種々変化させ、耐炎化糸密度が1.34g/cm3となるまで通過を繰り返した。
【0036】
[k値]
先に定義した方法によりこの製造系についてあらかじめ測定したk値は1.
7であった。
【0037】
[耐炎化繊維の密度測定]
耐炎化繊維の密度はJIS R7601に準拠して測定した。
【0038】
[前駆体繊維の交絡処理および交絡度]
前駆体繊維を流体噴射方式により交絡処理し、所定の交絡度の前駆体繊維を得た。交絡度は先に述べた方法により求めた。
【0039】
[炭素化炉と炭素化方法]
一旦巻き取った耐炎化をオフラインで炭素化を行う炉として有効長1.2mのマッフル型加熱炉を用意した。この炉中で窒素雰囲気下300〜800℃の温度範囲で加熱処理した後、別に用意した有効長1.2mのマッフル型加熱炉中で窒素雰囲気下1000〜1400℃の温度範囲で加熱処理した後巻き取った。処理時間はそれぞれ1.2分で行った。
【0040】
[炭素繊維の評価]
炭素繊維の強度および弾性率はJIS R7601に従って評価し、炭素繊維の毛羽立ちは目視によって評価した。
【0041】
[実施例1]
水平炉長Lが24mの耐炎化炉を用いて、あらかじめ測定した交絡度が5回/m、フィラメント数12000本の前駆体繊維を用い、ラインスピード10m/minで耐炎化繊維に転換した。すなわち、1パス滞在時間は2.4minである。式(2)を用いて推定した最大撓み量は100mmであった。
【0042】
耐炎化糸密度1.34g/cm3とするのに必要な炉内通過回数は26回であった。滞在時間の合計は62分であった。耐炎化工程において隣接する前駆体繊維との間にマージングが散見された。
【0043】
この耐炎化糸をオフラインで炭素化し、強度、弾性率を測定したところ、それぞれ410kgf/mm2、28tf/mm2であった。
【0044】
[比較例1]
水平炉長Lが16mの耐炎化炉を用いたこと以外は実施例1と同様に実験を行った。1パス滞在時間1.6minであった。耐炎化糸密度1.34g/cm3とするのに必要な炉内通過回数を求めたところ、55回の通過回数を要した。滞在時間の合計は88分であった。
【0045】
この耐炎化糸をオフラインで炭素化し、強度、弾性率を測定したところ、それぞれ380kgf/mm2、28tf/mm2であった。炭素化糸の表面に毛羽立ちが認められた。
【0046】
[比較例2]
水平炉長Lが8mの耐炎化炉を用いたこと以外は実施例1と同様に実験を行った。1パス滞在時間0.8minであった。耐炎化糸密度1.34g/cm3とするのに必要な炉内通過回数を求めたところ、170回の通過回数を要した。滞在時間の合計は136分であった。
【0047】
この耐炎化糸をオフラインで炭素化し、強度、弾性率を測定したところ、それぞれ365kgf/mm2、27tf/mm2であった。炭素化糸の表面には毛羽立ちが多く見られた。
【0048】
[実施例2]
ラインスピード8m/minとすること以外は比較例1と同様に実験を行った。1パス滞在時間は2minであった。耐炎化糸密度1.34g/cm3とするのに必要な炉内通過回数は34回であった。滞在時間の合計は68分であった。
【0049】
この耐炎化糸をオフラインで炭素化し、強度、弾性率を測定したところ、それぞれ420kgf/mm2、28tf/mm2であった。炭素化糸の表面には毛羽立ちは認められなかった。
【0050】
[実施例3]
あらかじめ測定された交絡度が10回/mの前駆体繊維を用いること以外は実施例1と同様に耐炎化を行った。耐炎化糸密度1.34g/cm3とするのに必要な炉内通過回数を求めたところ、実施例1と同じ結果が得られた。耐炎化工程中での隣接する前駆体繊維間のマージングは実施例1に比べ大幅に減少した。
【0051】
この耐炎化糸をオフラインで炭素化し、強度、弾性率を測定したところ、それぞれ440kgf/mm2、29tf/mm2であった。炭素化糸の表面には毛羽立ちは認められなかった。
【0052】
【発明の効果】
本発明によれば、対流加熱方式の耐炎化方法を用いたときに、耐炎化を効率よくかつ安定して行うことができると同時に、機械的特性および品質の優れた炭素繊維を製造することができる炭素繊維の製造方法を提供することができる。
【0053】
さらに本発明によれば、耐炎化水平炉長が長くなった場合であっても前駆体繊維間のマージングが起こりにくくすることで、さらに耐炎化を効率よくかつ安定して行うことができると同時に、機械的特性および品質の優れた炭素繊維を製造することができる炭素繊維の製造方法を提供するができる。
【図面の簡単な説明】
【図1】本実験で用いた耐炎化炉の概略を示した図である。
【図2】水平炉長24mの耐炎化炉を用いて、耐炎化温度240℃、炉内風速0.7m/sの条件で処理するときの耐炎化処理効率と1パス滞在時間の関係を示した図である。
【図3】耐炎化炉内で前駆体繊維が撓む様子を示した図である。
【符号の説明】
1 耐炎化炉
2 前駆体繊維
3 ロール
L 水平炉長[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing carbon fiber, and more particularly to improvement of a process for converting a carbon fiber precursor acrylic fiber to a flameproof fiber.
[0002]
[Prior art]
Carbon fiber made from acrylic fiber is generally a so-called flameproofing step in which a carbon fiber precursor acrylic fiber (hereinafter also referred to as precursor fiber) is heated in an air atmosphere and then in an inert atmosphere. Manufactured in two steps: a heated carbonization step.
[0003]
In the flameproofing process, it is general to provide a large number of rollers in a flameproofing furnace in which an oxidizing gas heated to 200 to 300 ° C. circulates and process the precursor fiber while reciprocating many times.
[0004]
The number of times the precursor fiber is passed through the flameproofing furnace to convert it into flameproofing fiber having desired physical properties (hereinafter referred to as the number of flameproofing furnace passes) depends on the line speed and the horizontal furnace length of the flameproofing furnace. If the line speed is increased for the purpose of improving the productivity of carbon fiber, the residence time in the furnace during one pass through the flameproofing furnace (hereinafter referred to as one-pass residence time) decreases. However, since the conventional flameproof horizontal furnace length is less than 15 m, the number of flameproofing furnace passes is about 20 to 50 times in order to perform a desired treatment in the flameproofing process.
The method of making the precursor fiber flame resistant by reciprocating in the flame resistant furnace many times has the following problems.
[0005]
First, since the precursor fiber is repeatedly cooled and heated every time it enters and exits the flameproofing furnace, the processing efficiency decreases as the number of reciprocations increases. Next, as the number of openings in the flameproofing furnace increases, the energy required to maintain the furnace temperature at a constant temperature increases. Such a problem becomes more prominent than when the yarn supply speed into the flameproofing furnace is increased in order to improve the productivity of the carbon fiber. This low flameproofing efficiency has been a factor in lowering the productivity of the entire carbon fiber manufacturing process and raising the price of the finally obtained carbon fiber.
[0006]
In order to overcome this drawback, for example, Japanese Examined Patent Publication No. 53-21396 discloses a method in which the precursor fiber is intermittently contacted with a heating roll without giving a cooling margin and the flameproofing reaction proceeds in a short time. Has been. This method is effective for shortening the flameproofing time. However, since the fiber is brought into direct contact with the heated roll, the fiber is likely to be fused during the flameproofing treatment, and because the treated surface is only on one side, it is easy to cause unevenness in the thickness direction. Therefore, a carbon fiber having sufficient performance could not be obtained. Flame resistance of precursor fibers by such a conductive heating method is difficult to apply industrially, and in reality, flame resistance by convection heating is used as an industrial technique.
[0007]
Moreover, the carbon fiber using the flame resistant fiber obtained by reciprocating the precursor fiber many times in the flame resistant furnace has a problem that strength and quality are not sufficient.
[0008]
On the other hand, when the length of the flameproof horizontal furnace is increased, there is a problem that the bending of the precursor fiber in the furnace increases, and merging easily occurs between adjacent fibers.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of such problems, and when using a convection heating type flameproofing method, when the flameproof horizontal furnace length becomes long, flameproofing is efficiently and stably performed. It is an object of the present invention to provide a carbon fiber production method capable of producing carbon fibers having excellent mechanical properties and quality.
Furthermore, the present invention is less likely to cause merging between the precursor fibers even when the flame-resistant horizontal furnace length becomes long, and furthermore, the flame resistance can be efficiently and stably performed. It aims at providing the manufacturing method of the carbon fiber which can manufacture the carbon fiber excellent in quality.
[0010]
[Means for Solving the Problems]
The present invention is a method for producing carbon fiber having a flameproofing step of converting a carbon fiber precursor acrylic fiber to flameproofed fiber in a horizontal furnace having a length of 15 m or more by a convection heating method, and passing through the horizontal furnace. The line speed V (m / min) of the carbon fiber precursor acrylic fiber yarn to be satisfied satisfies the formula (1).
[0011]
V ≦ L / k (1)
However, L is the length (m) of the horizontal furnace, and L ≧ 15. In addition, k represents the limit 1-pass residence time, the total residence time (t t ) in the furnace when the carbon fiber precursor acrylic fiber is passed 10 times through the flameproof horizontal furnace, and the carbon fiber precursor in the horizontal furnace. Comparing the time (t s ) to obtain the same density as when passing through the horizontal furnace 10 times when the body acrylic fiber is fixed, the flameproofing treatment efficiency t s / t t × 100 is obtained and stays for 1 pass It can be obtained by setting the one-pass residence time (t 1 = t t / 10 (min)) to k when the rate of change in the flameproofing treatment efficiency with respect to time is 6% / min.
[0012]
In addition, the present invention converts the carbon fiber precursor acrylic fiber to flame-resistant fiber in a horizontal furnace having a one-pass furnace length of 15 m or more by a convection heating method with a maximum deflection amount defined by equation (2) being 30 mm or more. In the carbon fiber manufacturing method having a flameproofing step, the carbon fiber precursor acrylic fiber has an entanglement degree of 7 or more.
dmax = L ′ 2 /(7.2×10 7 × T) (2)
(However, dmax is the maximum deflection (mm), T is the tension (g / d), and L ′ is the distance length (mm) between 1-pass rolls.)
[0013]
DETAILED DESCRIPTION OF THE INVENTION
When flame resistance is achieved in a one-pass furnace length convection heating system furnace, if the precursor fiber supply rate is increased for the purpose of improving productivity, the time (L / V) (hereinafter referred to as 1-pass stay time) decreases. On the other hand, in consideration of the time during which the flameproofing reaction does not proceed substantially after the cooled precursor fiber enters the furnace (hereinafter referred to as 1-pass delay time), the 1-pass flameproofing treatment time is substantially 1 This is considered to be equivalent to the time obtained by subtracting one pass delay time from the pass stay time.
[0014]
According to the study by the present inventor, when the 1-pass residence time falls below the peculiar limit 1-pass residence time k value (min) under the conditions, the flameproofing efficiency rapidly decreases. When production is performed with a one-pass residence time lower than the k value, it is necessary to increase the number of flameproofing furnace passes, which lowers the productivity of carbon fibers and the efficiency in the flameproofing process, and increases the firing cost. Furthermore, it is not just a problem of manufacturing cost. Even if the number of flameproofing furnace passes is increased to obtain a flameproof fiber having predetermined physical properties, the carbon fiber obtained by processing this has poor mechanical strength and quality. It has been found that it is extremely important to perform production with a one-pass residence time equal to or higher than the k value, that is, to set the manufacturing conditions so as to satisfy the expression (1).
[0015]
The k value varies slightly depending on (1) the heat transfer coefficient of the precursor fiber and (2) the flame resistance temperature, and the heat transfer coefficient of the precursor fiber depends on the wind speed in the furnace, the method of circulating hot air (parallel flow, vertical flow), the precursor Depends on the configuration (number of constituent filaments) of the body fiber yarn.
[0016]
That is, the k value is the total residence time (t t ) when the carbon fiber precursor acrylic fiber is passed through the flameproof horizontal furnace 10 times, and the carbon fiber precursor acrylic fiber is fixed in the horizontal furnace. The time (t s ) for obtaining the same density as when passing through the horizontal furnace 10 times is compared to obtain the flame resistance treatment efficiency t s / t t × 100, and the flame resistance treatment for the one-pass residence time. It can be obtained by setting 1 pass stay time (t 1 = t t / 10 (min)) when the rate of change in efficiency is 6% / min as k.
[0017]
Specifically, it is obtained experimentally by the following steps.
(1) Measure the density of the yarn obtained by fixing the precursor fiber in the flameproofing furnace for various times.
(2) A density rise curve (master curve) with respect to the processing time is created from the result of (1).
(3) The density of the treated yarn is measured by passing the precursor fiber through the flameproofing furnace 10 times.
(4) The sum of the ten times in the furnace of (3) is calculated, and the time in the furnace (t t ) is calculated.
(5) The flameproofing treatment time required to obtain the density of (3) is read from the master curve, and thereby the time (t s ) at which an equal density is obtained when fixed in the furnace is obtained. (6) Obtain the flameproofing treatment efficiency by the following formula.
(Flame resistance treatment efficiency) = t s / t t × 100 [%]
(7) The experiment was conducted while changing the 1-pass residence time (t 1 ), and the flameproofing treatment efficiency was obtained for various 1-pass residence times, and the rate of change of the flameproofing treatment efficiency with respect to the 1-pass residence time was 6% / min. The one-pass stay time is k value.
[0018]
Next, an example in which a k value is obtained by using a vertical flow hot air circulation system and a flameproof furnace having a horizontal furnace length of 16 m and changing the furnace wind speed and the number of constituent filaments at various flameproofing temperatures will be shown.
[0019]
First, in a flameproofing furnace having a horizontal furnace length of 16 m as shown in FIG. 1, a precursor fiber having a flameproofing temperature of 240 ° C. and a furnace wind speed of 0.5 m / s, a single fiber denier 1.1 and a filament number of 12,000 is used. The flame speed treatment efficiency was determined by changing the line speed V. The results are shown in Table 1.
[0020]
[Table 1]
Figure 0004021972
From this table, it can be seen that the rate of change in the flameproofing treatment efficiency with respect to one pass residence time exceeds 6% / min during one pass residence time of 1.6 to 1.8 min. Therefore, the k value can be obtained as 1.7 min.
[0021]
Table 2 summarizes the results of obtaining k values for the precursor fibers having 24,000 and 48000 filaments in the same manner and changing the in-furnace wind speed to 0.5, 0.7 and 1.0 m / s.
[0022]
[Table 2]
Figure 0004021972
Further, the k value was obtained for the flameproofing temperatures of 230 ° C. and 250 ° C. in the same manner, but almost the same value as in the case of 240 ° C. was obtained.
[0023]
Also, the k value can be obtained in the same manner when L changes. When L is large, V can be increased within the range satisfying the expression (1). Therefore, when L is as large as 15 m or more as in the present invention, flame resistance can be achieved particularly with high productivity. . In other words, equation (1) clarifies the production conditions for obtaining the most efficient and stable quality carbon fiber when using a large horizontal furnace with L of 15 m or more, which was not conventionally used. It is.
[0024]
FIG. 2 shows flame resistance when the same precursor fiber as in Table 1 is treated in a flame resistant furnace having a horizontal furnace length of 24 m under the conditions of a flame resistance temperature of 240 ° C. and a wind speed of 0.7 m / s in the furnace. It is the figure which showed the relationship between processing efficiency and 1 pass stay time. In this case as well, k = 1.7 min is obtained. That is, when L is large as described above, V can be made large, so that flame resistance can be further improved with high productivity.
[0025]
On the other hand, when L increases, the amount of bending of the precursor fiber in the furnace increases as shown in FIG. The amount of bending at the center of the furnace (hereinafter referred to as the maximum amount of bending) is given by equation (2).
[0026]
dmax = L ′ 2 /(7.2×10 7 × T) (2)
Here, dmax is the maximum deflection amount (mm), T is the tension (g / d), and L ′ is the distance length (mm) between 1-pass rolls. Usually, L′ ≈L can be considered.
[0027]
Industrially, flame resistance is performed by arranging a plurality of precursor fibers in parallel at intervals of about 5 to 10 mm. As the maximum deflection amount increases, merging between adjacent precursor fibers tends to occur. In the study by the present inventors, merging between adjacent tows does not occur even if the precursor fiber is not subjected to special entanglement treatment when the maximum deflection amount is less than 30 mm, but merging is likely to occur when the maximum deflection amount is 30 mm or more. I understood it.
[0028]
Therefore, when the entanglement treatment was performed on the precursor fibers and the merging reduction effect between the adjacent precursor fibers was examined, the degree of merging was not changed from the case where the entanglement degree was less than 7 times / m and the entanglement treatment was not performed. When the degree of entanglement was 7 times / m or more, the degree of occurrence of merging decreased rapidly, and the degree of occurrence of merging did not change even when the maximum deflection amount increased.
[0029]
That is, by setting the entanglement degree of the precursor fiber to 7 times / m or more, the length of the flameproofing furnace becomes long, for example, effectively preventing merging even when exceeding 15 m, and producing carbon fiber with high productivity. Can do.
[0030]
There are no particular limitations on the method of entanglement treatment, and various methods such as a twisting method, a so-called fluid injection method (interlace) in which compressed air is blown onto the yarn, or a method based thereon can be used.
[0031]
The degree of entanglement can be obtained as follows.
(1) Unwind the precursor fiber from a bobbin about 1 meter, and fix one end with a clip.
(2) Hang a weight (about 100 g) on the other end.
(3) Modify the hung precursor fiber so that it does not twist, and insert a hook with a weight of about 2 g at a position about 10 cm from the fixing point.
(4) Release the hand with the hook inserted, and measure the distance (interlaced distance) from where it was inserted to where it stopped dropping.
(5) The inter-entanglement distance is measured 30 times according to the procedures (1) to (4) above.
{Circle around (6)} The average value (M (cm)) of the remaining 20 points is obtained by removing the upper and lower 5 points from the 30 points measured.
(7) Degree of confounding (times / m) = 100 / M
[0032]
Moreover, the tension | tensile_strength applied to a precursor fiber at a flame-proofing process is 70-200 g / d normally per precursor fiber denier. If it is less than 70 g / d, the strength and elastic modulus of the obtained carbon fiber may be lowered, and if it exceeds 200 g / d, yarn breakage and winding are likely to occur in the flame resistance process.
[0033]
【Example】
The present invention will be described more specifically with reference to the following examples.
[0034]
[Precursor fiber production]
Precursor fibers containing 96 mol% acrylonitrile, 2 mol% methacrylic acid and 2 mol% methyl acrylate as copolymerization components and having a single yarn fineness of 1.2 denier and 12,000 constituent filaments were prepared. The density of the precursor fiber yarn was 1.18 g / cm 3 .
[0035]
[Flameproof furnace and flameproofing method]
As furnaces for flame resistance, vertical flow hot air circulation furnaces having horizontal furnace lengths L of 8 m, 16 m and 24 m were prepared. The wind speed was 0.7 m / s. The furnace temperature was 240 ° C. After performing the flameproofing treatment, it was taken out from the opposite side of the furnace, changed the direction with a free roll, and again supplied into the furnace. The number of passages in the furnace was variously changed, and the flameproof yarn density was 1.34 g / The passage was repeated until it reached cm 3 .
[0036]
[K value]
The k value measured in advance for this production system by the method defined above is 1.
7.
[0037]
[Measurement of density of flame-resistant fiber]
The density of the flameproof fiber was measured according to JIS R7601.
[0038]
[Entanglement treatment and degree of entanglement of precursor fibers]
The precursor fibers were entangled by a fluid injection method to obtain precursor fibers having a predetermined degree of entanglement. The degree of entanglement was determined by the method described above.
[0039]
[Carbonization furnace and carbonization method]
A muffle-type heating furnace having an effective length of 1.2 m was prepared as a furnace for performing the carbonization of the flame resistance once wound off. After heat treatment in a temperature range of 300 to 800 ° C. in a nitrogen atmosphere in this furnace, and heat treatment in a temperature range of 1000 to 1400 ° C. in a nitrogen atmosphere in a separately prepared muffle type heating furnace having an effective length of 1.2 m Winded up. The treatment time was 1.2 minutes each.
[0040]
[Evaluation of carbon fiber]
The strength and elastic modulus of the carbon fiber were evaluated according to JIS R7601, and the fluff of the carbon fiber was visually evaluated.
[0041]
[Example 1]
Using a flameproofing furnace with a horizontal furnace length L of 24 m, precursor fibers measured in advance with an entanglement degree of 5 times / m and 12,000 filaments were converted into flameproofing fibers at a line speed of 10 m / min. That is, the one-pass stay time is 2.4 min. The maximum amount of deflection estimated using equation (2) was 100 mm.
[0042]
The number of passages in the furnace required to make the flameproof yarn density 1.34 g / cm 3 was 26 times. The total stay time was 62 minutes. In the flameproofing process, merging was observed between adjacent precursor fibers.
[0043]
The flame-resistant yarn was carbonized offline intensity, measuring the modulus of elasticity were respectively 410kgf / mm 2, 28tf / mm 2.
[0044]
[Comparative Example 1]
An experiment was performed in the same manner as in Example 1 except that a flameproof furnace having a horizontal furnace length L of 16 m was used. One pass stay time was 1.6 min. When the number of passages in the furnace necessary to obtain a flameproof yarn density of 1.34 g / cm 3 was determined, 55 passages were required. The total stay time was 88 minutes.
[0045]
The flame-resistant yarn was carbonized offline intensity, measuring the modulus of elasticity were respectively 380kgf / mm 2, 28tf / mm 2. Fluffing was observed on the surface of the carbonized yarn.
[0046]
[Comparative Example 2]
The experiment was performed in the same manner as in Example 1 except that a flameproof furnace having a horizontal furnace length L of 8 m was used. One pass stay time was 0.8 min. When the number of passages in the furnace necessary for setting the flameproof yarn density to 1.34 g / cm 3 was determined, 170 passages were required. The total stay time was 136 minutes.
[0047]
The flame-resistant yarn was carbonized offline intensity, measuring the modulus of elasticity were respectively 365kgf / mm 2, 27tf / mm 2. Many fluff was observed on the surface of the carbonized yarn.
[0048]
[Example 2]
The experiment was performed in the same manner as in Comparative Example 1 except that the line speed was 8 m / min. One-pass stay time was 2 min. The number of passes through the furnace required to make the flame resistant yarn density 1.34 g / cm 3 was 34 times. The total stay time was 68 minutes.
[0049]
The flame-resistant yarn was carbonized offline intensity, measuring the modulus of elasticity were respectively 420kgf / mm 2, 28tf / mm 2. No fuzz was observed on the surface of the carbonized yarn.
[0050]
[Example 3]
Flame resistance was achieved in the same manner as in Example 1 except that a precursor fiber having a degree of entanglement measured in advance of 10 times / m was used. When the number of passages in the furnace necessary for setting the flameproof yarn density to 1.34 g / cm 3 was obtained, the same result as in Example 1 was obtained. The merging between adjacent precursor fibers during the flameproofing process was significantly reduced compared to Example 1.
[0051]
The flame-resistant yarn was carbonized offline intensity, measuring the modulus of elasticity were respectively 440kgf / mm 2, 29tf / mm 2. No fuzz was observed on the surface of the carbonized yarn.
[0052]
【The invention's effect】
According to the present invention, when using a convection heating type flameproofing method, flameproofing can be performed efficiently and stably, and at the same time, carbon fibers having excellent mechanical properties and quality can be produced. A method for producing a carbon fiber that can be provided can be provided.
[0053]
Furthermore, according to the present invention, even when the flameproof horizontal furnace length becomes long, merging between the precursor fibers is less likely to occur, and further, flameproofing can be performed efficiently and stably. It is possible to provide a carbon fiber production method capable of producing a carbon fiber having excellent mechanical properties and quality.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a flameproofing furnace used in this experiment.
FIG. 2 shows the relationship between the flameproofing treatment efficiency and the one-pass residence time when using a flameproofing furnace with a horizontal furnace length of 24 m and processing at a flameproofing temperature of 240 ° C. and a wind speed of 0.7 m / s in the furnace. It is a figure.
FIG. 3 is a view showing a state in which precursor fibers are bent in a flameproofing furnace.
[Explanation of symbols]
1 Flame-proofing furnace 2 Precursor fiber 3 Roll L Horizontal furnace length

Claims (4)

対流加熱方式による1パス炉長15m以上の水平炉中で炭素繊維前駆体アクリル繊維を耐炎化繊維に転換する耐炎化工程を有する炭素繊維の製造方法において、
前記水平炉中を通過する炭素繊維前駆体アクリル繊維糸条のラインスピードV(m/min)が(1)式を満足することを特徴とする炭素繊維の製造方法。
V≦L/k (1)
(但し、Lは前記水平炉の長さ(m)で、L≧15である。またkは限界1パス滞在時間を表し、炭素繊維前駆体アクリル繊維を耐炎化水平炉中を10回通過させたときの合計の炉内滞在時間(tt)と、水平炉中に炭素繊維前駆体アクリル繊維を固定したときに水平炉中を10回通過させたときと等しい密度が得られる時間(ts)を比較し、耐炎化処理効率ts/tt×100を求め、1パス滞在時間に対する耐炎化処理効率の変化率が6%/minとなるときの1パス滞在時間(t1=tt/10(min))をkとする。)
In the method for producing carbon fiber having a flameproofing step of converting the carbon fiber precursor acrylic fiber to flameproofing fiber in a horizontal furnace having a length of 15 m or more by a convection heating method,
A method for producing carbon fiber, wherein the line speed V (m / min) of the carbon fiber precursor acrylic fiber yarn passing through the horizontal furnace satisfies the formula (1).
V ≦ L / k (1)
(However, L is the length (m) of the horizontal furnace, and L ≧ 15. Also, k represents the limit 1-pass residence time, and the carbon fiber precursor acrylic fiber is passed through the flameproof horizontal furnace 10 times. total furnace residence time (t t), the time equal density as when a horizontal furnace is passed through 10 times when fixing the carbon fiber precursor acrylic fiber during the horizontal furnace is obtained when the (t s ) are compared to obtain the oxidization processing efficiency t s / t t × 100, 1 pass residence time when oxidization processing efficiency of the rate of change with respect to one pass residence time is 6% / min (t 1 = t t / 10 (min)) is k.)
対流加熱方式による1パス炉長15m以上の水平炉中で、(2)式で定義される最大撓み量が30mm以上の状態で炭素繊維前駆体アクリル繊維を耐炎化繊維に転換する耐炎化工程を有する炭素繊維の製造方法において、
前記炭素繊維前駆体アクリル繊維の交絡度が7以上であることを特徴とする炭素繊維の製造方法。
dmax=L’ 2 /(7.2×10 7 ×T) (2)
(但し、dmaxは最大撓み量(mm)、Tは張力(g/d)、L’は1パスロール間距離長(mm)である。)
A flameproofing step of converting the carbon fiber precursor acrylic fiber to flameproofing fiber in a state where the maximum deflection defined by the formula (2) is 30 mm or more in a horizontal furnace having a one-pass furnace length of 15 m or more by a convection heating method. In the manufacturing method of the carbon fiber which has,
The carbon fiber precursor acrylic fiber has a degree of entanglement of 7 or more.
dmax = L ′ 2 /(7.2×10 7 × T) (2)
(However, dmax is the maximum deflection (mm), T is the tension (g / d), and L ′ is the distance length (mm) between 1-pass rolls.)
前記炭素繊維前駆体アクリル繊維は、前記耐炎化工程において水平炉中で(2)式で定義される最大撓み量が30mm以上の状態であり、交絡度が7以上であることを特徴とする請求項1に記載の炭素繊維の製造方法。
dmax=L’ 2 /(7.2×10 7 ×T) (2)
(但し、dmaxは最大撓み量(mm)、Tは張力(g/d)、L’は1パスロール間距離長(mm)である。)
The carbon fiber precursor acrylic fiber, said the maximum deflection amount is equal to or greater than 30mm state defined by (2) in a horizontal oven at oxidation step, wherein, wherein the confounding degree of 7 or more Item 2. A method for producing carbon fiber according to Item 1 .
dmax = L ′ 2 /(7.2×10 7 × T) (2)
(However, dmax is the maximum deflection (mm), T is the tension (g / d), and L ′ is the distance length (mm) between 1-pass rolls.)
前記耐炎化工程の後に、さらに炭素化工程を有する請求項1〜3のいずれかに記載の炭素繊維の製造方法。The method for producing a carbon fiber according to any one of claims 1 to 3, further comprising a carbonization step after the flameproofing step.
JP21082297A 1997-08-05 1997-08-05 Carbon fiber manufacturing method Expired - Lifetime JP4021972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21082297A JP4021972B2 (en) 1997-08-05 1997-08-05 Carbon fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21082297A JP4021972B2 (en) 1997-08-05 1997-08-05 Carbon fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPH1161574A JPH1161574A (en) 1999-03-05
JP4021972B2 true JP4021972B2 (en) 2007-12-12

Family

ID=16595703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21082297A Expired - Lifetime JP4021972B2 (en) 1997-08-05 1997-08-05 Carbon fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP4021972B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5022014B2 (en) * 2006-12-13 2012-09-12 三菱レイヨン株式会社 Heat treatment method for carbon fiber precursor
JP5873358B2 (en) * 2012-03-09 2016-03-01 東邦テナックス株式会社 Flame-resistant fiber strand, method for producing the same, and method for producing carbon fiber strand
JP7354840B2 (en) * 2018-09-28 2023-10-03 東レ株式会社 Method for producing flame-resistant fiber bundles and method for producing carbon fiber bundles
WO2020110632A1 (en) 2018-11-26 2020-06-04 東レ株式会社 Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle

Also Published As

Publication number Publication date
JPH1161574A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP4021972B2 (en) Carbon fiber manufacturing method
JP5496214B2 (en) Carbon fiber bundle manufacturing method
JP5556994B2 (en) Method for producing flame resistant fiber
JP4017772B2 (en) Continuous heat treatment method for acrylic fiber bundles
JPS6238444B2 (en)
JP2003055843A (en) Method for producing carbon fiber
JP2010071410A (en) Grooved roller, and manufacturing device and manufacturing method of carbon fiber using the same
JP2007314901A (en) Method for producing carbon fiber
JP2005060871A (en) Method for producing flame-proofed fiber and method for producing carbon fiber
JP5081409B2 (en) Carbon fiber manufacturing method
JP3733688B2 (en) Carbon fiber manufacturing method
JPH04222229A (en) Production of graphite fiber
WO1987002391A1 (en) Process for producing carbon fibers
JPH11229241A (en) Manufacture of carbon fiber
JP2000154430A (en) Production of flame resistant fiber
JPS62257424A (en) Production of carbon fiber having high strength and elastic modulus
EP0624666B1 (en) Apparatus and process for crimping and crosslinking fibers
JP2010144274A (en) Method for producing carbon fiber
JPH06158435A (en) Production of flame-resistant fiber
JPH09256227A (en) Production of carbon fiber
JPS6224525B2 (en)
JP4626939B2 (en) Carbon fiber manufacturing method
JP4307233B2 (en) Flame resistant fiber and carbon fiber manufacturing method
JP2001131832A (en) Method for producing carbon yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term