JP7354840B2 - Method for producing flame-resistant fiber bundles and method for producing carbon fiber bundles - Google Patents

Method for producing flame-resistant fiber bundles and method for producing carbon fiber bundles Download PDF

Info

Publication number
JP7354840B2
JP7354840B2 JP2019550872A JP2019550872A JP7354840B2 JP 7354840 B2 JP7354840 B2 JP 7354840B2 JP 2019550872 A JP2019550872 A JP 2019550872A JP 2019550872 A JP2019550872 A JP 2019550872A JP 7354840 B2 JP7354840 B2 JP 7354840B2
Authority
JP
Japan
Prior art keywords
flame
fiber bundle
fiber bundles
fiber
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019550872A
Other languages
Japanese (ja)
Other versions
JPWO2020066653A5 (en
JPWO2020066653A1 (en
Inventor
祐介 久慈
幸平 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2020066653A1 publication Critical patent/JPWO2020066653A1/en
Publication of JPWO2020066653A5 publication Critical patent/JPWO2020066653A5/ja
Application granted granted Critical
Publication of JP7354840B2 publication Critical patent/JP7354840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • D01F9/328Apparatus therefor for manufacturing filaments from polyaddition, polycondensation, or polymerisation products
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide

Description

本発明は、炭素繊維束の製造方法に関するものである。更に詳しくは、高品質な耐炎化繊維束を操業トラブルなく、生産効率よく生産することのできる耐炎化繊維束の製造方法に関する。 The present invention relates to a method for manufacturing carbon fiber bundles. More specifically, the present invention relates to a method for producing a flame-resistant fiber bundle that can produce high-quality flame-resistant fiber bundles without operational trouble and with high production efficiency.

炭素繊維は比強度、比弾性率、耐熱性、および耐薬品性に優れていることから、各種素材の強化材として有用であり、航空宇宙用途、レジャー用途、一般産業用途等の幅広い分野で使用されている。 Because carbon fiber has excellent specific strength, specific modulus, heat resistance, and chemical resistance, it is useful as a reinforcing material for various materials, and is used in a wide range of fields such as aerospace, leisure, and general industrial applications. has been done.

一般に、アクリル系繊維束から炭素繊維束を製造する方法としては、アクリル系重合体の単繊維を数千から数万本束ねた繊維束を耐炎化炉に送入し、200~300℃に熱せられた空気等の酸化性雰囲気の熱風に晒すことにより加熱処理(耐炎化処理)した後、得られた耐炎化繊維束を炭素化炉に送入し、300~1000℃の不活性ガス雰囲気中で加熱処理(前炭素化処理)した後に、さらに1000℃以上の不活性ガス雰囲気で満たされた炭素化炉で加熱処理(炭素化処理)する方法が知られている。また、中間材料である耐炎化繊維束は、その燃え難い性能を活かして、難燃性織布向けの素材としても広く用いられている。 In general, the method for producing carbon fiber bundles from acrylic fiber bundles is to send fiber bundles made of thousands to tens of thousands of acrylic polymer single fibers into a flameproofing furnace and heat them to 200 to 300°C. After heat treatment (flame-resistant treatment) by exposing the resulting flame-resistant fiber bundle to hot air in an oxidizing atmosphere such as air, the resulting flame-resistant fiber bundle is fed into a carbonization furnace and heated in an inert gas atmosphere at 300 to 1000°C. A known method is to perform heat treatment (pre-carbonization treatment) in a carbonization furnace filled with an inert gas atmosphere of 1000° C. or more (carbonization treatment). In addition, flame-resistant fiber bundles, which are intermediate materials, are widely used as materials for flame-retardant woven fabrics, taking advantage of their flame-retardant properties.

炭素繊維束製造工程中における処理時間が最も長く、消費されるエネルギー量が最も多くなるのは耐炎化工程である。このため耐炎化工程での生産性向上が炭素繊維束製造において最も重要となる。 During the carbon fiber bundle manufacturing process, the flame-retardant process takes the longest processing time and consumes the largest amount of energy. For this reason, improving productivity in the flame-retardant process is most important in manufacturing carbon fiber bundles.

耐炎化工程での長時間の熱処理を可能とするため、耐炎化を行うための装置(以下、耐炎化炉という)は、耐炎化炉外部に配設した折り返しローラーによって、アクリル系繊維を水平方向に多数回往復させて耐炎化させながら処理するのが一般的である。耐炎化工程での生産性向上のためには、同時に多数の繊維束を搬送することで耐炎化炉内の繊維束の密度を上げることと、繊維束の走行速度を上げることが有効である。 In order to enable long-term heat treatment in the flame-retardant process, the flame-retardant equipment (hereinafter referred to as the flame-retardant furnace) uses folding rollers installed outside the flame-retardant furnace to roll the acrylic fibers horizontally. It is common that the treatment is carried out by making it reciprocate many times to make it flame resistant. In order to improve productivity in the flameproofing process, it is effective to increase the density of the fiber bundles in the flameproofing furnace by conveying a large number of fiber bundles at the same time, and to increase the traveling speed of the fiber bundles.

しかしながら、炉内の繊維束の密度を上げる場合、繊維束の振動による隣接する繊維束間の接触頻度が増す。そのため、繊維束の混繊や、単繊維切れ等が頻繁に発生することによる耐炎化繊維の品質の低下等を招く。 However, when increasing the density of the fiber bundles in the furnace, the frequency of contact between adjacent fiber bundles due to vibration of the fiber bundles increases. As a result, the quality of the flame-resistant fibers deteriorates due to frequent mixing of fiber bundles and breakage of single fibers.

また繊維束の走行速度を上げる場合については、同じ熱処理量を得るために、耐炎化炉のサイズを大きくする必要がある。とくに高さ方向のサイズを大きくすることは、建屋階層を複数に分けたり、床面の単位面積あたりの耐過重を上げる必要があるため、設備費増大につながる。そこで設備費増大を抑えて耐炎化炉のサイズを大きくするには、水平方向1パスあたりの距離(以下、耐炎化炉長という)を大きくすることで高さ方向のサイズを小さくすることが有効である。ただし、耐炎化炉長を大きくすることで、走行する繊維束の懸垂量が大きくなり、上記繊維束の密度を上げる場合と同じように、振動による隣接する繊維束間の接触、繊維束の混繊や、単繊維切れ等が頻繁に発生することよる耐炎化繊維の品質の低下等を招く。 Furthermore, when increasing the traveling speed of the fiber bundle, it is necessary to increase the size of the flameproofing furnace in order to obtain the same amount of heat treatment. Increasing the size in the height direction in particular will lead to increased equipment costs, as it will be necessary to divide the building into multiple floors and increase the load resistance per unit floor area. Therefore, in order to increase the size of the flameproofing furnace while suppressing the increase in equipment costs, it is effective to reduce the size in the height direction by increasing the distance per horizontal pass (hereinafter referred to as flameproofing furnace length). It is. However, by increasing the length of the flame-retardant furnace, the amount of suspension of the traveling fiber bundles increases, and as in the case of increasing the density of the fiber bundles mentioned above, contact between adjacent fiber bundles due to vibration, and mixing of fiber bundles. This leads to a decrease in the quality of the flame-resistant fiber due to the frequent occurrence of fibers and single fiber breakage.

上記の問題を解決するために、特許文献1では、耐炎化工程における繊維束シート状物の面占有率の規定し、さらに耐炎化炉内の風速、および耐炎化工程での工程張力の適正化を図ることが説明されている。 In order to solve the above problem, Patent Document 1 stipulates the surface area ratio of the fiber bundle sheet in the flameproofing process, and further optimizes the wind speed in the flameproofing furnace and the process tension in the flameproofing process. It is explained that the aim is to

また、特許文献2では、耐炎化工程における繊維束シート状物の面占有率、耐炎化炉内の風速、耐炎化炉内の繊維束の密度、具体的には走行繊維束の巾1mmあたりの繊度を規定することが説明されている。 In addition, Patent Document 2 describes the surface occupancy rate of the fiber bundle sheet in the flameproofing process, the wind speed in the flameproofing furnace, the density of the fiber bundle in the flameproofing furnace, and specifically, the It is explained that the fineness is specified.

さらに、特許文献3では、耐炎化炉長が長くなった場合での耐炎化工程のラインスピード、繊維束の最大懸垂量の適正化を図ることが説明されている。
特開2000-160435号公報 特開2011-127264号公報 特開平11-61574号公報
Furthermore, Patent Document 3 describes how to optimize the line speed of the flameproofing process and the maximum amount of suspension of the fiber bundle when the flameproofing furnace length becomes long.
Japanese Patent Application Publication No. 2000-160435 Japanese Patent Application Publication No. 2011-127264 Japanese Patent Application Publication No. 11-61574

しかしながら、特許文献1および特許文献2では生産性向上のために耐炎化炉長も大きくする場合に、規定の面占有率のパラメータでは隣接する繊維束間の接触を回避することができない。そのため、高品質な耐炎化繊維を製造することができない懸念がある。また、特許文献3では、繊維束の最大懸垂量の規定により、耐炎化炉長の大きい場合の隣接繊維束間の接触抑制が考慮されているが、耐炎化炉内における繊維束の密度については言及されておらず、生産性を向上することができない。 However, in Patent Document 1 and Patent Document 2, when the length of the flameproofing furnace is also increased in order to improve productivity, contact between adjacent fiber bundles cannot be avoided with a specified surface area ratio parameter. Therefore, there is a concern that high-quality flame-resistant fibers cannot be manufactured. Furthermore, in Patent Document 3, suppression of contact between adjacent fiber bundles when the length of the flame retardant furnace is long is taken into consideration by specifying the maximum hanging amount of the fiber bundles, but the density of the fiber bundles in the flame retardant furnace is Not mentioned and cannot improve productivity.

従って、本発明が解決しようとする課題は、高品質な耐炎化繊維束ならびに炭素繊維束を操業トラブルなく、生産効率よく生産することである。 Therefore, the problem to be solved by the present invention is to produce high-quality flame-resistant fiber bundles and carbon fiber bundles with high production efficiency without any operational troubles.

上記課題を解決するため、本発明の耐炎化繊維束の製造方法は、次の構成を有する。すなわち、
複数の束を隣接させて引き揃えたアクリル系繊維束を、耐炎化炉外両側に設置されるガイドローラーによって搬送させながら、熱風加熱式の耐炎化炉内を走行させて酸化性雰囲気中で熱処理する耐炎化繊維束の製造方法であって、耐炎化炉内における熱風の方向が繊維束の走行方向に対して平行であって、次式(1)で定義される隣接繊維束間の接触率Pを2~18%とし、前記ガイドローラー間の水平距離が20m以上であり、耐炎化炉内を流れる熱風の風速が2.0~5.0m/秒である耐炎化繊維束の製造方法、である。
In order to solve the above problems, the method for manufacturing a flame-resistant fiber bundle of the present invention has the following configuration. That is,
Acrylic fiber bundles, which are made up of multiple bundles aligned adjacent to each other, are transported by guide rollers installed on both sides of the outside of the flame-retardant furnace, and then run through a hot-air-heated flame-retardant furnace for heat treatment in an oxidizing atmosphere. A method for producing a flame-resistant fiber bundle, wherein the direction of the hot air in the flame-resistant furnace is parallel to the running direction of the fiber bundle, and the contact ratio between adjacent fiber bundles is defined by the following formula (1). A method for producing a flame-resistant fiber bundle, wherein P is 2 to 18%, the horizontal distance between the guide rollers is 20 m or more, and the speed of hot air flowing in the flame-resistant furnace is 2.0 to 5.0 m/sec. , is.

P=[1-p(x){-t<x<t}]×100 (1)
ここで、Pは隣接繊維束間の接触率(%)、tは隣接する繊維束間の隙間(mm)、p(x)は正規分布N(0、σ)の確率密度関数、σは振幅の標準偏差、xは振幅の中央をゼロとする確率変数を表す。
P=[1-p(x){-t<x<t}]×100 (1)
Here, P is the contact ratio (%) between adjacent fiber bundles, t is the gap (mm) between adjacent fiber bundles, p(x) is the probability density function of normal distribution N (0, σ 2 ), and σ is The standard deviation of the amplitude, x, represents a random variable with the center of the amplitude set to zero.

本発明における「隣接繊維束間の接触率P」とは、複数の繊維束を隣接するよう並列して走行させた時に、繊維束の幅方向の振動(糸揺れ)により、隣接する繊維束間の隙間がゼロになる確率を指す。上記繊維束の幅方向の振動の振幅は、繊維束の振幅平均を0、振幅の標準偏差をσとした時、正規分布Nに従うと仮定し、隣接繊維束間の接触率Pは上記式(1)で求めることができる。 In the present invention, the "contact ratio P between adjacent fiber bundles" means that when a plurality of fiber bundles are run in parallel so as to be adjacent to each other, vibrations in the width direction of the fiber bundles (yarn swing) cause the contact ratio P between adjacent fiber bundles to It refers to the probability that the gap between is zero. It is assumed that the amplitude of the vibration in the width direction of the fiber bundle follows a normal distribution N, where the average amplitude of the fiber bundle is 0 and the standard deviation of the amplitude is σ, and the contact ratio P between adjacent fiber bundles is calculated by the above formula ( 1).

また、本発明の炭素繊維束の製造方法は、次の構成を有する。すなわち、
上記の耐炎化繊維束の製造方法で製造された耐炎化繊維束を、不活性雰囲気中最高温度300~1,000℃で前炭素化処理して前炭素化繊維束を製造し、該前炭素化繊維束を不活性雰囲気中最高温度1,000~2,000℃で炭素化処理する炭素繊維束の製造方法、である。
Moreover, the method for manufacturing a carbon fiber bundle of the present invention has the following configuration. That is,
The flame-resistant fiber bundle produced by the above method for producing a flame-resistant fiber bundle is pre-carbonized at a maximum temperature of 300 to 1,000°C in an inert atmosphere to produce a pre-carbonized fiber bundle, and the pre-carbonized fiber bundle is This is a method for producing a carbon fiber bundle, in which the carbonized fiber bundle is carbonized in an inert atmosphere at a maximum temperature of 1,000 to 2,000°C.

本発明の耐炎化繊維の製造方法によれば、高品質の耐炎化繊維を操業トラブルなく、生産効率よく生産することができる。 According to the method for producing flame-resistant fibers of the present invention, high-quality flame-resistant fibers can be produced with high production efficiency without any operational troubles.

耐炎化炉を示す概略側面図である。FIG. 2 is a schematic side view showing a flameproofing furnace. 図1の耐炎化炉のX-Y断面図である。FIG. 2 is an XY sectional view of the flameproofing furnace in FIG. 1. 隣接繊維束間の接触率Pを説明するためのイメージ図である。FIG. 3 is an image diagram for explaining the contact ratio P between adjacent fiber bundles.

本発明の耐炎化繊維束の製造方法において被熱処理繊維束として使用するアクリル系繊維束は、アクリロニトリル100%のアクリル繊維、又はアクリロニトリルを90モル%以上含有するアクリル共重合繊維からなるのが好適である。アクリル共重合繊維における共重合成分としては、アクリル酸、メタクリル酸、イタコン酸、およびこれらのアルカリ金属塩、アンモニウム金属塩、アクリルアミド、アクリル酸メチル等が好ましいが、アクリル系繊維束の化学的性状、物理的性状、寸法等はとくに制限されるものではない。 The acrylic fiber bundle used as the heat-treated fiber bundle in the method for producing a flame-resistant fiber bundle of the present invention is preferably made of 100% acrylonitrile acrylic fiber or acrylic copolymer fiber containing 90 mol% or more of acrylonitrile. be. Preferable copolymerization components in the acrylic copolymer fiber include acrylic acid, methacrylic acid, itaconic acid, and their alkali metal salts, ammonium metal salts, acrylamide, methyl acrylate, etc. However, the chemical properties of the acrylic fiber bundle, Physical properties, dimensions, etc. are not particularly limited.

本発明は、前記アクリル系繊維束を酸化性雰囲気中で耐炎化処理する方法であって、酸化性気体が内部を流れる耐炎化炉において実施される。図1に示すように、耐炎化炉1は、多段の走行域を折り返しながら走行するアクリル系繊維束2に熱風を吹きつけて耐炎化処理する熱処理室3を有する。アクリル系繊維束2は、耐炎化炉1の熱処理室3側壁に設けた開口部(図示せず)から熱処理室3内に送入され、熱処理室3内を直線的に走行した後、対面の側壁の開口部から熱処理室3外に一旦送出される。その後、熱処理室3外の側壁に設けられたガイドローラー4によって折り返され、再び熱処理室3内に送入される。このように、アクリル系繊維束2は複数のガイドローラー4によって走行方向を複数回折り返すことで、熱処理室3内への送入送出を複数回繰り返して、熱処理室3内を多段で、全体として図1の上から下に向けて移動する。なお、移動方向は下から上でもよく、熱処理室3内でのアクリル系繊維束2の折り返し回数はとくに限定されず、耐炎化炉1の規模等によって適宜設計される。なおガイドローラー4は、熱処理室3の内部に設けてもよい。 The present invention is a method for flameproofing the acrylic fiber bundle in an oxidizing atmosphere, and is carried out in a flameproofing furnace through which an oxidizing gas flows. As shown in FIG. 1, the flame-retardant furnace 1 has a heat treatment chamber 3 that blows hot air onto the acrylic fiber bundle 2, which travels while turning back and forth in a multi-stage travel area, to make it flame-retardant. The acrylic fiber bundle 2 is fed into the heat treatment chamber 3 through an opening (not shown) provided in the side wall of the heat treatment chamber 3 of the flame-retardant furnace 1, travels linearly within the heat treatment chamber 3, and then passes through the opposite side. It is once sent out of the heat treatment chamber 3 through the opening in the side wall. Thereafter, it is folded back by a guide roller 4 provided on the side wall outside the heat treatment chamber 3 and sent into the heat treatment chamber 3 again. In this way, the acrylic fiber bundle 2 is folded back in its traveling direction multiple times by the guide rollers 4, and is fed into and sent out into the heat treatment chamber 3 multiple times, so that the entire fiber bundle is Move from top to bottom in Figure 1. Note that the direction of movement may be from bottom to top, and the number of times the acrylic fiber bundle 2 is folded back within the heat treatment chamber 3 is not particularly limited and is appropriately designed depending on the scale of the flameproofing furnace 1 and the like. Note that the guide roller 4 may be provided inside the heat treatment chamber 3.

アクリル系繊維束2は、折り返しながら熱処理室3内を走行している間に、熱風吹出口5から熱風排出口に向かって流れる熱風によって耐炎化処理されて、耐炎化繊維束となる。なお、アクリル系繊維束2は、図2に示すように紙面に対して垂直な方向に複数本並行するように引き揃えられた幅広のシート状の形態を有している。 While the acrylic fiber bundle 2 is traveling inside the heat treatment chamber 3 while being folded back, it is flame-resistant treated by the hot air flowing from the hot-air outlet 5 toward the hot-air outlet, and becomes a flame-resistant fiber bundle. Note that, as shown in FIG. 2, the acrylic fiber bundle 2 has a wide sheet-like form in which a plurality of fiber bundles are aligned in parallel in a direction perpendicular to the paper surface.

熱風吹出口5には、その吹出し面に多孔板等の抵抗体およびハニカム等の整流部材(ともに図示せず)を配して圧力損失を持たせるのが好ましい。整流部材により、熱処理室3内に吹き込む熱風を整流し、熱処理室3内により均一な風速の熱風を吹き込むことができる。 It is preferable that the hot air outlet 5 is provided with a resistor such as a porous plate and a rectifying member (not shown) such as a honeycomb on its outlet surface to provide pressure loss. The rectifying member can rectify the hot air blown into the heat treatment chamber 3 and blow the hot air at a more uniform speed into the heat treatment chamber 3.

熱風排出口6には、熱風吹出口5と同様に、その吸込み面に多孔板等の抵抗体を配して圧力損失を持たせてもよく、必要に応じて適宜決定される。 Similar to the hot air outlet 5, the hot air outlet 6 may be provided with a resistor such as a perforated plate on its suction surface to provide a pressure loss, which is determined as appropriate.

熱処理室3内を流れる酸化性気体は空気等でよく、熱処理室3内に入る前に加熱器7によって所望の温度に加熱され、送風機8によって風速が制御された上で、熱風吹出口5から熱処理室3内に吹き込まれる。熱風排出口6から熱処理室3外に排出された酸化性気体は排ガス処理炉(図示せず)で有毒物質を処理された後に大気放出されるが、循環経路(図示せず)を通って再び熱風吹出口5から熱処理室3内に吹き込まれてもよい。 The oxidizing gas flowing in the heat treatment chamber 3 may be air or the like, and before entering the heat treatment chamber 3, it is heated to a desired temperature by a heater 7, the wind speed is controlled by a blower 8, and then it is discharged from the hot air outlet 5. It is blown into the heat treatment chamber 3. The oxidizing gas discharged from the hot air outlet 6 to the outside of the heat treatment chamber 3 is treated with toxic substances in an exhaust gas treatment furnace (not shown) and then released into the atmosphere, but is returned to the atmosphere through a circulation path (not shown). The hot air may be blown into the heat treatment chamber 3 from the hot air outlet 5 .

なお、耐炎化炉1に用いられる加熱器7としては、所望の機能を有していればとくに限定されず、例えば電気ヒーター等の公知の加熱器を用いればよい。送風器8に関しても、所望の機能を有していればとくに限定されず、例えば軸流ファン等の公知の送風器を用いればよい。 The heater 7 used in the flameproofing furnace 1 is not particularly limited as long as it has a desired function, and any known heater such as an electric heater may be used. The blower 8 is not particularly limited as long as it has the desired function, and any known blower such as an axial fan may be used, for example.

また、ガイドローラー4のそれぞれの回転速度を変更することで、アクリル系繊維束2の走行速度、張力を制御することができ、これは必要とする耐炎化繊維束の物性や単位時間あたりの処理量に応じて固定される。 In addition, by changing the rotational speed of each guide roller 4, the running speed and tension of the acrylic fiber bundle 2 can be controlled. It is fixed according to the amount.

さらに、ガイドローラー4の表層に所定の間隔、数の溝を彫り込む、あるいは所定の間隔、数のコームガイド(図示せず)をガイドローラー4直近に配置することで、複数本並行して走行するアクリル系繊維束3の間隔や束数を制御することができる。 Furthermore, by carving a predetermined number of grooves at a predetermined interval on the surface of the guide roller 4, or by arranging a predetermined number of comb guides (not shown) at a predetermined interval in the vicinity of the guide roller 4, a plurality of comb guides can be run in parallel. The spacing and number of acrylic fiber bundles 3 can be controlled.

生産量を大きくするためには、耐炎化炉1の幅方向の単位距離あたりの繊維束数すなわち糸条密度を多くするか、アクリル系繊維束2の走行速度を大きくすればよい。 In order to increase the production amount, the number of fiber bundles per unit distance in the width direction of the flameproofing furnace 1, that is, the yarn density, may be increased, or the traveling speed of the acrylic fiber bundles 2 may be increased.

ただし、糸条密度を大きくするということは、隣接する繊維束の間隔を小さくすることであり、上述のとおり、振動による繊維束間の混繊による品質の悪化等が起きやすくなる。 However, increasing the yarn density means reducing the distance between adjacent fiber bundles, and as described above, quality deterioration is likely to occur due to mixing of fiber bundles due to vibration.

また、アクリル系繊維束2の走行速度を大きくした場合、耐炎化熱処理室での滞留時間が小さくなり、熱処理量が不足するため、トータル熱処理長を大きくする必要がある。そのためには、耐炎化炉1の高さを大きくしてアクリル系繊維束の折返し回数を増やすか、耐炎化炉の1パスあたりの距離(以下、耐炎化炉長という)Lを長くすればよいが、設備費を抑えるためには耐炎化炉長Lを大きくするほうが好ましい。ただし、それによってガイドローラー4間の水平距離L’も長くなり繊維束が懸垂しやすくなり、振動による繊維束間の接触、繊維束の混繊による品質の悪化等が起きやすくなる。 Furthermore, when the traveling speed of the acrylic fiber bundle 2 is increased, the residence time in the flame-retardant heat treatment chamber becomes shorter and the amount of heat treatment becomes insufficient, so it is necessary to increase the total heat treatment length. To do this, either increase the height of the flameproofing furnace 1 to increase the number of turns of the acrylic fiber bundle, or increase the distance L per one pass of the flameproofing furnace (hereinafter referred to as flameproofing furnace length). However, in order to reduce equipment costs, it is preferable to increase the flame-resistant furnace length L. However, this also increases the horizontal distance L' between the guide rollers 4, making it easier for the fiber bundles to hang, causing contact between the fiber bundles due to vibration, and deterioration of quality due to mixing of the fiber bundles.

さらに繊維束間の接触を引き起こす繊維束の振動の振幅は、前記の糸条密度とガイドローラー4間の水平距離L’だけでなく、熱処理室を流れる酸化性気体の風速、走行するアクリル系繊維束の張力の影響を受ける。また、同じ振幅であっても混繊する頻度や程度はアクリル系繊維束の物性すなわち化学的性状、物理的性状、寸法等によって影響を受ける。 Furthermore, the amplitude of the vibration of the fiber bundles that causes contact between the fiber bundles depends not only on the yarn density and the horizontal distance L' between the guide rollers 4, but also on the wind speed of the oxidizing gas flowing in the heat treatment chamber, and on the traveling acrylic fibers. Affected by bundle tension. Further, even if the amplitude is the same, the frequency and degree of fiber mixing are influenced by the physical properties of the acrylic fiber bundle, ie, the chemical properties, physical properties, dimensions, etc.

本発明の耐炎化繊維束の製造方法は、耐炎化炉の設備仕様、運転条件、アクリル系繊維束の物性によらず、高品質の耐炎化繊維を操業トラブルなく効率的に生産するものである。 The method for producing flame-resistant fiber bundles of the present invention efficiently produces high-quality flame-resistant fibers without any operational troubles, regardless of the equipment specifications of the flame-resistant furnace, operating conditions, or physical properties of the acrylic fiber bundles. .

具体的には、複数の束を隣接して引き揃えたアクリル系繊維束2を熱風加熱式の耐炎化炉1内に走行させながら熱処理することによって耐炎化繊維束にする連続熱処理方法において、前記アクリル系繊維束2は熱処理室3両側に設置するガイドローラー4によって搬送され、耐炎化炉1内における熱風の方向が糸に対して平行であって、隣接繊維束間の接触率Pを2~18%以下とすることを特徴とする耐炎化繊維の製造方法である。前記のとおり、ここでいう隣接繊維束間の接触率Pとは複数の繊維束を隣接するよう並列して走行させた時に、繊維束の幅方向の振動により、隣接する繊維束間の隙間がゼロになる確率を指す。上記繊維束の幅方向の振動は、繊維束の振幅平均を0、標準偏差をσとした時、隣接繊維束間の接触率Pは下記式(1)で求めることができる。 Specifically, in the continuous heat treatment method, the acrylic fiber bundle 2, which is a plurality of adjacent bundles, is made into a flame-retardant fiber bundle by heat-treating it while running it in a hot-air heating type flame-retardant furnace 1. The acrylic fiber bundle 2 is transported by guide rollers 4 installed on both sides of the heat treatment chamber 3, and the direction of the hot air in the flameproofing furnace 1 is parallel to the yarn, so that the contact ratio P between adjacent fiber bundles is 2 to 2. This is a method for producing flame-resistant fibers, characterized in that the fiber content is 18% or less. As mentioned above, the contact ratio P between adjacent fiber bundles means that when multiple fiber bundles are run in parallel so as to be adjacent to each other, the gap between adjacent fiber bundles is increased due to vibration in the width direction of the fiber bundles. It refers to the probability of being zero. Regarding the vibration in the width direction of the fiber bundle, when the average amplitude of the fiber bundle is 0 and the standard deviation is σ, the contact ratio P between adjacent fiber bundles can be determined by the following formula (1).

P=[1-p(x){-t<x<t}]×100 (1)
ここで、Pは隣接繊維束間の接触率(%)、tは隣接する繊維束間の隙間(mm)、p(x)は正規分布N(0、σ)の確率密度関数であり、σは振幅の標準偏差、xは振幅の中央をゼロとする確率変数である。
P=[1-p(x){-t<x<t}]×100 (1)
Here, P is the contact ratio (%) between adjacent fiber bundles, t is the gap (mm) between adjacent fiber bundles, and p(x) is a probability density function of normal distribution N (0, σ 2 ), σ is the standard deviation of the amplitude, and x is a random variable with the center of the amplitude set to zero.

図3は隣接繊維束間の接触率Pのイメージ図であり、上段が走行する複数の繊維束、下段が上段中央の繊維束の右端部を中心とした存在位置の確率分布を示している。アクリル系繊維束2は振動し、それに応じて隣接する繊維束間の隙間t、および振幅の標準偏差σは常に変化する。隣接する繊維束間の隙間tは下記式で表すことができる。 FIG. 3 is an image diagram of the contact rate P between adjacent fiber bundles, and the upper row shows a plurality of running fiber bundles, and the lower row shows the probability distribution of the existence position centered on the right end of the fiber bundle in the center of the upper row. The acrylic fiber bundle 2 vibrates, and the gap t between adjacent fiber bundles and the standard deviation σ of the amplitude constantly change accordingly. The gap t between adjacent fiber bundles can be expressed by the following formula.

t=(Wp-Wy)/2
ここで、Wpはガイドローラー等で物理的に規制されるピッチ間隔、Wyは走行する繊維束の幅である。
t=(Wp-Wy)/2
Here, Wp is the pitch interval physically regulated by a guide roller or the like, and Wy is the width of the traveling fiber bundle.

図3は左からそれぞれ、t<1σ、t=1σ、t>1σの時のイメージ図である。Pは図3下段の斜線部分に相当し、繊維束の振幅を正規分布と仮定し、隣接する繊維束の走行端位置(基準とする繊維束の位置をゼロとした時に、tの範囲)以下/以上となる累積確率がPであり、Wyとσを実測すれば統計的に算出できる。 FIG. 3 is an image diagram when t<1σ, t=1σ, and t>1σ from the left, respectively. P corresponds to the shaded area in the lower part of Figure 3, assuming that the amplitude of the fiber bundle is normally distributed, and below the running end position of the adjacent fiber bundle (the range of t when the reference fiber bundle position is set to zero). The cumulative probability of being equal to or greater than / is P, which can be calculated statistically by actually measuring Wy and σ.

なお、繊維束の振幅や走行する繊維束の幅は、例えば走行する繊維束の上面あるいは下面から高精度二次元変位センサー等にて測定することが可能である。 Note that the amplitude of the fiber bundle and the width of the traveling fiber bundle can be measured, for example, from the top or bottom surface of the traveling fiber bundle using a high-precision two-dimensional displacement sensor or the like.

隣接繊維束間の接触率Pは2%以上18%以下であることが必須であり、5~16%であることが好ましい。隣接繊維束間の接触率Pが、2%未満になると、糸条密度が低くなりすぎ、生産効率が低下する。隣接繊維束間の接触率Pが18%を超えると、隣接する繊維束間の混繊が増大して、毛羽立ち等の耐炎化繊維の品質低下や糸切れ等の操業トラブルを抑制できない。 It is essential that the contact ratio P between adjacent fiber bundles is 2% or more and 18% or less, and preferably 5 to 16%. When the contact ratio P between adjacent fiber bundles is less than 2%, the yarn density becomes too low and production efficiency decreases. When the contact ratio P between adjacent fiber bundles exceeds 18%, the amount of mixed fibers between adjacent fiber bundles increases, making it impossible to suppress deterioration in the quality of the flame-resistant fibers such as fluffing and operational troubles such as yarn breakage.

ガイドローラー間の水平距離を20m以上にすることが必須であり、この場合、生産コストをより有利に低減させることができる。 It is essential that the horizontal distance between the guide rollers is at least 20 m, in which case the production costs can be reduced more advantageously.

また、耐炎化炉内を流れる熱風の風速を2.0~5.0m/秒にすることが必須である。耐炎化炉内を流れる熱風の風速をこの範囲とすることで、生産コストを有利に低減することができる。 Furthermore, it is essential that the speed of the hot air flowing inside the flameproofing furnace be 2.0 to 5.0 m/sec. By setting the speed of the hot air flowing through the flameproofing furnace within this range, production costs can be advantageously reduced.

また、耐炎化炉両側のガイドローラーが糸幅規制機構を有することが好ましい。ガイドローラーが糸幅規制機構を有するとは、ガイドローラーがローラー上あるいはローラー直近にて糸幅を規制する機構を持つことを意味し、当該機構を有することで耐炎化繊維束の品位や操業性はより優位になる。例えば、ガイドローラーに一定のピッチ間隔の溝を彫った溝ローラーを用いた場合(ローラー上で糸幅を規制)やガイドローラーから耐炎化炉の方向に数cmの位置に幅方向に一定のピッチ間隔を持つ櫛ガイドを設置した場合(ローラー直近で糸幅を規制)は、糸幅規制を行わないフラットローラーを用いた場合と異なり、容易に繊維束を溝寄せできるため、切れた一つの繊維束を処置する際に隣接する繊維束を巻き込みづらくなる。また、隣接繊維束間の混繊の場合にも、混繊の程度が小さければ、ローラーの溝部分で再び分繊され、後の工程に影響が波及しにくく、品位悪化が少ない。 Further, it is preferable that the guide rollers on both sides of the flameproofing furnace have a yarn width regulating mechanism. The guide roller having a yarn width regulating mechanism means that the guide roller has a mechanism for regulating the yarn width on the roller or in the vicinity of the roller, and having this mechanism improves the quality and operability of the flame-resistant fiber bundle. becomes more dominant. For example, when using a grooved roller with grooves carved at a constant pitch interval on the guide roller (to regulate the yarn width on the roller), or when using a grooved roller with grooves carved at a constant pitch interval on the guide roller, or a grooved roller with a constant pitch in the width direction at a position several centimeters from the guide roller in the direction of the flameproofing furnace. When installing comb guides with intervals (thread width is regulated close to the roller), fiber bundles can be easily aligned in the groove, unlike when using flat rollers that do not regulate comb width, so that a single broken fiber can be When treating a bundle, it becomes difficult to wrap around adjacent fiber bundles. In addition, even in the case of mixing between adjacent fiber bundles, if the degree of mixing is small, the fibers will be split again in the grooves of the rollers, and the influence will be less likely to spread to subsequent steps, resulting in less deterioration of quality.

さらに、アクリル系繊維束の単繊維が単繊維表面の円周方向2.0μm・繊維軸方向2.0μm四方の範囲において、繊維の長手方向に2.0μm以上延びる表面凹凸構造を有し、かつ単繊維断面の長径/短径の比が1.01~1.10であることが好ましく、この場合、耐炎化繊維束の品位や操業性はより優位になる。一般的に、アクリル系繊維束を構成する一本一本である単繊維間は、耐炎化工程での急激な温度上昇等により、擬似接着を起こすことがある。同様に、繊維束間の接触においても、隣接する繊維束の単繊維間が擬似接着を起こす懸念がある。ただし、単繊維の表面に微細な凹凸があることでこの擬似接着は抑制することができ、隣接繊維束間の接触率Pが同じであっても絡みにくく大きな混繊に波及しにくくなる。また、単繊維断面が楕円に近づくと、繊維束内で短繊維の偏りができ、繊維束間が接触したときに、絡みやすい。反対に単繊維断面が真円に近ければ、繊維束間の混繊を抑制できるため、単繊維断面の長径/短径の比が1.01~1.10であることが好ましく、より好ましくは1.01~1.05である。 Furthermore, the single fibers of the acrylic fiber bundle have a surface uneven structure extending 2.0 μm or more in the longitudinal direction of the fibers in a square area of 2.0 μm in the circumferential direction and 2.0 μm in the fiber axis direction on the single fiber surface, and It is preferable that the ratio of the major axis to the minor axis of the single fiber cross section is 1.01 to 1.10, and in this case, the quality and workability of the flame-resistant fiber bundle will be more advantageous. Generally, pseudo-adhesion may occur between the single fibers that make up an acrylic fiber bundle due to a rapid temperature rise during the flameproofing process. Similarly, when fiber bundles come into contact with each other, there is a concern that false adhesion may occur between single fibers of adjacent fiber bundles. However, this pseudo-adhesion can be suppressed by the presence of fine irregularities on the surface of the single fibers, and even if the contact ratio P between adjacent fiber bundles is the same, it becomes difficult for the fibers to get entangled and spread to large mixed fibers. Furthermore, when the cross section of a single fiber approaches an ellipse, the short fibers become uneven within the fiber bundle, and when the fiber bundles come into contact with each other, they tend to become entangled. On the other hand, if the single fiber cross section is close to a perfect circle, mixing between fiber bundles can be suppressed, so the ratio of the long axis/breadth axis of the single fiber cross section is preferably 1.01 to 1.10, more preferably It is 1.01 to 1.05.

また、アクリル系繊維束のフックドロップ長が300mm以下であることが好ましく、この場合、耐炎化繊維束の品位や操業性はより優位になる。フックドロップ長が小さいほど、繊維束内の単繊維間の交絡は大きくなる。単繊維間の交絡が大きければ、隣接する繊維束が混繊したとしても、同じ繊維束内に単繊維が戻ろうとする力が大きいために、繊維束の混繊が解消しやすい。 Further, it is preferable that the hook drop length of the acrylic fiber bundle is 300 mm or less, and in this case, the quality and operability of the flame-resistant fiber bundle are more superior. The smaller the hook drop length, the greater the entanglement between the single fibers within the fiber bundle. If the entanglement between single fibers is large, even if adjacent fiber bundles are mixed, the force that tends to return the single fibers to the same fiber bundle is large, so that the mixed fiber bundles are easily resolved.

また、アクリル系繊維束に付着するシリコン系油剤の付着量が0.1~3.0質量%であることが好ましく、より好ましくは0.1~1.5質量%である。アクリル系繊維束に付着するシリコン系油剤の付着量をこの好ましい範囲とすることで、耐炎化繊維束の品位や操業性はより優位になる。アクリル系繊維束の単繊維に一定の耐熱性を持つシリコン系油剤を付与することで、単繊維間の接着を抑制するのは一般的である。 Further, the amount of silicone oil adhering to the acrylic fiber bundle is preferably 0.1 to 3.0% by mass, more preferably 0.1 to 1.5% by mass. By setting the amount of silicone oil attached to the acrylic fiber bundle within this preferable range, the quality and operability of the flame-resistant fiber bundle will be more superior. It is common to suppress adhesion between single fibers by applying a silicone oil agent having a certain heat resistance to the single fibers of an acrylic fiber bundle.

また、アクリル系繊維束の単繊維繊度が0.05~0.22texであることが好ましく、より好ましくは0.05~0.17texである。アクリル系繊維束の単繊維繊度を上記好ましい範囲とすることで、耐炎化繊維束の品位や操業性はより優位になる。単繊維繊度が適切な範囲であると、単繊維同一体積・質量に占める単繊維表面積が大きくなり過ぎず、隣接する繊維束が接触した際にも単繊維が絡み難くなる。 Further, the single fiber fineness of the acrylic fiber bundle is preferably 0.05 to 0.22 tex, more preferably 0.05 to 0.17 tex. By setting the single fiber fineness of the acrylic fiber bundle within the above-mentioned preferred range, the quality and workability of the flame-resistant fiber bundle become more superior. When the single fiber fineness is within an appropriate range, the surface area of the single fibers does not become too large for the same volume and mass of the single fibers, and even when adjacent fiber bundles come into contact, the single fibers are less likely to become entangled.

上述の方法で製造した耐炎化繊維束は、不活性雰囲気中最高温度300~1000℃で前炭素化処理して前炭素化繊維束を製造し、不活性雰囲気中最高温度1,000~2,000℃で炭素化処理して炭素繊維束が製造される。 The flame-resistant fiber bundle produced by the above method is pre-carbonized at a maximum temperature of 300 to 1000°C in an inert atmosphere to produce a pre-carbonized fiber bundle, A carbon fiber bundle is produced by carbonization treatment at 000°C.

前炭素化処理における不活性雰囲気の最高温度は550~800℃が好ましい。前炭素化炉内を満たす不活性雰囲気としては、窒素、アルゴン、ヘリウム等の公知の不活性雰囲気を採用できるが、経済性の面から窒素が好ましい。 The maximum temperature of the inert atmosphere in the pre-carbonization treatment is preferably 550 to 800°C. As the inert atmosphere filling the pre-carbonization furnace, any known inert atmosphere such as nitrogen, argon, helium, etc. can be used, but nitrogen is preferred from the economic point of view.

前炭素化処理によって得られた前炭素化繊維は、次いで炭素化炉に送入されて炭素化処理される。炭素繊維の機械的特性を向上させるためには、不活性雰囲気中最高温度1,200~2,000℃で、炭素化処理するのが好ましい。 The pre-carbonized fibers obtained by the pre-carbonization treatment are then fed into a carbonization furnace and subjected to carbonization treatment. In order to improve the mechanical properties of carbon fibers, it is preferable to carry out carbonization treatment in an inert atmosphere at a maximum temperature of 1,200 to 2,000°C.

炭素化炉内を満たす不活性雰囲気については、窒素、アルゴン、ヘリウム等の公知の不活性雰囲気を採用できるが、経済性の面から窒素が好ましい。 As for the inert atmosphere filling the inside of the carbonization furnace, any known inert atmosphere such as nitrogen, argon, helium, etc. can be used, but nitrogen is preferred from the economic point of view.

このようにして得られた炭素繊維束は、取り扱い性や、マトリックス樹脂との親和性を向上させるため、サイジング剤を付与してもよい。サイジング剤の種類としては、所望の特性を得ることができればとくに限定されないが、例えば、エポキシ樹脂、ポリエーテル樹脂、エポキシ変性ポリウレタン樹脂、ポリエステル樹脂を主成分としたサイジング剤が挙げられる。サイジング剤の付与は公知の方法を用いることができる。 The carbon fiber bundle thus obtained may be provided with a sizing agent in order to improve handleability and affinity with the matrix resin. The type of sizing agent is not particularly limited as long as desired characteristics can be obtained, but examples include sizing agents containing epoxy resins, polyether resins, epoxy-modified polyurethane resins, and polyester resins as main components. A known method can be used to apply the sizing agent.

さらに炭素繊維束には、必要に応じて、繊維強化複合材料マトリックス樹脂との親和性および接着性の向上を目的とした電解酸化処理や酸化処理を行ってもよい。 Further, the carbon fiber bundle may be subjected to electrolytic oxidation treatment or oxidation treatment for the purpose of improving affinity and adhesiveness with the fiber-reinforced composite material matrix resin, if necessary.

以上のように、本発明は、複数の束を隣接させて引き揃えたアクリル系繊維束を、耐炎化炉外両側に設置されるガイドローラーによって搬送させながら、熱風加熱式の耐炎化炉内を走行させて酸化性雰囲気中で熱処理する耐炎化繊維束の製造方法であって、耐炎化炉内における熱風の方向が繊維束の走行方向に対して平行であって、隣接繊維束間の接触率Pを2~18%とすることで、高品質の耐炎化繊維を操業トラブルなく、生産効率よく生産することが可能となる。 As described above, in the present invention, acrylic fiber bundles made of a plurality of adjacent bundles are conveyed by guide rollers installed on both sides of the outside of the flame retardant furnace, while being conveyed through a hot air heating type flame retardant furnace. A method for producing a flame-retardant fiber bundle in which the fiber bundle is run and heat-treated in an oxidizing atmosphere, the direction of the hot air in the flame-retardant furnace being parallel to the running direction of the fiber bundle, and the contact ratio between adjacent fiber bundles being By controlling P to 2 to 18%, it becomes possible to produce high-quality flame-resistant fibers without any operational troubles and with high production efficiency.

以下に、実施例によって本発明をさらに具体的に説明するが、本発明はこれらによって限定されない。なお、各特性の評価方法・測定方法は下記に記載の方法によった。 EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto. The evaluation and measurement methods for each characteristic were as described below.

<アクリル系繊維束の単繊維繊度の測定方法>
JIS L 1013に準拠して行った。
<Method for measuring single fiber fineness of acrylic fiber bundle>
It was conducted in accordance with JIS L 1013.

<アクリル系繊維束の単繊維の表面凹凸構造の測定>
アクリル系繊維束の単繊維の両端を、走査型プローブ顕微鏡付属のSPA400用金属製試料台(20mm径)「エポリードサービス社製、品番:K-Y10200167」)上にカーボンペーストで固定し、以下の条件で測定を行った。
<Measurement of surface unevenness structure of single fibers of acrylic fiber bundle>
Both ends of the single fibers of the acrylic fiber bundle were fixed with carbon paste on a metal sample stand (20 mm diameter) for SPA400 attached to a scanning probe microscope (manufactured by Epoly Lead Service Co., Ltd., product number: K-Y10200167), and the following was done. Measurements were made under the following conditions.

(走査型プローブ顕微鏡測定条件)
装置:「SPI4000プローブステーション、SPA400(ユニット)」エスアイアイ・ナノテクノロジー社製
走査モード:ダイナミックフォースモード(DFM)(形状像測定)
探針:エスアイアイ・ナノテクノロジー社製、「SI-DF-20」
走査範囲:2.0μm×2.0μmおよび600nm×600nm
Rotation:90°(繊維軸方向に対して垂直方向にスキャン)
走査速度:1.0Hz
ピクセル数:512×512
測定環境:室温、大気中
単繊維1本に対して、上記条件にて1画像を得、得られた画像を走査型プローブ顕微鏡付属の画像解析ソフト(SPIWin)を用い、以下の条件にて画像解析を行った。
(Scanning probe microscope measurement conditions)
Equipment: “SPI4000 probe station, SPA400 (unit)” manufactured by SII Nanotechnology Scanning mode: Dynamic force mode (DFM) (shape image measurement)
Probe: “SI-DF-20” manufactured by SII Nanotechnology Co., Ltd.
Scanning range: 2.0μm x 2.0μm and 600nm x 600nm
Rotation: 90° (scanning perpendicular to the fiber axis direction)
Scanning speed: 1.0Hz
Number of pixels: 512 x 512
Measurement environment: Room temperature, atmosphere One image was obtained for each single fiber under the above conditions, and the obtained image was imaged under the following conditions using the image analysis software (SPIWin) attached to the scanning probe microscope. An analysis was performed.

(画像解析条件)
得られた形状像を「フラット処理」、「メディアン8処理」、「三次傾き補正」を行い、曲面を平面にフィッティング補正した画像を得た。平面補正した画像の表面粗さ解析より平均面粗さ(R)と面内の最大高低差(Rmax)を求めた。ここで、表面粗さ解析より平均面粗さ(R)と面内の最大高低差(Rmax)は、円周長さ600nm×繊維軸方向長さ600nmの走査範囲のデータを用いた。Raは下記式で算出されるものである。
(Image analysis conditions)
The obtained shape image was subjected to "flat processing", "median 8 processing", and "cubic tilt correction" to obtain an image in which the curved surface was corrected by fitting to a flat surface. The average surface roughness (R a ) and the maximum in-plane height difference (R max ) were determined by surface roughness analysis of the plane-corrected image. Here, from the surface roughness analysis, the average surface roughness (R a ) and the maximum in-plane height difference (R max ) were determined using data in a scanning range of 600 nm in circumference length x 600 nm in length in the fiber axis direction. Ra is calculated using the following formula.

Figure 0007354840000001
Figure 0007354840000001

中央面:実表面との高さの偏差が最小となる平面に平行で、かつ実表面を等しい体積で2分割する平面
f(x,y):実表面と中央面との高低差
、L:XY平面の大きさ
測定は1サンプルについて単繊維10本を走査型プローブ顕微鏡で形状測定し、各測定画像について、平均面粗さ(R)、最大高低差(Rmax)を求め、その平均値をサンプルの平均面粗さ(R)、最大高低差(Rmax)とした。単繊維の表面に繊維の長手方向に2μm以上延びる表面凹凸構造の有無については、AFM(原子間力顕微鏡)モードにて単繊維の円周方向に2.0μmの範囲を繊維軸方向長さ2.0μmに渡り、少しずつ、ずらしながら繰り返し走査し、得られた測定画像から有無を判断した。
Central plane: A plane that is parallel to the plane that minimizes the height deviation from the real surface and divides the real surface into two with equal volume f(x, y): Height difference between the real surface and the central plane L x , L y : Size of XY plane For measurement, the shape of 10 single fibers for one sample is measured using a scanning probe microscope, and the average surface roughness (R a ) and maximum height difference (R max ) are determined for each measurement image. , and the average value was taken as the average surface roughness (R a ) and the maximum height difference (R max ) of the sample. To determine the presence or absence of a surface uneven structure extending 2 μm or more in the longitudinal direction of the single fiber on the surface of the single fiber, use AFM (atomic force microscopy) mode to measure a range of 2.0 μm in the circumferential direction of the single fiber with a length of 2 μm in the fiber axial direction. Scanning was performed repeatedly while shifting little by little over a distance of .0 μm, and the presence or absence was determined from the obtained measurement image.

(フラット処理)
リフト、振動、スキャナのクリープ等によってイメージデータに現れたZ軸方向の歪み・うねりを除去する処理のことで、SPM(走査型プローブ顕微鏡)測定上の装置因によるデータのひずみを除去する処理。
(Flat processing)
Processing that removes distortions and waviness in the Z-axis direction that appear in image data due to lift, vibration, scanner creep, etc. Processing that removes data distortion caused by equipment during SPM (scanning probe microscope) measurement.

(メディアン8処理)
処理するデータ点Sを中心とする3×3の窓(マトリクス)においてSおよびD1~D8(Sを中心に取り囲む8箇所のマトリックス)の間で演算を行い、SのZ(高さ方向)データを置き換えることで、スムージングやノイズ除去といったフィルタの効果を得るもの。
(Median 8 processing)
Calculations are performed between S and D1 to D8 (eight matrix surrounding S at the center) in a 3 x 3 window (matrix) centered on the data point S to be processed, and the Z (height direction) data of S is calculated. By replacing , you can obtain filter effects such as smoothing and noise removal.

メディアン8処理は、SおよびD1~D8の9点のZデータの中央値を求めて、Sを置き換える。 In the median 8 process, the median value of Z data at nine points of S and D1 to D8 is found and S is replaced.

(三次傾き補正)
傾き補正は、処理対象イメージの全データから最小二乗近似によって曲面を求めてフィッティングし、傾きを補正する。(1次)(2次)(3次)はフィッティングする曲面の次数を示し、3次では3次曲面をフィッティングする。三次傾き補正処理によって、データの繊維の曲率をなくしフラットな像とする。
(Certiary tilt correction)
In the tilt correction, a curved surface is found and fitted using least squares approximation from all data of the image to be processed, and the tilt is corrected. (1st order) (2nd order) (3rd order) indicates the order of the curved surface to be fitted, and 3rd order fits a cubic curved surface. The 3rd order tilt correction process eliminates the curvature of the data fibers and creates a flat image.

<アクリル系繊維束の単繊維の断面形状の評価>
繊維束を構成する単繊維の繊維断面の長径と短径との比(長径/短径)は、以下のようにして決定した。
<Evaluation of cross-sectional shape of single fibers of acrylic fiber bundle>
The ratio of the major axis to the minor axis (major axis/minor axis) of the fiber cross section of the single fibers constituting the fiber bundle was determined as follows.

内径1mmの塩化ビニル樹脂製のチューブ内に測定用の繊維束を通した後、これをナイフで輪切りにして試料を準備する。ついで、前記試料を繊維断面が上を向くようにしてSEM試料台に接着し、さらにAuを約10nmの厚さにスパッタリングしてから、フィリップス社製XL20走査型電子顕微鏡により、加速電圧7.00kV、作動距離31mmの条件で繊維断面を観察し、単繊維の繊維断面の長径および短径を測定し、長径/短径での比率を評価した。 A fiber bundle for measurement is passed through a tube made of vinyl chloride resin with an inner diameter of 1 mm, and then cut into rounds with a knife to prepare a sample. Next, the sample was adhered to a SEM sample stage with the fiber cross section facing upward, and Au was sputtered to a thickness of about 10 nm. Then, using a Philips XL20 scanning electron microscope, the sample was placed at an accelerating voltage of 7.00 kV. The fiber cross section was observed under the conditions of a working distance of 31 mm, the major axis and minor axis of the fiber cross section of the single fiber were measured, and the ratio of major axis/breadth axis was evaluated.

<アクリル系繊維束のフックドロップ長測定方法>
アクリル系繊維束を120mm引き出して、垂下装置の上部に取り付け、撚りを抜いた後に、繊維束下部に200gの錘を吊り下げる。繊維束の上部から1cm下部の地点に繊維束を3分割するようにフック(φ1mmのステンレス線材製、フックのR=5mm)を挿入し、フックを下降させる。該フックは総質量が10gとなるように錘を付けて調整している。フックが繊維束の交絡によって停止した点までフックの下降距離を求める。試験回数は、N=50とし、その平均値をフックドロップ長とした。
<Method for measuring hook drop length of acrylic fiber bundle>
The acrylic fiber bundle is pulled out by 120 mm, attached to the upper part of the hanging device, and after untwisting, a 200 g weight is suspended from the lower part of the fiber bundle. A hook (made of stainless steel wire with a diameter of 1 mm, radius of the hook = 5 mm) is inserted at a point 1 cm below the top of the fiber bundle so as to divide the fiber bundle into three parts, and the hook is lowered. The hook is adjusted with a weight so that the total mass is 10 g. The descending distance of the hook is determined to the point where the hook stops due to the entanglement of the fiber bundles. The number of tests was N=50, and the average value was taken as the hook drop length.

<耐炎化炉内の風速の測定方法>
カノマックス製アネモマスター高温用風速計Model6162を用いて、1秒毎の測定値30点の平均値を用いた。耐炎化炉1の両側のガイドローラー4の中央に当たる位置にある、熱処理室3側面の測定孔(図示せず)から測定プローブを挿入し、水平方向に流れる酸化性気体の風速を測定した。幅方向に5箇所測定し、その平均値を用いた。
<Method for measuring wind speed inside a flameproofing furnace>
The average value of 30 measured values every second was used using an Anemomaster high temperature anemometer Model 6162 manufactured by Kanomax. A measurement probe was inserted through a measurement hole (not shown) on the side of the heat treatment chamber 3 located at the center of the guide rollers 4 on both sides of the flameproofing furnace 1, and the wind speed of the oxidizing gas flowing in the horizontal direction was measured. Measurements were taken at five locations in the width direction, and the average value was used.

<走行する繊維束の糸幅および振幅の測定方法>
走行する繊維束の振幅が最大になる耐炎化炉1の両側のガイドローラー4の中央に当たる位置で測定を行った。具体的には、(株)キーエンス製レーザー変位計LJ-G200を、走行する繊維束の上方あるいは下方に設置して特定の繊維束にレーザーを照射した。その繊維束の幅方向の両端の距離を繊維束の幅とし、幅方向の一端の幅方向変動量を振幅とした。それぞれ、1回/60秒以上の頻度、0.01mm以下の精度で5分間測定し、繊維束の幅Wy(平均値)および振幅の標準偏差σを取得して、上述の隣接繊維束間の接触率Pを算出した。
<Method for measuring yarn width and amplitude of running fiber bundle>
The measurement was performed at a position corresponding to the center of the guide rollers 4 on both sides of the flameproofing furnace 1, where the amplitude of the traveling fiber bundle is maximum. Specifically, a laser displacement meter LJ-G200 manufactured by Keyence Corporation was installed above or below the traveling fiber bundle, and a laser beam was irradiated to a specific fiber bundle. The distance between both ends of the fiber bundle in the width direction was defined as the width of the fiber bundle, and the amount of widthwise fluctuation at one end in the width direction was defined as the amplitude. Each was measured for 5 minutes at a frequency of 1 time/60 seconds or more with an accuracy of 0.01 mm or less, and the width Wy (average value) and amplitude standard deviation σ of the fiber bundles were obtained, and the above-mentioned differences between adjacent fiber bundles were measured. The contact rate P was calculated.

表1に、それぞれの実施例、比較例における操業性、品質、生産性の結果を定性的に示す。優、良、不可は下記基準のとおり評価した。 Table 1 qualitatively shows the results of operability, quality, and productivity in each of the Examples and Comparative Examples. Excellent, good, and poor were evaluated according to the following criteria.

(操業性)
優:混繊や繊維束切れ等のトラブルが1日あたり平均ゼロ回であり、極めて良好なレベル。
良:混繊や繊維束切れ等のトラブルが1日あたり平均数回程度で、十分に連続運転を継続できるレベル。
不可:混繊や繊維束切れ等のトラブルが、1日あたり平均数十回起こり、連続運転を継続できないレベル。
(operability)
Excellent: Problems such as mixed fibers and fiber bundle breakage occurred on average zero times per day, which is an extremely good level.
Good: Problems such as fiber mixing and fiber bundle breakage occur only a few times per day on average, and it is at a level where continuous operation can be continued.
Impossible: Problems such as fiber mixing and fiber bundle breakage occur an average of several dozen times a day, to the point where continuous operation cannot be continued.

(品質)
優:耐炎化工程を出た後に目視で確認できる繊維束上の10mm以上の毛羽の数が平均数個/m以下であり、毛羽品位が工程での通過性や製品としての高次加工性に全く影響しないレベル。
良:耐炎化工程を出た後に目視で確認できる繊維束上の10mm以上の毛羽の数が平均10個/m以下であり、毛羽品位が工程での通過性や製品としての高次加工性にほとんど影響しないレベル。
不可:耐炎化工程を出た後に目視で確認できる繊維束上の10mm以上の毛羽の数が平均数十個/m以上であり、毛羽品位が工程での通過性や製品としての高次加工性に悪影響を与えるレベル。
(quality)
Excellent: The number of fluffs of 10 mm or more on the fiber bundle that can be visually confirmed after the flame-retardant process is less than a few pieces/m on average, and the quality of the fluffs does not affect passability in the process or high-order processability as a product. level that has no effect at all.
Good: The number of fluffs of 10 mm or more on the fiber bundle that can be visually confirmed after the flame-retardant process is less than 10 pieces/m on average, and the quality of the fluffs does not affect passability in the process or high-order processability as a product. A level that has almost no effect.
Impossible: The number of fluffs of 10 mm or more on the fiber bundle that can be visually confirmed after the flameproofing process is on average several dozen pieces/m or more, and the fluff quality is easy to pass through the process and is suitable for high-order processing as a product. level that has a negative impact on

(生産性)
優:製造コストが十分低く(「良」に対比して80%以下)、単位時間当たりの生産量が十分大きい(「良」に対比して120%以上)レベル。
良:製造コストが比較的低く、単位時間当たりの生産量が比較的大きいレベル
不可:製造コストが高い(「良」に対比して150%以上)、あるいは単位時間当たりの生産量が小さい(「良」に対比して60%以下)レベル。
(Productivity)
Excellent: Manufacturing cost is sufficiently low (80% or less compared to "Good") and production volume per unit time is sufficiently large (120% or more compared to "Good").
Good: The production cost is relatively low and the production volume per unit time is relatively large. Unsatisfactory: The production cost is high (150% or more compared to "Good") or the production volume per unit time is small (" 60% or less compared to "Good") level.

(実施例1)
単繊維繊度0.11tex、単繊維の表面の円周方向2.0μm・繊維軸方向2.0μm四方の範囲における繊維の長手方向に延びる表面凹凸構造が2.5μm、単繊維断面の長径/短径が1.04である単繊維20,000本からなるアクリル系繊維束2を100~200本引き揃え、耐炎化炉1で熱処理することにより耐炎化繊維束を得た。このアクリル系繊維束に付着するシリコン系油剤の付着量は0.5%であり、アクリル系繊維束のフックドロップ長を250mmとした。また、耐炎化炉1の熱処理室3両側のガイドローラー4間の水平距離L’は20mとし、ガイドローラー4は3~15mmの範囲の所定間隔(物理的に規制すべきピッチ間隔)Wpで溝を掘った溝ローラーとした。この時の耐炎化炉1の熱処理室3内の酸化性気体の温度は240~280℃とし、酸化性気体の水平方向の風速を3m/秒とした。糸の走行速度は、耐炎化処理時間が十分に取れるよう、耐炎化炉長Lに合わせて1~15m/分の範囲で調整し、工程張力は0.5~2.5g/texの範囲で調整した。
(Example 1)
The single fiber fineness is 0.11 tex, the surface irregularity structure extending in the longitudinal direction of the fiber in a square area of 2.0 μm in the circumferential direction and 2.0 μm in the fiber axis direction is 2.5 μm, and the major axis/short length of the single fiber cross section 100 to 200 acrylic fiber bundles 2 consisting of 20,000 single fibers each having a diameter of 1.04 were aligned and heat treated in a flame resistant furnace 1 to obtain a flame resistant fiber bundle. The amount of silicone oil adhering to this acrylic fiber bundle was 0.5%, and the hook drop length of the acrylic fiber bundle was 250 mm. In addition, the horizontal distance L' between the guide rollers 4 on both sides of the heat treatment chamber 3 of the flameproofing furnace 1 is 20 m, and the guide rollers 4 are grooved at a predetermined interval (pitch interval to be physically regulated) Wp in the range of 3 to 15 mm. It was used as a groove roller. At this time, the temperature of the oxidizing gas in the heat treatment chamber 3 of the flameproofing furnace 1 was 240 to 280° C., and the horizontal wind speed of the oxidizing gas was 3 m/sec. The running speed of the thread was adjusted within the range of 1 to 15 m/min according to the length of the flame retardant furnace L in order to allow sufficient time for the retardant treatment, and the process tension was adjusted within the range of 0.5 to 2.5 g/tex. It was adjusted.

得られた耐炎化繊維束を、その後、前炭素化炉において最高温度700℃で焼成した後、炭素化炉において最高温度1,400℃で焼成し、電解表面処理後サイジングを塗布して、炭素繊維束を得た。 The obtained flame-resistant fiber bundle was then fired in a pre-carbonization furnace at a maximum temperature of 700°C, then fired in a carbonization furnace at a maximum temperature of 1,400°C, and after electrolytic surface treatment, a sizing was applied to make carbon. A fiber bundle was obtained.

この時に耐炎化炉1の熱処理室3内の最上段を走行する繊維束の熱処理室中央での繊維束の幅Wyと振幅の標準偏差σを実測し、統計的に算出した隣接繊維束間の接触率Pは6%であった。 At this time, the width Wy and the standard deviation σ of the amplitude of the fiber bundle at the center of the heat treatment chamber of the fiber bundle traveling in the uppermost stage of the heat treatment chamber 3 of the flame retardant furnace 1 were actually measured, and the difference between the adjacent fiber bundles was statistically calculated. The contact rate P was 6%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は一切発生せず、極めて良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が無い極めて良好な品質であった。 Under the above conditions, during the flame-retardant treatment of acrylic fiber bundles, no mixing or breakage of fiber bundles due to contact between fiber bundles occurs, resulting in extremely good operability and more efficient production of flame-retardant fiber bundles. obtained. Furthermore, visual inspection of the obtained flame-resistant fiber bundles and carbon fiber bundles revealed that they were of extremely good quality with no fuzz or the like.

Figure 0007354840000002
Figure 0007354840000002

参考例1
耐炎化炉1の熱処理室3両側のガイドローラー4間の水平距離L’を15mとし、隣接繊維束間の接触率Pを10%とした以外は、実施例1と同様にした。
( Reference example 1 )
The same procedure as in Example 1 was carried out, except that the horizontal distance L' between the guide rollers 4 on both sides of the heat treatment chamber 3 of the flameproofing furnace 1 was 15 m, and the contact ratio P between adjacent fiber bundles was 10%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は一切発生せず、極めて良好な操業性で耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が無い極めて良好な品質であった。 Under the above conditions, during the flame-retardant treatment of the acrylic fiber bundle, no mixing or breakage of fiber bundles due to contact between the fiber bundles occurred, and the flame-retardant fiber bundle was obtained with extremely good operability. Furthermore, visual inspection of the obtained flame-resistant fiber bundles and carbon fiber bundles revealed that they were of extremely good quality with no fuzz or the like.

(実施例
耐炎化炉1の熱処理室3両側のガイドローラー4間の水平距離L’を30mとし、隣接繊維束間の接触率Pを15%とした以外は、実施例1と同様にした。
(Example 2 )
Example 1 was carried out in the same manner as in Example 1, except that the horizontal distance L' between the guide rollers 4 on both sides of the heat treatment chamber 3 of the flameproofing furnace 1 was 30 m, and the contact ratio P between adjacent fiber bundles was 15%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は一切発生せず、極めて良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が無い極めて良好な品質であった。 Under the above conditions, during the flame-retardant treatment of acrylic fiber bundles, no mixing or breakage of fiber bundles due to contact between fiber bundles occurs, resulting in extremely good operability and more efficient production of flame-retardant fiber bundles. obtained. Furthermore, visual inspection of the obtained flame-resistant fiber bundles and carbon fiber bundles revealed that they were of extremely good quality with no fuzz or the like.

(実施例
耐炎化炉1の熱処理室3内の酸化性気体の水平方向の風速を5m/秒とし、隣接繊維束間の接触率Pを7%とした以外は、実施例1と同様にした。
(Example 3 )
Example 1 was carried out in the same manner as in Example 1, except that the horizontal wind speed of the oxidizing gas in the heat treatment chamber 3 of the flameproofing furnace 1 was 5 m/sec, and the contact ratio P between adjacent fiber bundles was 7%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は一切発生せず、極めて良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が無い極めて良好な品質であった。 Under the above conditions, during the flame-retardant treatment of acrylic fiber bundles, no mixing or breakage of fiber bundles due to contact between fiber bundles occurs, resulting in extremely good operability and more efficient production of flame-retardant fiber bundles. obtained. Furthermore, visual inspection of the obtained flame-resistant fiber bundles and carbon fiber bundles revealed that they were of extremely good quality with no fuzz or the like.

参考例2
耐炎化炉1の熱処理室3両側のガイドローラー4間の水平距離L’を10mとし、隣接繊維束間の接触率Pを5%とした以外は、実施例1と同様にした。
( Reference example 2 )
Example 1 was carried out in the same manner as in Example 1, except that the horizontal distance L' between the guide rollers 4 on both sides of the heat treatment chamber 3 of the flameproofing furnace 1 was 10 m, and the contact ratio P between adjacent fiber bundles was 5%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は一切発生せず、極めて良好な操業性で耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が無い極めて良好な品質であった。 Under the above conditions, during the flame-retardant treatment of the acrylic fiber bundle, no mixing or breakage of fiber bundles due to contact between the fiber bundles occurred, and the flame-retardant fiber bundle was obtained with extremely good operability. Furthermore, visual inspection of the obtained flame-resistant fiber bundles and carbon fiber bundles revealed that they were of extremely good quality with no fuzz or the like.

参考例3
耐炎化炉1の熱処理室3内の酸化性気体の水平方向の風速を8m/秒とし、隣接繊維束間の接触率Pを14%とした以外は、実施例1と同様にした。
( Reference example 3 )
Example 1 was carried out in the same manner as in Example 1, except that the horizontal wind speed of the oxidizing gas in the heat treatment chamber 3 of the flameproofing furnace 1 was 8 m/sec, and the contact ratio P between adjacent fiber bundles was 14%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は一切発生せず、極めて良好な操業性で耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が無い極めて良好な品質であった。 Under the above conditions, during the flame-retardant treatment of the acrylic fiber bundle, no mixing or breakage of fiber bundles due to contact between the fiber bundles occurred, and the flame-retardant fiber bundle was obtained with extremely good operability. Furthermore, visual inspection of the obtained flame-resistant fiber bundles and carbon fiber bundles revealed that they were of extremely good quality with no fuzz or the like.

(実施例
耐炎化炉1の熱処理室3両側のガイドローラー4をフラットローラーにし、隣接繊維束間の接触率Pを14%とした以外は、実施例1と同様にした。
(Example 4 )
The procedure was the same as in Example 1, except that the guide rollers 4 on both sides of the heat treatment chamber 3 of the flameproofing furnace 1 were flat rollers, and the contact ratio P between adjacent fiber bundles was 14%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は少なく、良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が少ない良好な品質であった。 Under the above conditions, during the flame-retardant treatment of the acrylic fiber bundle, there were few cases of fiber mixing or fiber bundle breakage due to contact between fiber bundles, and flame-retardant fiber bundles were obtained with good operability and higher production efficiency. Visual inspection of the obtained flame-resistant fiber bundles and carbon fiber bundles revealed that they were of good quality with little fluff.

(実施例
用いたアクリル系繊維束の単繊維断面の長径/短径を1.50とし、隣接繊維束間の接触率Pを14%とした以外は、実施例1と同様にした。
(Example 5 )
The procedure was the same as in Example 1, except that the major axis/minor axis of the single fiber cross section of the acrylic fiber bundle used was 1.50, and the contact ratio P between adjacent fiber bundles was 14%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は少なく、良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が少ない良好な品質であった。 Under the above conditions, during the flame-retardant treatment of the acrylic fiber bundle, there were few cases of fiber mixing or fiber bundle breakage due to contact between fiber bundles, and flame-retardant fiber bundles were obtained with good operability and higher production efficiency. Visual inspection of the obtained flame-resistant fiber bundles and carbon fiber bundles revealed that they were of good quality with little fluff.

(実施例
用いたアクリル系繊維束のシリコン系油剤付着量を4.0%とし、隣接繊維束間の接触率Pを6%とした以外は、実施例1と同様にした。
(Example 6 )
The procedure was the same as in Example 1, except that the amount of silicone oil attached to the acrylic fiber bundles used was 4.0%, and the contact ratio P between adjacent fiber bundles was 6%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は少なく、良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が少ない良好な品質であった。 Under the above conditions, during the flame-retardant treatment of the acrylic fiber bundle, there were few cases of fiber mixing or fiber bundle breakage due to contact between fiber bundles, and flame-retardant fiber bundles were obtained with good operability and higher production efficiency. Visual inspection of the obtained flame-resistant fiber bundles and carbon fiber bundles revealed that they were of good quality with little fluff.

(実施例
用いたアクリル系繊維束にシリコン系油剤を付与せず、隣接繊維束間の接触率Pを6%とした以外は、実施例1と同様にした。
(Example 7 )
Example 1 was carried out in the same manner as in Example 1, except that no silicone oil was applied to the acrylic fiber bundles used and the contact ratio P between adjacent fiber bundles was 6%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は少なく、良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が少ない良好な品質であった。 Under the above conditions, during the flame-retardant treatment of the acrylic fiber bundle, there were few cases of fiber mixing or fiber bundle breakage due to contact between fiber bundles, and flame-retardant fiber bundles were obtained with good operability and higher production efficiency. Visual inspection of the obtained flame-resistant fiber bundles and carbon fiber bundles revealed that they were of good quality with little fluff.

(実施例
用いたアクリル系繊維束のフックドロップ長を350mmとし、隣接繊維束間の接触率Pを14%とした以外は、実施例1と同様にした。
(Example 8 )
The procedure was the same as in Example 1, except that the hook drop length of the acrylic fiber bundle used was 350 mm, and the contact ratio P between adjacent fiber bundles was 14%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は少なく、良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が少ない良好な品質であった。 Under the above conditions, during the flame-retardant treatment of the acrylic fiber bundle, there were few cases of fiber mixing or fiber bundle breakage due to contact between fiber bundles, and flame-retardant fiber bundles were obtained with good operability and higher production efficiency. Visual inspection of the obtained flame-resistant fiber bundles and carbon fiber bundles revealed that they were of good quality with little fluff.

(実施例
用いたアクリル系繊維束の単繊維繊度を0.18texとし、隣接繊維束間の接触率Pを14%とした以外は、実施例1と同様にした。
(Example 9 )
The procedure was the same as in Example 1 except that the single fiber fineness of the acrylic fiber bundle used was 0.18 tex and the contact ratio P between adjacent fiber bundles was 14%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は少なく、良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が少ない良好な品質であった。 Under the above conditions, during the flame-retardant treatment of the acrylic fiber bundle, there were few cases of fiber mixing or fiber bundle breakage due to contact between fiber bundles, and flame-retardant fiber bundles were obtained with good operability and higher production efficiency. Visual inspection of the obtained flame-resistant fiber bundles and carbon fiber bundles revealed that they were of good quality with little fluff.

(実施例10
耐炎化炉1の熱処理室3両側のガイドローラー4をフラットローラーにし、さらにそのフラットローラーから耐炎化炉の方向に30mmの位置に櫛ガイドを設置し、その櫛ガイドは幅方向に3~15mmの範囲の一定の間隔の隙間を持ち、その隙間を繊維束が通ることにより物理的に規制される繊維束のピッチ間隔を3~15mmの範囲で所定の間隔Wpとし、隣接繊維束間の接触率Pを14%とした以外は、実施例1と同様にした。
(Example 10 )
The guide rollers 4 on both sides of the heat treatment chamber 3 of the flameproofing furnace 1 are flat rollers, and a comb guide is installed at a position 30 mm from the flat roller toward the flameproofing furnace. The pitch interval of the fiber bundles, which is physically regulated by the fiber bundles passing through the gaps, is set to a predetermined interval Wp in the range of 3 to 15 mm, and the contact rate between adjacent fiber bundles is The same procedure as in Example 1 was carried out except that P was changed to 14%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は一切発生せず、極めて良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が無い極めて良好な品質であった。 Under the above conditions, during the flame-retardant treatment of acrylic fiber bundles, no mixing or breakage of fiber bundles due to contact between fiber bundles occurs, resulting in extremely good operability and more efficient production of flame-retardant fiber bundles. obtained. Furthermore, visual inspection of the obtained flame-resistant fiber bundles and carbon fiber bundles revealed that they were of extremely good quality with no fuzz or the like.

(比較例1)
耐炎化炉1の熱処理室3両側のガイドローラー4の溝の間隔を小さくする等により、隣接繊維束間の接触率Pを24%とした以外は、実施例1と同様にした。
(Comparative example 1)
The procedure was the same as in Example 1, except that the contact ratio P between adjacent fiber bundles was set to 24% by, for example, reducing the interval between the grooves of the guide rollers 4 on both sides of the heat treatment chamber 3 of the flameproofing furnace 1.

上記の条件において、糸条密度を向上させることで、生産量自体は増やすことができたが、アクリル繊維束の耐炎化処理中に、繊維束間の接触による混繊や繊維束切れ等が多発し、操業継続が困難となった。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が多く劣悪な品質であった。 Under the above conditions, the production volume itself could be increased by improving the yarn density, but during the flame-retardant treatment of acrylic fiber bundles, there were many cases of mixed fibers and fiber bundle breaks due to contact between fiber bundles. This made it difficult to continue operations. Further, as a result of visual inspection of the obtained flame-resistant fiber bundles and carbon fiber bundles, they were found to be of poor quality with a lot of fluff.

(比較例2)
耐炎化炉1の熱処理室3両側のガイドローラー4の溝の間隔を大きくする等により、隣接繊維束間の接触率Pを1%とした以外は、実施例1と同様にした。
(Comparative example 2)
The procedure was the same as in Example 1, except that the contact ratio P between adjacent fiber bundles was set to 1% by increasing the interval between the grooves of the guide rollers 4 on both sides of the heat treatment chamber 3 of the flameproofing furnace 1.

上記の条件において、アクリル系繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は少なく、良好な操業性で耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が少ない良好な品質であった。ただし、結果的に耐炎化炉1に投入することのできる繊維束の本数が少なくなり、生産性は大きく低下した。 Under the above conditions, during the flame-retardant treatment of the acrylic fiber bundle, there were few cases of fiber mixing or fiber bundle breakage due to contact between the fiber bundles, and the flame-retardant fiber bundle was obtained with good operability. Visual inspection of the obtained flame-resistant fiber bundles and carbon fiber bundles revealed that they were of good quality with little fluff. However, as a result, the number of fiber bundles that could be fed into the flameproofing furnace 1 decreased, resulting in a significant drop in productivity.

(比較例3)
耐炎化炉1の熱処理室3両側のガイドローラー4の溝の間隔を小さくする等により、隣接繊維束間の接触率Pを28%とした以外は、実施例3と同様にした。
(Comparative example 3)
The procedure was the same as in Example 3, except that the contact ratio P between adjacent fiber bundles was set to 28% by, for example, reducing the interval between the grooves of the guide rollers 4 on both sides of the heat treatment chamber 3 of the flameproofing furnace 1.

上記の条件において、糸条密度を向上させることで、生産量自体は増やすことができたが、アクリル繊維束の耐炎化処理中に、繊維束間の接触による混繊や繊維束切れ等が多発し、操業継続が困難となった。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が多く劣悪な品質であった。 Under the above conditions, the production volume itself could be increased by improving the yarn density, but during the flame-retardant treatment of acrylic fiber bundles, there were many cases of mixed fibers and fiber bundle breaks due to contact between fiber bundles. This made it difficult to continue operations. Further, as a result of visual inspection of the obtained flame-resistant fiber bundles and carbon fiber bundles, they were found to be of poor quality with a lot of fluff.

(比較例4)
耐炎化炉1の熱処理室3内の酸化性気体の水平方向の風速を8m/秒とし、隣接繊維束間の接触率Pを19%とした以外は、実施例3と同様にした。
(Comparative example 4)
Example 3 was carried out in the same manner as in Example 3, except that the horizontal wind speed of the oxidizing gas in the heat treatment chamber 3 of the flameproofing furnace 1 was 8 m/sec, and the contact ratio P between adjacent fiber bundles was 19%.

上記の条件において、アクリル繊維束の耐炎化処理中に、繊維束間の接触による混繊や繊維束切れ等が多発し、操業継続が困難となった。また、得られた耐炎化繊維ならびに炭素繊維を目視確認した結果、毛羽等が多く劣悪な品質であった。さらに、風速を8m/秒とすることで、それを可能とする送風器8の設備費が増大し、生産コストが大幅に悪化した。 Under the above conditions, during the flame-retardant treatment of the acrylic fiber bundles, fiber mixtures and fiber bundle breakage occurred frequently due to contact between fiber bundles, making it difficult to continue operation. Further, as a result of visual inspection of the obtained flame-resistant fibers and carbon fibers, they were found to be of poor quality with a lot of fluff. Furthermore, by setting the wind speed to 8 m/sec, the equipment cost for the blower 8 that makes this possible increased, and the production cost deteriorated significantly.

本発明は、耐炎化繊維束の製造方法ならびに炭素繊維束の製造方法に関するもので、航空機用途、圧力容器・風車等の産業用途、ゴルフシャフト等のスポーツ用途等に応用できるが、その応用範囲がこれらに限られるものではない。 The present invention relates to a method for producing flame-resistant fiber bundles and a method for producing carbon fiber bundles, and can be applied to aircraft applications, industrial applications such as pressure vessels and wind turbines, and sports applications such as golf shafts, but the scope of application is limited. It is not limited to these.

1 耐炎化炉
2 アクリル系繊維束
3 熱処理室
4 ガイドローラー
5 熱風吹出口
6 熱風排出口
7 加熱器
8 送風器
L 耐炎化炉長(1パスの耐炎化有効長)
L’ ガイドローラー間の水平距離
Wp 物理的に規制されるピッチ間隔
Wy 走行する繊維束の幅
t 隣接する繊維束間の隙間
1 Flameproofing furnace 2 Acrylic fiber bundle 3 Heat treatment chamber 4 Guide roller 5 Hot air outlet 6 Hot air outlet 7 Heater 8 Blower L Flameproofing furnace length (flameproofing effective length for one pass)
L' Horizontal distance Wp between guide rollers Physically regulated pitch interval Wy Width t of running fiber bundles Gap between adjacent fiber bundles

Claims (7)

複数の束を隣接させて引き揃えたアクリル系繊維束を、耐炎化炉外両側に設置されるガイドローラーによって搬送させながら、熱風加熱式の耐炎化炉内を走行させて酸化性雰囲気中で熱処理する耐炎化繊維束の製造方法であって、耐炎化炉内における熱風の方向が繊維束の走行方向に対して平行であって、次式(1)で定義される隣接繊維束間の接触率Pを2~18%とし、前記ガイドローラー間の水平距離が20m以上であり、耐炎化炉内を流れる熱風の風速が2.0~5.0m/秒である耐炎化繊維束の製造方法。
P=[1-p(x){-t<x<t}]×100 (1)
ここで、Pは隣接繊維束間の接触率(%)、tは隣接する繊維束間の隙間(mm)、p(x)は正規分布N(0、σ)の確率密度関数、σは振幅の標準偏差、xは振幅の中央をゼロとする確率変数を表す。
Acrylic fiber bundles, which are made up of multiple bundles aligned adjacent to each other, are transported by guide rollers installed on both sides of the outside of the flame-retardant furnace, and then run through a hot-air-heated flame-retardant furnace for heat treatment in an oxidizing atmosphere. A method for producing a flame-resistant fiber bundle, wherein the direction of the hot air in the flame-resistant furnace is parallel to the running direction of the fiber bundle, and the contact ratio between adjacent fiber bundles is defined by the following formula (1). A method for producing a flame-resistant fiber bundle, wherein P is 2 to 18%, the horizontal distance between the guide rollers is 20 m or more, and the speed of hot air flowing in the flame-resistant furnace is 2.0 to 5.0 m/sec. .
P=[1-p(x){-t<x<t}]×100 (1)
Here, P is the contact ratio (%) between adjacent fiber bundles, t is the gap (mm) between adjacent fiber bundles, p(x) is the probability density function of normal distribution N (0, σ 2 ), and σ is The standard deviation of the amplitude, x, represents a random variable with the center of the amplitude set to zero.
前記ガイドローラーが糸幅規制機構を有する請求項に記載の耐炎化繊維束の製造方法。 The method for producing a flame-resistant fiber bundle according to claim 1 , wherein the guide roller has a yarn width regulating mechanism. 前記アクリル系繊維束の単繊維の表面が、円周方向2.0μm・繊維軸方向2.0μm四方の範囲において、繊維の長手方向に2.0μm以上延びる表面凹凸構造を有し、かつ前記単繊維断面の長径/短径の比が1.01~1.10である請求項1または2に記載の耐炎化繊維束の製造方法。 The surface of the single fiber of the acrylic fiber bundle has a surface unevenness structure extending 2.0 μm or more in the longitudinal direction of the fiber in a square area of 2.0 μm in the circumferential direction and 2.0 μm in the fiber axis direction, and The method for producing a flame-resistant fiber bundle according to claim 1 or 2, wherein the ratio of the major axis to the minor axis of the fiber cross section is 1.01 to 1.10. 前記アクリル系繊維束のフックドロップ長が300mm以下である請求項1~のいずれかに記載の耐炎化繊維束の製造方法。 The method for producing a flame-resistant fiber bundle according to any one of claims 1 to 3 , wherein the hook drop length of the acrylic fiber bundle is 300 mm or less. 前記アクリル系繊維束に付着するシリコン系油剤の付着量が0.1~3.0質量%である請求項1~のいずれかに記載の耐炎化繊維束の製造方法。 The method for producing a flame-resistant fiber bundle according to any one of claims 1 to 4, wherein the amount of silicone oil adhering to the acrylic fiber bundle is 0.1 to 3.0% by mass. 前記アクリル系繊維束の単繊維繊度が0.05~0.22texである請求項1~のいずれかに記載の耐炎化繊維束の製造方法。 The method for producing a flame-resistant fiber bundle according to any one of claims 1 to 5, wherein the single fiber fineness of the acrylic fiber bundle is 0.05 to 0.22 tex. 請求項1~のいずれかに記載の耐炎化繊維束の製造方法で製造された耐炎化繊維束を、不活性雰囲気中最高温度300~1,000℃で前炭素化処理して前炭素化繊維束を製造し、該前炭素化繊維束を不活性雰囲気中最高温度1000~2000℃で炭素化処理する炭素繊維束の製造方法。 The flame-resistant fiber bundle produced by the method for producing a flame-resistant fiber bundle according to any one of claims 1 to 6 is subjected to pre-carbonization treatment at a maximum temperature of 300 to 1,000°C in an inert atmosphere. A method for producing a carbon fiber bundle, which comprises producing a fiber bundle and carbonizing the pre-carbonized fiber bundle in an inert atmosphere at a maximum temperature of 1000 to 2000°C.
JP2019550872A 2018-09-28 2019-09-12 Method for producing flame-resistant fiber bundles and method for producing carbon fiber bundles Active JP7354840B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018183750 2018-09-28
JP2018183750 2018-09-28
PCT/JP2019/035858 WO2020066653A1 (en) 2018-09-28 2019-09-12 Method of manufacturing stabilized fiber bundle, and method of manufacturing carbon fiber bundle

Publications (3)

Publication Number Publication Date
JPWO2020066653A1 JPWO2020066653A1 (en) 2021-08-30
JPWO2020066653A5 JPWO2020066653A5 (en) 2022-08-02
JP7354840B2 true JP7354840B2 (en) 2023-10-03

Family

ID=69952623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019550872A Active JP7354840B2 (en) 2018-09-28 2019-09-12 Method for producing flame-resistant fiber bundles and method for producing carbon fiber bundles

Country Status (6)

Country Link
US (1) US20210348305A1 (en)
EP (1) EP3859060A4 (en)
JP (1) JP7354840B2 (en)
KR (1) KR20210063328A (en)
TW (1) TW202012712A (en)
WO (1) WO2020066653A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540986B (en) * 2022-02-28 2022-08-16 新创碳谷控股有限公司 Carbon fiber pre-oxidation furnace with airflow rectification function
CN114457464B (en) * 2022-02-28 2022-07-22 新创碳谷控股有限公司 Carbon fiber oxidation furnace capable of reducing vibration of tows

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160435A (en) 1998-11-26 2000-06-13 Mitsubishi Rayon Co Ltd Continuous thermal treatment of acrylic fiber bundle
JP2000160436A (en) 1998-11-30 2000-06-13 Toray Ind Inc Carbon fiber, and production of precursor for carbon fiber
JP2008019526A (en) 2006-07-12 2008-01-31 Mitsubishi Rayon Co Ltd Method for producing carbon fiber
JP2010285710A (en) 2009-06-10 2010-12-24 Mitsubishi Rayon Co Ltd Carbon fiber bundle and method for producing the same
JP2011127264A (en) 2009-12-21 2011-06-30 Mitsubishi Rayon Co Ltd Method for producing flame-proof fiber
JP2014025167A (en) 2012-07-27 2014-02-06 Toray Ind Inc Flame-resistant fiber bundle and carbon fiber bundle, and methods for producing the same
JP2016160560A (en) 2015-03-04 2016-09-05 三菱レイヨン株式会社 Method for manufacturing carbon fiber bundle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266023A (en) * 1997-03-24 1998-10-06 Toho Rayon Co Ltd Production of polyacrylonitrile-based flame resistant fiber and apparatus therefor
JP4021972B2 (en) 1997-08-05 2007-12-12 三菱レイヨン株式会社 Carbon fiber manufacturing method
JP4408323B2 (en) * 2000-03-30 2010-02-03 三菱レイヨン株式会社 Entangling device for carbon fiber precursor fiber bundle
JP2002194627A (en) * 2000-12-22 2002-07-10 Toray Ind Inc Heat-treating oven and method for producing carbon fiber by use of the same
JP2007162144A (en) * 2005-12-09 2007-06-28 Toray Ind Inc Method for producing carbon fiber bundle
JP4856724B2 (en) * 2007-11-07 2012-01-18 三菱レイヨン株式会社 Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same
JP5963063B2 (en) * 2014-12-15 2016-08-03 三菱レイヨン株式会社 Carbon fiber bundle
JP6229209B2 (en) * 2016-06-23 2017-11-15 三菱ケミカル株式会社 Carbon fiber bundle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160435A (en) 1998-11-26 2000-06-13 Mitsubishi Rayon Co Ltd Continuous thermal treatment of acrylic fiber bundle
JP2000160436A (en) 1998-11-30 2000-06-13 Toray Ind Inc Carbon fiber, and production of precursor for carbon fiber
JP2008019526A (en) 2006-07-12 2008-01-31 Mitsubishi Rayon Co Ltd Method for producing carbon fiber
JP2010285710A (en) 2009-06-10 2010-12-24 Mitsubishi Rayon Co Ltd Carbon fiber bundle and method for producing the same
JP2011127264A (en) 2009-12-21 2011-06-30 Mitsubishi Rayon Co Ltd Method for producing flame-proof fiber
JP2014025167A (en) 2012-07-27 2014-02-06 Toray Ind Inc Flame-resistant fiber bundle and carbon fiber bundle, and methods for producing the same
JP2016160560A (en) 2015-03-04 2016-09-05 三菱レイヨン株式会社 Method for manufacturing carbon fiber bundle

Also Published As

Publication number Publication date
EP3859060A1 (en) 2021-08-04
KR20210063328A (en) 2021-06-01
TW202012712A (en) 2020-04-01
WO2020066653A1 (en) 2020-04-02
JPWO2020066653A1 (en) 2021-08-30
EP3859060A4 (en) 2022-07-06
US20210348305A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
JP5834917B2 (en) Method for producing carbon fiber prepreg, method for producing carbon fiber reinforced composite material
JP7354840B2 (en) Method for producing flame-resistant fiber bundles and method for producing carbon fiber bundles
JP5772012B2 (en) Carbon fiber for filament winding molding and method for producing the same
US8129017B2 (en) Carbon fiber strand and process for producing the same
JP5161604B2 (en) Carbon fiber manufacturing method
JP6520767B2 (en) Precursor fiber bundle for carbon fiber, method for producing the same, and method for producing carbon fiber
JP2020090432A (en) Silica glass yarn, and silica glass cloth
JP6680417B1 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
WO2020100714A1 (en) Method for producing flame-resistant fiber bundle and carbon fiber bundle and flameproofing furnace
WO2021187518A1 (en) Flame resistant fiber bundles, carbon fiber bundle production method, and flame resistant furnace
JP7272347B2 (en) Flame-resistant heat treatment furnace, method for producing flame-resistant fiber bundle and carbon fiber bundle
JP2006274497A (en) Carbon fiber package and method for producing the same
WO2020110632A1 (en) Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle
JP4457747B2 (en) Carbon fiber bundle
US20240018695A1 (en) Carbon fiber bundle
JP4261075B2 (en) Carbon fiber bundle
JP4821330B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP2024044911A (en) Glass cloth and method for producing glass cloth
JP2023133739A (en) carbon fiber bundle
JP2023142105A (en) Fiber bundle opening device and opened fiber bundle manufacturing method
JP2005169697A (en) Prepreg manufacturing apparatus and prepreg manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R151 Written notification of patent or utility model registration

Ref document number: 7354840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151