JPH0681223A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPH0681223A
JPH0681223A JP23101592A JP23101592A JPH0681223A JP H0681223 A JPH0681223 A JP H0681223A JP 23101592 A JP23101592 A JP 23101592A JP 23101592 A JP23101592 A JP 23101592A JP H0681223 A JPH0681223 A JP H0681223A
Authority
JP
Japan
Prior art keywords
yarn
fiber
flame
carbon fiber
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23101592A
Other languages
Japanese (ja)
Inventor
Isao Narita
勲 成田
Makoto Endo
真 遠藤
Takao Sano
高男 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP23101592A priority Critical patent/JPH0681223A/en
Publication of JPH0681223A publication Critical patent/JPH0681223A/en
Pending legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To remarkably increase the heat-removing rate, considerably shorten the flame-resisting treatment time without deteriorating the properties of the product and produce a carbon fiber in high productivity by heating a yarn of polyacrylonitrile precursor fibers in opened state at a specific yarn occupancy to effect the flame-resisting treatment and carbonizing the product. CONSTITUTION:A polyacrylonitrile precursor fiber yarn 1 composed of 1,000,000 filaments having single fiber denier of 1d is made to contact with a vibration guide 3 and opened in a state to attain a yarn occupancy of the precursor fiber 1 of 0.1-20% while applying vertical vibration to the yarn in a direction perpendicular to the moving direction of the yarn. Hot air is passed perpendicular to the precursor fiber 1 at a flow rate of 2m/s in this opening process in hot-air circulation flame-resisting treatment apparatuses 4, 4', 4'' and the yarn is subjected to the flame-resisting treatment in three stages at 253 deg.C in the 1st furnace 4, 262 deg.C in the 2nd furnace 4' and 272 deg.C in the 3rd furnace 4''. The flame-resistant fiber is carbonized in nitrogen atmosphere at 1400 deg.C to obtain the objective carbon fiber in high productivity and considerably shortened flame- resisting treatment time at a remarkably increased heat-removing rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭素繊維の製造方法に関
するものである。さらに詳しくは、性能を損なうことな
く耐炎化工程を短時間になしうる、生産性の優れた炭素
繊維の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing carbon fiber. More specifically, the present invention relates to a method for producing a carbon fiber having excellent productivity, which can perform a flameproofing process in a short time without deteriorating the performance.

【0002】[0002]

【従来の技術】炭素繊維の焼成工程は耐炎化工程と炭化
工程からなり、炭素繊維が高価である基本的要因は、と
りわけ,前駆体繊維の耐炎化処理が非効率である点が挙
げられる。生産性を向上させるには、短時間で耐炎化処
理を行うことが必要となる。また、そのときの糸条数は
多いものがよい。
2. Description of the Related Art The firing process of carbon fibers comprises a flameproofing process and a carbonization process, and the basic factor that makes the carbon fibers expensive is, inter alia, that the flameproofing process of the precursor fibers is inefficient. In order to improve the productivity, it is necessary to perform the flameproofing treatment in a short time. At that time, it is preferable that the number of yarns is large.

【0003】前駆体繊維の耐炎化処理における反応は酸
化・還化が同時に進行する発熱反応であり、高温熱処理
を行えば反応がより速くなり、短時間処理が可能にな
る。その一方、急速な耐炎化処理を進行させると、酸化
反応に伴う反応熱が前駆体繊維内に蓄熱し易くなり、繊
維内温度が急上昇し、糸切れや、ついには発火を引き起
こすといった暴走反応が誘発されるという二面性を持
つ。したがって、耐炎化処理糸条数が多い場合、前駆体
繊維内の発熱反応熱を効率よく除去しなければ、高温、
短時間で目的の耐炎化糸を得ることができない。
The reaction in the flameproofing treatment of the precursor fiber is an exothermic reaction in which oxidation and deoxidation proceed at the same time, and if the high temperature heat treatment is performed, the reaction becomes faster and the treatment can be performed in a short time. On the other hand, when the rapid flameproofing treatment proceeds, the reaction heat associated with the oxidation reaction easily accumulates in the precursor fiber, the temperature inside the fiber rises sharply, and a runaway reaction such as yarn breakage and eventually ignition occurs. It has the duality of being triggered. Therefore, if the number of flame-resistant treated yarns is large, unless the exothermic reaction heat in the precursor fiber is efficiently removed, high temperature,
The target flame resistant yarn cannot be obtained in a short time.

【0004】このような目的を持つ従来の短時間焼成方
法としては、例えば、特公昭53−21396号公報で
は、200〜400℃に加熱したドラムに間欠的に前駆
体繊維を接触させて移送しながら耐炎化処理することに
より、耐炎化時間を20〜30分に短縮することが報じ
られている。また、特開平1−104835号公報で
は、前駆体繊維を流動層中で200〜500℃に加熱処
理し、ローラによって移送しながら連続的に耐炎化処理
することにより、耐炎化時間を20分以内にすることが
できると報じられている。
As a conventional short-time firing method having such an object, for example, in Japanese Patent Publication No. 53-21396, a precursor fiber is intermittently brought into contact with a drum heated to 200 to 400 ° C. and transferred. However, it is reported that the flameproofing time is shortened to 20 to 30 minutes by performing the flameproofing treatment. Further, in JP-A-1-104835, the precursor fiber is heat-treated at 200 to 500 ° C. in a fluidized bed and continuously flame-resistant while being transferred by rollers, so that the flame-proofing time is within 20 minutes. It is reported that it can be done.

【0005】ところが、これらの公知の耐炎化方法にお
いては、糸条表面からの伝熱を向上させる特性を持つも
ので、糸条内部からの除熱効果に限界があるために、処
理時間を大幅に短縮することが困難であるという問題が
ある。また、前駆体繊維数が多くなるほど表面伝熱では
反応熱を糸条外へ取り除くことが困難になり、したがっ
て、暴走反応温度を低下していく、すなわち、比較的低
い温度においても暴走反応が起きやすいという問題があ
り、処理温度を高温にすることは困難であり、短時間焼
成可能な技術とは言い難かった。
However, these known flameproofing methods have the property of improving the heat transfer from the surface of the yarn, and the heat removal effect from the inside of the yarn is limited. There is a problem that it is difficult to shorten it. Further, as the number of precursor fibers increases, it becomes more difficult to remove the reaction heat to the outside of the yarn by surface heat transfer, and therefore the runaway reaction temperature decreases, that is, the runaway reaction occurs even at a relatively low temperature. There is a problem that it is easy, and it is difficult to raise the treatment temperature to a high temperature, and it is difficult to say that it is a technique capable of firing for a short time.

【0006】この欠点を克服するために、例えば、特開
平2−6625号公報では、糸条をローラに間欠的に接
触させ、接する糸条にローラ面から200〜300℃に
加熱した酸化性気体を吹き出し、または吸い込んで、糸
条を移送しながら耐炎化処理することにより、耐炎化処
理時間を5〜20分にすることができると報じられてい
る。この糸条内部に酸化性気体を貫通させる方法は、糸
条数の大小に関わりなく、糸条内部にある前駆体繊維の
反応熱を外部へ逃がす効果が大きく、高温度における処
理を可能にでき、短時間の耐炎化処理に有効である。し
かし、その一方で、熱風を吹き出し、または吸い込む際
に、酸化性気体の吹き出し口または吸い込み口に接触す
る糸条が、熱風の貫通を妨げる抵抗体となり、前駆体繊
維数が多くなるほど熱風を吹き出しまたは吸い込む際に
必要とされる力も大きなものとなる。その結果、装置コ
ストが大きくなるという問題点を持っている。そのため
に、糸条内部の反応熱の蓄積を回避する革新的な解決策
を有する短時間焼成可能な技術ではあるものの、生産性
の優れる製造方法とは言い難いものであった。
In order to overcome this drawback, for example, in Japanese Unexamined Patent Publication (Kokai) No. 2-6625, an oxidizing gas in which a yarn is intermittently contacted with a roller and heated to 200 to 300 ° C. from the roller surface is in contact with the yarn. It is reported that the flameproofing treatment time can be set to 5 to 20 minutes by blowing or sucking in and performing the flameproofing treatment while transferring the yarn. This method of passing an oxidizing gas through the inside of the yarn has a great effect of radiating the reaction heat of the precursor fibers inside the yarn to the outside regardless of the number of the yarns, and enables the treatment at high temperature. It is effective for flameproofing for a short time. However, on the other hand, when the hot air is blown out or sucked in, the yarns that come into contact with the blowing opening or the suction opening of the oxidizing gas become a resistor that prevents the hot air from penetrating, and the hot air is blown out as the number of precursor fibers increases. Also, the force required for inhaling becomes great. As a result, there is a problem that the device cost increases. Therefore, although it is a technique capable of firing for a short time and having an innovative solution for avoiding the accumulation of reaction heat inside the yarn, it cannot be said to be a production method having excellent productivity.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、従来
技術の上記した問題点を解決すること、具体的には、耐
炎化繊維の品質および炭素繊維の力学的性質を損なうこ
となく、短時間に多糸条の前駆体繊維を耐炎化する方
法、ひいては、炭素繊維の生産性を上げ得る方法を提供
することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, specifically, to achieve a short-term without impairing the quality of flame-resistant fiber and the mechanical properties of carbon fiber. It is an object of the present invention to provide a method for flame-retarding a multi-filament precursor fiber in time, and thus a method capable of increasing the productivity of carbon fiber.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を解
決するために次の構成を有する。すなわち、ポリアクリ
ロニトリル系前駆体繊維糸条を耐炎化した後、炭化する
炭素繊維の製造方法において、糸条占有率を0.1〜2
0%の範囲とした開繊状態で加熱処理して耐炎化するこ
とを特徴とする炭素繊維の製造方法である。
The present invention has the following constitution in order to solve the above problems. That is, in a method for producing a carbon fiber in which a polyacrylonitrile-based precursor fiber yarn is flame-resistant and then carbonized, the yarn occupancy rate is 0.1 to 2
It is a method for producing a carbon fiber, which comprises heat-treating and flameproofing in an opened state in a range of 0%.

【0009】以下、本発明について詳細に説明する。本
発明においてはポリアクリロニトリル系前駆体繊維糸条
を耐炎化した後、炭化するものである。ポリアクリロニ
トリル系前駆体繊維以外の前駆体繊維を耐炎化した後、
炭化しても高性能の炭素繊維を得ることができない。ポ
リアクリロニトリル系前駆体繊維とは、アクリロニトリ
ルを90モル%以上含有し、必要に応じて他の不飽和単
量体を10モル%以下共重合したポリマーからなる繊維
をいう。他の不飽和単量体の例としては、耐炎化反応を
促進しうるなどの理由から、イタコン酸、アクリル酸メ
チル、メタクリル酸メチル、アクリルアミドおよびその
誘導体、アリルスルホン酸およびその塩類などが好まし
く用いられる。また、ポリアクリロニトリル系前駆体繊
維の単繊維繊度は強度を向上させやすいなどの理由か
ら、3デニール以下、さらには1デニール以下とするの
が好ましい。
The present invention will be described in detail below. In the present invention, the polyacrylonitrile-based precursor fiber yarn is flameproofed and then carbonized. After flameproofing precursor fibers other than polyacrylonitrile-based precursor fibers,
High-performance carbon fibers cannot be obtained even if carbonized. The polyacrylonitrile-based precursor fiber is a fiber made of a polymer containing 90 mol% or more of acrylonitrile and optionally 10 mol% or less of another unsaturated monomer. As examples of other unsaturated monomers, itaconic acid, methyl acrylate, methyl methacrylate, acrylamide and its derivatives, allyl sulfonic acid and its salts, etc. are preferably used because of the reason that they can accelerate the flame resistance reaction. To be The single fiber fineness of the polyacrylonitrile-based precursor fiber is preferably 3 denier or less, more preferably 1 denier or less for the reason that the strength is easily improved.

【0010】本発明において糸条占有率とは、ポリアク
リロニトリル系前駆体繊維糸条の開繊程度を示す尺度と
なるものであって、糸条の垂直断面方向における単位面
積当りの単繊維が占有する断面積の総和の割合をいう。
In the present invention, the yarn occupancy rate is a measure showing the degree of opening of the polyacrylonitrile-based precursor fiber yarn, and monofilament occupies per unit area in the vertical cross-sectional direction of the yarn. The ratio of the total cross-sectional area.

【0011】本発明においては加熱処理して耐炎化する
際の前駆体繊維糸条の糸条占有率を0.1〜20%、好
ましくは0.5〜8%の範囲とするものである。糸条占
有率を0.1%未満とした場合には、開繊時の分布面積
が大きくなり、単繊維同士がからみつくなど糸の取り扱
い性が難しくなり、ローラへの単繊維巻き付きなどのト
ラブルが発生しやすく、また、耐炎化処理効果が著しく
劣るものとなる。一方、糸条占有率が20%を越える場
合には、単繊維間が接近し、熱風の貫通を妨げるために
除熱が困難となる。
In the present invention, the yarn occupancy rate of the precursor fiber yarn when heat-treated to make it flame resistant is in the range of 0.1 to 20%, preferably 0.5 to 8%. If the yarn occupancy rate is less than 0.1%, the distribution area at the time of opening becomes large, the handling of the yarn becomes difficult, such as when the single fibers are entangled with each other, and troubles such as winding of the single fiber around the roller occur. It is likely to occur, and the flameproofing treatment effect is remarkably inferior. On the other hand, when the yarn occupancy exceeds 20%, the single fibers come close to each other and impede the passage of hot air, which makes it difficult to remove heat.

【0012】糸条占有率を0.1〜20%の範囲とする
には、種々の開繊手段を採用でき、糸条に対し外力を与
えることで単繊維間の間隙を開ける手段が確実に開繊可
能である観点から好ましい。
In order to set the yarn occupancy rate in the range of 0.1 to 20%, various opening means can be adopted, and a means for opening the gap between the single fibers by applying an external force to the yarn is surely provided. It is preferable from the viewpoint that the fiber can be opened.

【0013】外力を与え前駆体繊維糸条を開繊させなが
ら糸条内に熱風を供給する手段として、前駆体繊維糸条
に振動を与える方法が特に好ましく用いられる。即ち、
振動させることにより糸条の開繊状態を高めて少数の単
繊維群毎に分散させることにより、前駆体繊維糸条内に
熱風が貫通し易くなる場が確保でき、そのため、酸化性
雰囲気が単繊維同士の間隙に貫通していくことができ、
糸条からの熱の移動を考えたとき、熱移動量が大きいた
めに耐炎化反応を進行させながら糸条内の蓄熱を抑制、
排除する効果を容易に得ることができる。
A method of vibrating the precursor fiber yarn is particularly preferably used as a means for supplying hot air into the yarn while applying an external force to open the precursor fiber yarn. That is,
By vibrating the filament to improve the open state of the filament and disperse it into a small number of single fiber groups, it is possible to secure a place where hot air can easily penetrate into the precursor fiber filament. It can penetrate into the gap between fibers,
When considering the transfer of heat from the yarn, the heat transfer amount is large, so the heat accumulation in the yarn is suppressed while the flameproofing reaction proceeds.
The effect of eliminating can be easily obtained.

【0014】糸条に振動を与える具体的手段としては、
振動ガイドによる方法がある。ここで、振動ガイドは、
それ自体が振動し、糸条に接触することにより振動を伝
達するものである。そのためガイドの表面は糸条を傷つ
けないために、凹凸や角の無い平滑なものが好ましく、
ガイド断面形状は円形のものが良い。
As a concrete means for vibrating the yarn,
There is a vibration guide method. Here, the vibration guide is
The vibration itself is transmitted to the yarn by contacting the yarn. Therefore, the surface of the guide is preferably smooth with no irregularities or corners so as not to damage the yarn.
A circular guide cross section is preferable.

【0015】ガイドの長さは糸条がガイドに触れる時、
糸条幅方向へ若干広がるために糸条幅よりも長いものが
好ましく、ガイドの断面積は振動ガイドの長さや材質、
糸条の幅、厚み等の条件によっても異なるが、常法の強
度計算によって糸を振動させるにあたり、振動ガイド自
身が変形し、振動の妨げにならないものであればよい。
The length of the guide is such that when the yarn touches the guide,
Since it spreads slightly in the yarn width direction, it is preferable that it is longer than the yarn width, and the cross-sectional area of the guide depends on the length and material of the vibration guide.
Although it depends on the conditions such as the width and thickness of the yarn, it is sufficient that the vibration guide itself is deformed and does not hinder the vibration when the yarn is vibrated by the conventional strength calculation.

【0016】図1に示すように、この振動ガイド3を前
駆体繊維1の糸条幅方向に渡し、糸条の進行方向に対し
垂直かつ上下方向に振動を与えることにより前駆体繊維
1を所定の糸条占有率となるように開繊させるものであ
る。ガイドが糸条と接触する側は糸条の上面、下面のい
ずれでもよいが、ガイドの設置のし易さから、振動ガイ
ド3は図1に示すように、前駆体繊維1の下面に接する
よう配置するのが好ましい。また、振動ガイド3はロー
ラー等、糸条に触れるものの付近では振動の効果が薄れ
るため、ガイドの数にもよるが、図1に示すように、フ
リーローラー2等、糸条に接触する位置の間の糸条中央
部に配置するのが好ましい。
As shown in FIG. 1, the vibration guide 3 is passed in the yarn width direction of the precursor fiber 1 and is vibrated vertically and vertically with respect to the traveling direction of the yarn, whereby the precursor fiber 1 is moved in a predetermined direction. The fiber is opened so that the yarn occupancy rate is obtained. The side where the guide comes into contact with the yarn may be either the upper face or the lower face of the yarn, but for ease of installation of the guide, the vibration guide 3 should be in contact with the lower face of the precursor fiber 1 as shown in FIG. It is preferably arranged. Further, since the vibration guide 3 has a less vibrating effect in the vicinity of something such as a roller that comes into contact with the yarn, it depends on the number of guides, but as shown in FIG. It is preferable to arrange it in the central portion of the yarn between them.

【0017】糸条を振動し糸条を開繊する別の具体的手
段として、糸条に向けてノズルから気体を吹き付ける方
法がある。ここで、ノズルより吹き付けられた気体が糸
条に当たることにより振動を伝達するものである。この
とき、吹き付ける気体は耐炎化に要する酸化性雰囲気が
好ましく、1.0 m/s 以上6.0 m/s 以下の流速と
するのが好ましい。図2に示すように、ノズル5は前駆
体繊維1を挟むようにして、前駆体繊維1の進行方向
(紙面の向う側)に対し垂直かつ上下方向に振動を与え
るよう気体を吹き付けるのが好ましく、ローラ等、糸条
に接触する位置の間の糸条中央部へ設置するのが好まし
い。図3はこの様子を別の方向から見た側面図であっ
て、前駆体繊維1はノズル5の左から右に走行してい
る。
As another specific means for vibrating the yarn and opening the yarn, there is a method of blowing gas from the nozzle toward the yarn. Here, vibration is transmitted by the gas blown from the nozzle hitting the yarn. At this time, the blowing gas is preferably an oxidizing atmosphere required for flame resistance, and it is preferable to set the flow rate to 1.0 m / s or more and 6.0 m / s or less. As shown in FIG. 2, it is preferable that the nozzle 5 blows a gas so as to sandwich the precursor fiber 1 and to vibrate vertically and vertically with respect to the traveling direction of the precursor fiber 1 (the side opposite to the paper surface), such as a roller. It is preferable to install in the central part of the yarn between the positions in contact with the yarn. FIG. 3 is a side view of this state viewed from another direction, in which the precursor fiber 1 is running from the left to the right of the nozzle 5.

【0018】ノズル幅は糸条幅方向に対し振動する糸条
が糸条幅方向へ若干広がるために、糸条幅よりも若干大
きくとるのが好ましい。
The nozzle width is preferably set to be slightly larger than the yarn width because the yarn vibrating in the yarn width direction spreads slightly in the yarn width direction.

【0019】上記のような手段により前駆体繊維糸条を
振動させつつ、熱風循環炉内の各温度コントロールゾー
ンにそれぞれ配置し、耐炎化処理中に作動させることに
より、耐炎化反応を進行させながら糸条内の蓄熱を抑制
または排除でき、その結果、可能な限り耐炎化処理温度
を高い温度に設定でき、短時間の耐炎化処理を可能とす
る。しかも、熱風循環炉として温度コントロール可能な
ゾーンをもったものを用いることおよび糸条占有率を
0.1〜20%とすることの両手段を組み合わせること
により、互いの効果を促進しあい、単独の手段によるよ
りも短時間の耐炎化処理を可能とする。
While vibrating the precursor fiber yarn by the means as described above, the precursor fiber yarn is placed in each temperature control zone in the hot-air circulation furnace, and is operated during the flame-proof treatment to promote the flame-proof reaction. The heat storage in the yarn can be suppressed or eliminated, and as a result, the flameproofing treatment temperature can be set as high as possible, and the flameproofing treatment can be performed in a short time. Moreover, by using both means of using a hot air circulating furnace having a temperature controllable zone and adjusting the yarn occupancy rate to 0.1 to 20%, the mutual effects are promoted and the It enables flameproofing treatment in a shorter time than by means.

【0020】前駆体繊維は熱風循環炉の酸化性雰囲気内
に供給されて酸化処理を施されるが、このとき、前駆体
繊維の発熱反応の蓄積により繊維構造の破壊、すなわち
暴走反応が起こらないようにするために、熱風の温度は
暴走反応の発生温度よりも低い温度で処理しなければな
らない。暴走反応の発生温度は耐炎化時間の経過と共に
上昇していく傾向を持つ。
The precursor fibers are supplied into the oxidizing atmosphere of the hot air circulation furnace and subjected to an oxidation treatment, but at this time, the destruction of the fiber structure, that is, the runaway reaction does not occur due to the accumulation of the exothermic reaction of the precursor fibers. In order to do so, the temperature of the hot air must be lower than the temperature at which the runaway reaction occurs. The temperature at which the runaway reaction occurs tends to rise as the flameproofing time elapses.

【0021】そこで、耐炎化処理効率を上げるために、
同一設定温度としたゾーンの温度はその前のゾーンより
も順次高くしていき、ゾーン数を増すことが好ましく、
糸条の耐熱性が上昇するにつれて糸条をより高温のゾー
ンへ供給していくことで耐炎化時間を短縮できる。ま
た、ゾーン数を増すほど、暴走反応の発生温度に近いけ
れども暴走反応に至らない条件で効率的にかつ安全に耐
炎化できる。しかし、ゾーン数を増すと、伴う装置コス
トも増加するために、生産性の向上の効果は小さくなっ
ていく。そのため、生産性向上の効果を害することな
く、細かな温度制御を可能とする観点から、ゾーン数は
3〜8とするのが好ましく、3〜5とするのがさらに好
ましい。
Therefore, in order to improve the flameproofing treatment efficiency,
It is preferable to increase the number of zones by gradually increasing the temperature of the zones set to the same set temperature as compared with the previous zones.
The flame resistance time can be shortened by supplying the yarn to a zone of higher temperature as the heat resistance of the yarn increases. Further, as the number of zones is increased, the flame resistance can be efficiently and safely provided under the condition that the temperature is close to the temperature at which the runaway reaction occurs but the runaway reaction does not occur. However, if the number of zones is increased, the cost of the device is also increased, and the effect of improving the productivity becomes smaller. Therefore, the number of zones is preferably 3 to 8 and more preferably 3 to 5 from the viewpoint of enabling fine temperature control without impairing the effect of improving productivity.

【0022】熱風による糸条内部の蓄熱の抑制、排除の
効果を十分なものとし、一方、糸条が揺れすぎて糸条内
の単繊維が擦れ合い糸条が傷ついて、性能、品質に悪影
響を及ぼすことを防ぐ観点から、循環する熱風の風速は
0.1 m/s 以上5.0 m/s 以下、さらには0.4 m
/s 以上3.0 m/s 以下、特に1.0 m/s 以上2.
0 m/s 以下が好ましい。
The effect of suppressing and eliminating the heat accumulation inside the yarn due to hot air is made sufficient, while the yarn is shaken too much and the monofilaments in the yarn are rubbed against each other and the yarn is damaged, which adversely affects the performance and quality. From the viewpoint of preventing the occurrence of heat, the velocity of the circulating hot air is 0.1 m / s or more and 5.0 m / s or less, and 0.4 m / s or less.
/ S or more and 3.0 m / s or less, particularly 1.0 m / s or more 2.
It is preferably 0 m / s or less.

【0023】また、熱風の方向は、糸条内への容易な通
気、排気を行う点からも、糸条の進行方向に対して平行
に流すよりも垂直に流す方が好ましい。
In addition, it is preferable that the direction of the hot air flow is vertical rather than parallel to the traveling direction of the yarn in terms of easy ventilation and exhaust of air into the yarn.

【0024】[0024]

【実施例】以下、実施例によりさらに詳細に本発明を説
明する。 (実施例1)単繊維繊度1d、フィラメント数100万
本のポリアクリロニトリル系前駆体繊維を図1に示すよ
うに、振動ガイド上に接触させ、糸条占有率が2%程度
の開繊状態になるよう振動を与えて、前駆体糸条に直角
な方向に風速2 m/s の熱風が流れる熱風循環方式耐炎
化処理装置中で、3段階に処理温度を変化させて耐炎化
処理を行なった。その際の糸条の進行速度は3.0 m/
min 、操業温度の上限は1炉では253℃、2炉では2
62℃、3炉では272℃であり、耐炎化終了には25
分間の処理を必要とした。得られた耐炎化繊維を窒素雰
囲気中1400℃で炭化したところ、糸条は毛羽、糸切
れのトラブルもなく、安定に工程を通過し、引張強度3
50 Kgf/mm2 、引張弾性率23×103 Kgf/mm2
炭素繊維が得られた。
The present invention will be described in more detail with reference to the following examples. (Example 1) As shown in Fig. 1, a polyacrylonitrile-based precursor fiber having a single fiber fineness of 1 d and a number of filaments of 1 million was brought into contact with a vibration guide to open a fiber occupancy rate of about 2%. In order to perform the flameproofing treatment by changing the treatment temperature in three steps in a hot-air circulation type flameproofing treatment apparatus in which hot air having a wind speed of 2 m / s flows in a direction perpendicular to the precursor yarn, . At that time, the traveling speed of the yarn is 3.0 m /
min, the upper limit of operating temperature is 253 ℃ for 1 furnace and 2 for 2 furnaces
62 ℃, 272 ℃ in 3 furnaces, 25 at the end of flame resistance
Minutes of treatment required. When the obtained flameproofed fiber was carbonized at 1400 ° C in a nitrogen atmosphere, the yarn passed through the process stably without any trouble such as fluff and yarn breakage, and had a tensile strength of 3
A carbon fiber having a tensile elastic modulus of 23 × 10 3 Kgf / mm 2 and 50 Kgf / mm 2 was obtained.

【0025】(比較例1)振動ガイドを用いない以外
は、実施例1と同様に耐炎化処理を行なった。このとき
の糸条占有率は50%であった。このときの操業温度
は、暴走反応による糸切れのため、1炉では238℃、
2炉では247℃、3炉では257℃としなければなら
ず、炭化処理に耐え得る耐炎化繊維を得るには、54分
間の処理を必要とした。得られた耐炎化繊維を窒素雰囲
気中1400℃で炭化したところ、毛羽、糸切れのため
良好な炭素繊維を得ることはできなかった。
(Comparative Example 1) A flameproofing treatment was performed in the same manner as in Example 1 except that the vibration guide was not used. The yarn occupation ratio at this time was 50%. The operating temperature at this time is 238 ° C in one furnace due to yarn breakage due to runaway reaction,
The temperature must be 247 ° C. in 2 furnaces and 257 ° C. in 3 furnaces, and a treatment for 54 minutes was required to obtain a flameproof fiber that can withstand the carbonization treatment. When the obtained flameproofed fiber was carbonized at 1400 ° C. in a nitrogen atmosphere, good carbon fiber could not be obtained due to fluff and yarn breakage.

【0026】(比較例2)振動ガイドを用い、糸条占有
率を0.05%とした以外は、実施例1と同様に耐炎化
処理を行なったところ、糸条は開繊時の分布面積が大き
くなり、互いに絡まり合い、糸切れ等のトラブルのた
め、安定に耐炎化処理を行なうことはできなかった。
(Comparative Example 2) A flame resistance treatment was performed in the same manner as in Example 1 except that the vibration guide was used and the yarn occupancy ratio was set to 0.05%. However, the flame-proof treatment could not be stably performed due to problems such as large size, entanglement with each other, and yarn breakage.

【0027】(実施例2)単繊維繊度1d、フィラメン
ト数10万本のポリアクリロニトリル系前駆体繊維を、
図1に示す振動ガイド3を図2に示すエアー吹き出しノ
ズル5にかえ、糸条占有率が2%程度の開繊状態になる
よう振動を与えたほかは、実施例1と同様に耐炎化処理
を行なった。
Example 2 A polyacrylonitrile-based precursor fiber having a monofilament fineness of 1d and a number of filaments of 100,000 was prepared.
Flame-proof treatment similar to Example 1 except that the vibration guide 3 shown in FIG. 1 was replaced with the air blowing nozzle 5 shown in FIG. 2 and vibration was applied so that the yarn occupancy rate was about 2%. Was done.

【0028】ただし、操業温度の上限は1炉では261
℃、2炉では274℃、3炉では280℃であり、耐炎
化終了には10分の処理を必要とした。若干の糸切れは
あったが、ほぼ安定に耐炎化を行なうことができた。得
られた耐炎化繊維を窒素雰囲気中1400℃で炭化した
ところ、引張強度300 Kgf/mm2 、引張弾性率22×
103 Kgf/mm2 の炭素繊維が得られた。
However, the upper limit of operating temperature is 261 in one furnace.
C., 2 furnaces had 274.degree. C., and 3 furnaces had 280.degree. C., and treatment for 10 minutes was required to complete flameproofing. Although there was some yarn breakage, flame resistance could be achieved almost stably. When the obtained flameproofed fiber was carbonized at 1400 ° C. in a nitrogen atmosphere, the tensile strength was 300 Kgf / mm 2 , the tensile elastic modulus was 22 ×.
A carbon fiber of 10 3 Kgf / mm 2 was obtained.

【0029】(比較例3)エアー吹き出しノズルを用い
ない以外は、実施例2と同様に耐炎化処理を行なった。
このときの糸条占有率は50%であった。このときの操
業温度は、暴走反応による糸切れのため、1炉では25
0℃、2炉では259℃、3炉では265℃としなけれ
ばならず、炭化処理に耐え得る耐炎化繊維を得るには、
21分間の処理を必要とした。得られた耐炎化繊維を窒
素雰囲気中1400℃で炭化したところ、毛羽、糸切れ
のため良好な炭素繊維を得ることはできなかった。
(Comparative Example 3) A flameproof treatment was performed in the same manner as in Example 2 except that the air blowing nozzle was not used.
The yarn occupation ratio at this time was 50%. The operating temperature at this time is 25 in one furnace due to yarn breakage due to runaway reaction.
It should be 0 ° C, 259 ° C in 2 furnaces, 265 ° C in 3 furnaces, and in order to obtain a flame resistant fiber that can withstand carbonization,
It required 21 minutes of treatment. When the obtained flameproofed fiber was carbonized at 1400 ° C. in a nitrogen atmosphere, good carbon fiber could not be obtained due to fluff and yarn breakage.

【0030】(比較例4)エアー吹き出しノズルを用い
て糸条占有率を0.05%とした以外は実施例2と同様
に耐炎化処理を行なったところ、糸条は開繊時の分布面
積が大きくなり、互いに絡まり合い、糸切れ等のトラブ
ルのため、安定に耐炎化処理を行なうことはできなかっ
た。
(Comparative Example 4) A flame resistance treatment was performed in the same manner as in Example 2 except that the yarn occupancy rate was set to 0.05% using an air blowing nozzle. However, the flame-proof treatment could not be stably performed due to problems such as large size, entanglement with each other, and yarn breakage.

【0031】[0031]

【発明の効果】本発明によれば、除熱速度を大幅に向上
することができる。とくに、多段温度制御型熱風循環炉
を用いる場合には、暴走温度に近い温度で処理ができ、
耐炎化時間を大幅に短縮して生産性を向上することがで
きる。
According to the present invention, the heat removal rate can be greatly improved. In particular, when using a multi-stage temperature control type hot air circulation furnace, the treatment can be performed at a temperature close to the runaway temperature,
It is possible to significantly reduce the flameproofing time and improve the productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法の一実施態様であって、振動ガイ
ドを設けた耐炎化装置を用いる例を示すモデル的側面図
である。
FIG. 1 is a model side view showing an embodiment of the method of the present invention, in which a flameproof device provided with a vibration guide is used.

【図2】本発明の方法の別の実施態様であって、エアー
吹き出しノズルを用いる例を示す側面図である。
FIG. 2 is a side view showing another embodiment of the method of the present invention, which uses an air blowing nozzle.

【図3】本発明の方法の別の実施態様であって、エアー
吹き出しノズルを用いる例を示す別方向から見た側面図
である。
FIG. 3 is a side view from another direction showing another embodiment of the method of the present invention, which uses an air blowing nozzle.

【符号の説明】[Explanation of symbols]

1:前駆体繊維 2:フリーローラー 3:振動ガイド 4,4′,4″:耐炎化処理ゾーン 5:ノズル 6:エア吹き出し口 1: Precursor fiber 2: Free roller 3: Vibration guide 4, 4 ', 4 ": Flameproof treatment zone 5: Nozzle 6: Air outlet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ポリアクリロニトリル系前駆体繊維糸条を
耐炎化した後、炭化する炭素繊維の製造方法において、
糸条占有率を0.1〜20%の範囲とした開繊状態で加
熱処理して耐炎化することを特徴とする炭素繊維の製造
方法。
1. A method for producing a carbon fiber in which a polyacrylonitrile-based precursor fiber yarn is carbonized after being flame-resistant.
A method for producing a carbon fiber, which comprises subjecting a yarn to a flame proof by heat-treating the fiber in a fiber-spreading state in a range of 0.1 to 20%.
【請求項2】ポリアクリロニトリル系前駆体繊維糸条に
振動を与えることにより、開繊しつつ加熱処理すること
を特徴とする請求項1記載の炭素繊維の製造方法。
2. The method for producing a carbon fiber according to claim 1, wherein the polyacrylonitrile-based precursor fiber yarn is subjected to heat treatment while being opened by vibrating.
【請求項3】振動ガイドによりポリアクリロニトリル系
前駆体繊維糸条に振動を与えることを特徴とする請求項
2記載の炭素繊維の製造方法。
3. The method for producing carbon fiber according to claim 2, wherein the polyacrylonitrile-based precursor fiber yarn is vibrated by a vibration guide.
【請求項4】加熱処理を熱風循環により行うことを特徴
とする請求項1または請求項2記載の炭素繊維の製造方
法。
4. The method for producing a carbon fiber according to claim 1, wherein the heat treatment is performed by circulating hot air.
JP23101592A 1992-08-31 1992-08-31 Production of carbon fiber Pending JPH0681223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23101592A JPH0681223A (en) 1992-08-31 1992-08-31 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23101592A JPH0681223A (en) 1992-08-31 1992-08-31 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JPH0681223A true JPH0681223A (en) 1994-03-22

Family

ID=16916914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23101592A Pending JPH0681223A (en) 1992-08-31 1992-08-31 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPH0681223A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150733A (en) * 2006-12-15 2008-07-03 Mitsubishi Rayon Co Ltd Method for treating carbon fiber precursor as flame retardant
JP2010248639A (en) * 2009-04-10 2010-11-04 Mitsubishi Rayon Co Ltd Carbon fiber, and method and apparatus for producing the same
JP2011127264A (en) * 2009-12-21 2011-06-30 Mitsubishi Rayon Co Ltd Method for producing flame-proof fiber
US20110243831A1 (en) * 2004-02-13 2011-10-06 Mitsubishi Rayon Co., Ltd. Carbon fiber precursor fiber bundle, production method and production device therefor, and carbon fiber and production method therefor
WO2014017658A1 (en) 2012-07-24 2014-01-30 株式会社ダイセル Conductive fiber-coated particle, curable composition and cured article derived from curable composition
JP2014080719A (en) * 2014-01-09 2014-05-08 Mitsubishi Rayon Co Ltd Carbon fiber
WO2014192839A1 (en) 2013-05-28 2014-12-04 株式会社ダイセル Curable composition for sealing optical semiconductor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110243831A1 (en) * 2004-02-13 2011-10-06 Mitsubishi Rayon Co., Ltd. Carbon fiber precursor fiber bundle, production method and production device therefor, and carbon fiber and production method therefor
JP2008150733A (en) * 2006-12-15 2008-07-03 Mitsubishi Rayon Co Ltd Method for treating carbon fiber precursor as flame retardant
JP2010248639A (en) * 2009-04-10 2010-11-04 Mitsubishi Rayon Co Ltd Carbon fiber, and method and apparatus for producing the same
JP2011127264A (en) * 2009-12-21 2011-06-30 Mitsubishi Rayon Co Ltd Method for producing flame-proof fiber
WO2014017658A1 (en) 2012-07-24 2014-01-30 株式会社ダイセル Conductive fiber-coated particle, curable composition and cured article derived from curable composition
WO2014192839A1 (en) 2013-05-28 2014-12-04 株式会社ダイセル Curable composition for sealing optical semiconductor
JP2014080719A (en) * 2014-01-09 2014-05-08 Mitsubishi Rayon Co Ltd Carbon fiber

Similar Documents

Publication Publication Date Title
US4610860A (en) Method and system for producing carbon fibers
US5193996A (en) Method and system for producing carbon fibers
JPH0681223A (en) Production of carbon fiber
US4186179A (en) Process for producing oxidized or carbon fibers
JP5297644B2 (en) Carbon fiber bundle and method for producing the same
GB2148866A (en) Method and system for producing carbon fibers
JP5556994B2 (en) Method for producing flame resistant fiber
JP4017772B2 (en) Continuous heat treatment method for acrylic fiber bundles
JP4809757B2 (en) Flame-resistant heat treatment apparatus and method for producing flame-resistant fiber bundle
JPH034832B2 (en)
GB1592144A (en) Process for producing carbon fibres
JP4572460B2 (en) Heat treatment furnace and method for producing carbon fiber using the same
JP2971498B2 (en) Flame-resistant treatment equipment
JP3733688B2 (en) Carbon fiber manufacturing method
JP2002105766A (en) Method for flame resisting
JP2998354B2 (en) Flame-resistant fiber manufacturing equipment
JP2008019526A (en) Method for producing carbon fiber
JP2004197239A (en) Flame resisting treatment furnace
JP2008115481A (en) Flame-resisting treatment furnace
JPH026629A (en) Production of carbon fiber
JPH034833B2 (en)
JPS62228867A (en) Horizontal type heat treating furnace for manufacturing carbon fiber
JP2004052128A (en) Horizontal type heat-treating furnace
JP2009150033A (en) Method and apparatus for producing flame retardant fiber
JPH01207421A (en) Apparatus for making flame-resistance and method therefor