JP3992783B2 - Railroad crossing control device - Google Patents

Railroad crossing control device Download PDF

Info

Publication number
JP3992783B2
JP3992783B2 JP12011497A JP12011497A JP3992783B2 JP 3992783 B2 JP3992783 B2 JP 3992783B2 JP 12011497 A JP12011497 A JP 12011497A JP 12011497 A JP12011497 A JP 12011497A JP 3992783 B2 JP3992783 B2 JP 3992783B2
Authority
JP
Japan
Prior art keywords
train
railroad crossing
crossing
relay
loop coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12011497A
Other languages
Japanese (ja)
Other versions
JPH10297493A (en
Inventor
正和 宮地
正士 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyosan Electric Manufacturing Co Ltd
East Japan Railway Co
Original Assignee
Kyosan Electric Manufacturing Co Ltd
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyosan Electric Manufacturing Co Ltd, East Japan Railway Co filed Critical Kyosan Electric Manufacturing Co Ltd
Priority to JP12011497A priority Critical patent/JP3992783B2/en
Publication of JPH10297493A publication Critical patent/JPH10297493A/en
Application granted granted Critical
Publication of JP3992783B2 publication Critical patent/JP3992783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、軌道の踏切に設けた警報機や遮断機等の踏切装置を制御する踏切制御装置、特に踏切警報が出力されている時間の短縮化に関するものである。
【0002】
【従来の技術】
複線区間の駅中間に設けられた踏切の警報制御を行うため、図7に示すように、踏切1より適当な距離だけ手前の警報開始点には閉電路式の踏切制御子A,B,D,Eを設け、踏切1の後方の警報終了点には開電路式の踏切制御子C,Fを設けて踏切警報区間を構成している。そしてX方からY方に進行する下りの列車2が踏切制御子Aの制御区間内に進入すると警報を開始して所定時間後に踏切1を閉扉し、列車2が踏切制御子Cの制御区間外に進出すると警報を解除して開扉して、踏切道を通行する人や車の安全を図っている。なお、図7において、閉電路式の踏切制御子B,Eは制御区間に先行列車と続行列車が進入する無閉そく運転対策用として設置されたものである。
【0003】
【発明が解決しようとする課題】
上記のように踏切制御子A,Dと踏切制御子C,Fで踏切警報区間を構成し、この区間に下り方向の列車2又は上り方向の列車が在線しているときに踏切警報を発生していると、踏切の保安は確実に保たれるが、列車の本数が多い都市近郊の高密度運転線区では、朝夕のラッシュ・アワ−に長時間にわたって閉扉される踏切がある。踏切が長時間閉扉していると道路側の交通渋滞の原因になるため、踏切の保安を保ちながら踏切閉扉の時間をできるだけ短縮することが要望されている。このため、例えば特公平2−41466号公報に示されたように、踏切を閉扉してから列車の先頭が踏切に到達するまでの時間を一定にした警報定時間制御が採用されている。この警報定時間制御は、図8に示すように、踏切1の手前の始動点に2台1組の車軸検知器21,22を設置し、踏切1の進出側の終始点には1台の車軸検出器23を設置する。そして処理器24は始動点の車軸検知器21,22から入力する列車2の車軸検知信号により車輪の通過方向を検出し、車輪の進入,進出の軸数から列車の速度と通過列車長を検出し、検出した通過列車長から列車の先頭と踏切までの距離を算出し、算出した踏切までの距離と列車の速度から列車の先頭が踏切に到達するまでの時間を一定なるように制御して、警報開始時期を適正にして、開かずの踏切で長時間閉扉されることを防いでいる。
【0004】
しかしながら、警報終了時期を定める開電路式の踏切制御子は、レ−ルを車軸が短絡することにより帰還回路の一部が構成され、発振条件を満足したときに発振してリレ−のコイルを励磁するものであり、踏切道の近端を短絡しても動作しないようにするために踏切道近端から20m以上離れた位置に設置する必要がある。また、開電路式の踏切制御子は電源電圧や周囲温度の変動により制御区間長が20m〜40mと変化する。このため警報終了時期を適正に制御することは困難であり、上記のように警報開始時期を適正に制御しても、踏切警報時間を短縮することには限界があった。
【0005】
この発明はかかる点を改善するためになされたものであり、警報終了時期を適正に制御して踏切警報時間をより短縮することができる踏切制御装置を得ることを目的とするものである。
【0006】
【課題を解決するための手段】
この発明に係る踏切制御装置は、踏切の列車進入側から一定距離隔てた警報開始点に設けられ、警報開始点に進入した列車を検出する閉電路式の踏切制御子と、踏切の列車進行側から一定距離隔てた警報終了点に設けられ、警報終了点を列車が進出したことを検出する開電路式の踏切制御子及び踏切制御部とを有する踏切制御装置において、踏切の列車進出側と前記開電路式の踏切制御子の設置位置との間で踏切の列車進出側の近傍位置に設けられたループコイルと、該ループコイルのインダクタンス変化に伴う周波数変化することを利用して列車を検知するループコイル式列車検知処理部とからなるループコイル式列車検知装置を有し、前記踏切制御部は前記閉電路式の踏切制御子で列車を検知すると踏切警報を出力し、列車が進行して前記ループコイル式列車検知装置で列車を検知してから前記開電路式の踏切制御子で列車を検知した後、前記ループコイル式列車検知装置で列車を検知しなくなったとき踏切警報を解除することを特徴とする。
【0007】
【発明の実施の形態】
この発明の踏切制御装置は、閉電路式の踏切制御子とル−プコイル式列車検知装置と踏切制御部とを有する。閉電路式の踏切制御子は踏切の列車進入側から一定距離隔てた警報開始点に設けられ、警報開始点に進入した列車を検出し、ル−プコイル式列車検知装置はル−プコイルとル−プコイル式列車検知処理部とを有する。ル−プコイルは踏切の列車進出側の近傍の警報終止点に設けられ、ル−プコイル式列車検知処理部はル−プコイルのインダクタンス変化に伴う周波数変化を検知して、列車が警報終止点から進出したことを検出する。踏切制御部は複数のリレ−回路を有し、閉電路式の踏切制御子からの列車検知情報により、列車が踏切制御区間に進入したことを検知して踏切警報信号を出力し、ル−プコイル式列車検知装置からの列車検知情報により、列車が踏切制御区間から進出したことを検知して踏切警報信号の出力を停止する。
【0008】
このように列車が踏切制御区間から進出したことを検出する警報終止点にル−プコイルを設けることにより、警報終止点を踏切の近傍に設けることができる。また、ル−プコイルはル−プコイルの長さが制御区間長となり、気温等により制御区間長が変動しないから、列車が踏切制御区間から進出したことを精度良く検出することができる。
【0009】
また、ル−プコイルは列車が制御区間を通過しているとき、レ−ルの浮き等により踏切制御子に発生するような2段動作(あおり)が生じないため、不正動作を防止するために一定時間を遅延させる緩動ユニットを使用する必要がなく、列車が制御区間から進出したときに、直ちに踏切警報を終了させることができる。
【0010】
【実施例】
図1はこの発明の一実施例の踏切制御装置の構成を示すブロック図である。図に示すように、踏切制御装置は閉電路式の踏切制御子A,B,D,Eと開電路式の踏切制御子C,Fとル−プコイル式列車検知装置3と踏切制御部4とを有し、踏切警報装置5の動作を制御する。閉電路式の踏切制御子A,Bは、図2の配置図に示すように、複線区間で下りの列車2が進行するX方からY方の軌道の踏切1より適当な距離だけ手前の警報開始点に設けられ、閉電路式の踏切制御子D,Eは上りの列車2が進行するY方からX方の軌道の踏切1より適当な距離だけ手前の警報開始点に設けられている。開電路式の踏切制御子Cは下りの軌道の踏切1から20m以上離れた進出側の位置に設けられ、開電路式の踏切制御子Fは上りの軌道の踏切1から20m以上離れた進出側の位置に設けられている。ここで閉電路式の踏切制御子B,Eは制御区間に先行列車と続行列車が進入する無閉そく運転対策用として設置されたものである。
【0011】
ル−プコイル式列車検知装置3は下り用のル−プコイルC1と上り用のル−プコイルF1とル−プコイル式列車検知処理部6を有し、ル−プコイルC1,F1をそれぞれ発振回路の一部とし、列車2の接近により発振周波数が変化することを利用して列車2を検知するものであり、ル−プコイルC1は下りの軌道の踏切1と踏切制御子Cとの間で踏切1から一定距離、例えば5m隔てた位置に設けられ、ル−プコイルF1は上りの軌道の踏切1と踏切制御子Fとの間で踏切1から一定距離、例えば5m隔てた位置に設けられている。ル−プコイル式列車検知処理部6はル−プコイルC1,F1のインダクタンス変化に伴う周波数変化を検知して踏切制御部4に設けた列車検知情報を解除するル−プコイルC1,F1の反応リレ−C1PR,F1PRや断線,事故等を検知する正常リレ−CHRの動作を制御する。
【0012】
踏切制御部4には、図3の回路図に示すように、各踏切制御子A〜Fの反応リレ−APR,BPR,CPR,DPR,EPR,FPRと、下り方向の警報区間内の列車2の有無を検知する保持リレ−下SRと上り方向の警報区間内の列車2の有無を検知する保持リレ−上SRと、踏切警報を出力するRリレ−とを有する。APRリレ−は、図4の動作波形図に示すように、コイルが常時励磁され、踏切制御子Aの制御区間に下り方向の列車2が進入して踏切制御子AのADCリレ−のコイルが無励磁となったときにコイルが無励磁となり、踏切制御子Aの制御区間から列車2が進出すると再びコイルが励磁される。C1PRリレ−とCPRリレ−はコイルが常時無励磁となっており、C1PRリレ−はル−プコイルC1と列車2が結合しているときにコイルが励磁され、CPRリレ−は踏切制御子Cの制御区間に列車2が進入して踏切制御子CのCDCリレ−のコイルが無励磁となったときにコイルが励磁され、踏切制御子Cの制御区間から列車2が進出すると再びコイルが無励磁となる。下SRリレ−も常時コイルが励磁され、APRリレ−のコイルが無励磁になるとコイルが無励磁となり、CPRリレ−のコイルが励磁されるとコイルが励磁され、列車2が踏切制御子Aの制御区間に進入してから踏切制御子Cの制御区間に進入するまでの間、警報区間に列車2が存在していることを明らかにする。DPR,F1PR,FPR,上SRリレ−も上り方向の列車2により上記と同様な動作を行う。Rリレ−はコイルが常時励磁され、下SRリレ−又は上SRリレ−のコイルが無励磁になったときに無励磁となり、無励磁になった下SRリレ−又は上SRリレ−のコイルが励磁した後、C1PRリレ−又はF1PRリレ−のコイルが無励磁になったときにコイルが励磁し、ル−プコイル式列車検知装置3が正常に動作していないときは、CPRリレ−又はFPRリレ−のコイルが無励磁になったときにコイルが励磁する。すなわち、従来の踏切警報の終了を示すCPRリレ−とFPRリレ−の動作を制御する踏切制御子Cと踏切制御子FはC1PRリレ−とF1PRリレ−の動作を制御するル−プコイルC1とル−プコイルF1のバックアップとして使用される。また、踏切制御子Cや踏切制御子Fを使用する場合にはRリレ−の回路には踏切制御子C等の2段動作(あおり)しても不正動作を防止するために一定時間を遅延させる緩動ユニットを使用するが、ル−プコイルC1とル−プコイルF1を使用するときは2段動作(あおり)が生じないため、Rリレ−の回路で緩動ユニットを使用しなくても良い。なお、図3において、B24,C24を電源を示す。
【0013】
また、C1PRリレ−及びF1PRリレ−のコイルが励磁されたときに開放する接点は、図5に示すように、無警報を検出するOXRリレ−の無警報検出回路にCPRリレ−とFPRリレ−の接点と並列に接続されている。この無警報を検出するOXRリレ−はRリレ−のコイルが無励磁になったとき、すなわち踏切警報が出力されているときにコイルが励磁されて閉成するRBPRリレ−の接点が接続されているため、列車2が終止点に進入してC1PRリレ−,F1PRリレ−,CPRリレ−及びFPRリレ−の接点が開放してもOXRリレ−は無励磁とならず、無警報信号を出力しないようになっている。そして警報開始点に列車2が進入したときにADC,APR,DDC又はDPRリレ−が無励磁にならず列車2を検知しないときはRリレ−が無励磁にならないので、C1PRリレ−,F1PRリレ−,CPRリレ−又はFPRリレ−の接点が開放したときに、OXRリレ−は無励磁となって無警報信号を出力する。
【0014】
上記のように構成された踏切制御装置を使用した踏切1の踏切制御子Aの制御区間に下りの列車2が進入すると、図4に示すように、下SRリレ−が無励磁となり、踏切制御区間に列車2が在線したことを検知する。踏切制御区間に列車2が在線するとRリレ−が無励磁となり踏切警報を出力する。列車2が進行してル−プコイルC1の制御区間に進入するとC1PRリレ−が励磁される。この状態で列車2が踏切制御子Cの制御区間に進入するとCPRリレ−が励磁されて下SRリレ−も励磁される。この状態で列車2がル−プコイルC1の制御区間から進出するとC1PRリレ−は無励磁となりRリレ−が再び励磁されて踏切警報を解除する。このようにして従来の終止点を定める踏切制御子Cの制御区間を列車が進出する以前に踏切警報を解除することができ、踏切の保安を確保しながら踏切警報時間を短縮することができる。
【0015】
例えば従来の開電路式の踏切制御子Cは踏切道の近端を短絡しても動作しないようにするために踏切道近端から20m以上離れた位置に設置する必要がある。また、開電路式の踏切制御子は電源電圧や周囲温度の変動により制御区間長が20m〜40mと変化する。一方、ル−プコイルC1は長さがそのまま制御区間長になる。例えば長さが5mのル−プコイルC1を使用した場合には制御区間長は5mになる。さらにル−プコイルC1の設置個所は踏切道から1m以上離すと、踏切道を通過する車両等の金属物を誤検知しなくなる。そこで、例えば図6に示すように長さL0=5mのル−プコイリC1を踏切1の近端から距離L1=1mの位置に設置し、踏切制御子Cを踏切1の近端から距離L2=20Mの位置に設置し、ル−プコイルC1で警報終止点を定めたときと踏切制御子Cで警報終止点を定めたときの警報終止点の距離の差ΔLは踏切制御子Cの制御区間長L3=20mのときに36mとなり、制御区間長L3=40mのときに56mになる。この距離の差ΔL=36m〜56mを例えば速度65km/hで列車2が走行する時間は約2〜3秒になる。また踏切制御子Cを使用した場合にはRリレ−に緩動ユニットを使用しているため、列車2が踏切制御子Cの制御区間から進出してから2秒程度経過してからRリレ−が非励磁となって踏切警報が終了する。したがって、この場合ル−プコイルC1で警報終止点を定めると、踏切制御子Cで警報終止点を定めたときと比べて踏切警報時間を4〜5秒短縮することができ、開かずの踏切に対する対策として十分な効果を発揮することができる。
【0016】
【発明の効果】
この発明は以上説明したように、列車が踏切制御区間から進出したことを検出する警報終止点にル−プコイルを設けるようにしたから、警報終止点を踏切の近傍に設けることができ、踏切警報の終了時期を早めて踏切警報時間を短縮することができる。
【0017】
また、ル−プコイルはル−プコイルの長さが制御区間長となり、気温等により制御区間長が変動しないから、列車が踏切制御区間から進出したことを精度良く検出することができ、踏切の保安を確実に確保することができる。
【0018】
さらに、ル−プコイルは列車が制御区間を通過しているときに、レ−ルの浮き等により踏切制御子に発生するような2段動作(あおり)が生じないため、不正動作を防止するための緩動ユニットを使用する必要がなく、列車が制御区間から進出したときに、直ちに踏切警報を終了させることができ、踏切警報時間をより短縮することができる。
【0019】
また、既設の設備にル−プコイル式列車検知装置を追加してリレ−回路の一部を修正するだけで良いから、踏切警報時間を簡単に短縮することができ、開かずの踏切に対する対策として十分な効果を発揮することができる。
【図面の簡単な説明】
【図1】この発明の実施例の踏切制御装置の構成を示すブロック図である。
【図2】上記実施例の配置図である。
【図3】踏切制御部の構成を示す回路図である。
【図4】上記実施例の動作を示す波形図である。
【図5】無警報検出回路の構成を示す回路図である。
【図6】ル−プコイルと開電路式の踏切制御子の配置図である。
【図7】従来例の踏切制御子の配置図である。
【図8】第2の従来例の構成を示す配置図である。
【符号の説明】
1 踏切
2 列車
3 ル−プコイル式列車検知装置
4 踏切制御部
6 ル−プコイル式列車検知処理部
A,B,D,E 閉電路式の踏切制御子
C,F 開電路式の踏切制御子
1、F1 ル−プコイル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crossing control device for controlling a crossing device such as an alarm or a breaker provided at a railroad crossing, and more particularly to shortening a time during which a crossing warning is output.
[0002]
[Prior art]
In order to perform the alarm control of the crossing provided in the middle of the station of the double-track section, as shown in FIG. 7, the closed-circuit type railroad crossing controllers A, B, and D are provided at an alarm start point just before the crossing 1 by an appropriate distance. , E, and an open-circuit type railroad crossing controller C, F is provided at the alarm end point behind the railroad crossing 1 to constitute a railroad crossing warning section. When the descending train 2 traveling from the X direction to the Y direction enters the control section of the crossing controller A, an alarm is started and the crossing 1 is closed after a predetermined time, and the train 2 is outside the control section of the crossing controller C. When they enter the city, the warning is released and the door is opened to ensure the safety of people and vehicles traveling on the railroad crossing. In FIG. 7, the closed-circuit type railroad crossing controllers B and E are installed as countermeasures for non-blocking operation in which the preceding train and the continuation train enter the control section.
[0003]
[Problems to be solved by the invention]
As described above, a level crossing alarm section is constituted by the level crossing controllers A and D and the level crossing controllers C and F, and a crossing warning is generated when a down train 2 or an up train is present in this section. However, there is a railroad crossing that is closed for a long time in the morning and evening rush hour in the high-density operation area near the city where there are many trains. If a level crossing is closed for a long time, it may cause traffic congestion on the road side. Therefore, it is desired to shorten the time for closing a level crossing as much as possible while maintaining the safety of the level crossing. For this reason, for example, as shown in Japanese Examined Patent Publication No. 2-41466, alarm constant time control is adopted in which the time from when the railroad crossing is closed until the top of the train reaches the railroad crossing is adopted. As shown in FIG. 8, this alarm fixed time control has two sets of axle detectors 21, 22 installed at the starting point before the crossing 1, and one set at the starting point on the advancing side of the crossing 1. An axle detector 23 is installed. The processor 24 detects the passing direction of the wheel based on the axle detection signal of the train 2 input from the axle detectors 21 and 22 at the starting point, and detects the speed of the train and the passing train length from the number of wheels entering and advancing. The distance from the detected passing train length to the head of the train and the railroad crossing is calculated, and the time until the head of the train reaches the railroad crossing is controlled from the calculated distance to the railroad crossing and the speed of the train. The alarm start time is set appropriately to prevent the door from being closed for a long time at a level crossing without opening.
[0004]
However, the open-circuit type railroad crossing controller that determines the alarm end time forms part of the feedback circuit by short-circuiting the rail to the axle, and oscillates when the oscillation condition is satisfied and turns the relay coil off. It is energized and must be installed at a distance of 20m or more from the near end of the railroad crossing so that it does not operate even if the short end of the railroad crossing is short-circuited. Moreover, the control section length of the open-circuit type railroad crossing controller changes from 20 m to 40 m due to fluctuations in power supply voltage and ambient temperature. For this reason, it is difficult to properly control the alarm end time, and there is a limit to shortening the level crossing alarm time even if the alarm start time is appropriately controlled as described above.
[0005]
The present invention has been made in order to improve such a point, and an object of the present invention is to obtain a crossing control device capable of appropriately controlling the alarm end timing and further shortening the crossing alarm time.
[0006]
[Means for Solving the Problems]
A railroad crossing control device according to the present invention is provided at a warning start point at a certain distance from a train approaching side of a railroad crossing, and a closed circuit type railroad crossing controller that detects a train that has entered the warning starting point, and a train traveling side of the railroad crossing A crossing control device having an open-circuit type railroad crossing controller and a crossing control unit that is provided at a warning end point that is a certain distance away from the road and detects that the train has advanced to the warning end point. A train is detected by using a loop coil provided at a position near the train advancement side of the railroad crossing between the installation position of the open-circuit type railroad crossing controller and a frequency change caused by an inductance change of the loop coil. A loop coil type train detection device comprising a loop coil type train detection processing unit, and the level crossing control unit outputs a level crossing warning when the train is detected by the closed circuit type level crossing controller, After detecting the train with the loop coil type train detection device, after detecting the train with the open circuit type railroad crossing controller, when the train is no longer detected by the loop coil type train detection device, Features.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The crossing control device of the present invention includes a closed-circuit type crossing controller, a loop coil type train detection device, and a crossing control unit. A closed-circuit type railroad crossing controller is provided at a warning start point that is a certain distance from the train approaching side of the railroad crossing, detects a train that has entered the warning start point, and a loop coil type train detector detects a loop coil and a loop. And a precoil train detection processing unit. The loop coil is installed at the alarm stop point near the train advancing side of the railroad crossing, and the loop coil type train detection processing unit detects the frequency change accompanying the inductance change of the loop coil, and the train advances from the alarm stop point. Detect that The crossing control unit has a plurality of relay circuits, detects that the train has entered the crossing control section based on the train detection information from the closed-circuit type crossing controller, outputs a crossing warning signal, The train detection information from the type train detection device detects that the train has advanced from the level crossing control section and stops outputting the level crossing warning signal.
[0008]
Thus, by providing the loop coil at the alarm end point for detecting that the train has advanced from the level crossing control section, the alarm end point can be provided in the vicinity of the level crossing. Moreover, since the length of the loop coil becomes the control section length and the control section length does not vary depending on the temperature or the like, the loop coil can accurately detect that the train has advanced from the level crossing control section.
[0009]
In addition, the loop coil does not generate a two-stage operation that occurs in a railroad crossing controller due to the floating of the rail when the train passes through the control section. There is no need to use a slow unit that delays a certain time, and when the train advances from the control section, the railroad crossing warning can be immediately terminated.
[0010]
【Example】
FIG. 1 is a block diagram showing the configuration of a level crossing control apparatus according to an embodiment of the present invention. As shown in the figure, the railroad crossing control device includes a closed-circuit-type railroad crossing controller A, B, D, E, an open-circuit-type railroad crossing controller C, F, a loop coil type train detection device 3, and a crossing control unit 4. And controls the operation of the crossing warning device 5. As shown in the layout diagram of FIG. 2, the closed-line-type railroad crossing controllers A and B are alarmed in front of the railroad crossing 1 on the X-to-Y track where the down train 2 travels in the double track section. Closed circuit type railroad crossing controllers D and E are provided at the starting point, and are provided at an alarm starting point before the railroad crossing 1 on the track from the Y direction to the X direction where the upward train 2 travels. The open-circuit type railroad crossing controller C is provided at a position on the advancing side that is 20 m or more away from the level crossing 1 on the down track, and the open circuit type crossing controller F is on the advancing side that is 20 m or more from the crossing 1 on the up track. It is provided in the position. Here, the closed-circuit type railroad crossing controllers B and E are installed as a countermeasure for non-blocking operation in which the preceding train and the continuation train enter the control section.
[0011]
The loop coil type train detection device 3 has a loop coil C 1 for descending, a loop coil F 1 for upward, and a loop coil type train detection processing unit 6, and loop coils C 1 and F 1 are respectively provided. as part of an oscillation circuit, using the fact that the oscillation frequency changes by the approach of the train 2 is intended to detect the train 2, Le - Pukoiru C 1 is the crossing 1 and the crossing controller element C of the trajectory of the downstream The loop coil F 1 is provided at a certain distance, for example, 5 m from the level crossing 1 between the level crossing 1 and the level crossing controller F in the ascending track. Is provided. Le - Pukoiru formula train detection processor 6 Le - Pukoiru C 1, by detecting the frequency change due to the inductance change in the F 1 releasing the train detection information provided in the crossing controller 4 Le - Pukoiru C 1, F 1 reaction relay -C 1 PR, F 1 PR or disconnection of, for controlling the operation of the normal relay -CHR to detect the accident.
[0012]
As shown in the circuit diagram of FIG. 3, the level crossing control unit 4 includes reaction relays APR, BPR, CPR, DPR, EPR, FPR of each level crossing controller A to F, and a train 2 in the downward warning section. A holding relay lower SR for detecting the presence or absence of the vehicle, a holding relay upper SR for detecting the presence or absence of the train 2 in the upward warning section, and an R relay for outputting a railroad crossing warning. In the APR relay, as shown in the operation waveform diagram of FIG. 4, the coil is always excited, the train 2 in the downward direction enters the control section of the crossing controller A, and the coil of the ADC relay of the crossing controller A When the coil 2 is de-energized, the coil is de-energized. When the train 2 advances from the control section of the level crossing controller A, the coil is excited again. In the C 1 PR relay and the CPR relay, the coil is always de-energized. In the C 1 PR relay, the coil is excited when the loop coil C 1 and the train 2 are coupled. When the train 2 enters the control section of the crossing controller C and the coil of the CDC relay of the crossing controller C is de-energized, the coil is excited, and the train 2 advances from the control section of the crossing controller C. The coil is de-energized again. In the lower SR relay, the coil is always energized. When the APR relay coil is de-energized, the coil is de-energized. When the CPR relay coil is energized, the coil is energized. It is clarified that the train 2 exists in the warning section after entering the control section until entering the control section of the level crossing controller C. The DPR, F 1 PR, FPR, and upper SR relay also operate in the same manner as described above by the upward train 2. The R relay is normally energized, de-energized when the lower SR relay or upper SR relay coil is de-energized, and the lower SR relay or upper SR relay coil de-energized. After excitation, when the coil of the C 1 PR relay or F 1 PR relay is de-energized, the coil is excited, and when the loop coil type train detector 3 is not operating normally, the CPR relay -When the FPR relay coil is de-energized, the coil is energized. That is, the level crossing controller C and the level crossing controller F for controlling the operation of the CPR relay and the FPR relay indicating the end of the conventional level crossing alarm are the rules for controlling the operations of the C 1 PR relay and the F 1 PR relay. Used as a backup for the precoil C 1 and the loop coil F 1 . Further, when the crossing controller C or the crossing controller F is used, the R relay circuit is delayed by a certain time in order to prevent an illegal operation even if the crossing controller C or the like is operated in two steps. However, when the loop coil C 1 and the loop coil F 1 are used, the two-stage operation (tilting) does not occur, so the slow relay unit must not be used in the R relay circuit. Also good. In FIG. 3, B24 and C24 indicate power sources.
[0013]
Further, as shown in FIG. 5, the contact that opens when the coils of the C 1 PR relay and the F 1 PR relay are excited is connected to the CPR relay non-alarm detection circuit of the OXR relay that detects no alarm. And FPR relay contacts are connected in parallel. This OXR relay that detects no alarm is connected to the contact of the RBPR relay that is closed when the R relay coil is de-energized, that is, when the crossing alarm is output. Therefore, even if the train 2 enters the end point and the contact point of the C 1 PR relay, F 1 PR relay, CPR relay and FPR relay is opened, the OXR relay is not de-energized and no alarm is generated. The signal is not output. When the train 2 enters the alarm start point, the ADC, APR, DDC or DPR relay is not de-energized, and when the train 2 is not detected, the R relay is not de-energized, so the C 1 PR relay, When the contact of the F 1 PR relay, CPR relay, or FPR relay is opened, the OXR relay is de-energized and outputs an alarm-free signal.
[0014]
When the descending train 2 enters the control section of the level crossing controller A of the level crossing 1 using the level crossing control device configured as described above, the lower SR relay is de-energized as shown in FIG. It detects that the train 2 is in the section. When the train 2 is in the level crossing control section, the R relay is de-energized and a level crossing warning is output. Le train 2 progresses - when entering the Pukoiru C 1 control section C 1 PR relay - is excited. In this state, when the train 2 enters the control section of the crossing controller C, the CPR relay is excited and the lower SR relay is also excited. When the train 2 advances from the control section of the loop coil C 1 in this state, the C 1 PR relay is de-energized and the R relay is re-excited to release the level crossing alarm. In this way, the level crossing alarm can be canceled before the train enters the control section of the conventional level crossing controller C that determines the end point, and the level crossing warning time can be shortened while ensuring the safety of the level crossing.
[0015]
For example, the conventional open-circuit type railroad crossing controller C needs to be installed at a position 20 m or more away from the railroad crossing road near end so as not to operate even if the near end of the railroad crossing is short-circuited. Moreover, the control section length of the open-circuit type railroad crossing controller changes from 20 m to 40 m due to fluctuations in power supply voltage and ambient temperature. On the other hand, Le - Pukoiru C 1 will directly control section length length. For example, when a loop coil C 1 having a length of 5 m is used, the control section length is 5 m. Furthermore Le - installation location of Pukoiru C 1 is Releasing least 1m from crossing roads, not erroneously detect a metal object such as a vehicle passing through the crossing road. Therefore, for example, as shown in FIG. 6, a loop coil C 1 having a length L 0 = 5 m is installed at a distance L 1 = 1 m from the near end of the level crossing 1, and the level crossing controller C is connected from the near end of the level crossing 1. The difference ΔL in the distance between the alarm end point when the alarm end point is set with the loop coil C 1 and the alarm end point is determined with the loop coil C 1 is set at the distance L 2 = 20M. When the control section length L 3 of C is 20 m, the distance is 36 m, and when the control section length L 3 is 40 m, the distance is 56 m. The time required for the train 2 to travel the distance difference ΔL = 36 m to 56 m, for example, at a speed of 65 km / h is about 2 to 3 seconds. Further, when the railroad crossing controller C is used, since the slow motion unit is used for the R relay, the R relay is operated after about 2 seconds have passed since the train 2 has advanced from the control section of the railroad crossing controller C. Becomes non-excited and the railroad crossing alarm ends. Therefore, in this case Le - When in Pukoiru C 1 defines the alarm termination point, the crossing alarm time can be shortened 4-5 seconds than when defining the alarm termination point crossing controller element C, the not open crossing It is possible to exert a sufficient effect as a countermeasure against this.
[0016]
【The invention's effect】
As described above, since the loop coil is provided at the alarm end point for detecting that the train has advanced from the level crossing control section as described above, the alarm end point can be provided in the vicinity of the level crossing. The level crossing warning time can be shortened by advancing the end time of.
[0017]
In addition, the loop coil is the length of the control section, and the control section length does not vary depending on the temperature, etc., so it is possible to accurately detect that the train has advanced from the crossing control section, and to ensure the safety of the crossing. Can be ensured.
[0018]
Furthermore, since the loop coil does not generate a two-stage operation that occurs in the railroad crossing controller due to the floating of the rail when the train passes through the control section, it prevents illegal operation. It is not necessary to use the slow-moving unit, and when the train advances from the control section, the crossing warning can be immediately terminated and the crossing warning time can be further shortened.
[0019]
Moreover, since it is only necessary to add a loop coil train detector to the existing equipment and modify a part of the relay circuit, it is possible to easily reduce the level crossing alarm time, and as a measure against level crossings without opening. A sufficient effect can be exhibited.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a level crossing control apparatus according to an embodiment of the present invention.
FIG. 2 is a layout view of the embodiment.
FIG. 3 is a circuit diagram showing a configuration of a level crossing control unit.
FIG. 4 is a waveform diagram showing the operation of the embodiment.
FIG. 5 is a circuit diagram showing a configuration of an alarm-free detection circuit.
FIG. 6 is a layout diagram of a loop coil and an open circuit type railroad crossing controller.
FIG. 7 is a layout diagram of a conventional level crossing controller.
FIG. 8 is a layout view showing a configuration of a second conventional example.
[Explanation of symbols]
1 level crossing 2 train 3 loop coil type train detection device 4 level crossing control unit 6 loop coil type train detection processing unit A, B, D, E closed circuit type crossing controller C, F open circuit type level crossing controller C 1 , F 1 Loop coil

Claims (1)

踏切の列車進入側から一定距離隔てた警報開始点に設けられ、警報開始点に進入した列車を検出する閉電路式の踏切制御子と、踏切の列車進行側から一定距離隔てた警報終了点に設けられ、警報終了点を列車が進出したことを検出する開電路式の踏切制御子及び踏切制御部とを有する踏切制御装置において、A closed-circuit type railroad crossing controller that detects a train that has entered the alarm start point, and a warning end point that is a fixed distance away from the train crossing side of the railroad crossing. In a railroad crossing control device having an open circuit type railroad crossing controller and a railroad crossing control unit that is provided and detects that a train has advanced to an alarm end point,
踏切の列車進出側と前記開電路式の踏切制御子の設置位置との間で踏切の列車進出側の近傍位置に設けられたループコイルと、該ループコイルのインダクタンス変化に伴う周波数変化することを利用して列車を検知するループコイル式列車検知処理部とからなるループコイル式列車検知装置を有し、A loop coil provided at a position near the train advancement side of the railroad crossing between the train advancement side of the railroad crossing and the installation position of the open circuit type railroad crossing controller, and a frequency change accompanying an inductance change of the loop coil It has a loop coil type train detection device consisting of a loop coil type train detection processing unit that detects a train using,
前記踏切制御部は前記閉電路式の踏切制御子で列車を検知すると踏切警報を出力し、列車が進行して前記ループコイル式列車検知装置で列車を検知してから前記開電路式の踏切制御子で列車を検知した後、前記ループコイル式列車検知装置で列車を検知しなくなったとき踏切警報を解除することを特徴とする踏切制御装置。The railroad crossing control unit outputs a railroad crossing warning when a train is detected by the closed circuit type railroad crossing controller, and the open circuit type railroad crossing control is performed after the train has progressed and the loop coil type train detection device detects the train. A railroad crossing control device, wherein after a train is detected by a child, a railroad crossing alarm is canceled when the loop coil type train detection device stops detecting the train.
JP12011497A 1997-04-24 1997-04-24 Railroad crossing control device Expired - Fee Related JP3992783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12011497A JP3992783B2 (en) 1997-04-24 1997-04-24 Railroad crossing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12011497A JP3992783B2 (en) 1997-04-24 1997-04-24 Railroad crossing control device

Publications (2)

Publication Number Publication Date
JPH10297493A JPH10297493A (en) 1998-11-10
JP3992783B2 true JP3992783B2 (en) 2007-10-17

Family

ID=14778300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12011497A Expired - Fee Related JP3992783B2 (en) 1997-04-24 1997-04-24 Railroad crossing control device

Country Status (1)

Country Link
JP (1) JP3992783B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3830312B2 (en) * 1999-08-31 2006-10-04 財団法人鉄道総合技術研究所 Train detector
JP2007015645A (en) * 2005-07-11 2007-01-25 East Japan Railway Co Detecting device for train passage at railroad crossing
JP6076085B2 (en) * 2012-12-27 2017-02-08 大同信号株式会社 Railroad crossing control circuit
US10377398B2 (en) 2015-01-16 2019-08-13 Mitsubishi Electric Corporation Train wireless system and train length calculation method

Also Published As

Publication number Publication date
JPH10297493A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
JPH1120702A (en) Railroad crossing control device
JP3992783B2 (en) Railroad crossing control device
JP5863387B2 (en) Railroad crossing safety device and railroad crossing control switching device
KR100327676B1 (en) Safety system of a railroad crossing gate
JP4614754B2 (en) Railroad crossing security device
JP3860658B2 (en) Railroad crossing control device
JP2613328B2 (en) Railroad crossing control device
JP2868250B2 (en) Level crossing alarm control device
JP3441942B2 (en) Train detection method, train operation system and train detection device using the same
JP6032800B2 (en) Railroad crossing safety device and railroad crossing control switching device
JP2876005B1 (en) Level crossing alarm
JP2619568B2 (en) Railroad crossing control device
JP2613321B2 (en) Railroad crossing control device
JPH101052A (en) Train passage alarming system
JPH0717198B2 (en) Railroad crossing control device
JPH0558301A (en) Railroad crossing control device
KR200165233Y1 (en) A control system of railway crossing
KR0183319B1 (en) Detection equipment and method for non-response of a.t.s on earth
JP2001080516A (en) Railroad crossing control device
JP2589335B2 (en) Display signal control device
JP6645648B2 (en) Level crossing security device and level crossing object detection device
JPH065940Y2 (en) Railroad crossing control device
JPH081172Y2 (en) ATS device
JPS58177765A (en) Method of detecting length of coupling of car
JPH11278275A (en) Crossing controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees