JP6032800B2 - Railroad crossing safety device and railroad crossing control switching device - Google Patents

Railroad crossing safety device and railroad crossing control switching device Download PDF

Info

Publication number
JP6032800B2
JP6032800B2 JP2012199348A JP2012199348A JP6032800B2 JP 6032800 B2 JP6032800 B2 JP 6032800B2 JP 2012199348 A JP2012199348 A JP 2012199348A JP 2012199348 A JP2012199348 A JP 2012199348A JP 6032800 B2 JP6032800 B2 JP 6032800B2
Authority
JP
Japan
Prior art keywords
train
crossing
point
detection
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012199348A
Other languages
Japanese (ja)
Other versions
JP2014054866A (en
Inventor
義憲 播磨
義憲 播磨
崇 松井
崇 松井
Original Assignee
大同信号株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同信号株式会社 filed Critical 大同信号株式会社
Priority to JP2012199348A priority Critical patent/JP6032800B2/en
Publication of JP2014054866A publication Critical patent/JP2014054866A/en
Application granted granted Critical
Publication of JP6032800B2 publication Critical patent/JP6032800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Description

この発明は、鉄道の複線区間や単線区間の踏切に設置される踏切保安装置であって、無絶縁で使用できる短小軌道回路の一種である開電路形の終止点用踏切制御子を具備しているものの改良に関する。また、その改良に資する踏切制御切替装置にも関する。
なお、本願に添付した特許請求の範囲および明細書では、「列車の運転方向」を「列車運転方向」と言う。また、「列車運転方向」を示す出力がリレー出力であれリレー以外の信号出力であれ、それを「列車運転方向指示」と言う。
The present invention is a railroad crossing safety device installed at a railroad crossing in a double-track section or a single-track section of a railway, and includes an open circuit type railroad crossing controller that is a kind of short track circuit that can be used without insulation. It relates to the improvement of things. It also relates to a crossing control switching device that contributes to the improvement.
In addition, in the claims and specification attached to the present application, the “train operation direction” is referred to as the “train operation direction”. Further, whether the output indicating the “train operation direction” is a relay output or a signal output other than the relay, it is referred to as “train operation direction instruction”.

さらに、「上りの列車運転方向指示」は、上り列車が上りの踏切制御区間に進入してから進出するまでの間すなわち上り始動点で検知されてから終止点で検知開始か検知終了されるまでの間、指示状態が上り列車の到来を意味する有意な状態(正論理では1,負論理では0)になり、それ以外のときは、指示状態が上り列車の非在線を意味する無意な状態(正論理では0,負論理では1)になる。また、「下りの列車運転方向指示」は、下り列車が下りの踏切制御区間に進入してから進出するまでの間すなわち下り始動点で検知されてから終止点で検知開始か検知終了されるまでの間、指示状態が下り列車の到来を意味する有意な状態(正論理では1,負論理では0)になり、それ以外のときは、指示状態が下り列車の非在線を意味する無意な状態(正論理では0,負論理では1)になる。   Furthermore, the “upward train driving direction indication” is a period from when the upstream train enters the upstream railroad crossing control section until it advances, that is, from when it is detected at the upstream starting point to when the detection starts or ends at the end point. During that time, the indication state becomes a significant state (1 for positive logic, 0 for negative logic), and in other cases, the indication state is an involuntary state that means the absence of an upstream train (0 for positive logic, 1 for negative logic). In addition, "down train operation direction instruction" is from when the down train enters the down railroad crossing control section until it advances, that is, from detection at the down start point until detection start or end of detection. During that time, the indication state becomes a significant state (1 for positive logic, 0 for negative logic), and the other state is an involuntary state that means the absence of a down train (0 for positive logic, 1 for negative logic).

鉄道の線路の踏切に設置される踏切保安装置は(例えば非特許文献1,2参照)、列車を検知するための踏切制御子と、音響にて警報を発するためのスピーカとせん光にて警報を発するための警報灯を装備した踏切警報機と、第3種の踏切には無いが第1種の踏切では踏切遮断機と、踏切制御子の検知結果に基づいて踏切警報機や踏切遮断機の動作を制御する踏切制御装置とを具えている。そして、踏切の手前の始動点に設置された踏切制御子で列車を検知すると、踏切警報機にて警報を発するとともに、少し時間をおいて第1種の踏切では踏切遮断機を降下させ、踏切通過後の終止点に設置された踏切制御子で列車通過を検知すると、警報等を止めるとともに、第1種の踏切では踏切遮断機を上昇させるようになっている。以下、このような踏切保安装置や踏切制御子の構成等を、図面を引用して説明する。   Railroad crossing safety devices installed at railroad crossings (see Non-Patent Documents 1 and 2, for example) are railroad crossing controllers for detecting trains, speakers for sounding alarms, and alarms by flashing light. A level crossing alarm equipped with a warning light, a level crossing breaker in the first type crossing but not in the type 3 level crossing, and a level crossing alarm or level crossing based on the detection result of the level crossing controller And a crossing control device for controlling the operation of the vehicle. And if a train is detected by the level crossing controller installed at the starting point before the level crossing, the level crossing alarm will give an alarm, and after a while, the level 1 crossing will be lowered and the level crossing barrier will be lowered. When the train crossing controller installed at the end point after the passage detects the passage of the train, the alarm is stopped and the level crossing barrier is raised at the first type of crossing. Hereinafter, the structure of such a crossing safety device and a crossing controller will be described with reference to the drawings.

図13は、(a)が複線区間における踏切制御子21,22,23,24の配置図、(b)が単線区間における踏切制御子21,23,24の配置図、(c)が複線区間における踏切制御装置31を含む複線区間における踏切保安装置のブロック図である。また、図14は、(a)が単線区間における踏切制御装置34を含む単線区間における踏切保安装置のブロック図、(b)が閉電路形の始動点用踏切制御子21,23のレール11,12への接続図、(c)が開電路形の終止点用踏切制御子22,24のレール11,12への接続図である。さらに、図15(a)は、終止点用踏切制御子22(又は24)に発振式のものを採用したときのブロック図であり、同図(b)は、終止点用踏切制御子22(又は24)に送受信式のH形を採用したときのブロック図である。   13A is a layout diagram of the crossing controllers 21, 22, 23, and 24 in the double track section, FIG. 13B is a layout diagram of the level crossing controllers 21, 23, and 24 in the single track section, and FIG. 13C is a double track section. It is a block diagram of a level crossing security device in a double track section including a level crossing control device 31 in FIG. 14A is a block diagram of a railroad crossing safety device in a single track section including the crossing control device 34 in the single track section, and FIG. 14B is a rail 11, 12 is a connection diagram to the rails 11 and 12 of the open-circuit type railroad crossing controllers 22 and 24. FIG. Further, FIG. 15A is a block diagram when an oscillating type is adopted as the end point crossing controller 22 (or 24), and FIG. 15B shows the end point crossing controller 22 (or 24). Or it is a block diagram when the transmission / reception type H type is adopted in 24).

また、図16は、コストを考慮して現在設置されている複線区間における踏切保安装置37に係る概要構成図であり、図中で踏切8と斜交する二点鎖線は踏切障害物検知装置35が障害物を検知する検知ビーム等をイメージしたものである。図17(a)は、コストを考慮して現在設置されている単線区間における踏切保安装置38に係る概要構成図である。さらに、図18は、(a)が複線区間における踏切障害物検知装置35に係る従来のリレー信号等の入出力状態を示すブロック図であり、(b)〜(e)がリレー信号等のタイムチャートである。また、図19は、実現性やコストを無視すれば理想といえる複線区間における踏切保安装置に係る概要構成図であり、図17(b)は、実現性やコストを無視すれば理想といえる単線区間における踏切保安装置に係る概要構成図である。   FIG. 16 is a schematic configuration diagram relating to the railroad crossing safety device 37 in the currently installed double track section in consideration of cost, and a two-dot chain line obliquely crossing the railroad crossing 8 in the drawing is a railroad crossing obstacle detection device 35. Is an image of a detection beam that detects obstacles. FIG. 17A is a schematic configuration diagram relating to the railroad crossing safety device 38 in the currently installed single track section in consideration of the cost. FIG. 18 is a block diagram showing the input / output state of a conventional relay signal and the like related to the crossing obstacle detection device 35 in the double track section, and FIGS. 18A to 18E show the time of the relay signal and the like. It is a chart. FIG. 19 is a schematic configuration diagram relating to a railroad crossing safety device in a double track section that can be said to be ideal if neglecting feasibility and cost. FIG. 17B is a single line that can be said to be ideal if neglecting feasibility and cost. It is a general | schematic block diagram which concerns on a level crossing security apparatus in a section.

複線区間の踏切8に係る踏切保安装置では(図13(a)参照)、下り側の線路10について踏切8の起点側で手前位置の下り始動点ADCに始動点用踏切制御子21が設置されるとともに踏切8の終点側で列車通過後位置の下り終止点BDCに終止点用踏切制御子22が設置されるばかりか、上り側の線路10についても踏切8の終点側で手前位置の上り始動点CDCに始動点用踏切制御子23が設置されるとともに踏切8の起点側で列車通過後位置の上り終止点DDCに終止点用踏切制御子24が設置される。始動点ADC,CDCは、踏切警報を発してから列車が踏切8に到達するまでの時間を確保するために、例えば駅中間の踏切で列車の走行速度が100km/Hの場合には踏切8から700〜 800m程の遠くに設定されるが、終止点BDC,DDCは、踏切横断物等による誤作動を避けつつも列車の通過を早く検出するために、踏切8から例えば20〜25m程の近くに設定されることが多い。   In the crossing safety device relating to the crossing 8 in the double-track section (see FIG. 13A), the starting point crossing controller 21 is installed at the downstream starting point ADC at the near side on the starting side of the crossing 8 for the down line 10. At the same time, the end point crossing controller 22 is installed at the end point BDC at the end point of the railroad crossing 8 at the end point after passing the train. A starting point crossing controller 23 is installed at the point CDC, and an end point crossing controller 24 is installed at the starting point DDC at the post-train passing position on the starting point side of the crossing 8. Starting points ADC and CDC are used to ensure the time from when a railroad crossing warning is issued until the train reaches railroad crossing 8, for example, when the train travel speed is 100 km / H at the railroad crossing between stations. Although it is set at a distance of about 700 to 800 m, the end points BDC and DDC are near 20 to 25 m from the level crossing 8 in order to quickly detect the passage of the train while avoiding malfunctions due to crossing crossings. It is often set to.

これに対し(図13(b)参照)、線路10が一つしかない単線区間に設けられた踏切8に係る踏切保安装置では、同じ線路10に対し、踏切8の両側に分かれて下り始動点ADCと上り始動点CDCとが設定され、下り始動点ADCには始動点用踏切制御子21が設置される一方、上り始動点CDCには始動点用踏切制御子23が設定される。また、同じ線路10に対し、下り終止点BDCと上り終止点DDCとのうち何れか一方だけが上り下り共用の終止点として設定され、その共用終止点には終止点用踏切制御子が設置される。例えば上り終止点DDCが選択されて、それが踏切8と下り始動点ADCとの間に設定された場合(図13(b)の場合)、そこに終止点用踏切制御子24が設置され、下り終止点BDCは設定されないので、終止点用踏切制御子22は設置されない。このように、踏切8に近い終止点については共用化を図ることで、設備費の過大化が抑制される。   On the other hand (see FIG. 13 (b)), in the railroad crossing safety device according to the railroad crossing 8 provided in the single track section having only one track 10, the starting line is divided into the both sides of the railroad crossing 8 with respect to the same rail track 10. The ADC and the ascending start point CDC are set, and the starting point crossing controller 21 is set at the descending starting point ADC, while the starting point crossing controller 23 is set at the ascending start point CDC. Also, for the same line 10, only one of the down end point BDC and the up end point DDC is set as the up / down common end point, and the end point crossing controller is installed at the common end point. The For example, when the up / down end point DDC is selected and set between the crossing 8 and the down start point ADC (in the case of FIG. 13B), the end point crossing controller 24 is installed there, Since the down end point BDC is not set, the end point crossing controller 22 is not installed. In this way, the end point close to the railroad crossing 8 is shared, thereby suppressing an excessive increase in the facility cost.

また、そのような踏切制御子の設置状況に基づき、複線区間の踏切8に係る踏切保安装置は(図13(c)参照)、下り側の線路10の下り始動点ADC及び下り終止点BDCそれぞれに設置された始動点用踏切制御子21,終止点用踏切制御子22と、上り側の線路10の上り始動点CDC及び上り終止点DDCそれぞれに設置された始動点用踏切制御子23,終止点用踏切制御子24と、それらの踏切制御子21,22,23,24から列車検知結果として夫々のリレー出力APR(下始動R),BPR(下終止R),CPR(上始動R),DPR(上終止R)を入力しそれに基づく論理判定にて列車の踏切への接近および通過と列車運転方向とを認知する複線区間における踏切制御装置31と、音響にて警報を発するためのスピーカと、せん光にて警報を発するための警報灯32と、第1種の踏切では踏切遮断機33とを具えたものとなっている。   Further, based on the installation status of such a crossing controller, the crossing safety device related to the crossing 8 in the double track section (see FIG. 13 (c)) is a down start point ADC and a down end point BDC of the down line 10, respectively. A start-point crossing controller 21 and a stop-point crossing controller 22 installed on the upstream side, a start-point crossing controller 23 installed on each of the upstream start point CDC and the upstream end point DDC of the upstream line 10, and a stop. The point crossing controller 24 and the relay outputs APR (lower start R), BPR (lower end R), CPR (upper start R) as train detection results from the crossing controllers 21, 22, 23, 24, A crossing control device 31 in a multi-track section that inputs DPR (upper stop R) and recognizes approaching and passing a train crossing and a train driving direction based on a logical determination based on the DPR, and a speaker for emitting an alarm by sound An alarm lamp 32 for emitting an alarm at flashing, in the first type of crossing has become that comprises a railroad crossing breaker 33.

これに対し、単線区間の踏切8に係る踏切保安装置は(図14(a)参照)、同じ線路10の下り始動点ADC,共用終止点DDC,上り始動点CDCそれぞれに設置された始動点用踏切制御子21,終止点用踏切制御子24,始動点用踏切制御子23と、それらの踏切制御子21,24,23から列車検知結果として夫々のリレー出力APR(下始動R),DPR(終止R),CPR(上始動R)を入力しそれに基づく論理判定にて列車の踏切への接近および通過と列車運転方向とを認知する踏切制御装置34と、音響にて警報を発するためのスピーカと、せん光にて警報を発するための警報灯32と、第1種の踏切では踏切遮断機33とを具えている。なお、その他、複線など跨線数が複数の踏切には列車方向指示器なども、設けられているが、その説明は割愛する。   On the other hand, the railroad crossing safety device related to the railroad crossing 8 in the single track section (see FIG. 14 (a)) is for starting points installed at the downstream starting point ADC, the common end point DDC, and the upstream starting point CDC on the same line 10, respectively. The level crossing controller 21, the end point crossing controller 24, the starting point crossing controller 23, and the relay outputs APR (lower start R) and DPR ( End R), CPR (upper start R) are input, and a railroad crossing control device 34 for recognizing the approach and passage of the train to the railroad crossing and the train operation direction based on a logical determination based thereon, and a speaker for sounding an alarm And a warning light 32 for issuing a warning by flashlight, and a level crossing breaker 33 in the first type of level crossing. In addition, a train direction indicator or the like is also provided at a crossing having a plurality of crossovers such as a double track, but the description thereof is omitted.

そして、下り列車が下り始動点ADCと下り終止点BDCや共用終止点DDCとの間に在線しているときには下りSRリレー(下りの列車運転方向指示)が落下(無励磁,有意状態)するが、それ以外のときには下りSRリレーが動作(励磁,無意状態)している。また、上り列車が上り始動点CDCと上り終止点DDCや共用終止点DDCとの間に在線しているときには上りSRリレー(上りの列車運転方向指示)が落下(無励磁,有意状態)するが、それ以外のときには上りSRリレーが動作(励磁,無意状態)している。そのような列車運転方向の判別結果として方向別に出力される下りSR及び上りSRと終止点DDCに係る列車検知のリレー出力DPRとが組み合わせられて、最終の警報出力となる警報Rリレー回路が構成されている(図14(a)参照)。そして、この警報Rリレーの条件により、警報音制御器、警報灯制御器(断続リレー)、踏切遮断機制御リレーと呼ばれる機器が駆動され、それらの出力がそれぞれ警報音のスピーカ、警報灯32、踏切遮断機33に送出されて、音や光で警報が発せられるとともに、遮断桿で踏切8の踏切道における道路交通が遮断される。   When the down train is present between the down start point ADC and the down end point BDC and the common end point DDC, the down SR relay (down train operation direction instruction) falls (no excitation, significant state). In other cases, the down SR relay is operating (excited, involuntary state). In addition, when the up train is present between the up start point CDC and the up end point DDC or the common end point DDC, the up SR relay (up train operation direction instruction) falls (no excitation, significant state). In other cases, the upstream SR relay operates (excited, involuntary state). The alarm R relay circuit that is the final alarm output is configured by combining the down SR and the up SR output for each direction as a result of determination of the train operation direction and the relay output DPR of the train detection related to the end point DDC. (See FIG. 14A). And according to the conditions of this alarm R relay, devices called alarm sound controller, alarm light controller (intermittent relay), crossing circuit breaker control relay are driven, and their outputs are alarm sound speaker, alarm light 32, It is sent to the railroad crossing barrier 33 and an alarm is sounded by sound and light, and the road traffic on the railroad crossing of the railroad crossing 8 is blocked by the barrier.

ここで(図14(b),(c)参照)、踏切制御子について詳述すると、故障時のフェールセーフのため、下り始動点ADCや上り始動点CDCに設置される始動点用踏切制御子21,23には閉電路形の踏切制御子が用いられ(図14(b)参照)、下り終止点BDCや上り終止点DDCに設置される終止点用踏切制御子22,24には開電路形の踏切制御子が用いられる(図14(c)参照)。そのうち、閉電路形踏切制御子21,23は(図14(b)参照)、線路10を成す一対のレール11,12それぞれに一端を溶接等で取り付けられた接続線の対を二対使用するものであり、線路10における接続線取付箇所の取付間隔は約15mほどになっている。そして、その接続線取付箇所の間のレール11,12を介して常に閉電路が構成されており、列車の非在線時には照査用発振信号が閉電路に一巡伝送されて踏切制御子の出力用の出力リレー(出力リレーの名称を、ここでは始動Rリレーと呼ぶ)が動作(励磁,無意状態)しているのに対し、列車検知長が約30m程の列車検知区間に列車が存在すると、その列車の車軸でレール11,12が短絡されるために、照査用発振信号の伝送が断たれて、始動Rリレーが落下(無励磁,有意状態)する。   Here (see FIGS. 14 (b) and 14 (c)), the level crossing controller will be described in detail. For the fail-safe at the time of failure, the starting point level crossing controller installed at the down start point ADC or the up start point CDC. Closed circuit type crossing controllers are used for 21 and 23 (see FIG. 14 (b)), and the open point circuit controllers 22 and 24 installed at the down end point BDC and the up end point DDC are open circuits. A shape crossing controller is used (see FIG. 14C). Among them, the closed-circuit type railroad crossing controllers 21 and 23 (see FIG. 14B) use two pairs of connection wires each having one end attached to each of the pair of rails 11 and 12 forming the track 10 by welding or the like. The attachment interval of the connection line attachment location in the track 10 is about 15 m. A closed circuit is always configured via the rails 11 and 12 between the connecting line attachment points. When the train is not present, the oscillation signal for checking is transmitted to the closed circuit once for output of the level crossing controller. While the output relay (the name of the output relay is called the start R relay here) is operating (excited, involuntary), when there is a train in the train detection section where the train detection length is about 30m, Since the rails 11 and 12 are short-circuited on the train axle, the transmission of the oscillation signal for verification is cut off, and the start R relay falls (no excitation, significant state).

一方、開電路形踏切制御子22,24は(図14(c)参照)、線路10を成す一対のレール11,12それぞれに一端を溶接等で取り付けられた接続線を一対だけ使用するものであり、その接続線に照査用発振信号を常に送出するようになっているが、レール11,12の間が繋がっていないので常態では開電路が構成されているにとどまるため、その開電路に照査用発振信号が送出されていても、列車の非在線時には照査用発振信号の伝送がレール11,12の間で断たれて、踏切制御子の出力用の出力リレー(出力リレーの名称を、ここでは終止Rリレーと呼ぶ)が落下(無励磁,無意状態)している。そして、列車検知長が約30m程の列車検知区間に列車が進入して存在すると、その列車の車軸でレール11,12が短絡されるために、開電路が一時的に閉電路となって、照査用発振信号が一巡伝送され、終止Rリレーが動作(励磁,有意状態)する。   On the other hand, the open circuit type railroad crossing controllers 22 and 24 (see FIG. 14 (c)) use only one pair of connecting wires each having one end attached to each of the pair of rails 11 and 12 constituting the track 10 by welding or the like. Yes, the oscillation signal for verification is always sent to the connection line, but since the rails 11 and 12 are not connected to each other, the open circuit is normally configured. Even when the oscillating signal is transmitted, the transmission of the oscillating signal for verification is cut off between the rails 11 and 12 when the train is not present, and the output relay for the output of the level crossing controller (the name of the output relay is here) Then, the termination R relay is dropped (no excitation, involuntary state). And when a train enters the train detection section with a train detection length of about 30 m and the rails 11 and 12 are short-circuited at the axle of the train, the open circuit is temporarily closed. The oscillation signal for verification is transmitted once, and the termination R relay operates (excited, significant state).

このような開電路形の終止点用踏切制御子22,24は(図15参照)、内部に、照査用発振信号の接続線への送出を試行して照査用発振信号の一巡伝送の状態を検出する発振有無検出部25と、照査用発振信号の一巡伝送が検出されたときには終止Rリレーを動作(励磁,有意状態)させるが照査用発振信号の一巡伝送が検出されないときには終止Rリレーを落下(無励磁,無意状態)させるリレー駆動部26とを具えている。発振有無検出部25には、接続線を発振回路の発振ループの一部とする発振式のものと(図15(a)参照)、照査用発振信号を送信部で生成し接続線で伝送させ受信部で検出する送受信式のH形と(図15(b)参照)、2タイプが実用化されているが、後ほど説明する本発明においては終止点用踏切制御子の方式の違いが問題にならないので、その詳細は図示するにとどめ、ここでは終止点用踏切制御子22(又は24)を具体例にして、接続線A1,B1(第1接続線)との接続状態を詳述する。   Such open-circuit-type end-point crossing controllers 22 and 24 (see FIG. 15) internally try to send the oscillation signal for verification to the connection line and check the state of the round-trip transmission of the oscillation signal for verification. The oscillation presence / absence detecting unit 25 to be detected and the termination R relay operate (excitation, significant state) when a round trip transmission of the verification oscillation signal is detected, but the termination R relay is dropped when the round trip transmission of the verification oscillation signal is not detected. And a relay drive unit 26 (no excitation, involuntary state). In the oscillation presence / absence detection unit 25, an oscillation type whose connection line is part of the oscillation loop of the oscillation circuit (see FIG. 15A), an oscillation signal for verification is generated by the transmission unit, and transmitted through the connection line. The transmission / reception type H type detected by the receiving unit (see FIG. 15B) and two types have been put into practical use, but in the present invention described later, the difference in the method of the crossing controller for the end point is a problem. The details are only shown in the figure, and here, the connection state with the connection lines A1 and B1 (first connection line) will be described in detail by taking the end point crossing controller 22 (or 24) as a specific example.

一対の接続線A1,B1のうち一方の接続線A1は一端がレール11に溶接等で接続され他方の接続線B1は一端がレール12に接続されて(図15参照)、その接続線取付箇所15(又は14)から何れの接続線A1,B1も終止点用踏切制御子22(又は24)の方に延びていて、発振有無検出部25に接続されている。なお、必須ではないが大抵は終止点用踏切制御子22(又は24)が踏切器具箱内に収納されているので、接続線A1,B1は、何れも、発振有無検出部25に直に接続されるのでなく、延長線を介在させて間接的に接続されている。即ち、接続線A1,B1は、それぞれ、他端が配線端子盤28の端子に接続され、そこから踏切器具箱内配線27によって終止点用踏切制御子22(又は24)の筐体の端子まで延長され、そこから制御子内配線AA,BBによって発振有無検出部25に接続されて、発振有無検出部25から照査用発振信号を伝達されるものとなっている。   One connection line A1 of the pair of connection lines A1 and B1 has one end connected to the rail 11 by welding or the like, and the other connection line B1 has one end connected to the rail 12 (see FIG. 15). Any connection line A1, B1 extends from 15 (or 14) toward the end point crossing controller 22 (or 24) and is connected to the oscillation presence / absence detecting unit 25. Although it is not essential, the end point crossing controller 22 (or 24) is usually housed in the crossing equipment box, so that both the connection lines A1 and B1 are directly connected to the oscillation presence / absence detecting unit 25. Rather than being connected, they are indirectly connected via an extension line. That is, the other ends of the connection lines A1 and B1 are connected to the terminals of the wiring terminal board 28, and from there to the terminal of the end point crossing controller 22 (or 24) by the crossing device box wiring 27. From there, it is connected to the oscillation presence / absence detection unit 25 by the control-internal wires AA and BB, and the oscillation signal for verification is transmitted from the oscillation presence / absence detection unit 25.

また、リレー駆動部26の終止Rリレーの接点はリレー信号の伝達のため踏切器具箱内配線にて踏切制御装置31,34の入力ユニットに接続されている。
さらに、終止点用踏切制御子22(又は24)は、発振式であれ(図15(a)参照)、H形であれ(図15(b)参照)、何れのタイプであっても、列車検知区間長(列車検知区間の列車検知長)を加減して規定値に合わせるために、制御子内配線AA,BBにて伝送される照査用発振信号のレベルを上げ下げ(加減調整)する調整器25a(第1調整部)を具備している。図示した調整器25aは、発振有無検出部25に内蔵状態で配設されていて、入力レベルを手動操作にて調整するようになっているが、照査用発振信号のレベルを調整してから固定できれば、出力レベルを調整するようになっていても良く、発振有無検出部25に添設状態で配設されていても良く、制御子内配線AA,BBに介挿状態で配設されていても良い。
Further, the contact of the end R relay of the relay drive unit 26 is connected to the input unit of the level crossing control devices 31 and 34 by wiring in the level crossing equipment box for transmission of the relay signal.
Further, the end point crossing controller 22 (or 24) may be of any type, whether it is an oscillation type (see FIG. 15 (a)) or an H type (see FIG. 15 (b)). An adjuster that raises or lowers (adjusts or adjusts) the level of the oscillation signal for verification transmitted through the internal wirings AA and BB in order to adjust the detection section length (train detection length in the train detection section) to the specified value. 25a (first adjustment unit). The illustrated adjuster 25a is provided in the oscillation presence / absence detecting unit 25 so as to adjust the input level by manual operation, but is fixed after adjusting the level of the oscillation signal for verification. If possible, the output level may be adjusted, may be provided in an attached state to the oscillation presence / absence detecting unit 25, or may be provided in the inter-controller wirings AA and BB in an inserted state. Also good.

このように、複線区間の踏切8に係る従来の踏切保安装置37では(図16参照)、下り側の線路10において踏切8の手前・起点側で踏切8から遠くに下り始動点ADCが設定されるとともに踏切8の通過先・終点側で踏切8の近くに下り終止点BDCが設定される。また、上り側の線路10において踏切8の手前・終点側で踏切8から遠くに上り始動点CDCが設定されるとともに踏切8の通過先・起点側で踏切8の近くに上り終止点DDCが設定される。さらに、それらの設定に基づいて、下り始動点ADCでは閉電路形の始動点用踏切制御子21に至る接続線の一端が線路10に溶接され、下り終止点BDCの接続線取付箇所15(接続点,検知点)には開電路形の終止点用踏切制御子22に至る接続線(図15の接続線A1,B1参照)の一端が線路10に溶接される。   As described above, in the conventional railroad crossing safety device 37 relating to the crossing 8 in the double track section (see FIG. 16), the downhill starting point ADC is set far from the crossing 8 on the downstream side 10 before and at the starting point of the crossing 8. At the same time, a descending end point BDC is set near the level crossing 8 at the destination / end point side of the level crossing 8. In addition, an upstream starting point CDC is set on the upstream line 10 before and at the end of the railroad crossing 8 and far from the railroad crossing 8, and an upstream end point DDC is set near the railroad crossing 8 at the destination and starting point of the railroad crossing 8. Is done. Further, based on these settings, at the descending starting point ADC, one end of the connecting line leading to the closed-circuit-type starting point crossing controller 21 is welded to the track 10, and the connecting line attachment point 15 (connecting point) of the descending end point BDC is connected. One end of a connection line (see connection lines A1 and B1 in FIG. 15) reaching the end point crossing controller 22 of the open circuit type is welded to the line 10.

また(図16参照)、上り始動点CDCでは閉電路形の始動点用踏切制御子23に至る接続線の一端が線路10に接続され、上り終止点DDCの接続線取付箇所14(接続点,検知点)には開電路形の終止点用踏切制御子24に至る接続線(図15の接続線A1,B1参照)の一端が線路10に溶接される。そして(図16参照)、踏切制御子21の始動Rリレー(下始動R)と踏切制御子22の終止Rリレー(下終止R)と踏切制御子23の始動Rリレー(上始動R)と踏切制御子24の終止Rリレー(上終止R)との動作/落下状態(励磁有無状態)に応じて、踏切制御装置31が警報灯32の動作を制御し、更に第1種の踏切では踏切制御装置31が踏切遮断機33の動作をも制御し、下り始動点ADCと下り終止点BDCとの間が下りの踏切制御区間となり、上り始動点CDCと上り終止点DDCとの間が上りの踏切制御区間となる。   Also, (see FIG. 16), at the ascending start point CDC, one end of the connecting line leading to the closed-circuit-type starting point crossing controller 23 is connected to the line 10, and the connecting line attachment point 14 (connecting point, One end of a connection line (see connection lines A1 and B1 in FIG. 15) reaching the end point crossing controller 24 of the open circuit type is welded to the line 10 at the detection point). Then (see FIG. 16), a start R relay (lower start R) of the crossing controller 21, a stop R relay (lower stop R) of the crossing controller 22, a start R relay (upper start R) of the crossing controller 23, and a crossing. The level crossing control device 31 controls the operation of the warning light 32 according to the operation / falling state (excitation state) of the controller 24 with the end R relay (upper end R). Further, at the first type of level crossing, the level crossing control is performed. The device 31 also controls the operation of the railroad crossing breaker 33, the section between the descending start point ADC and the descending end point BDC is a descending level crossing control section, and the section between the ascending start point CDC and the ascending end point DDC is the ascending level crossing. It becomes a control section.

これに対し、単線区間の踏切8に係る従来の踏切保安装置38では(図17(a)参照)、線路10において踏切8の近くに共用終止点DDCが設定され更にそれより踏切8から遠くに且つ踏切8の両側に分かれて下り始動点ADCと上り始動点CDCが設定され、下り始動点ADCでは閉電路形の始動点用踏切制御子21に至る接続線の一端が線路10に溶接され、共用終止点DDCの接続線取付箇所14(接続点,検知点)には開電路形の終止点用踏切制御子24に至る接続線(図15の接続線A1,B1参照)の一端が線路10に溶接され、上り始動点CDCでは閉電路形の始動点用踏切制御子23に至る接続線の一端が線路10に接続される(図17(a)参照)。そして、踏切制御子21の始動Rリレー(下始動R)と踏切制御子24の終止Rリレー(終止R)と踏切制御子23の始動Rリレー(上始動R)との動作/落下状態(励磁有無状態)に応じて、踏切制御装置34が警報灯32の動作を制御し、更に第1種の踏切では踏切制御装置34が踏切遮断機33の動作をも制御し、上り始動点CDCと共用終止点DDCとの間が上りの踏切制御区間となり、下り始動点ADCと共用終止点DDCとの間が下りの踏切制御区間となる。   On the other hand, in the conventional level crossing safety device 38 related to the level crossing 8 in the single track section (see FIG. 17A), the common end point DDC is set near the level crossing 8 on the track 10, and further from the level crossing 8 further. In addition, a descending start point ADC and an ascending start point CDC are set on both sides of the level crossing 8, and at the descending start point ADC, one end of a connecting line leading to a closed-circuit-type starting point level crossing controller 21 is welded to the line 10. One end of a connection line (see connection lines A1 and B1 in FIG. 15) leading to the open-circuit type crossing controller 24 for the open circuit type is connected to the connection line attachment point 14 (connection point, detection point) of the common termination point DDC. Are connected to the line 10 at the starting start point CDC to reach the start point crossing controller 23 of the closed circuit type (see FIG. 17A). Then, the operation / falling state (excitation) of the start R relay (lower start R) of the level crossing controller 21, the end R relay (end R) of the level crossing controller 24, and the start R relay (upper start R) of the level crossing controller 23 The level crossing control device 34 controls the operation of the warning light 32 according to the presence / absence state, and further, in the first type of level crossing, the level crossing control device 34 also controls the operation of the level crossing breaker 33, and is shared with the ascending start point CDC. The section between the end point DDC is an up crossing control section, and the section between the down start point ADC and the common end point DDC is a down crossing control section.

すなわち、単線の場合、列車が上り始動点CDCの列車検知区間に進入し掛かってから共用終止点DDCの列車検知区間を進出し終えるまでは、列車が上りの踏切制御区間の中に存在するとの判別がなされ、列車運転方向が上りであることを示す上りSRリレーが常態の動作(励磁,無意)状態から落下(無励磁,有意)状態になって、警報灯32にて警報が発せられるとともに、第1種の踏切では踏切遮断機33にて道路交通が遮断される。また、列車が下り始動点ADCの列車検知区間に進入し掛かってから共用終止点DDCの列車検知区間を進出し終えるまでは、列車が下りの踏切制御区間の中に存在するとの判別がなされ、列車運転方向が下りであることを示す下りSRリレーが常態の動作(励磁,無意)状態から落下(無励磁,有意)状態になって、警報灯32にて警報が発せられるとともに、第1種の踏切では踏切遮断機33にて道路交通が遮断される。さらに、それ以外のときには、上りの踏切制御区間にも下りの踏切制御区間にも列車が在線していないとの判別がなされて、スピーカや警報灯32から警報が発せられることがなく、第3種の踏切はもちろん第1種の踏切8でも道路交通が遮断されない。   In other words, in the case of a single track, the train is present in the ascending level crossing control section from when the train enters the train detection section at the uphill starting point CDC until the train ends at the common end point DDC. A determination is made and the up SR relay indicating that the train operation direction is up is changed from the normal operation (excitation, involuntary) state to the fall (no excitation, significant) state, and an alarm is issued by the warning light 32. In the first type of level crossing, road traffic is blocked by the level crossing barrier 33. In addition, it is determined that the train exists in the descending railroad crossing control section from when the train enters the train detection section of the descending start point ADC until it has advanced into the train detection section of the common end point DDC, The down SR relay, which indicates that the train operation direction is down, is changed from the normal operation (excitation, involuntary) state to the fall (non-excitation, significant) state, and an alarm is issued by the warning lamp 32. At the level crossing, road traffic is blocked by the level crossing barrier 33. Further, at other times, it is determined that no train is present in the up crossing control section or down crossing control section, and no warning is issued from the speaker or the warning light 32. Road traffic is not blocked at the first level crossing 8 as well as the type crossing.

踏切障害物検知装置35は、赤外光・レーザ光での送受光に係る遮断の有無や(例えば非特許文献2参照)、レーダ方式で測定した距離の遠近(例えば特許文献1参照)などに応じて、踏切の中の障害物を検知するものであり、そのために(図18(a)参照)、踏切8に臨んで設置された感応部と、踏切8に接近して来る列車に停止信号を現示するための他装置(説明は割愛する)にその条件を出力する発報部と、それらの動作を制御する制御部とを具えている。そのうち、感応部は、上述した赤外光・レーザ光の送受光部(例えば非特許文献2参照)やレーダ方式の測距部(例えば特許文献1参照)を具備したものであり、障害物に対する遮断検出や遠近測定に基づく判別結果を障害物感応信号SSとして制御部へ送出するようになっている。また、制御部は、障害物感応信号SSに応じて発報制御信号BZを生成し、この発報制御信号BZを発報部に送出することで、発報部による警報の開始や停止を制御するようになっている。   The level crossing obstacle detection device 35 is configured to detect the presence / absence of interruption related to transmission / reception with infrared light / laser light (for example, see Non-Patent Document 2), the distance measured by a radar system (for example, see Patent Document 1), and the like. Accordingly, an obstacle in the level crossing is detected. For this purpose (see FIG. 18A), a stop signal is sent to the sensitive unit installed facing the level crossing 8 and the train approaching the level crossing 8. Is provided with a reporting unit for outputting the conditions to another device (not described) and a control unit for controlling the operation thereof. Among them, the sensitive unit includes the infrared light / laser light transmitting / receiving unit (for example, see Non-Patent Document 2) and a radar-type distance measuring unit (for example, see Patent Document 1). A discrimination result based on blockage detection or perspective measurement is sent to the control unit as an obstacle response signal SS. In addition, the control unit generates the alarm control signal BZ according to the obstacle response signal SS, and sends the alarm control signal BZ to the alarm unit, thereby controlling the start and stop of the alarm by the alarm unit. It is supposed to be.

さらに、踏切障害物検知装置35の制御部は、設置先の踏切8を通過する列車を障害物として検知するのを回避するために、下りSRリレーの出力と下り終止点BDCの終止点用踏切制御子22の出力用のリレーBPRの出力(以下、リレー出力BPRや信号BPRと呼ぶ)を入力して、その信号BPR(BDC)を下り列車の到来時における踏切障害物検知の下り側マスクとすることにより、下り列車の到来時には、すなわち下りSRリレーが落下(無励磁,有意状態)しているときには、リレーBPRが落下(無励磁,無意状態)していれば障害物感応信号SSに応じた発報制御信号BZの生成を行うが、リレーBPRが動作(励磁,有意状態)すると障害物感応信号SSの如何にかかわらず発報制御信号BZを有意(警報状態)にすることなく発報制御信号BZを無意(無警報状態)にし続けるようになっている。   Further, the control unit of the level crossing obstacle detection device 35 detects the train passing through the installation level crossing 8 as an obstacle, so that the output of the down SR relay and the end point of the down end point BDC are used. The output of the relay BPR for output of the controller 22 (hereinafter referred to as a relay output BPR or a signal BPR) is input, and the signal BPR (BDC) is used as a descending mask for detecting a level crossing obstacle when the descending train arrives. Thus, when the descending train arrives, that is, when the descending SR relay is falling (no excitation, significant state), if the relay BPR is falling (no excitation, involuntary state), it responds to the obstacle response signal SS. The alarm control signal BZ is generated, but when the relay BPR operates (excitation, significant state), the alarm control signal BZ becomes significant (alarm state) regardless of the obstacle response signal SS. It has an alarm control signal BZ to continue to insignificant (no alarm condition) without the.

また、踏切障害物検知装置35の制御部は、上りSRリレーの出力と上り終止点DDCの終止点用踏切制御子24の出力用のリレーDPRの出力(以下、リレー出力DPRや信号DPRと呼ぶ)も入力して、その信号DPR(DDC)を上り列車の到来時における踏切障害物検知の上り側マスクとすることにより、上り列車の到来時には、すなわち上りSRリレーが落下(無励磁,有意状態)しているときには、リレーDPRが落下(無励磁,無意状態)していれば障害物感応信号SSに応じた発報制御信号BZの生成を行うが、リレーDPRが動作(励磁,有意状態)すると障害物感応信号SSの如何にかかわらず発報制御信号BZを有意(警報状態)にすることなく発報制御信号BZを無意(無警報状態)にし続けるようになっている。   Further, the control unit of the level crossing obstacle detection device 35 outputs the output of the up SR relay and the output of the end point crossing controller 24 for the up end point DDC (hereinafter referred to as a relay output DPR or a signal DPR). ) Is also input, and the signal DPR (DDC) is used as an upstream mask for crossing obstacle detection when the upstream train arrives, so that when the upstream train arrives, that is, the upstream SR relay falls (no excitation, significant state). ), If the relay DPR is falling (no excitation, involuntary state), the alarm control signal BZ corresponding to the obstacle response signal SS is generated, but the relay DPR operates (excitation, significant state). Then, regardless of the obstacle response signal SS, the alarm control signal BZ is kept involuntary (no alarm state) without making the alarm control signal BZ significant (alarm state).

しかも、踏切障害物検知装置35の制御部は、障害物感応信号SSに応じて発報制御信号BZを生成する際、予め設定された所定時間の緩動性を示すようにもなっている。踏切障害物とは、列車が踏切に接近し、踏切警報が開始後、あるいは踏切警報が開始してから更に数秒(踏切により指定する)後にもエンストなどにより踏切道内に滞留している自動車などの物体であるが、踏切道を通り抜けようと移動する通行者や自動車などと踏切障害物とを区別する必要があり、緩動性を利用して簡便に踏切障害物を認識するためである。所定時間の間連続して例えば送受光が遮断されたことをもって自動車などの物体の滞留を認識するようになっており、この所定時間は6秒程度に設定されている。   Moreover, when the control unit of the crossing obstacle detection device 35 generates the alarm control signal BZ in accordance with the obstacle response signal SS, the control unit shows a slow movement for a predetermined time set in advance. Railroad crossing obstacles are vehicles that stay in the railroad crossing due to an engine stall etc. after the train approaches the railroad crossing and the crossing warning starts, or even a few seconds after the crossing warning starts (specified by the crossing) This is because it is necessary to distinguish a level crossing obstacle from a passerby or a car, which is an object, but moves to pass through a level crossing, and easily recognizes a level crossing obstacle by using the slow motion. Retention of an object such as an automobile is recognized when, for example, transmission / reception is interrupted continuously for a predetermined time, and this predetermined time is set to about 6 seconds.

このような踏切障害物検知装置35の動作について、複線の下り側の線路10を下り列車が踏切8に向かって走行して来た場合を具体例にして説明する(図18(b)〜(e)参照)。下り列車が下り始動点ADCの列車検知区間に進入すると(図18(b)左側部分を参照)、それまで動作(励磁,無意状態)していた下りSRリレーが落下(無励磁,有意状態)するが、その時点では未だ下り列車が下り終止点BDCに到達していないことから、下り終止点BDCの終止点用踏切制御子22の終止点用踏切制御子22のリレー出力BPRが落下(無励磁,無意状態)しているので(図18(c)左側部分を参照)、踏切障害物検知装置35は踏切8に対して障害物の検知を行う。   The operation of the railroad crossing obstacle detection device 35 will be described with reference to a specific example of a case where a down train travels toward the railroad crossing 8 on the double track 10 (see FIGS. 18B to 18B). e)). When the descending train enters the train detection section of the descending start point ADC (see the left part of FIG. 18 (b)), the descending SR relay that has been operating (excited, involuntary state) falls (unexcited, significant state). However, since the down train has not yet reached the down end point BDC at that time, the relay output BPR of the end point crossing controller 22 of the down end point BDC falls (nothing (See the left part of FIG. 18 (c)), the crossing obstacle detection device 35 detects an obstacle for the crossing 8.

そして、下り列車が進行して踏切8に差し掛かると(図18(d)中央部分を参照)、その下り列車に感応して障害物感応信号SSが不感状態から有感状態になるが、下り列車の速度が想定内であれば、発報制御信号BZが有意(警報状態)になる前に、下り列車が下り終止点BDCの列車検知区間に進入して(図18(c)中央部分を参照)、終止点用踏切制御子22のリレー出力BPRが動作(励磁,有意状態)することから、踏切障害物検知の下り側マスクが働くため、発報制御信号BZは無意(無警報状態)のまま変わらないので、誤報が出ることはない。   When the down train progresses and reaches the railroad crossing 8 (see the center part of FIG. 18 (d)), the obstacle response signal SS changes from the insensitive state to the sensitive state in response to the down train. If the train speed is within the expected range, before the alarm control signal BZ becomes significant (alarm state), the descending train enters the train detection section of the descending stop BDC (FIG. 18C) Since the relay output BPR of the end point crossing controller 22 operates (excited, significant state), the descending mask for detecting the crossing obstacle works, so that the alarm control signal BZ is insignificant (no alarm state). Since it remains unchanged, there will be no false alarms.

終止点用踏切制御子22のリレー出力BPRが落下(無励磁,無意状態)して下り側マスクが働かなくなるのは、下り列車が下り終止点BDCの列車検知区間を完全に抜け出てからであり(図18(c)右側部分を参照)、下りSRリレーが動作(励磁,有意)状態に戻るのより遅く(図18(b)右側部分を参照)、障害物感応信号SSが不感状態に戻るのよりも遅いので(図18(d)右側部分を参照)、下り列車が下りの踏切制御区間を通過し終えるまで、誤報が出ることはない。   The relay output BPR of the end point crossing controller 22 drops (no excitation, involuntary state) and the down mask does not work until the down train completely exits the train detection section of the down end point BDC. (Refer to the right part of FIG. 18 (c)), the lower SR relay returns to the operating (excited, significant) state later (refer to the right part of FIG. 18 (b)), and the obstacle response signal SS returns to the insensitive state. (See the right part of FIG. 18 (d)), no false alarm will be issued until the down train has passed the down crossing control section.

このように、下り列車が想定内の速度で走行していれば、列車の最先頭が踏切8の進入側の縁端に差し掛かってから列車の最先頭が終止点の列車検知区間に進入するまでの時間tが、障害物感応信号SSの緩動性に係る所定時間より短くなるため、踏切障害物検知の下り側マスクに使用される終止点用踏切制御子22のリレー出力BPRに係る下り終止点BDCが踏切8の手前でなく先に設置されていても、踏切障害物検知の下り側マスクが有効に機能する。   In this way, if the descending train is traveling at an expected speed, until the top of the train reaches the edge of the entry side of the railroad crossing 8 until the top of the train enters the train detection section at the end point. Since the time t is shorter than the predetermined time related to the slowness of the obstacle response signal SS, the down stop related to the relay output BPR of the end crossing controller 22 used for the down mask for detecting the crossing obstacle is detected. Even if the point BDC is installed before the level crossing 8 but before the level crossing 8, the downward mask for detecting the level crossing obstacle functions effectively.

特開2006−214961号公報JP 2006-216961 A 特願2011−147805号Japanese Patent Application No. 2011-147805 特願2011−208670号Japanese Patent Application No. 2011-208670 特願2011−236454号Japanese Patent Application No. 2011-236454

鉄道技術者のための信号概論 信号シリーズ1 「鉄道信号一般」社団法人日本鉄道電気技術協会2005年3月18日発行、改訂版p.107〜118Overview of Signals for Railway Engineers Signal Series 1 “General Railway Signals” Japan Railway Electrical Engineering Association, issued on March 18, 2005, revised p. 107-118 鉄道技術者のための電気概論 信号シリーズ8 「踏切保安装置」社団法人日本鉄道電気技術協会2007年10月30日発行、4版p.35〜120Introduction to Electricity for Railway Engineers Signal Series 8 “Level Crossing Security Device” Japan Railway Electrical Engineering Association, issued October 30, 2007, 4th edition, p. 35-120

上述したように、従来の踏切保安装置37,38では、警報終止用の踏切制御子である終止点用踏切制御子22,24の列車検知区間を踏切8の踏切道から外すようにするために、レールへの打込み点(接続線取付箇所,接続点,検知点)は、複線区間の場合、列車が踏切道を進出(通過)した前方側(列車の進行方向側,通過先)に設置され(図16の接続線取付箇所14,15を参照)、単線区間の場合、踏切道から離れた起点側あるいは終点側のどちらか一方に設置される(図17(a)の接続線取付箇所14を参照)。   As described above, in the conventional railroad crossing safety devices 37 and 38, in order to remove the train detection section of the railroad crossing controllers 22 and 24 for the termination point, which is a railroad crossing controller for terminating the alarm, from the railroad crossing of the railroad crossing 8. In the case of a multi-track section, the driving point to the rail (connection line attachment point, connection point, detection point) is installed on the front side (train traveling direction side, destination) where the train has advanced (passed) the railroad crossing (Refer to connection line attachment points 14 and 15 in FIG. 16) In the case of a single wire section, it is installed on either the start side or the end point side away from the railroad crossing (connection line attachment point 14 in FIG. 17A). See).

いずれの場合も、レールへの打込み点(接続線取付箇所,接続点,検知点)は、踏切道の縁端から約20m〜25m離れ、そこを中心として約30mの幅を持つ終止点用踏切制御子22,24の列車検知区間の遠端は、踏切道の縁端から約35m〜40mほど離れている。
以上のように、従来の踏切保安装置では、警報終止用の踏切制御子の列車検知区間が踏切道と重ならないよう設置しているが、その理由は、踏切道を通行する踏切通行体たとえば犬の金属性の鎖、スキーのエッジやキャタビラなどの金属物で左右のレールが短絡されると、列車が踏切道に進入(到達)したと誤認され、警報が不所望に停止することを避けるためである。
In either case, the rail entry point (connection line attachment point, connection point, detection point) is about 20m to 25m away from the edge of the railroad crossing, and has a width of about 30m centered there. The far ends of the train detection sections of the controllers 22 and 24 are about 35 m to 40 m away from the edge of the railroad crossing.
As described above, in the conventional railroad crossing safety device, the train detection section of the railroad crossing controller for terminating the alarm is installed so as not to overlap the railroad crossing. To avoid the alarm from stopping undesirably when the left and right rails are short-circuited by metal objects such as metal chains, ski edges or caterpillars, and the train is mistakenly considered to have entered (arrived) on the railroad crossing It is.

しかも、踏切保安装置では、列車が踏切道を通過してから、更に、約35m〜40m離れた警報終止用の踏切制御子の列車検知区間の遠端側を通過しても、直ちに警報が停止する訳でなく、予め設定された警報遅延時素(リレー回路で実現する場合には、緩動時素がこれに相当する。)の時間だけ更に経過した後に警報が停止するようになっている。その理由は、列車検知をより確実に行うためであり、具体的には、列車検知に際して、列車が存在するにも係わらず一時的に“存在しない”と誤検知する、いわゆる列車検知の“煽り”をマスクするためであり、警報遅延時素は、1〜4秒程度の適宜な時間にされる。   Moreover, in the railroad crossing safety device, even if the train passes through the railroad crossing and further passes the far end side of the train detection section of the railroad crossing controller for terminating the alarm, which is about 35m to 40m away, the alarm is immediately stopped. Instead, the alarm is stopped after a preset time of the alarm delay time (when the relay circuit is used, the slow motion time is equivalent to this). . The reason for this is to more reliably detect trains. Specifically, when a train is detected, it is temporarily detected as “not present” even though the train is present. The alarm delay time is set to an appropriate time of about 1 to 4 seconds.

そのため、従来の踏切保安装置では、列車速度が想定速度であっても列車が踏切道を通過し終わってから相当時分(2〜6秒)経過した後でなければ踏切警報が停止しない。列車速度が想定速度より遅ければ、列車検知区間の通過に長時間を要するので、警報停止まで更に長い時間が掛かることになる。
しかしながら、列車が踏切道を通過した後も暫く警報が停止せずに踏切の通過が阻止されるのは、道路通行者の焦燥感・イライラ感を招来することになるので、好ましくない。そのため、そのような道路通行者の負担を軽減することが社会的に要請される。
Therefore, in the conventional railroad crossing safety device, even if the train speed is the assumed speed, the railroad crossing alarm is not stopped unless a considerable time (2 to 6 seconds) has elapsed after the train has passed the railroad crossing. If the train speed is slower than the assumed speed, it takes a long time to pass through the train detection section, so that it takes a longer time to stop the alarm.
However, it is not preferable that the passage of the railroad crossing without stopping for a while after the train passes through the railroad crossing leads to a feeling of frustration and annoyance for road passers. Therefore, it is socially requested to reduce the burden on such road passers.

そして、かかる要請に応えるべく、列車が踏切道を通過した後は速やかに警報が停止するように踏切保安装置を改良するには、終止点用踏切制御子22,24の列車検知区間長を短くして接続線取付箇所14,15(接続点,検知点)を踏切8の踏切道に近づけることができれば直截的であり理想的であるが(図19参照)、終止点用踏切制御子の列車検知区間長を短縮するために照査用発振信号のレベルを下げすぎると列車検知性能まで低下してしまううえ、列車検知区間長を列車の前後輪の間隔より短くすると列車検知状態が間欠的・振動的で不安定になる等のことから、安直には実現できない。
そこで、終止点用踏切制御子の列車検知区間長を無理に短縮しなくても列車が踏切道を通過した後は速やかに警報が停止するように改良することが第1技術課題となる。
In order to meet this demand, to improve the railroad crossing safety device so that the alarm stops promptly after the train passes the railroad crossing, the train detection section length of the end crossing controllers 22 and 24 is shortened. Thus, it is straightforward and ideal if the connection line attachment points 14 and 15 (connection point, detection point) can be brought close to the railroad crossing of the railroad crossing 8 (see FIG. 19), but the train of the railroad crossing controller for the end point If the level of the oscillation signal for verification is lowered too much in order to shorten the detection section length, the train detection performance will be degraded, and if the train detection section length is made shorter than the distance between the front and rear wheels of the train, the train detection state will be intermittent and vibration. It cannot be realized easily because it becomes unstable and unstable.
Therefore, it is a first technical problem to improve so that an alarm is promptly stopped after a train passes through a railroad crossing without forcibly shortening the train detection section length of the railroad crossing controller for the end point.

しかも、単線区間の踏切保安装置38については次の第2技術課題も生じる(例えば特許文献2,3参照)。
詳述すると、既述したように、現状では、単線区間の線路10の踏切8に設置される踏切保安装置38において、列車が踏切道を通過したことを検知し、踏切警報を停止させ更に第1種の踏切では踏切遮断機33を上昇させるために使用する開電路形の終止点用踏切制御子は、踏切道を挟んで起点側あるいは終点側のどちら側か一方だけで左右のレール11,12に接続線を介して取り付けられるのが一般的である。
Moreover, the following second technical problem also arises for the railroad crossing safety device 38 in the single track section (see, for example, Patent Documents 2 and 3).
More specifically, as described above, in the present situation, the level crossing safety device 38 installed on the level crossing 8 of the track 10 in the single track section detects that the train has passed the level crossing, stops the level crossing alarm, and further In one type of railroad crossing, the open-circuit type railroad crossing controller used for raising the railroad crossing breaker 33 is composed of the left and right rails 11 on either the starting side or the end side across the railroad crossing. It is common to attach to 12 via a connecting line.

これらの場合のうち、終止点用踏切制御子24が踏切8の起点側に取付けられた場合は(図17(a)参照)、踏切8が上りの踏切制御区間に属するので、上り列車に対しては、列車速度の如何に拘わらず、上り列車が完全に踏切道を通過し終わったことを検知でき、通過し終えた時点で警報灯32等での警報が停止し、所要の機能がその通りに発揮される。
一方、下り列車に対しては、踏切8が下りの踏切制御区間に属さないので、列車の速度によっては、あるいは踏切道の幅員によっては、下り列車が踏切道を通過中にも拘わらず通過したものと見做されることがあり、そうするとその時点で警報灯32等での警報が停止するので所期の目的を果たすことができない。
Among these cases, when the end point crossing controller 24 is attached to the starting point side of the crossing 8 (see FIG. 17A), since the crossing 8 belongs to the up crossing control section, Therefore, regardless of the train speed, it can be detected that the up train has completely passed the railroad crossing, and when it has passed, the warning by the warning light 32 etc. stops and the required function is Demonstrated on the street.
On the other hand, for the down train, the level crossing 8 does not belong to the down level crossing control section. Therefore, depending on the speed of the train or the width of the level crossing, the crossing passes even though the down train is passing the level crossing. In that case, the alarm with the warning lamp 32 stops at that time, and the intended purpose cannot be achieved.

列車が共用終止点DDCを通過し終えたら直ちに警報等を止めるのでなく、予め設定しておいた警報遅延時素だけ更に経過するのを待ってその後に警報等を止めるので、踏切8を通過する下り列車の速度が通常より多少遅い程度かそれ以上であれば、下り列車が踏切道を通過中にも拘わらず通過したものと見做されることはないのであるが、列車速度の速度が想定よりも遅かったり列車が踏切8で停止したようなときには、下り列車が踏切8を通過し終える前に通過したものと見做されることが起こりうる。
なお、終止点用踏切制御子が踏切8の終点側にだけ取付けられた場合については図示や繰り返しとなる煩雑な説明は割愛するが、この場合も上り下りが入れ替わるだけで同様の不都合が生じうる。
Instead of stopping the alarm immediately after the train has passed the common end point DDC, it waits for the preset alarm delay time to elapse and then stops the alarm etc., so it passes through the railroad crossing 8. If the speed of the descending train is slightly slower than normal, or more than that, it is not considered that the descending train has passed through the railroad crossing, but the train speed is assumed. When the train is later than the railroad crossing 8 or when the train stops at the railroad crossing 8, it may be considered that the descending train has passed before the railroad crossing 8 is completed.
In addition, when the end point crossing controller is attached only to the end point side of the crossing 8, the illustration and repeated complicated explanations are omitted, but in this case as well, the same inconvenience may be caused simply by switching up and down. .

そして、かかる不都合を回避するには、上りの踏切制御区間についても下りの踏切制御区間についても踏切道が踏切制御区間に属するように警報終止条件を厳格化すれば良いので、例えば上述した上り終止点DDCでは終止点用踏切制御子24にて列車検知が行われるが下り終止点BDCでは列車検知が行われない単線区間の踏切保安装置の場合(図17(a)参照)、踏切8の幅員の全体が上り終止点DDCの列車検知区間の中に収まるまで、終止点用踏切制御子24の接続線取付箇所14を踏切8に近づけることが考えられる。上り終止点DDCの列車検知区間に踏切道を属させるには、列車検知区間長を短縮するよりも拡張する方が有効なので、この手法は上述の第1技術課題の解決にも役立つ。
そこで、第1技術課題を解決するに際し、更に単線区間については、警報終止条件を厳格にして、踏切の安全性を向上させることが、第2技術課題となる。
In order to avoid such inconvenience, the alarm stop condition should be tightened so that the crossing road belongs to the crossing control section in both the up crossing control section and the down crossing control section. In the case of a crossing safety device in a single-line section where train detection is performed by the end point crossing controller 24 at the point DDC but no train detection is performed at the down end point BDC (see FIG. 17A), the width of the crossing 8 It is conceivable that the connection line attachment point 14 of the end point crossing controller 24 is brought closer to the crossing 8 until the entire line is within the train detection section of the up end point DDC. In order to make a railroad crossing belong to the train detection section of the uphill stop point DDC, it is more effective to extend the train detection section length than to shorten the train detection section length, so this method is also useful for solving the first technical problem described above.
Therefore, when solving the first technical problem, it is a second technical problem to further improve the safety of the level crossing by tightening the alarm termination condition for the single track section.

しかしながら、終止点の列車検知区間に踏切道を属させる遣り方は、上述したように踏切通行体でのレール短絡による列車進入の誤認を避けるために終止点の列車検知区間を踏切道から外していたことに反するため、それだけでは不十分なので、終止点の列車検知区間と踏切道の幅員とを全部または一部なりとも重複させる手法を採用する場合、上記の不所望な誤認の発生を防止することが必要となる。
そこで、終止点の列車検知区間と踏切道の幅員とを重複させることにより第1技術課題または第1技術課題および第2技術課題を解決するに際し、列車が来ていなければ踏切通行体によってレールが短絡されても列車進入と誤認しないように改良することが、第3技術課題となる。
However, as described above, the way to make a railroad crossing belong to the train detection section at the end point is to remove the train detection section at the end point from the railroad crossing to avoid misidentification of the train entry due to a rail short circuit at the railroad crossing vehicle. This is not enough, so if you use a method that overlaps the train detection section at the end point and the width of the railroad crossing in whole or in part, prevent the above-mentioned undesired misidentification. It will be necessary.
Therefore, when solving the first technical problem or the first technical problem and the second technical problem by overlapping the train detection section at the end point and the width of the railroad crossing, if the train has not arrived, the rail is crossed by the railroad crossing vehicle. It is a third technical problem to improve so as not to misidentify as a train approach even if a short circuit occurs.

さらに、従来の踏切保安装置には、踏切障害物検知のマスク区間(以下、障検マスク区間という)に係る第4技術課題もある。詳述すると(例えば特許文献3参照)、上述した従来の踏切保安装置37では(図16,図18(a)参照)、下り列車の速度が想定の最低速度よりも更に低下したような場合、列車の最先頭が踏切8の進入側の縁端に差し掛かってから列車の最先頭が終止点の列車検知区間に進入するまでの時間tが(図18(e)参照)、長くなって、障害物感応信号SSの緩動性に係る所定時間を超えてしまうこともありうる。そして、時間tが所定時間を超えると、発報制御信号BZが有意(警報状態)になるため、誤報が出てしまう。すなわち、マスク条件が成立する時機が遅れて、踏切障害物検知のマスク機能が損なわれるため、列車が踏切障害物として検知されてしまう。   Furthermore, the conventional level crossing safety device has a fourth technical problem relating to a mask section for detecting a level crossing obstacle (hereinafter referred to as a fault detection mask section). More specifically (see, for example, Patent Document 3), in the conventional railroad crossing safety device 37 described above (see FIGS. 16 and 18A), when the speed of the down train is further reduced from the assumed minimum speed, The time t from when the top of the train reaches the edge of the approach side of the railroad crossing 8 until the top of the train enters the train detection section at the end point (see FIG. 18 (e)) becomes longer and becomes a failure. It is possible that the predetermined time related to the slowness of the material response signal SS may be exceeded. When the time t exceeds the predetermined time, the alarm control signal BZ becomes significant (alarm state), and thus false alarms are generated. That is, when the mask condition is satisfied, the mask function for detecting a level crossing obstacle is impaired, so that the train is detected as a level crossing obstacle.

かかる不都合な事態は、繰り返しとなる詳細な説明は割愛するが、複線区間の上り側や単線区間についても同様に起こりうることであり、特に幅員の広い踏切では起こりやすい。そして、かかる不都合を回避するには、コスト負担を無視することが許される理想的な安全重視の環境下であれば、踏切制御子を幾つでも増設することができるので、複線区間であれ単線区間であれ線路10の踏切8に踏切保安装置を設置する際、踏切道を挟んだ両側それぞれに、障検マスク区間の端を画定するための踏切制御子を設置して、踏切8の幅員の全体が障検マスク区間内に完全に収まるよう障検マスク区間を拡張すると良い。   Such an inconvenient situation is omitted in the repeated detailed explanation, but it can occur in the same way for the upside of the double track section and the single track section, and is particularly likely to occur at a wide crossing. In order to avoid such inconvenience, any number of railroad crossing controllers can be added in an ideal safety-oriented environment where the cost burden can be ignored. However, when installing a railroad crossing safety device at the railroad crossing 8 of the railroad track 10, a railroad crossing controller for demarcating the end of the fault mask section is installed on each side across the railroad crossing, so that the entire width of the railroad crossing 8 is However, it is preferable to extend the fault detection mask section so that it completely falls within the fault detection mask section.

具体的には、例えば複線区間の場合(図19参照)、下り側の線路10については、下り始動点ADCと踏切8との間であって踏切8に近い所に例えば下り拡張点BBDCを設定するとともに、終止点用踏切制御子22と同様の例えば拡張点用踏切制御子22aを追加導入して、拡張点用踏切制御子22aの接続線を下り拡張点BBDCの接続線取付箇所15aに接続する。さらに、踏切障害物検知装置35を改造して踏切障害物検知装置35aにする際、拡張点用踏切制御子22aの出力リレーBBPR信号をも取り込んで、障検マスク区間が下り拡張点BBDCの列車検知区間の起点側の端と下り終止点BDCの列車検知区間の終点側の端とに亘る区間になるよう、マスク機能を拡張させる。   Specifically, for example, in the case of a double track section (see FIG. 19), for the downstream line 10, for example, a downward extension point BBDC is set between the downward start point ADC and the level crossing 8 and close to the level crossing 8. In addition, for example, an extension point crossing controller 22a similar to the end point crossing controller 22 is additionally introduced, and the connection line of the extension point crossing controller 22a is connected to the connection line attachment point 15a of the downward extension point BBDC. To do. Further, when the level crossing obstacle detection device 35 is modified to be the level crossing obstacle detection device 35a, the output relay BBPR signal of the extension point crossing controller 22a is also taken in, and the obstacle detection mask section falls to the train of the extension point BBDC. The mask function is expanded so as to be a section extending from the start side end of the detection section to the end point end of the train detection section of the descending stop point BDC.

また、複線区間の上り側の線路10については、上り始動点CDCと踏切8との間であって踏切8に近い所に例えば上り拡張点DDDCを設定するとともに、終止点用踏切制御子24と同様の例えば拡張点用踏切制御子24aを追加導入して、拡張点用踏切制御子24aの接続線を上り拡張点DDDCの接続線取付箇所14aに接続する。さらに、踏切障害物検知装置35aについて、拡張点用踏切制御子24aの出力リレーDDPR信号をも取り込んで、障検マスク区間が上り拡張点DDDCの列車検知区間の終点側の端と上り終止点DDCの列車検知区間の起点側の端とに亘る区間になるよう、マスク機能を拡張させるのである。   For the upstream line 10 of the double track section, for example, an upstream extension point DDDC is set between the upstream starting point CDC and the railroad crossing 8 and close to the railroad crossing 8, and the end point railroad crossing controller 24 and Similarly, for example, an extension point crossing controller 24a is additionally introduced, and the connection line of the extension point crossing controller 24a is connected to the connection line attachment point 14a of the upstream extension point DDDC. Further, for the level crossing obstacle detection device 35a, the output relay DDPR signal of the level crossing controller 24a for the extension point is also captured, and the end point of the train detection zone of the train extension zone DDDC and the end point DDC of the fault detection mask zone are detected. The mask function is expanded so as to be a section extending to the start side end of the train detection section.

しかしながら、このようなコスト無視の対処策では、開電路形の終止点用踏切制御子を線路10毎に2つずつ設置しなければならず、終止点用踏切制御子についてはイニシャルコストもランニングコストも倍増する。複線区間は単線区間に比べれば営業収益が改善されていると言っても、コストは抑えなければならない。
そこで、第1,3技術課題を解決するに際し、障検マスク区間の改善のためだけに踏切制御子を追加しなくても、障検マスク区間が踏切より広くなるように改良して、踏切障害物検知装置のマスク条件を適正化することが、第4技術課題となる。
However, in such a cost-ignoring countermeasure, it is necessary to install two open-circuit-type end-point crossing controllers for each line 10, and the initial cost and the running cost of the end-point crossing controllers are limited. Will also double. Even though the double-track section has improved operating revenue compared to the single-track section, the cost must be reduced.
Therefore, when solving the first and third technical problems, the crossing fault is improved so that the fault mask section becomes wider than the crossing without adding a crossing controller only for improving the fault mask section. Optimizing the mask conditions of the object detection device is a fourth technical problem.

この第4技術課題は、上述したように、複線区間における踏切保安装置の場合、上り側の線路10及び下り側の線路10の何れか一方または双方に係るものとなっている。
これに対し、単線区間では、例えば下り終止点BDCが設定されておらず上り終止点DDCが共用終止点とされてそれに終止点用踏切制御子24が接続されている場合(図17(a)参照)、上り列車に係る踏切障害物検知については複線区間について上述したのとほぼ同様にして第4技術課題が生じる。また、下り列車に係る踏切障害物検知については、列車の最先頭が共用終止点DDCから踏切8へ進行する時間でなく、列車の最後尾が共用終止点DDCを出てから踏切8を渡りきるまでの時間が障害物感応信号SSの緩動性に係る所定時間より短いか長いかが警報の適否の分かれ目になるという違いはあるが、やはり同様に第4技術課題が生じるので、第1〜3技術課題を解決する際にも関わる。
As described above, the fourth technical problem relates to one or both of the upstream line 10 and the downstream line 10 in the case of a crossing safety device in a double track section.
On the other hand, in the single line section, for example, when the down end point BDC is not set, the up end point DDC is set as a common end point, and the end point crossing controller 24 is connected thereto (FIG. 17A). For reference), the fourth technical problem arises in the same manner as described above for the double track section. In addition, regarding the crossing obstacle detection related to the descending train, it is not the time for the top of the train to travel from the common end point DDC to the crossing 8 but crosses the crossing 8 after the end of the train leaves the common end point DDC. Although there is a difference that whether the time until the time is shorter or longer than the predetermined time related to the slidability of the obstacle response signal SS is a difference between the suitability of the alarm, the fourth technical problem is similarly generated. Also involved in solving technical issues.

さらには、第1〜4技術課題の何れを解決するに際しても、コスト負担を無視することが許される仮想的な環境下であれば、具体的には終止点用踏切制御子を欲しいだけ幾らでも設置して良いのであれば、複線区間であれ、単線区間であれ、各技術課題の解決手段を比較的簡潔な構成で実現することも可能であろうと思われる。
しかしながら、収益を無視して過大な費用を設備投資に使うことは許されない。特に単線区間は営業収益に乏しい所なので、コストは抑えなければならない。そのため、各線路に複数台の終止点用踏切制御子を設置するのは、イニシャルコストもランニングコストも倍増するので、極力回避しなければならない。
Furthermore, when solving any of the first to fourth technical issues, in a virtual environment where it is allowed to ignore the cost burden, specifically, as much as you want the crossing controller for the end point. If it can be installed, it may be possible to realize the means for solving each technical problem with a relatively simple configuration, whether it is a double track section or a single track section.
However, it is not permissible to ignore the profits and use excessive costs for capital investment. In particular, since the single track section is poor in operating revenue, costs must be kept down. For this reason, installing a plurality of end point crossing controllers on each track doubles the initial cost and running cost, and must be avoided as much as possible.

また、近接した範囲に複数・多数の踏切制御子を設置すると、それらが同じ線路に送出する照査用発振信号に関して相互干渉が発生しやすくなるが、これを回避するためには列車検知用の信号すなわち照査用発振信号の周波数を変える必要があるが、既に多くの信号周波数を使用しているなかで、更に周波数を増やすことは、混変調が増えるなどの不都合もある。
そこで、終止点用踏切制御子が一台しかなくても踏切の近くの複数箇所で警報終止用の列車検知が行えるように改良することにより、所望の踏切保安装置を廉価に実現することが第5技術課題となる。
In addition, when multiple and many level crossing controllers are installed in the close range, mutual interference is likely to occur with respect to the oscillation signal for verification sent to the same line, but in order to avoid this, a signal for train detection is used. That is, although it is necessary to change the frequency of the oscillation signal for verification, increasing the frequency further while using a large number of signal frequencies has the disadvantage of increasing cross modulation.
Therefore, it is possible to realize a desired level crossing safety device at a low cost by improving so that a train for detecting an alarm stop can be detected at a plurality of locations near the level crossing even if there is only one level crossing controller for the end point. 5 technical issues.

本発明の踏切保安装置は(解決手段1)、上述した第1,第3技術課題を解決するために創案されたものであり、
鉄道の線路を横切る踏切から列車検知区間が外れる状態で前記線路に設定された始動点に係る列車検知を行う閉電路形の始動点用踏切制御子と、前記踏切から列車検知区間が外れる状態で前記始動点と前記踏切との間で前記線路に設定された第1検知点に係る列車検知を行う第1列車検知手段と、前記踏切に列車検知区間が掛かり且つ該列車検知区間の両端のうち前記第1検知点から遠い方の区間端と前記第1検知点とが前記踏切の両側に分かれる状態で前記線路に設定された第2検知点に係る列車検知を行う開電路形の第2列車検知手段と、前記始動点用踏切制御子と前記第1列車検知手段と前記第2列車検知手段との列車検知結果に基づいて前記始動点への列車進入と前記第1検知点への列車進入と前記第2検知点への列車進入及び列車進出とがその順に行われたか否かを判別してその順に行われたときには前記踏切を列車が通過し終えたと判定する通過完了判定手段と、前記始動点用踏切制御子の列車検知結果と前記通過完了判定手段の判定結果とに基づいて踏切警報の開始と停止を行う踏切制御装置とを備えている。
The railroad crossing safety device of the present invention (Solution 1) was created to solve the first and third technical problems described above.
In a state where the train detection section is deviated from the crossing, and a closed-circuit-type start-point crossing controller that performs train detection related to the start point set on the track in a state where the train detection section is off the railroad crossing across the railroad track A first train detection means for detecting a train related to a first detection point set on the track between the starting point and the railroad crossing, and a train detection zone is applied to the railroad crossing and both ends of the train detection zone An open-circuit-type second train that performs train detection related to the second detection point set on the track in a state where the end of the section far from the first detection point and the first detection point are divided on both sides of the railroad crossing. A train approach to the start point and a train approach to the first detection point based on a train detection result of the detection means, the crossing controller for the start point, the first train detection means, and the second train detection means And train approach to the second detection point and train It is determined whether or not departure is performed in that order, and when it is performed in that order, passage completion determination means for determining that the train has passed through the railroad crossing, the train detection result of the starting point railroad crossing controller, and the A railroad crossing control device that starts and stops a railroad crossing alarm based on the determination result of the passage completion determination means.

また、本発明の踏切保安装置は(解決手段2)、上記解決手段1の踏切保安装置であって、前記線路が複線区間に設けられていて前記踏切が複数の線路を横切っていることに対応して、前記始動点用踏切制御子と前記第1列車検知手段と前記第2列車検知手段との組が前記踏切を通る各線路毎に設けられていることを特徴とする。   Further, the railroad crossing safety device of the present invention (Solution means 2) is the railroad crossing safety device of the above-mentioned solution means 1 and corresponds to the fact that the track is provided in a multi-track section and the crossing crosses a plurality of tracks. A set of the starting point crossing controller, the first train detection means, and the second train detection means is provided for each track passing through the crossing.

さらに、本発明の踏切保安装置は(解決手段3)、上述した第1,第3技術課題に加えて第2技術課題をも解決するために創案されたものであり、上記解決手段1の踏切保安装置であって、前記線路が単線区間に設けられていて下り列車と上り列車とに時期を異にして共用されることに対応して、前記始動点用踏切制御子と前記第1列車検知手段とが前記踏切の起点側に一組設けられるとともに前記踏切の終点側にももう一組設けられ、前記第2列車検知手段も前記踏切の起点側と終点側それぞれに設けられている又は前記第2列車検知手段はその列車検知区間に前記踏切の踏切道の幅員が収まる状態で設けられていることを特徴とする。   Further, the railroad crossing safety device of the present invention (Solution means 3) was created to solve the second technical problem in addition to the first and third technical problems described above. In response to the fact that the track is provided in a single track section and is shared between the down train and the up train at different times, the starting point crossing controller and the first train detection And a pair of means are provided on the start side of the crossing and another set is provided on the end point side of the crossing, and the second train detection means is also provided on each of the start side and end point side of the crossing. The 2nd train detection means is provided in the state in which the width of the level crossing of the level crossing is settled in the train detection section.

また、本発明の踏切保安装置は(解決手段4)、上述した第1,第3技術課題に加えて第4技術課題をも解決するために創案されたものであり、上記解決手段1〜3の踏切保安装置であって、前記踏切制御装置に内蔵されていて又は前記踏切制御装置の外部に設けられていて前記線路に係る前記始動点への列車到来に応じて列車在線と上り下りを判別して列車運転方向指示を出す列車方向判別手段と、前記踏切に係る障害物検知を行うとともに前記列車運転方向指示を警報認容条件とし且つマスク条件を警報抑制条件として警報が認容されているときには障害物検知結果に応じて警報を発する踏切障害物検知装置と、前記列車方向判別手段の判別結果と前記第1列車検知手段の列車検知結果と前記第2列車検知手段の列車検知結果とに基づいて前記第1検知点への列車進入と前記第2検知点からの列車進出とに亘る障検マスク区間に対応した信号を生成しこの信号を前記マスク条件として前記踏切障害物検知装置へ送出する障検マスク形成手段とを備えたことを特徴とする。   The railroad crossing safety device according to the present invention (Solution means 4) was created to solve the fourth technical problem in addition to the first and third technical problems described above. A railroad crossing safety device that is built into the railroad crossing control device or provided outside the railroad crossing control device and discriminates the train presence line and the up / down according to the arrival of the train at the starting point related to the track Train direction discriminating means for issuing a train operation direction instruction, and performing obstacle detection for the railroad crossing and using the train operation direction instruction as an alarm acceptance condition and a mask condition as an alarm suppression condition. Based on a crossing obstacle detection device that issues an alarm according to an object detection result, a determination result of the train direction determination means, a train detection result of the first train detection means, and a train detection result of the second train detection means An obstacle that generates a signal corresponding to the obstacle detection mask section extending from the train approach to the first detection point and the train advancement from the second detection point and sends this signal to the crossing obstacle detection device as the mask condition. And an inspection mask forming means.

また、本発明の踏切保安装置は(解決手段5)、上述した第1,第3技術課題に加えて第5技術課題をも解決するために創案されたものであり、上記解決手段1〜4の踏切保安装置であって、前記第1検知点の所で前記線路に接続された第1接続線と、前記第2検知点の所で前記線路に接続された第2接続線と、開電路形の終止点用踏切制御子と、前記第1接続線と前記第2接続線と前記終止点用踏切制御子とに接続されていて第1切替状態では前記終止点用踏切制御子の接続先を前記第1接続線に切り替えるが第2切替状態では前記終止点用踏切制御子の接続先を前記第2接続線に切り替える切替回路部と、前記始動点への列車到来時には先ず前記切替回路部に前記第1切替状態をとらせることにより前記終止点用踏切制御子に前記第1検知点に係る列車検知を行わせるとともにその後の前記第1検知点への列車進行時には前記切替回路部に前記第2切替状態をとらせることにより前記終止点用踏切制御子に前記第2検知点に係る列車検知を行わせる切替制御部とを備え、前記終止点用踏切制御子が時分割で前記第1列車検知手段および前記第2列車検知手段として機能するようになっていることを特徴とする。   Further, the railroad crossing safety device according to the present invention (Solution means 5) was created to solve the fifth technical problem in addition to the first and third technical problems described above. A railroad crossing safety device comprising: a first connection line connected to the line at the first detection point; a second connection line connected to the line at the second detection point; and an open circuit The end-point crossing controller is connected to the first connection line, the second connection line, and the end-point crossing controller in the first switching state. Is switched to the first connection line, but in the second switching state, the switching circuit unit that switches the connection destination of the crossing controller for the end point to the second connection line, and the switching circuit unit first when the train arrives at the starting point By causing the end point crossing controller to move to the first switching state. When the train travels to the first detection point after that, the end crossing controller for the end point is set to the second detection point by causing the switching circuit unit to take the second switching state when the train proceeds to the first detection point. And a switching control unit for performing the train detection, wherein the end point crossing controller functions as the first train detection means and the second train detection means in a time-sharing manner. .

また、本発明の踏切保安装置は(解決手段6)、上記解決手段5の踏切保安装置であって、前記切替制御部が、前記始動点への列車到来時から前記第1検知点への列車進行時までの期間以外は前記切替回路部に前記第2切替状態をとらせるようになっていることを特徴とする。   Further, the railroad crossing safety device according to the present invention (solution 6) is the railroad crossing security device of the above solution 5 in which the switching control unit trains from the arrival of the train to the starting point to the first detection point. The switching circuit unit is allowed to take the second switching state except for the period up to the proceeding time.

また、本発明の踏切制御切替装置は(解決手段7)、この装置を従来の踏切保安装置に追加して接続を変更する程度のことで容易かつ安価に上記の踏切保安装置を現出させうるようにしたものであり、具体的には、
鉄道の線路を横切る踏切から離れた所で前記線路に設定された始動点と前記踏切との間で前記線路に設定された検知点であって前記踏切から列車検知区間が外れている第1検知点の所で前記線路に接続された第1接続線と,前記踏切に列車検知区間が掛かり且つ該列車検知区間の両端のうち前記第1検知点から遠い方の区間端と前記第1検知点とが前記踏切の両側に分かれる状態で前記線路に設定された第2検知点の所で前記線路に接続された第2接続線とのうち,何れか一方の接続線を選択して開電路形の終止点用踏切制御子と接続させることにより前記終止点用踏切制御子に時分割で複数台分の列車検知機能を発揮させる踏切制御切替装置であって、
前記第1接続線に対する接続手段と,前記第2接続線に対する接続手段と,前記終止点用踏切制御子に対する接続手段と,前記線路に係る列車在線と前記踏切への列車接近を判別して踏切警報を発する踏切制御装置に対する接続手段とを有する筐体と、
前記筐体に内蔵されていて,第1切替状態では前記終止点用踏切制御子と前記第1接続線とを接続させるが,第2切替状態では前記終止点用踏切制御子と前記第2接続線とを接続させる切替回路部と、
前記筐体に内蔵されていて,前記始動点への列車到来時には先ず前記切替回路部に前記第1切替状態をとらせることにより前記終止点用踏切制御子に前記第1検知点に係る列車検知を行わせ,その後の前記第1検知点への列車進行時には前記切替回路部に前記第2切替状態をとらせることにより前記終止点用踏切制御子に前記第2検知点に係る列車検知を行わせる切替制御部と、
前記筐体に内蔵されていて,前記始動点への列車進入と前記第1検知点への列車進入と前記第2検知点への列車進入と前記第2検知点からの列車進出とがその順に行われたか否かを判別してその順に行われたときには前記踏切を列車が通過し終えたと判定する通過完了判定手段と
を備えていて、前記通過完了判定手段の判定結果を前記踏切制御装置に送出して踏切警報の停止に供することができるようになっていることを特徴とする。
Further, the level crossing control switching device of the present invention (Solution means 7) can make the above level crossing safety device appear easily and inexpensively by adding this device to the conventional level crossing safety device and changing the connection. Specifically,
First detection that is a detection point set on the track between the starting point set on the track and the crossing at a location away from the railroad crossing across the railroad track, and the train detection section is outside the railroad crossing A first connection line connected to the track at a point, a train detection section on the railroad crossing, and a section end far from the first detection point of both ends of the train detection section and the first detection point Open circuit type by selecting any one of the second connection lines connected to the line at the second detection point set on the line in a state where and are separated on both sides of the railroad crossing A railroad crossing control switching device that causes the railroad crossing controller for the end point to exhibit a train detection function for a plurality of vehicles in a time-sharing manner by being connected to the railroad crossing controller for the end point,
A connection means for the first connection line, a connection means for the second connection line, a connection means for the railroad crossing controller for the end point, a train existing line related to the track, and a train approach to the railroad crossing A housing having a connection means for a railroad crossing control device that issues an alarm;
The end point crossing controller is connected to the first connection line in the first switching state, and the end point crossing controller and the second connection are connected in the second switching state. A switching circuit unit for connecting the wires,
When the train arrives at the starting point, the train detection controller according to the first detection point is detected by the end point crossing controller by first causing the switching circuit unit to enter the first switching state. When the train proceeds to the first detection point after that, the switching circuit unit takes the second switching state to perform the train detection related to the second detection point to the end point crossing controller. A switching control unit,
Built in the casing, train entry to the starting point, train entry to the first detection point, train entry to the second detection point, and train advancement from the second detection point in that order And a passage completion determination means for determining that the train has passed the railroad crossing when it is performed in that order, and the determination result of the passage completion determination means is sent to the railroad crossing control device. It is characterized in that it can be sent out and used to stop a railroad crossing alarm.

また、本発明の踏切制御切替装置は(解決手段8)、上記解決手段7の踏切制御切替装置であって、前記切替制御部が、前記始動点への列車到来時から前記第1検知点への列車進行時までの期間以外は前記切替回路部に前記第2切替状態をとらせるようになっていることを特徴とする。   Further, the railroad crossing control switching device of the present invention (solving means 8) is the railroad crossing control switching device of the above-mentioned solving means 7, wherein the switching control unit moves from the arrival of the train to the starting point to the first detection point. The switching circuit unit is allowed to take the second switching state except for a period until the train travels.

また、本発明の踏切制御切替装置は(解決手段9)、上記解決手段7,8の踏切制御切替装置であって、
前記踏切に係る障害物検知を行うとともに前記列車運転方向指示およびマスク条件による警報認容時には障害物検知結果に応じて警報を発する踏切障害物検知装置に対する接続手段が,前記筐体に設けられており、
前記第1検知点への列車進入と前記第2検知点からの列車進出とに亘る障検マスク区間に対応した信号を生成し,この信号を前記マスク条件として前記踏切障害物検知装置へ送出する障検マスク形成手段が,前記筐体に内蔵されている
ことを特徴とする。
Further, the level crossing control switching device of the present invention (solving means 9) is the level crossing control switching device of the above-mentioned solving means 7 and 8,
Connection means for a crossing obstacle detection device that detects an obstacle related to the crossing and issues an alarm according to an obstacle detection result when the alarm is accepted by the train operation direction instruction and the mask condition is provided in the housing. ,
A signal corresponding to the obstacle detection mask section extending from the train entry to the first detection point and the train advancement from the second detection point is generated, and this signal is sent to the level crossing obstacle detection device as the mask condition. Fault detection mask forming means is incorporated in the housing.

このような本発明の踏切保安装置にあっては(解決手段1)、踏切制御区間への列車進入の検知には閉電路形の踏切制御子が用いられるとともに踏切制御区間からの列車進出の検知には開電路形の列車検知手段が用いられるので、従前通りのフェールセーフ性が踏襲されている。また、終止点が第1,第2検知点といった複数に分かれ、そのうち踏切制御区間からの列車進出の検知を担う第2検知点の列車検知区間が踏切に掛るところまで第2検知点が踏切に接近しているので、踏切制御区間の終端が従来よりも踏切に近くなっている。しかも、そのようにするに際して、列車検知区間の両端のうち第1検知点から遠い方の区間端と,第1検知点ひいては始動点とが,踏切の両側に分かれるようにもしたので、踏切の踏切道の幅員が完全に踏切制御区間に収まっている。これにより、終止点用踏切制御子の列車検知区間長を無理に短縮しなくても列車が踏切道を通過した後に速やかに警報が停止することになるので、第1技術課題が解決される。   In such a railroad crossing safety device of the present invention (Solution 1), a closed rail-type crossing controller is used to detect a train entering the crossing control section, and a train advancement from the crossing control section is detected. Since the open-circuit type of train detection means is used for this, the conventional fail-safety is followed. Also, the end point is divided into a plurality of first and second detection points, of which the second detection point is used as a railroad crossing until the train detection zone of the second detection point responsible for detecting the train advance from the railroad crossing control zone reaches the railroad crossing. Since it is approaching, the end of the level crossing control section is closer to the level crossing than before. In addition, when doing so, the end of the train detection section far from the first detection point and the first detection point and thus the starting point are separated on both sides of the crossing. The width of the level crossing is completely within the level crossing control section. As a result, even if the train detection section length of the railroad crossing controller for the end point is not forcibly shortened, the alarm is promptly stopped after the train has passed the railroad crossing, so the first technical problem is solved.

さらに、第1検知点がその列車検知区間を踏切から外した状態で始動点と踏切との間に設定されているので、踏切通行体により踏切道でレール短絡が発生しても、そのことによっては第1検知点でも始動点でも列車を誤認検知することがない。そして、それを前提として、始動点への列車進入と第1検知点への列車進入と前記第2検知点への列車進入と第2検知点からの列車進出とがその順に行われたことが警報停止の契機となるようにもしたことにより、列車が始動点から第1検知点を経て踏切に向け進行したとき以外は、第2検知点に係る列車検知が成立しても、列車が踏切を通過し終えたと判定されない。しかも、始動点と第1検知点とが離れていることから、始動点を通過した列車が第1検知点に到達するまでには、踏切道の通行が警報や遮断桿で阻止されるので、その後は踏切通行体によるレール短絡を考慮する必要がない。そのため、第2検知点の列車検知区間と踏切道の幅員とが重複しているにもかかわらず、列車が来ていなければ、踏切通行体によってレールが短絡されても、列車進入と誤認することがないので、第1技術課題に加えて第3技術課題も解決される。   Furthermore, since the first detection point is set between the starting point and the level crossing with the train detection section removed from the level crossing, even if a rail short circuit occurs on the level crossing due to the level crossing vehicle, Does not falsely detect trains at the first detection point or at the starting point. And on that assumption, the train approach to the starting point, the train approach to the first detection point, the train approach to the second detection point, and the train advancement from the second detection point were performed in that order. Even if the train detection related to the second detection point is established, except when the train travels from the starting point through the first detection point toward the railroad crossing, the train stops at the railroad crossing. Is not determined to have passed. Moreover, since the starting point and the first detection point are separated from each other, the passage of the railroad crossing is blocked by a warning or a blocking bar until the train that has passed the starting point reaches the first detection point. After that, there is no need to consider rail shorts due to railroad crossings. Therefore, even if the train detection section of the second detection point and the width of the railroad crossing overlap, if the train is not coming, even if the rail is short-circuited by the railroad crossing vehicle, it is mistaken for the train approach Therefore, the third technical problem is solved in addition to the first technical problem.

また、本発明の踏切保安装置にあっては(解決手段2)、複線区間の踏切に良く適応させるために、踏切を通る各線路毎に始動点用踏切制御子と第1列車検知手段と第2列車検知手段とを設けたことにより、上り下り何れの列車についても不都合なく全列車の踏切通過後は速やかに警報が停止する。   In the railroad crossing safety device according to the present invention (solution means 2), in order to be well adapted to the crossing in the double track section, the starting point crossing controller, the first train detection means, By providing the two-train detection means, the alarm stops promptly after passing through all trains without any inconvenience for any train going up and down.

さらに、本発明の踏切保安装置にあっては(解決手段3)、単線区間の踏切に良く適応させるために、始動点用踏切制御子と第1列車検知手段とを複数化して踏切の起点側と終点側とに振り分けるとともに、第2列車検知手段も同様に複数化して踏切の起点側と終点側とに振り分けるか或いは第2列車検知手段は単一のままであってもその列車検知区間に踏切の幅員が収まるようにしたことにより、踏切の幅員の全体が下りの踏切制御区間にも上り踏切制御区間にも収まるので、従来の単線区間向け踏切保安装置よりも警報終止条件が厳格になり、そのため踏切の安全性が向上するので、第2技術課題も解決される。   Furthermore, in the railroad crossing safety device according to the present invention (solution means 3), in order to adapt well to the crossing in the single track section, the starting-point level crossing controller and the first train detection means are pluralized to be the starting side of the level crossing. And the second train detection means in the same manner, and the second train detection means is assigned to the start and end sides of the railroad crossing, or even if the second train detection means remains single, Since the width of the level crossing can be accommodated, the entire width of the level crossing can be accommodated in both the down crossing control section and the up crossing control section. Therefore, the safety of the railroad crossing is improved, so that the second technical problem is also solved.

また、本発明の踏切保安装置にあっては(解決手段4)、踏切障害物検知装置の障検マスク区間が、第1検知点への列車進入と第2検知点からの列車進出とに亘る区間に拡大されて、踏切より広くなるので、踏切障害物検知装置のマスク条件が適正化される。しかも、そのような障検マスク区間の生成が第1列車検知手段の列車検知結果や第2列車検知手段の列車検知結果を利用して行われるので、障検マスク区間の改善のためだけに踏切制御子を追加する必要がない。そのため、第4技術課題も解決される。   In the railroad crossing safety device according to the present invention (solution 4), the fault detection mask section of the railroad crossing obstacle detection device spans the train approach to the first detection point and the train advancement from the second detection point. Since it is expanded into the section and becomes wider than the level crossing, the mask condition of the level crossing obstacle detection device is optimized. Moreover, since the generation of the fault detection mask section is performed by using the train detection result of the first train detection means and the train detection result of the second train detection means, the railroad crossing is performed only for the improvement of the fault mask section. There is no need to add a control. Therefore, the fourth technical problem is also solved.

また、本発明の踏切保安装置にあっては(解決手段5)、第1,第2接続線と切替回路部と切替制御部とを用いて、列車進行に応じた切替による時分割で一台の開電路形の終止点用踏切制御子が第1列車検知手段としても第2列車検知手段としても機能するようにしたことにより、終止点用踏切制御子が一台しかなくても踏切の近くの複数箇所で警報終止用の列車検知が行えるので、所望の踏切保安装置を廉価に実現することができ、その結果、第5技術課題も解決される。   Further, in the railroad crossing safety device according to the present invention (solution 5), the first and second connection lines, the switching circuit unit, and the switching control unit are used, and one unit is provided in a time-sharing manner by switching according to the train progress. By making the open-circuit type railroad crossing controller of the open circuit function as both the first train detection means and the second train detection means, it is close to the railroad crossing even if there is only one railroad crossing controller for the termination point. The train for stopping the alarm can be detected at a plurality of locations, so that a desired level crossing safety device can be realized at low cost, and as a result, the fifth technical problem is also solved.

また、本発明の踏切保安装置にあっては(解決手段6)、列車が踏切に接近していない期間、より具体的には踏切制御区間に列車が在線していないとき(以下、常態時という)には、切替制御部によって切替回路部が第2切替状態にされるので、警報終止点となる検知点(接続点,打込み点)として第2検知点(踏切上検知点)が用いられる。
切替回路部を介して終止点用踏切制御子に接続されて警報終止点となる検知点(以下、接続先終止点と呼ぶが、文脈によっては単に接続先と呼ぶこともある)として第1検知点と第2検知点のうち何れかを選択することができるようになっているので、常態時の接続先終止点についても、接続先終止点を踏切から離れた第1検知点とする第1方式と、接続先終止点を踏切に掛かる第2検知点とする第2方式との2通りがあり、この解決手段6では後者の第2方式が採用されている。
In the railroad crossing safety device according to the present invention (solution 6), when the train is not approaching the railroad crossing, more specifically, when the train is not in the railroad crossing control section (hereinafter referred to as a normal state). ), Since the switching circuit unit is switched to the second switching state by the switching control unit, the second detection point (crossing detection point) is used as a detection point (connection point, driving point) serving as an alarm end point.
First detection as a detection point (hereinafter referred to as a connection destination end point, but may be referred to as a connection destination depending on the context) connected to the end point crossing controller via the switching circuit unit and serving as an alarm end point Since either the point or the second detection point can be selected, the connection destination end point in the normal state is the first detection point that is the first detection point away from the level crossing. There are two methods, a method and a second method in which the connection destination end point is a second detection point that takes the railroad crossing. In this solution 6, the latter second method is adopted.

両方式を比較すると、常態時には列車の走行順に近い第1検知点に終止点用踏切制御子を接続しておき列車の接近に備える第1方式が、列車の動きからしてごく自然で順当な方式であり、また、踏切道上における踏切通行体たとえば犬の鎖などの金属物で軌道が不正に短絡されたとしても、この影響を終止点用踏切制御子が受けない、という強みがある。
しかし、この解決手段6では、常態時は第2検知点に終止点用踏切制御子を接続する第2方式を採用している。下記の二つの利点を享受できるからである。
Comparing both methods, the first method, which prepares for the approach of the train by connecting the end point crossing controller to the first detection point that is close to the traveling order of the train in the normal state, is very natural and appropriate from the movement of the train. Further, even if the trajectory is improperly short-circuited by a metal object such as a dog's chain on the railroad crossing, there is an advantage that the crossing controller for the end point is not affected by this influence.
However, the solution 6 employs the second method in which the end point crossing controller is connected to the second detection point in the normal state. This is because the following two advantages can be enjoyed.

利点1:現行の踏切の論理(リレー結線図)において、警報Rリレーの動作条件として挿入している終止用制御子の落下条件と警報停止を遅延させるための緩動時素の意義を損なわないようにすることができる。つまり、列車が終止点用踏切制御子の列車検知区間内において煽った場合にも、この緩動時素(警報遅延時素)の間は警報停止することが避けられ、安全が確保される。
利点2:既存の検測用列車をそのまま使用して終止点の列車検知区間長(列車検知区間の列車検知長)を測定することができる。
Advantage 1: In the current level crossing logic (relay connection diagram), the fall condition of the termination controller inserted as the operating condition of the alarm R relay and the meaning of the slow-moving element for delaying the alarm stop are not impaired. Can be. In other words, even when the train hits within the train detection section of the end point crossing controller, it is possible to avoid the alarm stop during this slow motion time (warning delay time) and to ensure safety.
Advantage 2: The train detection section length at the end point (the train detection length of the train detection section) can be measured using the existing inspection train as it is.

先ず利点1について詳述するが、前提となる現行の踏切の論理(リレー結線図)においては、踏切警報/停止を示す警報Rリレーの動作条件として,即ち警報Rリレー回路の条件部に入力されるリレー接点出力の一つとして,終止点用踏切制御子の反応リレーの落下条件,すなわち列車が終止点用踏切制御子の列車検知区間を進出(通過)したことにより終止点用踏切制御子のリレー出力が無励磁の無意状態になったことを示す接点信号,を挿入するとともに、1〜4秒の緩動時素(警報遅延時素)を持たせている。
そのため、列車が終止点用踏切制御子の列車検知区間を進出(通過)してから、更に緩動時素1〜4秒が経過した後に、警報Rリレーが動作し、警報が停止する。
First, the advantage 1 will be described in detail. In the current premise level crossing logic (relay connection diagram), the alarm R relay operating condition indicating the level crossing alarm / stop is input to the condition part of the alarm R relay circuit. One of the relay contact outputs is the drop condition of the reaction relay of the end point crossing controller, that is, the train has advanced (passed) through the train detection section of the end point crossing controller. A contact signal indicating that the relay output is in an unexcited involuntary state is inserted, and a slow motion element (alarm delay time element) of 1 to 4 seconds is provided.
For this reason, after the train has advanced (passed) through the train detection section of the end-point crossing controller, the alarm R relay is activated and the alarm is stopped after 1 to 4 seconds of slow motion has elapsed.

従って、列車が終止点用踏切制御子の列車検知区間内に存在しているときに、仮に終止点用踏切制御子が一時的に“列車が存在しない”と誤検知(列車検知が煽る)した場合においても、その誤検知が1〜4秒の緩動時素以内であれば、警報Rリレーが動作しないので、警報は停止しない。つまり、列車が終止点用踏切制御子の列車検知区間内で煽った場合にも、この緩動時素の間は警報停止することが避けられるので、安全が確保される。
なお、この第2方式では、切替制御部をリレー回路で構成した場合に更なる課題が生じるが、それの課題と対処については、発明を実施するための形態の欄で、後述する。
Therefore, when a train is present in the train detection section of the end point crossing controller, the end point crossing controller temporarily detects that there is no train (false train detection). Even in this case, if the erroneous detection is within 1 to 4 seconds, the alarm R relay does not operate, so the alarm does not stop. That is, even when the train hits within the train detection section of the end point crossing controller, it is possible to prevent the alarm from being stopped during this slow motion, so that safety is ensured.
In the second method, a further problem occurs when the switching control unit is configured by a relay circuit. The problem and the countermeasure will be described later in the section of the embodiment for carrying out the invention.

次に利点2について詳述すると、前提として、踏切制御子の列車検知区間長を走行しながら検測する検測専用の列車があるが、そのような検測用の列車によって列車検知区間長を正確に測定するためには、当該踏切制御子の列車検知区間を検測用の列車が走行している間は、踏切制御子がその地点に接続され続ける必要がある。そして、本願発明にあっては、列車の走行に従って、更に単線区間では列車の運転方向にも従って、時分割に、検知点(接続点,打込み点)を選択して切り替え、選択した検知点を一つの終止点用踏切制御子(警報終止用の踏切制御子)へ接続するが、最初に選択した検知点は列車を検知すると直ちに接続が切り離され、代わって次の検知点が終止点用踏切制御子に接続される。   Next, in detail about the advantage 2, as a premise, there is a dedicated train for inspection while traveling along the train detection section length of the railroad crossing controller. The train detection section length is set by such a detection train. In order to measure accurately, it is necessary that the railroad crossing controller is continuously connected to the point while the inspection train travels in the train detection section of the railroad crossing controller. And in this invention, according to driving | running | working of a train, according to the driving | running direction of a train further in a single track area, a detection point (a connection point, a driving point) is selected and switched, and the selected detection point is switched. Connect to one end point crossing controller (level crossing controller for alarm stop), but the detection point selected first is disconnected as soon as a train is detected, and the next detection point is used instead as the end point crossing. Connected to the controller.

先に接続される第1検知点では、その地点に列車が進入(到達)したことが検知されさえすれば良く、列車がこの検知点の列車検知区間長を進出(通過)したことを検知する必要はない。従って、第1検知点の列車検知区間長は必須絶対条件ではない。これに対して、次に接続される第2の検知点は、列車が踏切道を進出したことを検知するためのものであり、列車が踏切道を進出したことを保証するために予め設定された列車検知区間長を維持確保することが必須絶対条件である。
以上から、解決手段6にあっては、第2検知点(接続点,打込み点)を常態時の接続先とすることにより、列車が踏切道を進出したことを検知するための第2検知点の列車検知区間長を検測用の列車によって検測することができる。
At the first detection point connected first, it is only necessary to detect that the train has entered (arrived) at that point, and it is detected that the train has advanced (passed) the train detection section length of this detection point. There is no need. Therefore, the train detection section length of the first detection point is not an essential absolute condition. On the other hand, the second detection point to be connected next is for detecting that the train has advanced on the railroad crossing, and is set in advance to guarantee that the train has advanced on the railroad crossing. Maintaining and ensuring the train detection section length is an indispensable absolute condition.
From the above, in the solution means 6, the second detection point for detecting that the train has advanced on the railroad crossing by using the second detection point (connection point, driving point) as the connection destination in the normal state. The train detection section length can be measured by the train for inspection.

また、本発明の踏切制御切替装置にあっては(解決手段7)、上記解決手段5の踏切保安装置の特徴部である切替回路部や切替制御部などが一の筐体に収められているので、上記解決手段5の踏切保安装置の容易かつ迅速な実施に寄与する。
また、本発明の踏切制御切替装置にあっては(解決手段8)、上記解決手段6の踏切保安装置の特徴である常態時の第2切替状態の採択を要件としているので、上記解決手段6の踏切保安装置の容易かつ迅速な実施に寄与する。
また、本発明の踏切制御切替装置にあっては(解決手段9)、上記解決手段4の踏切保安装置の特徴部である障検マスク区間を形成する障検マスク形成手段までも同じ筐体に収められているので、上記解決手段4の踏切保安装置の容易かつ迅速な実施に寄与する。
Further, in the level crossing control switching device of the present invention (solution means 7), a switching circuit portion, a switching control portion, and the like, which are characteristic features of the level crossing safety device of the above solution means 5, are housed in one housing. Therefore, it contributes to the easy and quick implementation of the railroad crossing safety device of the above solution 5.
Further, the level crossing control switching device of the present invention (solution 8) requires the adoption of the second switching state in the normal state, which is a feature of the level crossing safety device of the solution 6, so the solution 6 This contributes to the easy and quick implementation of the railroad crossing safety device.
In the level crossing control switching device of the present invention (solution 9), the fault mask forming means for forming the fault mask section which is a characteristic part of the level crossing safety device of the above solution 4 is also provided in the same housing. Therefore, it contributes to easy and quick implementation of the railroad crossing security device of the solution 4.

本発明の実施例1について、踏切制御切替装置を導入した複線区間における踏切保安装置の概要構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of a level crossing safety device in a double track section in which a level crossing control switching device is introduced in Example 1 of the present invention. 複線区間における踏切保安装置のうち下り側に導入された踏切制御切替装置に係る回路図と接続図である。It is the circuit diagram and connection figure which concern on the level crossing control switching apparatus introduced in the down side among the level crossing security apparatuses in a double track section. 複線区間における踏切保安装置のうち上り側に導入された踏切制御切替装置に係る回路図と接続図である。It is the circuit diagram and connection figure which concern on the level crossing control switching apparatus introduced in the up side among the level crossing security apparatuses in a double track section. 複線区間における切保安装置のうち踏切制御装置を中心とした制御部分に係るブロック図である。It is a block diagram which concerns on the control part centering on a level crossing control apparatus among the crossing safety | security apparatuses in a double track area. (a)が複線区間における踏切障害物検知装置に係る新たなリレー信号等の入出力状態を示すブロック図であり、(b)〜(e)がリレー信号等のタイムチャートである。(A) is a block diagram which shows the input / output states of the new relay signal etc. which concern on a level crossing obstacle detection apparatus in a double track section, (b)-(e) are time charts, such as a relay signal. 複線区間における切替制御部と通過完了判定手段と障検マスク形成手段とにおける各リレーの動作に係るタイムチャートである。It is a time chart which concerns on operation | movement of each relay in the switching control part in a double track | interval area, a passage completion determination means, and a fault mask formation means. 本発明の実施例2について、(a)が踏切制御切替装置を導入した単線区間における切保安装置の概要構成図であり、(b)が変形例の要部構成図である。About Example 2 of the present invention, (a) is an outline lineblock diagram of a line safety device in a single track section which introduced a railroad crossing control switching device, and (b) is a principal part lineblock diagram of a modification. 単線区間における踏切制御切替装置に係る回路図と接続図である。It is the circuit diagram and connection diagram which concern on a level crossing control switching device in a single track section. 単線区間における踏切保安装置のうち踏切制御装置を中心とした制御部分に係るブロック図である。It is a block diagram which concerns on the control part centering on a level crossing control apparatus among the level crossing security apparatuses in a single track | line section. (a)が単線区間における踏切障害物検知装置に係る新たなリレー信号等の入出力状態を示すブロック図であり、(b)〜(e)がリレー信号等のタイムチャートである。(A) is a block diagram which shows the input / output states of the new relay signal etc. which concern on a level crossing obstacle detection apparatus in a single track section, (b)-(e) is a time chart of a relay signal etc. 単線区間における踏切保安装置の動作状態を示し、(a)が上り列車到来時の概略図、(b)が上り列車到来後進行時の概略図である。The operation state of a railroad crossing safety device in a single track section is shown, (a) is a schematic diagram when the up train arrives, and (b) is a schematic diagram when the train progresses after the up train arrives. 単線区間における踏切保安装置の動作状態を示し、(a)が下り列車到来時の概略図、(b)が下り列車到来後進行時の概略図である。The operation state of a railroad crossing safety device in a single track section is shown, (a) is a schematic diagram when a descending train arrives, and (b) is a schematic diagram when proceeding after the descending train arrives. 従来の踏切保安装置を示し、(a)が複線区間における踏切制御子の配置図、(b)が単線区間における踏切制御子の配置図、(c)が複線区間における切保安装置のうち制御部分のブロック図である。1 shows a conventional railroad crossing safety device, where (a) is a layout diagram of a level crossing controller in a double-track section, (b) is a layout diagram of a level crossing controller in a single-track section, and (c) is a control portion of the crossing safety device in a double-track section. FIG. 従来の踏切保安装置を示し、(a)が単線区間における切保安装置のうち制御部分のブロック図、(b)が閉電路形の始動点用踏切制御子の接続図、(c)が開電路形の終止点用踏切制御子の接続図である。A conventional railroad crossing safety device is shown, (a) is a block diagram of the control part of the road safety device in a single track section, (b) is a connection diagram of a start-point crossing controller for a closed circuit type, (c) is an open circuit It is a connection diagram of a level crossing controller for an end point. 現行の終止点用踏切制御子を示し、(a)が発振式のもののブロック図、(b)が送受信式のH形のブロック図である。FIG. 2 shows a current end-point crossing controller, where (a) is a block diagram of an oscillation type, and (b) is a block diagram of a transmission / reception type H. 複線区間における従来の踏切保安装置の概要構成図である。It is a schematic block diagram of the conventional level crossing security device in a double track section. (a)が単線区間における従来の踏切保安装置の概要構成図、(b)が単線区間における理想的な踏切保安装置の概要構成図である。(A) is a schematic block diagram of the conventional level crossing security apparatus in a single track section, (b) is a schematic block diagram of the ideal level crossing security apparatus in a single track section. (a)が踏切障害物検知装置に係る従来のリレー信号等の入出力状態を示すブロック図、(b)〜(e)がリレー信号等のタイムチャートである。(A) is a block diagram which shows the input-output state of the conventional relay signal etc. which concern on a level crossing obstacle detection apparatus, (b)-(e) is time charts, such as a relay signal. 複線区間における理想的な踏切保安装置の概要構成図である。It is a schematic block diagram of the ideal level crossing security apparatus in a double track section.

このような本発明の踏切保安装置および踏切制御切替装置について、これを実施するための具体的な形態を、以下の実施例1〜2により説明する。
図1〜図6に示した実施例1は、複線区間への適用例であり、上述した解決手段1〜2,4〜9を具現化したものである。また、図7〜図12に示した実施例2は、単線区間への適用例であり、上述した解決手段1,3〜9を具現化したものである。
さらに、それらの実施例では、切替回路部や,切替制御部,通過完了判定手段,障検マスク形成手段が、リレー回路で構成されている。
About the level crossing safety device and level crossing control switching device of the present invention, specific modes for carrying out this will be described by the following Examples 1-2.
The first embodiment shown in FIGS. 1 to 6 is an application example to a double track section, and embodies the above-described solving means 1 to 2 and 4 to 9. Moreover, Example 2 shown in FIGS. 7-12 is an example applied to a single track | line area, and implements the solution means 1 and 3-9 mentioned above.
Furthermore, in those embodiments, the switching circuit unit, the switching control unit, the passage completion determination unit, and the fault detection mask forming unit are configured by a relay circuit.

しかも、リレー回路の採用に加え、常態時の接続切替に第2方式を採用しているため、解決手段6の効果の欄で触れたように、各実施例には、更なる技術課題がある。詳述すると、常態時に終止点用踏切制御子が第2検知点に接続されるが、第2検知点は踏切に掛かっているので、終止点用踏切制御子の検知結果をそのまま即ち後述するリレー動作時期調整の処置を施さないまま警報終止の条件に挿入したのでは、切替制御部をリレー回路で構成した場合、次のような不都合がある。すなわち、踏切道上で不正短絡が発生すると、第1検知点の検知結果である第1終止Rリレーが動作し、続いて第2検知点の検知結果である第2終止Rリレーが動作する。複線区間の上り線を例にすると、上りSRリレーが動作し、次に警報Rリレーが動作するので、不正に警報が停止してしまう、という不都合がある。   Moreover, in addition to the use of the relay circuit, since the second system is adopted for the connection switching in the normal state, as described in the column of the effect of the solution means 6, each embodiment has a further technical problem. . More specifically, the end point crossing controller is connected to the second detection point in a normal state. However, since the second detection point is engaged with the crossing, the detection result of the end point crossing controller remains as it is, that is, a relay described later. If the switching control unit is configured with a relay circuit, it is disadvantageous as follows if it is inserted in the condition for terminating the alarm without performing the operation timing adjustment. That is, when an improper short circuit occurs on the railroad crossing, the first termination R relay that is the detection result of the first detection point operates, and then the second termination R relay that is the detection result of the second detection point operates. Taking the up line in the double track section as an example, the up SR relay operates and then the alarm R relay operates, so that there is an inconvenience that the alarm stops illegally.

しかしながら、踏切道上で不正短絡が発生しても、本発明の各実施例では、次に述べるリレー動作時期調整の処置を施すことにより、第1終止Rが動作しないようになるので、不正な警報停止が防止される。再び複線区間の上り線を例に説明すると、第1終止Rリレー条件に上切替Rリレーの動作条件を挿入するとともに、第1終止Rリレーに緩動性を持たせるのである。このように上切替Rリレーを挿入することにより、第1終止Rリレーが動作する時期を、上り列車が接近し上りSRリレーの落下した以降に限定することができる。踏切道上が不正落下している(DPR動作)状態で、列車が接近し上りSRリレーが落下すると、上切替Rが動作し、第1検知点に終止点用踏切制御子の接続先が切り替わるので、踏切道上の不正落下から切り離される。しかし、終止点用踏切制御子の反応リレー(出力リレー)には緩放性があるので、この緩放時素の間に第1終止Rリレーが不正に動作し自己保持しないようにする必要があるが、そのためには終止点用踏切制御子の緩放時素以上の緩動時素を第1終止Rリレーに持たせれば良い。そして、そうすることで、以下に詳述する各実施例では、更なる技術課題も解決している。   However, even if an illegal short circuit occurs on the railroad crossing, in each embodiment of the present invention, the first stop R is not operated by applying the relay operation timing adjustment described below. Stop is prevented. Again, taking the up line in the double-track section as an example, the operating condition of the upper switching R relay is inserted into the first termination R relay condition, and the first termination R relay is provided with a slidability. By inserting the upper switching R relay in this way, the timing when the first end R relay operates can be limited to the time after the upstream train approaches and the upstream SR relay falls. When the train approaches and the up SR relay falls in the state where the railroad crossing is illegally falling (DPR operation), the upper switching R operates and the connection point of the end point crossing controller is switched to the first detection point. Separated from unauthorized fall on the railroad crossing. However, since the reaction relay (output relay) of the end-point crossing controller has a slow release characteristic, it is necessary to prevent the first stop R relay from operating improperly and holding itself during this slow release element. However, in order to do so, the first stop R relay may be provided with a slow motion element equal to or greater than the slow release element of the end point crossing controller. And by doing so, in each Example explained in full detail below, the further technical subject is also solved.

なお、各実施例に係る図面に関しては、簡明化等のため、筐体やネジ等の機械的部材や,電気回路・電子回路の回路素子などについては詳細な図示を割愛し、発明の説明に必要なものや関連するものを中心に記号で図示した。
また、それらの図示に際し従来と同様の構成要素には同一の符号を付して示したが、それらについて背景技術の欄で述べたことは以下の実施例についても共通するので、重複する再度の説明は割愛し、以下、従来との相違点を中心に説明する。
In addition, regarding the drawings according to each embodiment, for the sake of simplification and the like, detailed illustrations of mechanical members such as housings and screws, circuit elements of electric circuits and electronic circuits, and the like are omitted in the description of the invention. The necessary and related items are shown as symbols.
In addition, the same reference numerals are given to the same constituent elements as those in the past in the illustration, but what has been described in the background art section is the same in the following embodiments, and therefore, the same repetitive elements are repeated. The description will be omitted, and the description below will focus on differences from the prior art.

本発明の踏切保安装置および踏切制御切替装置の実施例1について、その具体的な構成を、図面を引用して説明する。図1は、踏切制御切替装置50,60を導入した複線区間における切保安装置40の概要構成図であり、図中で踏切8と斜交する二点鎖線は踏切障害物検知装置35が障害物を検知する検知ビーム等をイメージしたものである。   About the Example 1 of a level crossing safety device and a level crossing control switching device of the present invention, the concrete composition is explained referring to drawings. FIG. 1 is a schematic configuration diagram of a crossing safety device 40 in a double track section in which crossing control switching devices 50 and 60 are introduced. In FIG. This is an image of a detection beam or the like for detecting the above.

また、図2は、複線区間における切保安装置40のうち下り側に導入された踏切制御切替装置50に係る回路図と接続図であり、図3は、複線区間における切保安装置40のうち上り側に導入された踏切制御切替装置60に係る回路図と接続図である。
さらに、図4は、複線区間における切保安装置40のうち踏切制御装置31を中心とした制御部分に係るブロック図であり、図5(a)は、踏切障害物検知装置35に係るリレー信号等の入出力状態を示すブロック図である。
Moreover, FIG. 2 is a circuit diagram and a connection diagram regarding the level crossing control switching device 50 introduced on the down side of the road safety device 40 in the double track section, and FIG. 3 is an upstream view of the road safety device 40 in the double track section. It is the circuit diagram and connection diagram which concern on the level crossing control switching apparatus 60 introduced into the side.
Further, FIG. 4 is a block diagram relating to a control part centering on the railroad crossing control device 31 in the road safety device 40 in the double track section, and FIG. 5A is a relay signal relating to the railroad crossing obstacle detection device 35, etc. It is a block diagram which shows the input / output state of.

この踏切保安装置40は(図1参照)、既述した従来の踏切保安装置37(図16参照)に対して上り側の線路10には踏切制御切替装置50を設置するとともに下り側の線路10には踏切制御切替装置60を設置することにより、既述した理想的な状態(図19参照)とほぼ同等の状態を終止点用踏切制御子の追加なしで実現したものであり、鉄道の複線区間における上り下り両線路10,10とそれを横切る踏切8とに関して、下り側の線路10については起点側から踏切8までに下り始動点ADCと下り拡張点BBDCと下り終止点BDCとが所定の位置関係でその順に設定され、上り側の線路10については終点側から踏切8までに上り始動点CDCと上り拡張点DDDCと上り終止点DDCとが所定の位置関係でその順に設定されている、ということが前提になっている。具体的には(図1参照)、下り側の線路10については、踏切8より起点側で遠めの所に下り始動点ADCが設定され、その下り始動点ADCと踏切8との間に下り拡張点BBDCが設定され、踏切8の踏切道そのものに又は踏切道の近くに下り終止点BDCが設定される。   The railroad crossing safety device 40 (see FIG. 1) is provided with a railroad crossing control switching device 50 on the upstream line 10 with respect to the conventional railroad crossing safety device 37 (see FIG. 16) described above, and the downstream rail 10. By installing a railroad crossing control switching device 60, a state substantially equivalent to the ideal state described above (see FIG. 19) is realized without the addition of an end point crossing controller. With respect to both the upstream and downstream lines 10 and 10 and the level crossing 8 across the section, the downward start point ADC, the downward extension point BBDC, and the downward end point BDC are predetermined for the downward line 10 from the starting side to the level crossing 8. The upstream start line CDC, the upstream extension point DDDC, and the upstream end point DDC are set in that order according to a predetermined positional relationship from the end point side to the level crossing 8 for the upstream line 10. There, it is made on the assumption that. Specifically (see FIG. 1), for the down line 10, a down start point ADC is set at a position farther from the crossing 8 on the starting point side, and the down line start point ADC and the crossing 8 The extension point BBDC is set, and the descending end point BDC is set on or near the railroad crossing of the railroad crossing 8.

この設定状態は、従来の踏切保安装置37に対し、下り終止点BDCを踏切8の所へ移設するとともに、踏切8と下り始動点ADCとの間に下り拡張点BBDCを新設したものと言える。また、下り終止点BDCを踏切8と下り始動点ADCとの間に移設して呼び名を下り拡張点BBDCに変えるとともに、新たな下り終止点BDCを踏切8の所に設定し直したとも言える。さらに、従前の下り終止点BDCを廃して、新たな下り終止点BDCを踏切8の所に設定するとともに、踏切8と下り始動点ADCとの間に下り拡張点BBDCを新設したものとも言える。そこで、線路10への接続線取付箇所(接続点)については、踏切保安装置37との対比態様によらず直感的に分かるよう、下り列車の通過順に準じて、下り拡張点BBDCにおける接続線取付箇所を下り第1検知点48aと呼び、下り終止点BDCにおける接続線取付箇所を下り第2検知点48bと呼ぶこととする。   In this setting state, it can be said that the down end point BDC is moved to the level crossing 8 with respect to the conventional level crossing safety device 37, and the down extension point BBDC is newly provided between the level crossing 8 and the down start point ADC. Further, it can be said that the descending end point BDC is moved between the railroad crossing 8 and the descending start point ADC to change the name to the descending extension point BBDC, and the new descending end point BDC is set again at the level crossing 8. Furthermore, it can be said that the previous down end point BDC is abolished, a new down end point BDC is set at the level crossing 8, and a down extension point BBDC is newly provided between the level crossing 8 and the down start point ADC. Therefore, the connection line attachment point (connection point) to the track 10 is attached at the downward extension point BBDC in accordance with the order of passage of the downward train so that it can be intuitively understood regardless of the comparison mode with the railroad crossing safety device 37. The location is referred to as a downward first detection point 48a, and the connection line attachment location at the downward end point BDC is referred to as a downward second detection point 48b.

上り側についても、上述した下り側と同様、従来の踏切保安装置37に対し、上り終止点DDCを踏切8の所へ移設するとともに、踏切8と上り始動点CDCとの間に上り拡張点DDDCを新設したものと言える。また、上り終止点DDCを踏切8と上り始動点CDCとの間に移設して呼び名を上り拡張点DDDCに変えるとともに、新たな上り終止点DDCを踏切8の所に設定し直したとも言える。さらに、従前の上り終止点DDCを廃して、新たな上り終止点DDCを踏切8の所に設定するとともに、踏切8と上り始動点CDCとの間に上り拡張点DDDCを新設したものとも言える。そこで、線路10への接続線取付箇所(接続点)については、やはり直感的に分かるよう、上り列車の通過順に準じて、上り拡張点DDDCにおける接続線取付箇所を上り第1検知点47aと呼び、上り終止点DDCにおける接続線取付箇所を上り第2検知点47bと呼ぶこととする。   Also on the upstream side, as with the downstream side described above, the upstream end point DDC is moved to the level crossing 8 with respect to the conventional railroad crossing safety device 37, and the upstream extension point DDDC between the level crossing 8 and the upstream starting point CDC. It can be said that was newly established. It can also be said that the uplift end point DDC is moved between the crossing 8 and the upset start point CDC to change the name to the uphill extension point DDDC, and the new uplift end point DDC is set again at the crossing 8. Further, it can be said that the conventional uplift end point DDC is abolished, a new uplift end point DDC is set at the level crossing 8, and an upside extension point DDDC is newly provided between the crossing 8 and the upset starting point CDC. Therefore, as for the connection line attachment point (connection point) to the track 10, the connection line attachment point at the upstream extension point DDDC is referred to as an upstream first detection point 47a in accordance with the order of passage of the upstream train so that it can be intuitively understood. The connecting line attachment location at the ascending end point DDC is referred to as an ascending second detection point 47b.

各点の設定位置を詳述すると、下り始動点ADCも、上り始動点CDCも、始動点用踏切制御子21,23の線路10,10への接続位置(接続線取付箇所)は、列車が踏切8に接近して警報を発し、踏切8を通行する人や自動車及び列車の安全を確保するために省令などで定められた警報時間を確保するために、列車進行方向に対して踏切8の手前数百m離れた地点である。下り始動点ADCに係る始動点用踏切制御子21の列車検知区間も、上り始動点CDCに係る始動点用踏切制御子23の列車検知区間も、既述したように列車検知区間長が約30mにすぎないので、踏切8の踏切道から確実に外れている。   The setting position of each point will be described in detail. The connecting position (connection line attachment point) of the starting point crossing controllers 21 and 23 to the tracks 10 and 10 is determined by the train. In order to ensure the warning time set by the ministerial ordinance to ensure the safety of people, cars and trains passing through the level crossing 8 when approaching the level crossing 8, the level crossing 8 It is a point several hundred meters away. The train detection section length of the start point crossing controller 21 related to the down start point ADC and the train detection section of the start point crossing controller 23 related to the up start point CDC are about 30 m as described above. Because it is only, it is definitely off the railroad crossing at level crossing 8.

また、上り拡張点DDDCの上り第1検知点47aも、下り拡張点BBDCの下り第1検知点48aも、列車の進行方向に対して手前側の踏切道の縁端から約20m〜25mの地点に設定することで、踏切8に掛からない範囲で、踏切8に近づける。後述するように第1検知点47a,48aには選択的に終止点用踏切制御子24,22が接続されるうえ、その列車検知区間長が既述したように約30mで、列車検知区間の半幅が約15mにすぎないので、上り第1検知点47aに係る列車検知区間も、下り第1検知点48aに係る列車検知区間も、踏切8の踏切道から確実に外れている。   Further, the first ascending detection point 47a of the ascending extension point DDDC and the descending first detection point 48a of the descending extension point BBDC are both about 20 m to 25 m from the edge of the railroad crossing on the near side with respect to the traveling direction of the train. By setting to, the level crossing 8 is brought closer to the level crossing 8 within a range that does not reach the level crossing 8. As will be described later, the first detection points 47a and 48a are selectively connected to the end point crossing controllers 24 and 22, and the train detection section length is about 30 m as described above. Since the half width is only about 15 m, the train detection section related to the first rising detection point 47a and the train detection section related to the first downward detection point 48a are surely separated from the railroad crossing of the level crossing 8.

さらに、上り終止点DDCの上り第2検知点47bも、下り終止点BDCの下り第2検知点48bも、列車検知区間が踏切8の踏切道と重なる位置に設定されて、列車検知区間の一部が踏切8に掛かるところまで、踏切8に近づいている。しかも、その設定に際して加重要件も課され、上り第2検知点47bの列車検知区間の両端のうち上り第1検知点47aから遠い方の区間端である起点側区間端が踏切8の踏切道より起点側に位置させられて、上り第1検知点47aと上り第2検知点47bの起点側区間端とが、踏切8の両側に分かれる状態で上り側の線路10に設定されたものとなっている。また、下り第2検知点48bの列車検知区間の両端のうち下り第1検知点48aから遠い方の区間端である終点側区間端が踏切8の踏切道より終点側に位置させられて、下り第1検知点48aと下り第2検知点48bの終点側区間端も、踏切8の両側に分かれる状態で下り側の線路10に設定されたものとなっている。   Furthermore, both the second ascending detection point 47b at the ascending end point DDC and the second descending detection point 48b at the descending end point BDC are set at positions where the train detection section overlaps the level crossing road of the level crossing 8, and The vehicle is approaching the railroad crossing 8 until it reaches the railroad crossing 8. In addition, a weighting requirement is also imposed at the time of setting, and the start side section end that is the section end farther from the first ascending first detection point 47a out of the both ends of the train detecting section of the second ascending second detection point 47b is from the railroad crossing of the level crossing 8. It is positioned on the starting point side, and is set on the upstream line 10 in a state where the starting side section ends of the first rising detection point 47a and the second rising detection point 47b are separated on both sides of the level crossing 8. Yes. Further, the end point side end which is the end of the far side from the down first detection point 48a among the both ends of the train detection range of the down second detection point 48b is positioned closer to the end point than the crossing road of the level crossing 8, and The end point section ends of the first detection point 48a and the second descending detection point 48b are also set on the downstream line 10 in a state of being divided on both sides of the railroad crossing 8.

踏切保安装置40は(図1参照)、上述した検知点等の設定を前提として、下り始動点ADCに係る列車検知を行う閉電路形の始動点用踏切制御子21と、開電路形の終止点用踏切制御子22と、上り始動点CDCに係る列車検知を行う閉電路形の始動点用踏切制御子23と、終止点用踏切制御子24と、複線用の踏切制御装置31と、踏切障害物検知装置35と、図示しない電源装置とを具えている。これらは、既述した従来の踏切保安装置37から引き継いだもので足りるので、繰り返しとなる詳細な内部構造等の説明は割愛するが、接続先の変更された入出力等については後ほど詳述する。   The railroad crossing safety device 40 (see FIG. 1) is based on the setting of the above-described detection points and the like, and a closed-circuit-type start-point crossing controller 21 that performs train detection related to the downward start-point ADC, and an open-circuit-type end Level crossing controller 22, closed-circuit-type start-point crossing controller 23 for detecting a train related to the uphill starting point CDC, end-point crossing controller 24, double-track crossing control device 31, crossing The obstacle detection device 35 and a power supply device (not shown) are provided. Since these may be taken over from the conventional railroad crossing safety device 37 described above, a detailed description of the internal structure and the like which will be repeated will be omitted, but the input / output etc. whose connection destination has been changed will be described in detail later. .

また、踏切保安装置40は、上記の終止点用踏切制御子22に、時分割で、下り側の線路10における下り拡張点BBDCの下り第1検知点48aに係る列車検知を行う下り側の第1列車検知手段としても、下り側の線路10における下り終止点BDCの下りの第2検知点48bに係る列車検知を行う下り側の開電路形の第2列車検知手段としても、機能させるために、新たに導入された踏切制御切替装置50を具えている。さらに、踏切保安装置40は、上記の終止点用踏切制御子24に、時分割で、上り側の線路10における上り拡張点DDDCの上り第1検知点47aに係る列車検知を行う上り側の第1列車検知手段としても、上り側の線路10における上り終止点DDCの上り第2検知点47bに係る列車検知を行う上り側の開電路形の第2列車検知手段としても、機能させるために、やはり新たに導入された踏切制御切替装置60も具えている。   Further, the railroad crossing safety device 40 uses the above-described crossing point controller 22 for the end point to perform the time-division and the downside first detection that performs the train detection related to the first downward detection point 48a of the downward extension point BBDC on the downward line 10. In order to function as one train detection means as well as a second open-circuit type second train detection means that performs train detection related to the second detection point 48b of the downhill end point BDC on the downside track 10 A newly introduced level crossing control switching device 50 is provided. Further, the railroad crossing safety device 40 uses the above-mentioned end-point crossing controller 24 to perform the time-division division on the upstream side first train detection point 47a of the upstream extension point DDDC on the upstream line 10. In order to function as one train detection means as well as an upside open circuit type second train detection means that performs train detection related to the uphill second detection point 47b of the uphill end point DDC in the upside line 10, A crossing control switching device 60 newly introduced is also provided.

踏切制御切替装置50と踏切制御切替装置60は、同一構造のもので良いが、別体のものであって設置先(接続先)が異なるので、別の符号を付して説明する。例えば既述した接続線A1,B1を援用した第1接続線A1,B1や,新たな第2接続線A2,B2についても、区別する必要がないときにはその符号を踏襲するが、踏切制御切替装置50,60の何れの側のものかを区別するときには、踏切制御切替装置50の側のものは第1接続線A1d,B1dや第2接続線A2d,B2dとし、踏切制御切替装置60の側のものは第1接続線A1u,B1uや第2接続線A2u,B2uとする。   The level crossing control switching device 50 and the level crossing control switching device 60 may have the same structure, but are different and have different installation destinations (connection destinations). For example, the first connection lines A1 and B1 using the connection lines A1 and B1 described above and the new second connection lines A2 and B2 are also followed when there is no need to distinguish them. When distinguishing between 50 and 60, the one on the level crossing control switching device 50 side is the first connection lines A1d and B1d and the second connection lines A2d and B2d. These are the first connection lines A1u and B1u and the second connection lines A2u and B2u.

すなわち、この踏切保安装置40は、踏切制御切替装置50と下り側の線路10との接続のために(図1,図2参照)、下り拡張点BBDCの下り第1検知点48aの所で下り側の線路10に一端を溶接等にて接続された一対の接続線A1d,B1d(第1接続線)と、下り終止点BDCの下り第2検知点48bの所で下り側の線路10に一端を溶接等にて接続された一対の接続線A2d,B2d(第2接続線)とを具えている。
また、踏切制御切替装置60と上り側の線路10との接続のために(図1,図3参照)、上り拡張点DDDCの上り第1検知点47aの所で上り側の線路10に一端を溶接等にて接続された一対の接続線A1u,B1u(第1接続線)と、上り終止点DDCの上り第2検知点47bの所で上り側の線路10に一端を溶接等にて接続された一対の接続線A2u,B2u(第2接続線)とを具えている。
That is, the railroad crossing safety device 40 is connected to the railroad crossing control switching device 50 and the downstream line 10 (see FIG. 1 and FIG. 2). A pair of connection lines A1d, B1d (first connection line), one end of which is connected to the side line 10 by welding or the like, and one end to the down line 10 at the second down detection point 48b of the down end point BDC And a pair of connection lines A2d and B2d (second connection lines) connected by welding or the like.
Further, for connection between the railroad crossing control switching device 60 and the upstream line 10 (see FIGS. 1 and 3), one end is connected to the upstream line 10 at the first upstream detection point 47a of the upstream extension point DDDC. A pair of connection lines A1u, B1u (first connection line) connected by welding or the like and one end of the upstream end line 10 at the upstream second detection point 47b of the upstream end point DDC are connected by welding or the like. And a pair of connection lines A2u and B2u (second connection lines).

第1接続線としての接続線A1d,B1dと接続線A1u,B1uも、第2接続線としての接続線A2d,B2dと接続線A2u,B2uも、材質面では既存の第1接続線A1,B1と同様の絶縁被覆電線で良いが、踏切制御切替装置50,60も踏切器具箱内に収納しようとすると、長さが異なりがちで、例えば第1接続線A1d,B1d,A1u,B1uの長さが好ましいとされる15m以下になっていると、第2接続線A2d,B2d,A2u,B2uの長さは、踏切道の幅員やレールまでのアプローチの長さなど合わせると、50mを超えることになって、第2接続線A2d,B2d,A2u,B2uのインダクタンスが増加するので、第2接続線A2d,B2d,A2u,B2uにはコンデンサを直列に介挿接続して増加インダクタンスの影響を相殺することにより、第1接続線A1d,B1d,A1u,B1uと第2接続線A2d,B2d,A2u,B2uのインピーダンス特性をなるべく近づけておくのが望ましい。   The connection lines A1d and B1d as the first connection lines and the connection lines A1u and B1u, and the connection lines A2d and B2d and the connection lines A2u and B2u as the second connection lines are the same as the first connection lines A1 and B1. However, when the railroad crossing control switching devices 50 and 60 are to be housed in the railroad crossing equipment box, the length tends to be different. For example, the length of the first connection lines A1d, B1d, A1u, and B1u Is less than 15m, which is preferable, the length of the second connection lines A2d, B2d, A2u, B2u will exceed 50m, including the width of the railroad crossing and the length of the approach to the rail. Thus, since the inductance of the second connection lines A2d, B2d, A2u, B2u increases, a capacitor is inserted and connected in series to the second connection lines A2d, B2d, A2u, B2u. By offsetting the effects of Nsu, first connecting line A1d, B1d, A1u, B1u and a second connecting line A2d, B2d, A2U, to leave close as possible to the impedance characteristics of B2u desirable.

踏切制御切替装置50は(図2参照)、切替制御部55と切替回路部56と通過完了判定手段57と障検マスク形成手段58とそれらを内蔵する筐体とを具えている。それらの回路55〜58は、ここでは何れもリレー回路からなるものを示したが、外部との接続条件や入出力条件に適合していれば、電子回路など他の回路からなるものであっても良い。踏切制御切替装置50の筐体には、外部接続のために、第1接続線A1d,B1dに対する接続手段としての第1接続端子51と、第2接続線A2d,B2dに対する接続手段としての第2接続端子52と、終止点用踏切制御子22に対する接続手段としての接続端子53,54と、列車運転方向指示を出す列車方向判別手段を含んだ踏切制御装置31に対する接続手段としての接続端子54a,54bと、踏切障害物検知装置35に対する接続手段としての接続端子54cとが装備されている。   The level crossing control switching device 50 (see FIG. 2) includes a switching control unit 55, a switching circuit unit 56, a passage completion determining unit 57, a fault detection mask forming unit 58, and a housing in which they are built. These circuits 55 to 58 are all shown here as being composed of relay circuits, but if they are suitable for external connection conditions and input / output conditions, they are composed of other circuits such as electronic circuits. Also good. The casing of the level crossing control switching device 50 has a first connection terminal 51 as a connection means for the first connection lines A1d and B1d and a second connection means for the second connection lines A2d and B2d for external connection. A connection terminal 52, connection terminals 53 and 54 as connection means for the end point crossing controller 22, and connection terminals 54a as connection means for the railroad crossing control device 31 including train direction determination means for issuing a train operation direction instruction. 54b and a connection terminal 54c as a connection means for the crossing obstacle detection device 35 are provided.

そのうち接続端子51は、踏切器具箱内配線41と配線端子盤28を介して第1接続線A1d,B1dの他端に接続されていて、下り拡張点BBDCの下り第1検知点48aから下り側の線路10へ照査用発振信号を送出する際の仲介を行うようになっている。接続端子52は、踏切器具箱内配線42と配線端子盤28を介して第2接続線A2d,B2dの他端に接続されていて、下り終止点BDCの下り第2検知点48bから下り側の線路10へ照査用発振信号を送出する際の仲介を行うようになっている。接続端子53は、踏切器具箱内配線27を介して終止点用踏切制御子22の制御子内配線AA,BBに接続されていて、終止点用踏切制御子22から照査用発振信号を入力するようになっている。   Of these, the connection terminal 51 is connected to the other end of the first connection lines A1d and B1d via the railroad crossing equipment box wiring 41 and the wiring terminal board 28, and descends from the downward first detection point 48a of the downward extension point BBDC. The intermediary when the oscillation signal for verification is sent to the line 10 is performed. The connection terminal 52 is connected to the other end of the second connection lines A2d and B2d via the railroad crossing equipment box wiring 42 and the wiring terminal board 28, and is connected to the downward end from the downward second detection point 48b of the downward end point BDC. Mediation is performed when an oscillation signal for verification is sent to the line 10. The connection terminal 53 is connected to the controller internal wirings AA and BB of the stop point crossing controller 22 via the rail crossing device box wiring 27, and receives an oscillation signal for verification from the stop point crossing controller 22. It is like that.

また、接続端子54は、踏切器具箱内配線43を介して終止点用踏切制御子22のリレー出力BPRを入力するのを仲介するようになっており、接続端子54aは、踏切器具箱内配線44を介して通過完了判定手段57の下第2終止Rリレーの出力を踏切制御装置31へ送出する際の仲介を行うようになっており、これに対応して、踏切制御装置31は、終止点用踏切制御子22からそのリレー出力BPRを直接的に入力するのに加えて又はそれに代えて、介在する踏切制御切替装置50の切替回路部56や通過完了判定手段57でリレー出力BPRを処理して出来た下第2終止Rリレーの出力を入力するものとなっている(図2,図4参照)。この下第2終止Rリレーの出力が、踏切制御装置31において、踏切警報を停止するための踏切警報終止条件となる(図4の構成例では、下りSRリレー回路31bを介して下りSRリレーを駆動する間接的な形で終止点用踏切制御子22のリレー出力BPRと共に警報Rリレー回路31cに入力されている。なお、警報Rリレーには緩動性があるので、警報Rリレー回路31cに条件として入力されているリレー出力BPRまで下第2終止Rリレーの接点出力で置き換えることも可能である)。   Further, the connection terminal 54 mediates the input of the relay output BPR of the end point crossing controller 22 via the rail crossing device box wiring 43, and the connection terminal 54a is a rail crossing device box wiring. 44, the output of the second end R relay of the lower end of the passage completion determining means 57 is transmitted to the level crossing control device 31. In response to this, the level crossing control device 31 In addition to or instead of directly inputting the relay output BPR from the point crossing controller 22, the relay output BPR is processed by the switching circuit unit 56 or the passage completion determination means 57 of the intermediate level crossing control switching device 50. Thus, the output of the lower second end R relay is input (see FIGS. 2 and 4). The output of the lower second end R relay becomes a level crossing alarm end condition for stopping the level crossing alarm in the level crossing control device 31 (in the configuration example of FIG. 4, the down SR relay is connected via the down SR relay circuit 31b. The indirect driving is input to the alarm R relay circuit 31c together with the relay output BPR of the end point crossing controller 22. Since the alarm R relay is slow, the alarm R relay circuit 31c It is also possible to replace the relay output BPR inputted as a condition with the contact output of the lower second end R relay).

さらに(図2参照)、接続端子54bは踏切器具箱内配線45を介して踏切制御装置31から下りSRリレー(下りの列車運転方向指示)を入力するのを仲介するようになっている。また、接続端子54cは踏切器具箱内配線46を介して障検マスク形成手段58の下マスクRリレーの出力を踏切障害物検知装置35へ踏切障害物検知の下り側マスクとして送出する際の仲介を行うようになっており、これに対応して、踏切障害物検知装置35は(図5(a)参照)、マスク条件のうちの下り側マスクとして、終止点用踏切制御子22からそのリレー出力BPRを直接的に入力するのでなく、その代わりに、介在する踏切制御切替装置50の切替制御部55や障検マスク形成手段58でリレー出力BPRを処理して出来た下マスクRリレーの出力を入力するものとなっている。   Further (see FIG. 2), the connection terminal 54b mediates the input of the down SR relay (down train operation direction instruction) from the crossing control device 31 via the crossing equipment box wiring 45. The connection terminal 54c is an intermediary for sending the output of the lower mask R relay of the obstacle detection mask forming means 58 to the level crossing obstacle detection device 35 as a downward mask for detecting the level crossing obstacle via the wiring 46 in the crossing device box. Correspondingly, the level crossing obstacle detection device 35 (see FIG. 5 (a)) uses the relay from the end point crossing controller 22 as a descending mask of the mask conditions. Instead of directly inputting the output BPR, instead, the output of the lower mask R relay produced by processing the relay output BPR by the switching control unit 55 of the intermediate level crossing control switching device 50 or the fault mask forming means 58. Is supposed to be entered.

このような踏切制御切替装置50の外部接続を前提として、踏切制御切替装置50は、第1接続線A1d,B1dと第2接続線A2d,B2dとのうち何れか一方の接続線を選択して開電路形の終止点用踏切制御子22と下り側の線路10とを接続させることにより、終止点用踏切制御子22に時分割で二台分の列車検知機能を発揮させるものとなっており、そのために、踏切制御切替装置50の内部の切替制御部55と切替回路部56と通過完了判定手段57と障検マスク形成手段58は以下のようになっている(図2参照)。上述したように各回路は何れもリレー回路で構成されている。   On the premise of such an external connection of the level crossing control switching device 50, the level crossing control switching device 50 selects one of the first connection lines A1d, B1d and the second connection lines A2d, B2d. By connecting the railroad crossing controller 22 for the end point of the open circuit type and the line 10 on the descending side, the railroad crossing controller 22 for the end point is made to exhibit the train detection function for two cars in a time-sharing manner. Therefore, the switching control unit 55, the switching circuit unit 56, the passage completion determining unit 57, and the fault mask forming unit 58 in the level crossing control switching device 50 are as follows (see FIG. 2). As described above, each circuit is configured by a relay circuit.

切替回路部56は、接続端子51と接続端子53とを筐体内で接続する分岐配線a1,b1と、この分岐配線a1,b1に介挿して直列接続された下切替Rリレーの動作(励磁)接点と、接続端子52と接続端子53とを筐体内で接続する分岐配線a2,b2と、この分岐配線a2,b2に介挿して直列接続された下切替Rリレーの落下(無励磁)接点と、後者の分岐配線a2,b2に介挿して直列接続された可変容量部56a(第2調整部)とを具えている。可変容量部56aは、単一のバリアブルコンデンサでも良く、複数のコンデンサの組み合わせ回路からなるものでも良いが、コンデンサの開放故障時のインピーダンスの変化を最小限に抑えるには、複数のコンデンサを並列に接続して回路を構成することが、稼動性の維持・向上につながる。更に並列接続の場合、例えば固定容量のコンデンサと可変容量のコンデンサとを接続して大容量の確保と容量値の安定と可変範囲の適度な限定とを図るのも良い。   The switching circuit unit 56 operates (excitation) the branch wirings a1 and b1 that connect the connection terminal 51 and the connection terminal 53 in the housing, and the lower switching R relay that is connected in series with the branch wirings a1 and b1. A contact point, branch wirings a2 and b2 for connecting the connection terminal 52 and the connection terminal 53 in the housing, and a drop (non-excitation) contact point of the lower switching R relay connected in series via the branch wirings a2 and b2. The variable capacitor 56a (second adjusting unit) is connected in series with the latter branch wirings a2 and b2. The variable capacitance unit 56a may be a single variable capacitor or a combination circuit of a plurality of capacitors. However, in order to minimize the impedance change at the time of capacitor open failure, a plurality of capacitors are connected in parallel. Connecting and configuring the circuit leads to maintenance and improvement of operability. Further, in the case of parallel connection, for example, a fixed capacitor and a variable capacitor may be connected to secure a large capacity, stabilize the capacitance value, and appropriately limit the variable range.

そして、切替回路部56は、下切替Rリレーが動作(励磁,有意状態)している第1切替状態では、分岐配線a1,b1ひいては終止点用踏切制御子22と第1接続線A1d,B1dとを接続させる一方、分岐配線a2,b2ひいては終止点用踏切制御子22と第2接続線A2d,B2dとを切断するようになっている。また、切替回路部56は、下切替Rリレーが落下(無励磁,無意状態)している第2切替状態では、分岐配線a1,b1ひいては終止点用踏切制御子22と第1接続線A1d,B1dとを切断する一方、分岐配線a2,b2ひいては終止点用踏切制御子22と第2接続線A2d,B2dとを接続させるようになっている。   Then, in the first switching state in which the lower switching R relay is operating (excited, significant state), the switching circuit unit 56 is connected to the branch lines a1 and b1 and the end-point crossing controller 22 and the first connection lines A1d and B1d. Are connected to each other, and the branch wirings a2 and b2 and thus the end point crossing controller 22 and the second connection lines A2d and B2d are disconnected. Further, in the second switching state in which the lower switching R relay is dropped (non-excited, involuntary state), the switching circuit unit 56 includes the branch wirings a1 and b1 and the end point crossing controller 22 and the first connection line A1d, While cutting off B1d, the branch lines a2 and b2 and thus the end point crossing controller 22 and the second connection lines A2d and B2d are connected.

そのため、踏切制御切替装置50を介して間接的に第1接続線A1d,B1dと第2接続線A2d,B2dとに接続される終止点用踏切制御子22は、踏切制御切替装置50の切替状態に依存して第1接続線A1d,B1dと第2接続線A2d,B2dとのうち何れか一方に対して択一的に接続され、ひいては下り拡張点BBDCの下り第1検知点48aと下り終止点BDCの下り第2検知点48bとのうち何れか一方の所で線路10に接続されるようになっている。そして、終止点用踏切制御子22は、第1切替状態では下り終止点BDCの下り第2検知点48bに係る列車検知を行わないで下り拡張点BBDCの下り第1検知点48aに係る列車検知を行い、第2切替状態では下り拡張点BBDCの下り第1検知点48aに係る列車検知を行わないで下り終止点BDCの下り第2検知点48bに係る列車検知を行うものとなっている。   Therefore, the crossing control for end point 22 connected to the first connection lines A1d, B1d and the second connection lines A2d, B2d indirectly via the crossing control switching device 50 is the switching state of the crossing control switching device 50. Depending on the first connection lines A1d, B1d and the second connection lines A2d, B2d, which are alternatively connected to one of the first connection lines A1d, B1d and the first downlink detection point 48a of the downlink extension point BBDC and the termination of the downlink. It is connected to the line 10 at any one of the descending second detection points 48b at the point BDC. In the first switching state, the end point crossing controller 22 does not detect the train related to the second descending detection point 48b of the descending end point BDC, and detects the train related to the first descending detection point 48a of the descending extension point BBDC. In the second switching state, the train detection related to the downward second detection point 48b of the downward end point BDC is performed without performing the train detection related to the downward first detection point 48a of the downward extension point BBDC.

切替制御部55は、常時落下している即ち常態では励磁されない下切替Rリレーを主体とした下切替Rリレー回路55aと、常時落下している下第1終止Rリレーを主体とした下第1終止Rリレー回路55bと、常時落下している中継リレーBPPRを主体とした中継BPPRリレー回路55cと、常時落下しているBPPSLRリレーを主体としたBPPSLRリレー回路55dと、常時落下している下第1終止リセットRリレーを主体とした下第1終止リセットR回路55eとからなる。そのうち、下切替Rリレー回路55aの下切替Rリレーは、下り列車が下り始動点ADCに係る始動点用踏切制御子21の列車検知区間に進入して踏切制御装置31からの下りSRが落下(無励磁,有意状態)すると動作(励磁,有意状態)し、下第1終止Rが動作(励磁,有意状態)するまでの間、動作(励磁,有意状態)し続けるようになっている。   The switching control unit 55 has a lower switching R relay circuit 55a mainly composed of a lower switching R relay that is constantly falling, i.e., not normally excited, and a lower first R relay mainly composed of a lower first stopping R relay that is always falling. End R relay circuit 55b, relay BPPR relay circuit 55c mainly composed of relay relay BPPR that is constantly falling, BPPSLR relay circuit 55d mainly composed of BPPSLR relay that is always dropped, It consists of a lower first end reset R circuit 55e mainly composed of one end reset R relay. Among them, the lower switching R relay circuit 55a has a lower switching R relay in which the descending train enters the train detection section of the starting point crossing controller 21 related to the descending starting point ADC and the descending SR from the level crossing control device 31 falls ( When it is de-energized (significant state), it operates (excited, significant state) and continues to operate (excited, significant state) until the lower first end R operates (excited, significant state).

上述したように切替回路部56によって、終止点用踏切制御子22は、下切替Rリレーの動作(励磁,有意状態)中は、踏切8から手前に列車検知区間の離れている下り拡張点BBDCの下り第1検知点48aに接続され、下切替Rリレーの落下(無励磁,無意状態)中は、踏切8の踏切道に列車検知区間の掛かっている下り終止点BDCの下り第2検知点48bに接続される。そして、下第1終止Rリレーが動作すると下切替Rリレーが落下(無励磁,無意状態)して、終止点用踏切制御子22と下り第1検知点48aとの接続が断たれるが、終止点用踏切制御子22に例えば0.5〜0.7秒程度の緩放性があるので、下第1終止Rリレーは動作(励磁,有意)状態を自己保持することができるものとなっている。従って、上切替Rリレーに緩放性は不要である。   As described above, by the switching circuit unit 56, the end point crossing controller 22 causes the downward extension point BBDC that is separated from the train detection section to the front from the level crossing 8 during the operation (excitation, significant state) of the lower switching R relay. When the lower switching R relay is dropped (unexcited, involuntary state), the second detection point of the descending end point BDC where the train detection section is on the railroad crossing of the railroad crossing 8 is connected to the first detection point 48a 48b. When the lower first end R relay operates, the lower switching R relay drops (no excitation, involuntary state), and the connection between the end point crossing controller 22 and the first descending detection point 48a is broken. Since the end point crossing controller 22 has a slow release characteristic of, for example, about 0.5 to 0.7 seconds, the lower first end R relay can self-hold the operation (excitation, significant) state. ing. Therefore, slow release is unnecessary for the upper switching R relay.

下第1終止Rリレー回路55bは、下り列車が下り拡張点BBDCの下り第1検知点48aの列車検知区間に進入すると、終止点用踏切制御子22のリレー出力BPRが動作(励磁,有意状態)することに応じて、下第1終止Rリレーが動作(励磁,有意状態)する。そして、下り列車が下り終止点BDCの下り第2検知点48bの列車検知区間を進出して終止点用踏切制御子22のリレー出力BPRが落下(無励磁,無意状態)するまでの間、具体的には後ほど詳述する下第1終止リセットRリレーが動作(励磁,有意状態)するまで、下第1終止Rリレーが動作(励磁,有意)状態を継続するようになっている。常態時、終止点用踏切制御子22は下り第2検知点48bに接続されているので、踏切8の踏切道の所で軌道が不正に短絡されると、終止点用踏切制御子22のリレー出力BPRが動作してしまうが、これによって下第1終止Rリレーが不正に動作するのを防止するために、下第1終止Rリレーには緩動性を持たせている。   The lower first end R relay circuit 55b operates (excited, significant state) when the descending train enters the train detection section of the first descending detection point 48a of the descending extension point BBDC. ), The lower first end R relay operates (excited, significant state). And, until the descending train advances the train detection section of the descending second detection point 48b of the descending end point BDC and the relay output BPR of the end point crossing controller 22 falls (no excitation, involuntary state) Specifically, the lower first end R relay, which will be described in detail later, operates (excited, significant) until the lower first end R relay operates (excited, significant). In the normal state, the end point crossing controller 22 is connected to the descending second detection point 48b. Therefore, if the track is improperly short-circuited at the crossing road of the crossing 8, the end point crossing controller 22 is relayed. Although the output BPR operates, in order to prevent the lower first end R relay from operating illegally, the lower first end R relay is provided with a slow movement.

つまり、下り列車が下り始動点ADCに到達して、下りSRリレー(下りの列車運転方向指示)が落下(無励磁,有意状態)し、下切替Rリレーが動作(励磁,有意状態)すると、終止点用踏切制御子22から照査用発振信号を送信される接続先が下り終止点BDCの下り第2検知点48bから下り拡張点BBDCの下り第1検知点48aに切替えられ、終止点用踏切制御子22が踏切道上の不正落下から切り離されるが、下第1終止Rリレー回路55bでは、下り第2検知点48bへの接続が断たれるまでの時間以上の且つ終止点用踏切制御子22の緩放時素以上の緩動性を下第1終止Rリレーに持たせることにより、下第1終止Rリレーが動作(励磁,有意状態)して自己保持することを防ぐようになっている。   That is, when the down train reaches the down start point ADC, the down SR relay (down train operation direction instruction) falls (no excitation, significant state), and the lower switching R relay operates (excitation, significant state) The connection destination to which the verification oscillation signal is transmitted from the end point crossing controller 22 is switched from the second descending detection point 48b at the descending end point BDC to the first descending detection point 48a at the descending extension point BBDC. Although the controller 22 is cut off from the unauthorized fall on the railroad crossing, the lower first end R relay circuit 55b is more than the time until the connection to the descending second detection point 48b is disconnected and the end point crossing controller 22 for the end point. By providing the lower first end R relay with a slidability equal to or greater than the slow release time, the lower first end R relay is prevented from operating (exciting, significant state) and self-holding. .

中継BPPRリレー回路55cは、下切替Rリレーが落下(無励磁,無意状態)している状態で、終止点用踏切制御子22が下り終止点BDCの下り第2検知点48bに接続されているときに、下り列車が下り第2検知点48bの列車検知区間に進入し終止点用踏切制御子22のリレー出力BPRが動作(励磁,有意状態)すると、下記の緩動性をもって中継リレーBPPRが動作(励磁,有意状態)するようになっている。この中継リレーBPPRの動作(励磁,有意状態)が下第2終止Rリレーの動作条件のひとつである。中継リレーBPPRの緩動性を説明すると、下切替Rリレーが動作(励磁,有意状態)した状態では、終止点用踏切制御子22が下り拡張点BBDCの下り第1検知点48aに接続されているので、下り列車が下り第1検知点48aの列車検知区間に進入して終止点用踏切制御子22のリレー出力BPRが動作(励磁,有意状態)したとき、下第2終止Rリレーが不所望に動作(励磁,有意状態)して警報停止しないように、中継リレーBPPRに緩動性を持たせている。   In the relay BPPR relay circuit 55c, the end point crossing controller 22 is connected to the descending second detection point 48b of the descending end point BDC in a state where the lower switching R relay is dropped (no excitation, involuntary state). Sometimes, when the descending train enters the train detection section of the second detection point 48b and the relay output BPR of the end point crossing controller 22 operates (excited, significant state), the relay relay BPPR has the following slowness. Operates (excited, significant state). The operation (excitation, significant state) of this relay relay BPPR is one of the operating conditions of the lower second end R relay. The slowness of the relay relay BPPR will be described. In a state where the lower switching R relay is operated (excited, significant state), the end point crossing controller 22 is connected to the first descending detection point 48a of the descending extension point BBDC. Therefore, when the descending train enters the train detection section of the first detection point 48a and the relay output BPR of the end crossing controller 22 operates (excited, significant state), the lower second end R relay is not active. The relay relay BPPR is provided with a slow motion so that the alarm is not stopped due to a desired operation (excitation, significant state).

つまり、下り列車が下り第1検知点48aの列車検知区間に進入して終止点用踏切制御子22のリレー出力BPRが動作(励磁,有意状態)することにより、下第1終止Rリレーが動作(励磁,有意状態)して自己保持し、これにより下切替Rリレーが落下(無励磁,無意状態)し、終止点用踏切制御子22と下り第1検知点48aとの接続が断たれるまでの時間以上の且つ終止用踏切制御子の緩放時素以上の緩動時素の緩動性(例えば1秒弱)を中継リレーBPPRに持たせることにより、中継BPPRリレー回路55cでは、下り拡張点BBDCの下り第1検知点48aへの列車進行で下第2終止Rリレーが不所望に動作(励磁,有意状態)することを防ぐようになっている。   That is, the lower first stop R relay operates when the descending train enters the train detection section of the first detection point 48a and the relay output BPR of the end point crossing controller 22 operates (excited, significant state). (Excitation, significant state) and self-holding, thereby causing the lower switching R relay to drop (no excitation, involuntary state), and disconnection between the end point crossing controller 22 and the first descending detection point 48a is disconnected. In the relay BPPR relay circuit 55c, the relay BPPR relay circuit BPPR is provided with the slowness (for example, a little less than 1 second) of the slowing time of the end crossing controller more than the time until the relay relay BPPR. The lower second end R relay is prevented from operating undesirably (excited, significant state) by the train traveling to the first detection point 48a descending from the extension point BBDC.

BPPSLRリレー回路55dは、中継リレーBPPRの出力を中継するものであるが、BPPSLRリレーに緩放性を持たせているので、中継リレーBPPRが落下(無励磁,無意状態)した後も暫く、具体的には緩放時素の時間だけ、BPPSLRリレーは、動作(励磁,有意)状態を維持し、遅れて落下(無励磁,無意状態)するようになっている。
下第1終止リセットR回路55eは、中継リレーBPPRが落下(無励磁,無意状態)した時点では緩放性のあるBPPSLRリレーが動作していることに基づき、中継リレーBPPRが落下(無励磁,無意状態)してからBPPSLRリレーが落下(無励磁,無意状態)するまでの時間すなわちBPPSLRリレーの緩放時素の時間だけ、下第1終止リセットRリレーが動作(励磁,有意状態)するようになっている。上述したように、この下第1終止リセットRリレーの動作(励磁,有意状態)により下第1終止Rリレー回路55bでは下第1終止Rリレーが落下(無励磁,無意状態)するようになっている。
The BPPSLR relay circuit 55d relays the output of the relay relay BPPR. However, since the BPPSLR relay has a slow release characteristic, the relay relay BPPR falls for a while after the relay relay BPPR falls (no excitation, involuntary state). Specifically, the BPPSLR relay maintains an operation (excitation, significant) state only for a period of time when it is slowly released, and falls late (no excitation, involuntary state).
The lower first termination reset R circuit 55e is configured such that when the relay relay BPPR drops (no excitation, involuntary state), the relay BPPR drops (no excitation, The lower first end reset R relay operates (excited, significant state) only during the time from when the BPPSLR relay drops (unexcited, involuntary state) after the involuntary state), that is, the time when the BPPSLR relay is slowly released It has become. As described above, the operation (excitation, significant state) of the lower first end reset R relay causes the lower first end R relay circuit 55b to drop (no excitation, involuntary state). ing.

このようなリレー回路55a,55b,55c,55d,55eからなる切替制御部55は、筐体に内蔵されていて、列車方向判別手段の判別結果として下りSRリレーの接点出力を踏切制御装置31から入力しており、それに基づいて、下り始動点ADCへの列車到来時には先ず切替回路部56に第1切替状態をとらせることにより終止点用踏切制御子22に下り拡張点BBDCの下り第1検知点48aに係る列車検知を行わせ、その後の下り第1検知点48aへの列車進行時には切替回路部56に第2切替状態をとらせることにより終止点用踏切制御子22に下り終止点BDCの下り第2検知点48bに係る列車検知を行わせるものとなっている。   The switching control unit 55 including the relay circuits 55a, 55b, 55c, 55d, and 55e is built in the casing, and the contact output of the down SR relay is output from the railroad crossing control device 31 as a determination result of the train direction determination unit. When the train arrives at the descending starting point ADC, the first switching state is first caused by the switching circuit unit 56 to cause the end point crossing controller 22 to detect the descending extension point BBDC. The train detection related to the point 48a is performed, and when the train moves to the first descending detection point 48a thereafter, the switching circuit unit 56 is brought into the second switching state, thereby causing the end point crossing controller 22 to detect the descending termination point BDC. Train detection related to the second descending detection point 48b is performed.

また、切替制御部55は、下り始動点ADCへの列車到来時から下り第1検知点48aへの列車進行時までの期間以外は切替回路部56に第2切替状態をとらせることにより、列車が終止点用踏切制御子22の列車検知区間内において煽った場合にも終止点用踏切制御子22の緩放時素及び警報Rリレーの緩動時素(図4の警報Rリレー回路31cを参照)の間は警報停止することが回避されて安全が確保されるという利点1と、既存の検測用列車をそのまま使用して下り終止点BDCの列車検知区間長を測定することができるという利点2とを、何れも享受しうるものとなっている。   Further, the switching control unit 55 causes the switching circuit unit 56 to enter the second switching state except for a period from when the train arrives at the descending start point ADC to when the train proceeds to the descending first detection point 48a. 4 when the end point crossing controller 22 travels within the train detection section, the release point element of the end point crossing controller 22 and the alarm element of the alarm R relay slowly (the alarm R relay circuit 31c in FIG. The advantage 1 is that safety is ensured by avoiding the alarm stop during the period of reference), and the train detection section length of the stop point BDC can be measured using the existing inspection train as it is. Both benefits 2 can be enjoyed.

通過完了判定手段57は(図2参照)、常時落下している下第2終止Rリレーを主体としたリレー回路からなり、下切替Rリレーの落下接点と下第1終止Rリレーの動作接点と中継リレーBPPRの動作接点とを条件として下第2終止Rリレーが動作(励磁,有意状態)するものであり、この下第2終止Rリレーの接点出力を、従来の終止点用踏切制御子22のリレー出力BPR(下終止R)に代わる新たな終止条件として、接続端子54aと踏切器具箱内配線46とを介して、踏切制御装置31に送出するようになっている(図4も参照)。   The passage completion determining means 57 (see FIG. 2) is composed of a relay circuit mainly composed of a lower second end R relay that is constantly falling, and includes a drop contact of the lower switching R relay and an operation contact of the lower first end R relay. The lower second end R relay operates (excited, significant state) on the condition that the relay relay BPPR operates, and the contact output of the lower second end R relay is used as a conventional end point crossing controller 22. As a new termination condition in place of the relay output BPR (lower termination R), the relay output BPR is sent to the railroad crossing control device 31 via the connection terminal 54a and the railroad crossing equipment box wiring 46 (see also FIG. 4). .

そして(図2参照)、下り始動点ADCの列車検知区間への下り列車の進入を検知した始動点用踏切制御子21のリレー出力APR(下始動R)の落下(無励磁,有意状態)に応じて落下(無励磁,有意状態)する下りSRリレー(下りの列車運転方向指示)の落下を条件とする下切替Rリレーが動作(励磁,有意状態)し、その後に下り拡張点BBDCまで進んで下り第1検知点48aに係る列車検知区間に進入した下り列車を検知した終止点用踏切制御子22のリレー出力BPRの動作(励磁,有意状態)に応じて下第1終止Rリレーが動作(励磁,有意状態)し、更に下り終止点BDCまで進んで下り第2検知点48bに係る列車検知区間に進入した下り列車を検知した終止点用踏切制御子22のリレー出力BPRとその中継リレーBPPRが動作(励磁,有意状態)すると、下第2終止Rリレーが動作(励磁,有意状態)するようになっている。また、この下第2終止Rリレーの動作によって踏切制御装置31では下りSRリレーが動作(励磁,無意状態)するので警報停止の準備が整うようになっている(図4の下りSRリレー回路31bを参照)。   Then (see FIG. 2), when the relay output APR (lower start R) of the start point crossing controller 21 that detects the entry of the lower train into the train detection section of the lower start point ADC falls (no excitation, significant state). The lower switching R relay is activated (excited, significant state) on condition that the falling SR relay (downward train operation direction instruction) falls in response (non-excited, significant state), and then proceeds to the downward extension point BBDC. The first lower end R relay operates in accordance with the operation (excitation, significant state) of the relay output BPR of the end point crossing controller 22 that has detected the lower train that has entered the train detection section related to the first detection point 48a. (Excitation, significant state) and further to the descending end point BDC, the relay output BPR of the end point crossing controller 22 that detects the descending train that has entered the train detecting section related to the descending second detection point 48b and its relay relay B PR operation (excitation, significant condition), the adapted to lower the second end R relay operates (excitation, significant condition). In addition, since the lower SR relay operates (excited, involuntary state) in the level crossing control device 31 by the operation of the lower second end R relay, the alarm stop preparation is ready (down SR relay circuit 31b in FIG. 4). See).

さらに、通過完了判定手段57は(図2参照)、下り列車が下り終止点BDCの下り第2検知点48bに係る列車検知区間を進出すると、終止点用踏切制御子22のリレー出力BPRが落下(無励磁,無意状態)し、その中継リレーBPPRも落下(無励磁,無意状態)するので、下第2終止Rリレーが落下(無励磁,無意状態)するようになっている。また、終止点用踏切制御子22のリレー出力BPRの落下(無励磁,無意状態)に応じて、踏切制御装置31では(図4の警報Rリレー回路31cを参照)、リレー出力BPRの落下から例えば1〜4秒ほどの緩動時素の経過後に、警報Rリレーが動作(励磁,無意状態)して、踏切警報が停止するようになっている。そして、このような通過完了判定手段57は、下り始動点ADCへの列車進入と下り第1検知点48aへの列車進入と下り第2検知点48bからの列車進出とがその順に行われたか否かを判別してその順に行われたときには踏切8を下り列車が通過し終えたと判定するものであって、その判定結果を踏切制御装置31に送出して踏切警報の停止に供するものとなっている。   Further, the passage completion determining means 57 (see FIG. 2), when the descending train advances the train detection section related to the descending second detection point 48b of the descending stop point BDC, the relay output BPR of the end point crossing controller 22 falls. Since the relay relay BPPR is also dropped (no excitation, involuntary state), the lower second end R relay is dropped (no excitation, involuntary state). Further, according to the drop of the relay output BPR (non-excited, involuntary state) of the end point crossing controller 22, the level crossing control device 31 (see the alarm R relay circuit 31c in FIG. 4) starts from the drop of the relay output BPR. For example, the alarm R relay is activated (excited, involuntary) after a slow movement of about 1 to 4 seconds, and the crossing alarm is stopped. Then, such a passage completion determination means 57 determines whether the train approach to the descending start point ADC, the train approach to the descending first detection point 48a, and the train advancement from the descending second detection point 48b are performed in that order. When it is performed in that order, it is determined that the descending train has passed through the level crossing 8, and the determination result is sent to the level crossing control device 31 to be used for stopping the level crossing alarm. Yes.

障検マスク形成手段58は、下第1終止Rリレーの動作接点と終止点用踏切制御子22のリレー出力BPRの動作接点とを並列にしたリレー回路からなり、その並列回路で形成した下マスクRリレー信号を、接続端子54cと踏切器具箱内配線46を介して、踏切障害物検知の下り側マスク条件として、踏切障害物検知装置35に送出するようになっている。下第1終止Rリレーは、下りSRリレー信号(列車方向判別手段の判別結果)に応動する下切替Rリレーの出力と終止点用踏切制御子22のリレー出力BPR(第1列車検知手段の列車検知結果および第2列車検知手段の列車検知結果)とに基づいて、上述したように下り列車が下り拡張点BBDCの下り第1検知点48aに係る列車検知区間に進入したときから下り終止点BDCの下り第2検知点48bに係る列車検知区間を進出するまでの期間だけ動作(励磁,有意)状態になるので、下第1終止Rリレーの信号から生成された下マスクRリレー信号は、下り第1検知点48aへの列車進入と下り第2検知点48bからの列車進出とに亘る障検マスク区間に対応した信号となる(図1参照)。   The fault detection mask forming means 58 comprises a relay circuit in which the operation contact of the lower first end R relay and the operation contact of the relay output BPR of the end point crossing controller 22 are arranged in parallel, and the lower mask formed by the parallel circuit. The R relay signal is sent to the level crossing obstacle detection device 35 as a descending mask condition for level crossing obstacle detection via the connection terminal 54c and the rail 46 in the level crossing equipment box. The lower first end R relay is connected to the output of the lower switching R relay that responds to the downward SR relay signal (the determination result of the train direction determination means) and the relay output BPR of the end point crossing controller 22 (the train of the first train detection means). Based on the detection result and the train detection result of the second train detection means), as described above, the descending stop point BDC from when the descending train enters the train sensing section related to the descending first sensing point 48a of the descending extension point BBDC. Since the operation (excitation, significant) state is made only during the period until the train detection zone related to the second descending detection point 48b is advanced, the lower mask R relay signal generated from the signal of the lower first termination R relay is It becomes a signal corresponding to the fault detection mask section that extends from the train approach to the first detection point 48a and the train advancement from the descending second detection point 48b (see FIG. 1).

それだけでも下マスクRリレー信号は障害物検知装置のマスク条件として理想的なものと言えるが(図19参照)、この障検マスク形成手段58にあっては(図2参照)、終止点用踏切制御子22のリレー出力BPRの動作接点を付加したことにより、例え下第1終止Rリレーが動作不能になった場合でも、従来と同等の機能がリレー出力BPRによって維持されるようになっているので、安全性が高まっている。また、踏切障害物検知装置35は(図5(a)参照)、その内部構成は従来のままでも、外部入力の変更によって、下り列車に係る障検マスク区間が、踏切8の通過先の部分しか占めていなかった狭い旧区間から、踏切8を区間内に収めた広い新区間に拡張されたものとなっている(図1参照)。   Even so, the lower mask R relay signal can be said to be an ideal mask condition for the obstacle detection device (see FIG. 19). However, in this obstacle detection mask forming means 58 (see FIG. 2), the crossing for the end point By adding the operation contact of the relay output BPR of the controller 22, even if the first termination R relay becomes inoperable, the function equivalent to the conventional one is maintained by the relay output BPR. So safety is increasing. Further, the level crossing obstacle detection device 35 (see FIG. 5A) is a part where the level crossing 8 passes through the obstacle mask section related to the down train by changing the external input even if the internal configuration remains the same. It has been expanded from a narrow old section, which only occupied, to a wide new section in which the level crossing 8 is accommodated in the section (see FIG. 1).

踏切制御切替装置60は(図3参照)、上述したように上記の踏切制御切替装置50と同一構造のもので良いので、繰り返しとなる詳細な説明は割愛して、ここでは、踏切制御切替装置50との対比説明と、構成の概要説明とを行う。詳述した踏切制御切替装置50との対比では、起点側と終点側を入れ替え、下り列車を上り列車にし、下り側の線路10を上り側の線路10にし、下り拡張点BBDCの下り第1検知点48aを上り拡張点DDDCの上り第1検知点47aにし、第1接続線A1d,B1dを第1接続線A1u,B1uにし、第2接続線A2d,B2dを第2接続線A2u,B2uにし、終止点用踏切制御子22のリレー出力BPRを終止点用踏切制御子24のリレー出力DPRにし、下切替Rリレーを上切替Rリレーにし、下第1終止Rリレーを上第1終止Rリレーにし、中継リレーBPPRを中継リレーDPPRにし、BPPSLRリレーをDPPSLRリレーにし、下第1終止リセットRリレーを上第1終止リセットRリレーにし、下第1終止Rリレーを上第2終止Rリレーにすることで、踏切制御切替装置60の設置の前提条件の設定状態と踏切制御切替装置60の詳細な構成とが説明される。   The crossing control switching device 60 (see FIG. 3) may have the same structure as the above-described crossing control switching device 50 as described above, and therefore, a detailed description that will not be repeated is omitted here. 50 and the outline of the configuration will be described. In comparison with the crossing control switching device 50 described in detail, the start side and the end point are switched, the down train is set as the up train, the down side track 10 is set as the up side track 10, and the down first detection of the down extension point BBDC is performed. The point 48a is the upstream first detection point 47a of the upstream extension point DDDC, the first connection lines A1d and B1d are the first connection lines A1u and B1u, the second connection lines A2d and B2d are the second connection lines A2u and B2u, The relay output BPR of the end point crossing controller 22 is set to the relay output DPR of the end point crossing controller 24, the lower switch R relay is set to the upper switch R relay, and the lower first stop R relay is set to the upper first stop R relay. The relay relay BPPR is the relay relay DPPR, the BPPSLR relay is the DPPSLR relay, the lower first termination reset R relay is the upper first termination reset R relay, and the lower first termination R relay By the above second end R relays, detailed configuration of the crossing control switching device 60 prerequisites set state and crossing control switching device 60 of the installation and are described.

そして、踏切制御切替装置60は(図1,図3参照)、鉄道の線路10を横切る踏切8から離れた所で上り側の線路10に設定された上り始動点CDCと踏切8との間で上り側の線路10に設定された終止点であって踏切8から列車検知区間が外れている上り第1検知点47aの所で線路10に接続された第1接続線A1u,B1uと、踏切8に列車検知区間が掛かり且つ該列車検知区間の両端のうち上り第1検知点47aから遠い方の区間端と上り第1検知点47aとが踏切8の両側に分かれる状態で線路10に設定された上り第2検知点47bの所で線路10に接続された第2接続線A2u,B2uとのうち、何れか一方の接続線を選択して開電路形の終止点用踏切制御子24と接続させることにより終止点用踏切制御子24に時分割で二台分の列車検知機能を発揮させるものとなっている。   The railroad crossing control switching device 60 (see FIGS. 1 and 3) is located between the ascending starting point CDC and the railroad crossing 8 set on the upstream rail 10 at a location away from the railroad crossing 8 that crosses the railroad track 10. The first connection lines A1u and B1u connected to the track 10 at the first detection point 47a that is the end point set on the track 10 on the upstream side and is outside the train detection section from the railroad crossing 8, and the railroad crossing 8 Is set on the track 10 in such a state that the end of the train detection section and the end of the section far from the first detection point 47a and the first detection point 47a are separated on both sides of the railroad crossing 8. One of the second connection lines A2u and B2u connected to the line 10 at the second upstream detection point 47b is selected and connected to the open-circuit type end point crossing controller 24. To the end point crossing controller 24 in a time-sharing manner. It has become a thing to exert the train detection function of the base amount.

また、踏切制御切替装置60は、一ユニット化のための筐体を有するとともに、この筐体に内蔵されたリレー回路からなる切替制御部65と切替回路部66と通過完了判定手段67と障検マスク形成手段68を具備している。
踏切制御切替装置60の筐体には、第1接続線A1u,B1uに対する接続手段と、第2接続線A2u,B2uに対する接続手段と、終止点用踏切制御子24に対する接続手段と、上り側の線路10に係る列車在線と踏切8への列車接近を判別して踏切警報を発する踏切制御装置31に対する接続手段と、踏切制御装置31の上り側マスクの入力部に対する接続手段とが設けられている。
Further, the railroad crossing control switching device 60 has a housing for unitization, and includes a switching control unit 65, a switching circuit unit 66, a passage completion determination unit 67, and a failure detection unit that are configured by a relay circuit incorporated in the housing. Mask forming means 68 is provided.
The casing of the level crossing control switching device 60 includes connection means for the first connection lines A1u and B1u, connection means for the second connection lines A2u and B2u, connection means for the end point crossing controller 24, and an upstream side. Connecting means for the railroad crossing control device 31 that issues a railroad crossing warning by discriminating the train approaching to the railroad crossing 10 and the railroad crossing 8 and connecting means for the input portion of the upstream mask of the railroad crossing control device 31 are provided. .

切替制御部65は、第1切替状態では終止点用踏切制御子24と第1接続線A1u,B1uとを接続させるが、第2切替状態では終止点用踏切制御子24と第2接続線A2u,B2uとを接続させるようになっている。
切替回路部66は、上り始動点CDCへの列車到来時には先ず切替制御部65に第1切替状態をとらせることにより終止点用踏切制御子24に上り拡張点DDDCの上り第1検知点47aに係る列車検知を行わせ、その後の上り第1検知点47aへの列車進行時には切替制御部65に第2切替状態をとらせることにより終止点用踏切制御子24に上り終止点DDCの上り第2検知点47bに係る列車検知を行わせ、上り始動点CDCへの列車到来時から上り第1検知点47aへの列車進行時までの期間以外は切替制御部65に第2切替状態をとらせるようになっている。
The switching control unit 65 connects the end point crossing controller 24 and the first connection lines A1u and B1u in the first switching state, but in the second switching state, the end point crossing controller 24 and the second connection line A2u. , B2u are connected to each other.
When the train arrives at the ascending starting point CDC, the switching circuit unit 66 first causes the switching control unit 65 to enter the first switching state, thereby causing the end point crossing controller 24 to change to the ascending first detection point 47a of the ascending extension point DDDC. Such train detection is performed, and when the train travels to the first ascending first detection point 47a, the switching control unit 65 takes the second switching state, thereby causing the end point crossing controller 24 to ascend the second ascending end point DDC. Train detection related to the detection point 47b is performed, and the switching control unit 65 is set to the second switching state except for a period from when the train arrives at the ascending start point CDC until when the train travels to the ascending first detection point 47a. It has become.

通過完了判定手段67は、上り始動点CDCへの列車進入と上り拡張点DDDCの上り第1検知点47aへの列車進入と上り終止点DDCの上り第2検知点47bへの列車進入及び列車進出とがその順に行われたか否かを判別してその順に行われたときには踏切8を上り列車が通過し終えたと判定するとともに、その判定結果である上第2終止Rリレーの接点出力を踏切制御装置31に送出して踏切警報の停止に供するようになっている。具体的には、踏切制御装置31では、上第2終止Rリレーの動作にて上りSRリレーが動作し(図4の上りSRリレー回路31aを参照)、その上りSRリレーの接点出力と終止点用踏切制御子24のリレー出力DPRが警報Rリレー回路31cに条件として入力されている。
障検マスク形成手段68は(図3参照)、上り拡張点DDDCの上り第1検知点47aへの列車進入と上り拡張点DDDCの上り第2検知点47bからの列車進出とに亘る障検マスク区間に対応した上マスクRリレー信号を生成するとともに、この上マスクRリレー信号を上り側マスク条件として踏切障害物検知装置35へ送出するようになっている。
Passing completion judging means 67 is for entering the train to the ascending start point CDC, entering the train to the first detection point 47a of the ascending extension point DDDC, entering the train to the second sensing point 47b of the ascending end point DDC, and entering the train. Are determined in that order, and when they are performed in that order, it is determined that the up train has finished passing through the crossing 8, and the contact output of the second stop R relay, which is the determination result, is controlled at the level crossing. It is sent to the device 31 to be used for stopping the railroad crossing alarm. Specifically, in the level crossing control device 31, the up SR relay operates by the operation of the upper second end R relay (see the up SR relay circuit 31a in FIG. 4), and the contact output and the end point of the up SR relay. The relay output DPR of the railroad crossing controller 24 is input as a condition to the alarm R relay circuit 31c.
The obstacle detection mask forming means 68 (see FIG. 3) includes an obstacle detection mask covering the train approach from the upstream extension point DDDC to the first upstream detection point 47a and the train advancement from the upstream second extension point DDDC to the second upstream detection point 47b. An upper mask R relay signal corresponding to the section is generated, and the upper mask R relay signal is sent to the crossing obstacle detection device 35 as an upstream mask condition.

この実施例1の踏切保安装置40及び踏切制御切替装置50,60について、その使用態様及び動作を、図面を引用して説明する。
図6は、複線区間で下り列車が来たときの列車検知と踏切制御とに係るリレー信号等のタイムチャートであり、図5(b)〜(e)は、下り列車が来たときの列車検知と踏切障害物検知とに係るリレー信号等のタイムチャートである。
Regarding the railroad crossing safety device 40 and the railroad crossing control switching devices 50 and 60 according to the first embodiment, usage modes and operations thereof will be described with reference to the drawings.
FIG. 6 is a time chart of relay signals and the like related to train detection and crossing control when a down train arrives in a double track section, and FIGS. 5 (b) to 5 (e) are trains when a down train arrives. It is a time chart of a relay signal etc. concerning detection and level crossing obstacle detection.

複線区間の線路10に対して新たに踏切保安装置40を設置する場合は上述した構成通りに踏切制御子21,22,23,24や,踏切制御装置31,警報灯32,踏切遮断機33,踏切障害物検知装置35,踏切制御切替装置50,60の配設とそれらに係る配線を行えば良く、既設の複線区間における踏切保安装置37に踏切制御切替装置50,60を追加して踏切保安装置37を踏切保安装置40にする場合は踏切制御切替装置50,60を追加してからそれに係る配線を変更すれば良いが、何れの場合も、設置が済んだら運用を開始する前に、第1接続線A1,B1と第2接続線A2,B2との長さの相違に基づく接続線切替時のインピーダンス変化に起因する照査用発振信号の不所望な変動を解消するために、照査用発振信号のレベル調整を行う。   When a new level crossing safety device 40 is installed on the track 10 in the double track section, the level crossing controllers 21, 22, 23, 24, the level crossing control device 31, the warning light 32, the level crossing breaker 33, as described above, The level crossing obstacle detection device 35 and the level crossing control switching devices 50 and 60 may be arranged and wired accordingly. The level crossing control switching devices 50 and 60 are added to the level crossing safety device 37 in the existing double-track section, and the level crossing security is achieved. When the device 37 is used as the railroad crossing safety device 40, the crossing control switching devices 50 and 60 may be added and then the wiring related thereto may be changed. However, in any case, after the installation is completed, the first operation is started. In order to eliminate undesired fluctuations in the oscillation signal for verification caused by the impedance change at the time of connection line switching based on the difference in length between the first connection line A1, B1 and the second connection line A2, B2, the oscillation for verification Signal level Do Le adjustment.

この踏切制御切替装置50,60の切替回路部56,66では、拡張点BBDC,DDDCの第1検知点48a,47aに係る接続線A1,B1に接続された分岐配線a1,b1には可変容量部56a,66a(第2調整部)が無く、終止点BDC,DDCの第2検知点48b,47bに係る接続線A2,B2に接続された分岐配線a2,b2の側にだけ可変容量部56a,66a(第2調整部)が組み込まれているので、例えばレベル調整の間だけ下りSRリレーや上りSRリレーの模擬信号を外部から接続端子54b等を介して切替制御部55,65に送り込むといったことにより、先ず切替回路部56,66に第1切替状態をとらせて接続線A1,B1に照査用発振信号を送出しながら終止点用踏切制御子22,24の調整器25a(第1調整部)にて拡張点BBDC,DDDCの第1検知点48a,47aに係る照査用発振信号のレベル調整を済ませる。   In the switching circuit portions 56 and 66 of the crossing control switching devices 50 and 60, the branch lines a1 and b1 connected to the connection lines A1 and B1 related to the first detection points 48a and 47a of the extension points BBDC and DDDC have variable capacitances. There is no portion 56a, 66a (second adjustment portion), and the variable capacitance portion 56a is provided only on the side of the branch lines a2, b2 connected to the connection lines A2, B2 related to the second detection points 48b, 47b of the end points BDC, DDC. , 66a (second adjustment unit) is incorporated, for example, a simulated signal of the down SR relay or the up SR relay is sent from the outside to the switching control unit 55, 65 via the connection terminal 54b or the like only during the level adjustment. As a result, first, the switching circuit units 56 and 66 are set to the first switching state to send the check oscillation signal to the connection lines A1 and B1, and the adjuster 25a ( Extension point BBDC at first adjusting portion), a first detection point 48a of DDDC, the level adjustment of Shosa oscillation signal according to 47a dispense.

それから、切替回路部56,66に第2切替状態をとらせて接続線A2,B2に照査用発振信号を送出しながら切替回路部56,66の可変容量部56a,66a(第2調整部)にて終止点BDC,DDCの第2検知点48b,47bに係る照査用発振信号のレベル調整も行って、第1,第2切替状態における照査用発振信号のレベルを一致させる。
こうして、簡便に、拡張点BBDC,DDDCの第1検知点48a,47aでも終止点BDC,DDCの第2検知点48b,47bでも列車検知が的確に行える状態になるので、踏切保安装置40を稼動させる。
Then, the variable capacitance units 56a and 66a (second adjusting unit) of the switching circuit units 56 and 66 are set while the switching circuit units 56 and 66 are set in the second switching state and sending the oscillation signal for verification to the connection lines A2 and B2. The level of the oscillation signal for verification related to the second detection points 48b and 47b at the end points BDC and DDC is also adjusted to match the levels of the oscillation signal for verification in the first and second switching states.
Thus, the train crossing safety device 40 is operated because the train detection can be performed accurately at the first detection points 48a and 47a at the extension points BBDC and DDDC and at the second detection points 48b and 47b at the end points BDC and DDC. Let

上述したように踏切制御装置31が終止Rリレーとして終止点用踏切制御子22のリレー出力BPRや終止点用踏切制御子24のリレー出力DPRに加えて又はそれに代えて入力するようになった下第2終止Rリレーの出力信号や上第2終止Rリレーの出力信号は、やはり上述したように通過完了判定手段57,67によって下り拡張点BBDCの下り第1検知点48aや上り拡張点DDDCの上り第1検知点47aに係る列車検知結果を含まないように処理されて、下り終止点BDCの下り第2検知点48bや上り終止点DDCの上り第2検知点47bに係る列車検知結果だけを含んだものとなる。   As described above, the level crossing control device 31 inputs the relay output BPR of the end point crossing controller 22 in addition to or instead of the relay output DPR of the end point crossing controller 24 as the end R relay. As described above, the output signal of the second end R relay and the output signal of the upper second end R relay are passed through the first detection point 48a at the downstream extension point BBDC and the first extension point DDDC by the passage completion determination means 57 and 67. Processed so as not to include the train detection result relating to the first ascending detection point 47a, only the train detection result relating to the second descending detection point 48b of the descending stop point BDC and the second sensing point 47b of the ascending stop point DDC It will be included.

そのため、踏切制御切替装置50,60が導入されていても、踏切制御装置31による踏切警報の制御等は、従来通り行われるが、すなわち下り終止点BDCの下り第2検知点48bや上り終止点DDCの上り第2検知点47bに係る点CDCに係る列車検知区間への列車進入から下り終止点BDCや上り終止点DDCに係る列車検知区間からの列車進出までの踏切制御区間に対応して踏切警報が発せられるが、従来と異なり、踏切制御区間の終端位置すなわち下り終止点BDCや上り終止点DDCに係る列車検知区間の両端のうち列車進出側の区間端が、踏切8の踏切道の両端のうち列車進出側の縁端に近いので、列車が踏切8を通過し終えると速やかに踏切警報が停止する。   Therefore, even if the crossing control switching devices 50 and 60 are introduced, the control of the crossing alarm by the crossing control device 31 is performed as usual, that is, the second down detection point 48b of the down end point BDC and the up end point. Railroad crossing corresponding to the railroad crossing control section from the train approach to the train detection zone related to the point CDC related to the second DC detection point 47b of the DDC to the train stoppage from the train detection zone related to the downward stop point BDC or the upstream stop point DDC An alarm is issued, but unlike the conventional system, the end position of the railroad crossing control section, that is, the end of the train detection side of both ends of the train detection section related to the down end point BDC and the up end point DDC, Because the train is close to the edge on the train advance side, when the train finishes passing the railroad crossing 8, the railroad crossing warning is promptly stopped.

その動作状態をタイムチャートを参照しながら詳述する。向きは反対になるが、上り側でも下り側でも、同様の動作になるので、複線区間の下り側を具体例にして詳述する(図6参照)。線路10を走行する列車が踏切8の近くに全く存在しない状態では(図6における時刻t0の所を参照)、始動点用踏切制御子21のリレー出力APRが動作(励磁,無意状態)し、終止点用踏切制御子22のリレー出力BPRが落下(無励磁,無意状態)し、下りSRリレーが動作(励磁,無意状態)し、下切替Rリレーが落下(無励磁,無意状態)しているので、終止点用踏切制御子22が第2接続線A2,B2を介して下り終止点BDCの下り第2検知点48bに接続されてそこに照査用発振信号が送出されている。下第1終止Rリレーも、中継リレーBPPRも,BPPSLRリレーも,下第1終止リセットRリレーも,下第2終止Rリレーも、落下(無励磁,無意状態)になっている。警報Rリレーは動作(励磁,無意状態)になっているので、踏切警報は停止している。   The operation state will be described in detail with reference to a time chart. Although the directions are opposite, the same operation is performed on both the upstream side and the downstream side, and therefore the downstream side of the double-track section will be described in detail as a specific example (see FIG. 6). In a state where no train traveling on the track 10 exists near the railroad crossing 8 (see the time t0 in FIG. 6), the relay output APR of the starting point crossing controller 21 operates (excitation, involuntary state) The relay output BPR of the end point crossing controller 22 drops (no excitation, involuntary state), the descending SR relay operates (excitation, involuntary state), and the lower switching R relay drops (no excitation, involuntary state) Therefore, the end point crossing controller 22 is connected to the second descending detection point 48b of the descending end point BDC via the second connection lines A2 and B2, and an oscillation signal for verification is sent there. The lower first end R relay, the relay relay BPPR, the BPPSLR relay, the lower first end reset R relay, and the lower second end R relay are in a fall state (no excitation, involuntary state). Since the alarm R relay is in operation (excitation, involuntary state), the railroad crossing alarm is stopped.

そのような状態で、踏切8に向かって線路10を走行して来た下り列車が下り始動点ADCの列車検知区間に進入すると(時刻t1)、始動点用踏切制御子21のリレー出力APR(下始動R)が落下(無励磁,有意状態)し、これに応じて下りSRリレーが落下(無励磁,有意状態)し、これに応じて下切替Rリレーが動作(励磁,有意状態)するとともに警報Rリレーが落下(無励磁,有意状態)するので、踏切警報が開始されるとともに、終止点用踏切制御子22が第1接続線A1,B1を介して下り終止点BDCの下り第2検知点48bに接続されてそこの列車検知を行うようになる。下り列車が下り始動点ADCの列車検知区間を通過すると(時刻t2)、始動点用踏切制御子21のリレー出力APR(下始動R)は動作(励磁,無意状態)するが、他のリレーには変化がない。   In such a state, when a down train that has traveled on the track 10 toward the level crossing 8 enters the train detection section of the down start point ADC (time t1), the relay output APR ( Lower start R) falls (no excitation, significant state), and the corresponding downward SR relay falls (no excitation, significant state) accordingly, and the lower switching R relay operates (excitation, significant state) accordingly At the same time, since the alarm R relay falls (no excitation, significant state), a level crossing alarm is started, and the end point crossing controller 22 is connected to the second descending stop point BDC via the first connection lines A1 and B1. The train is detected by being connected to the detection point 48b. When the down train passes through the train detection section of the down start point ADC (time t2), the relay output APR (down start R) of the start point crossing controller 21 operates (excitation, involuntary state), but other relays There is no change.

そして、下り列車が下り拡張点BBDCの下り第1検知点48aの列車検知区間に進入すると(時刻t3)、終止点用踏切制御子22のリレー出力BPRが動作(励磁,有意状態)し、これに応じて且つ下切替Rリレーが動作(励磁,有意状態)していることを条件として下第1終止Rリレーが動作(励磁,有意状態)する。それから下第1終止Rリレーの動作により、下切替Rリレーが落下(無励磁,無意状態)し、終止点用踏切制御子22が第2接続線A2,B2を介して下り終止点BDCの下り第2検知点48bに接続されてそこの列車検知を行うようになるが、下り列車が未だそこまで進行していないので、終止点用踏切制御子22のリレー出力BPRは更に自己の緩放時素の経過後に落下(無励磁,無意状態)する。なお、このとき中継リレーBPPRの動作条件が一瞬だけ成立するが(図6の二点鎖線を参照)、中継リレーBPPRの緩動時素が終止点用踏切制御子22のリレー出力BPRの緩放時素より大きいので中継リレーBPPRは動作しない。   When the descending train enters the train detection section of the descending first detection point 48a of the descending extension point BBDC (time t3), the relay output BPR of the end crossing controller 22 is activated (excited, significant state). Accordingly, the lower first end R relay operates (excitation, significant state) on the condition that the lower switching R relay operates (excitation, significant state). Then, the lower switching R relay is dropped (no excitation, involuntary state) by the operation of the lower first end R relay, and the end point crossing controller 22 descends the lower end point BDC via the second connection lines A2 and B2. Connected to the second detection point 48b to detect the train there, but since the descending train has not yet progressed to that point, the relay output BPR of the end crossing controller 22 further increases when it is released slowly. It falls after the element has passed (no excitation, involuntary state). At this time, the operating condition of the relay relay BPPR is satisfied for a moment (see the two-dot chain line in FIG. 6), but the relay relay BPPR is slowly released when the relay output BPR of the end point crossing controller 22 is released slowly. The relay relay BPPR does not operate because it is larger than the time.

また、終止点用踏切制御子22が下り終止点BDCの下り第2検知点48bに接続されて下り拡張点BBDCの下り第1検知点48aから切り離されたため、終止点用踏切制御子22の列車検知や各リレーの動作状態に何ら影響することなく、下り列車は下り第2検知点48bの列車検知区間を走行する(時刻t4)。そして、下り列車が下り終止点BDCの下り第2検知点48bの列車検知区間に進入すると(時刻t5)、終止点用踏切制御子22のリレー出力BPRが再び動作(励磁,有意状態)し、これに応じて且つ下切替Rリレーが落下(無励磁,無意状態)していることを条件として緩動時素の経過後に中継リレーBPPRが動作(励磁,有意状態)し、これに応じてBPPSLRリレーも動作(励磁,有意状態)する。さらに、中継リレーBPPRの動作に応じて且つ下切替Rリレーが落下(無励磁,無意状態)していることと下第1終止Rリレーが動作していることを条件として下第2終止Rリレーが動作(励磁,有意状態)し、これに応じて下りSRリレーが動作(励磁,無意状態)する。   Further, since the end point crossing controller 22 is connected to the second descending detection point 48b of the descending end point BDC and disconnected from the first descending detection point 48a of the descending extension point BBDC, the train of the end point crossing controller 22 is used. The down train travels in the train detection section of the second down detection point 48b without affecting the detection or the operating state of each relay (time t4). When the descending train enters the train detection section of the descending second detection point 48b of the descending end point BDC (time t5), the relay output BPR of the end point crossing controller 22 operates again (excitation, significant state), In response to this, the relay relay BPPR operates (excited, significant state) after the slow-moving element expires on condition that the lower switching R relay is dropped (no excitation, involuntary state), and BPPSLR responds accordingly. The relay also operates (excited, significant state). Further, the lower second end R relay is operated in accordance with the operation of the relay relay BPPR and on condition that the lower switching R relay is dropped (no excitation, involuntary state) and the lower first end R relay is operating. Operates (excitation, significant state), and the down SR relay operates (excitation, involuntary state) accordingly.

それから、下り列車が踏切8の踏切道を通過して下り終止点BDCの下り第2検知点48bの列車検知区間を進出すると(時刻t6)、終止点用踏切制御子22のリレー出力BPRが緩放時素の経過後に落下(無励磁,無意状態)し、これに応じて且つ下りSRリレーが動作(励磁,無意状態)していることを条件として、リレー出力BPRの落下から警報Rリレーの緩動時素の経過後に(時刻t7)、警報Rリレーが動作(励磁,無意状態)し、踏切警報が停止する。この警報停止のタイミングは、下り列車が踏切8の踏切道を完全に通過し終えた後でありながら、踏切8から終点側へ離れている従来の下り終止点BDCを下り列車が進出し(時刻t8)更に緩動時素が経過したとき(時刻t9)に比べて、かなり早くなっている(図6短破線参照)。
そのため、踏切保安装置40を設置した踏切8にあっては、列車通過後における道路通行者の待ち時間が十分に短縮されている。
Then, when the descending train passes through the railroad crossing of the railroad crossing 8 and advances to the train detection section of the descending second detection point 48b of the descending termination point BDC (time t6), the relay output BPR of the railroad crossing controller 22 for the termination point becomes slow. It falls after the time-lapse element has passed (no excitation, involuntary state), and on the condition that the descending SR relay operates (excitation, involuntary state) accordingly, the alarm R relay is After the elapse of slow movement (time t7), the alarm R relay operates (excitation, involuntary state), and the level crossing alarm stops. This alarm stop timing is after the down train has completely passed the level crossing of the level crossing 8, but the down train has advanced to the conventional down end point BDC that is far from the level crossing 8 toward the end point (time) t8) It is considerably faster than when the slow motion element has passed (time t9) (see the short broken line in FIG. 6).
Therefore, in the level crossing 8 in which the level crossing safety device 40 is installed, the waiting time of road passers after the train passes is sufficiently shortened.

さらに、上述した終止点用踏切制御子22のリレー出力BPRの落下(無励磁,無意状態)に応じて中継リレーBPPRが落下(無励磁,無意状態)し、これに応じて且つBPPSLRリレーが動作(励磁,有意状態)していることを条件として下第1終止リセットRリレーが動作(励磁,有意状態)し、これに応じて下第1終止Rリレーが落下(無励磁,無意状態)する。また、中継リレーBPPRの落下(無励磁,無意状態)に応じてBPPSLRリレーが緩放時素の経過後に落下(無励磁,無意状態)し、これに応じて下第1終止リセットRリレーが落下(無励磁,無意状態)する。これにより、終止点用踏切制御子22も踏切制御切替装置50もリレー等の状態が初期(時刻t0)の状態に戻るので、後続の下り列車に対しても上述したのと同様にして適切に踏切制御を行うことができる。   Further, the relay relay BPPR falls (no excitation, involuntary state) in response to the drop (no excitation, involuntary state) of the relay output BPR of the above-described end point crossing controller 22, and the BPPSLR relay operates in response to this. The lower first termination R relay operates (excitation, significant state) on condition that it is (excited, significant state), and the lower first termination R relay falls (non-excited, involuntary state) accordingly. . Also, the BPPSLR relay drops after the slow release time (no excitation, involuntary state) in response to the relay relay BPPR dropping (no excitation, involuntary state), and the lower first end reset R relay falls accordingly (No excitation, involuntary state). As a result, the level crossing controller 22 for the end point and the level crossing control switching device 50 return to the initial state (time t0). Crossing control can be performed.

次に、踏切制御切替装置50,60の導入によって拡張されるマスク条件とそれを入力する踏切障害物検知装置35の動作について説明する。向きは反対になるが、上り側でも下り側でも、同様の動作になるので、以下、既述した従来例(図18(b)〜(e)参照)と同様、複線区間の下り側を具体例にして詳述する(図5(b)〜(e)参照)。
図5(b)〜(e)は、上述したように、複線区間で下り列車が来たときの列車検知と踏切障害物検知とに係るリレー信号等のタイムチャートであり、図6は、切替制御部55や障検マスク形成手段58に係るリレー信号等のタイムチャートである。
Next, the mask conditions extended by the introduction of the level crossing control switching devices 50 and 60 and the operation of the level crossing obstacle detection device 35 for inputting the mask conditions will be described. Although the directions are opposite, since the same operation is performed on both the upstream side and the downstream side, the downstream side of the double-track section is specified in the same manner as in the conventional example described above (see FIGS. 18B to 18E). An example will be described in detail (see FIGS. 5B to 5E).
FIGS. 5B to 5E are time charts of relay signals and the like related to train detection and crossing obstacle detection when a down train arrives in a double track section, as described above, and FIG. 7 is a time chart of relay signals and the like related to a control unit 55 and a failure detection mask forming unit 58.

下り列車が下り側の線路10を走行して来て下り始動点ADCの列車検知区間に進入すると(図5(b)左側部分を参照)、それまで動作(励磁,無意状態)していた下りSRリレーが落下(無励磁,有意状態)して終止点用踏切制御子22は下り拡張点BBDCの下り第1検知点48aに係る列車検知を行うようになるが(図6の時刻t1を参照)、その時点では未だ下り列車が下り拡張点BBDCに到達していないことから、終止点用踏切制御子22のリレー出力BPRが動作(励磁,有意状態)しないので、下第1終止Rリレーも動作(励磁,有意状態)せず、下マスクRリレー信号も落下(無励磁,無意状態)したままであり(図5(c)左側部分を参照)、踏切障害物検知装置35は踏切8の踏切道に対する障害物の検知と検知時の警報出力を行う。   When the descending train travels on the descending track 10 and enters the train detection section of the descending starting point ADC (see the left part of FIG. 5 (b)), the descending that has been operating (excitation, involuntary state) until then The SR relay drops (no excitation, significant state), and the end point crossing controller 22 detects the train related to the first descending detection point 48a of the descending extension point BBDC (see time t1 in FIG. 6). ) At that time, since the down train has not yet reached the down extension point BBDC, the relay output BPR of the end point crossing controller 22 does not operate (excitation, significant state), so the lower first end R relay also The operation (excitation, significant state) is not performed, and the lower mask R relay signal also remains dropped (non-excited, involuntary state) (see the left part of FIG. 5 (c)). Detection and detection of obstacles on level crossings An alarm output.

そして、下り列車が進行して下り拡張点BBDCの下り第1検知点48aの列車検知区間に進入すると(図5(c)中央部分を参照)、終止点用踏切制御子22のリレー出力BPRが動作(励磁,有意状態)し(図6の時刻t3を参照)、それに応じて下第1終止Rリレーが動作(励磁,有意状態)し、それに応じて下マスクRリレー信号が動作(励磁,有意状態)するので(図5(c)中央部分を参照)、踏切障害物検知装置35では、踏切障害物検知の下り側マスクが働き、踏切8の踏切道に対する障害物の検知と検知時の警報出力が行われなくなる。   Then, when the descending train advances and enters the train detection section of the descending first detection point 48a of the descending extension point BBDC (see the center portion in FIG. 5C), the relay output BPR of the end point crossing controller 22 is Operates (excitation, significant state) (see time t3 in FIG. 6), and the lower first end R relay operates (excitation, significant state) accordingly, and the lower mask R relay signal operates (excitation, significant state) accordingly. (See the central part of FIG. 5 (c).) In the crossing obstacle detection device 35, the descending mask for detecting the crossing obstacle works to detect and detect the obstacle on the crossing road of the crossing 8. Alarm output is not performed.

それから、下り列車が更に進行して踏切8に差し掛かると(図5(d)中央部分を参照)、その下り列車に感応して踏切障害物検知装置35では障害物感応信号SSが不感状態から有感状態になるが、踏切障害物検知装置35では既に下り側マスクが効いているため、発報制御信号BZが無意(無警報状態)のまま変わらないので、誤報は出ない。
但し、ここでいう、不感状態、有感状態とは、当該列車のみに対する不感状態、有感状態であり踏切障害物検知としては、踏切警報が開始後、あるいは踏切警報が開始してから更に数秒(踏切により指定する)後から、マスク条件が成立するまでの間、有感状態となり、踏切道に滞留する障害物を検知する。
Then, when the descending train further progresses and reaches the railroad crossing 8 (see the center part of FIG. 5 (d)), the obstacle sensing signal SS is detected from the insensitive state in the railroad crossing obstacle detection device 35 in response to the descending train. Although it becomes a sensitive state, since the descending mask is already in effect at the level crossing obstacle detection device 35, the alarm control signal BZ remains unintentionally (no alarm state), so that no false alarm is generated.
However, the insensitive state and sensible state mentioned here are the insensitive state and sensible state only for the train, and as a level crossing obstacle detection, several seconds after the level crossing alarm starts or after the level crossing alarm starts. After being designated by a crossing until the mask condition is satisfied, an obstacle is detected and an obstacle staying on the crossing is detected.

そして、更に下り列車が走行して踏切8を完全に通り抜けると(図5(d)中央右寄り部分を参照)、踏切障害物検知装置35では障害物感応信号SSが有感状態から不感状態に戻るが、依然として下第1終止Rリレーが動作(励磁,有意状態)していて(図6の時刻t6の直前・少し左側を参照)、下マスクRリレー信号も動作(励磁,有意状態)したままなので(図5(c)中央右寄り部分を参照)、踏切障害物検知装置35から誤報が出ることはない。
それから、下り列車が走行して下り下り終止点BDCの下り第2検知点48bの列車検知区間をも完全に抜けると(図5(c)右側部分を参照)、終止点用踏切制御子22のリレー出力BPRが落下(無励磁,無意状態)し(図6の時刻t6を参照)、これに応じて下第1終止Rリレーが落下(無励磁,無意状態)するので、下マスクRリレー信号も落下(無励磁,無意状態)し(図5(c)右側部分を参照)、踏切障害物検知装置35が踏切8の踏切道に対する障害物の検知と検知時の警報出力を再開するとともに、踏切保安装置40の全体が列車非在線状態に戻る。
When the further down train travels and completely passes through the railroad crossing 8 (see the center right side portion in FIG. 5 (d)), the obstacle response signal SS returns from the sensitive state to the insensitive state in the crossing obstacle detection device 35. However, the lower first end R relay is still operating (excited, significant state) (see just before and slightly to the left of time t6 in FIG. 6), and the lower mask R relay signal is still operating (excited, significant state). Therefore (see FIG. 5C, the center right side portion), there is no false alarm from the crossing obstacle detection device 35.
Then, when the descending train travels and completely passes through the train detection section of the second descending detection point 48b of the descending and descending end point BDC (see the right side portion in FIG. 5 (c)), the end point crossing controller 22 The relay output BPR drops (no excitation, involuntary state) (see time t6 in FIG. 6), and the lower first end R relay falls (no excitation, involuntary state) accordingly, so the lower mask R relay signal Is also dropped (unexcited, involuntary state) (see the right part of FIG. 5C), and the level crossing obstacle detection device 35 resumes detection of an obstacle to the level crossing of the level crossing 8 and alarm output at the time of detection. The entire level crossing security device 40 returns to the train non-existing state.

このような下り側の踏切障害物検知における発報マスク動作は、列車の走行方向を上り側にするとともに、対応するリレーや信号を置き換えれば、そのまま成り立つので、繰り返しとなる詳細な説明は割愛するが、踏切制御切替装置50,60を導入した踏切保安装置40では、下りの障検マスク区間が下り拡張点BBDCの下り第1検知点48aの列車検知区間と下り終止点BDCの下り第2検知点48bの列車検知区間とに亘る区間に拡張されるとともに、上りの障検マスク区間が上り拡張点DDDCの上り第1検知点47aの列車検知区間と上り終止点DDCの上り第2検知点47bの列車検知区間とに亘る区間に拡張されて、踏切8が障検マスク区間内に完全に収まるため、列車の最先頭が踏切8に差し掛かってから列車の最後尾が踏切8を抜け出すまでの時間tが、列車の高速走行に対応して短い場合はもちろん(図5(d)参照)、列車の低速走行に対応して長い場合でも(図5(e)参照)、踏切障害物検知装置35が踏切通過中の列車を検知して誤報が出るという虞は、全くない。   Since the alarm mask operation in detecting the level crossing obstacle on the down side is the same as it is if the traveling direction of the train is set to the up side and the corresponding relay or signal is replaced, the detailed description will not be repeated. However, in the level crossing safety device 40 in which the level crossing control switching devices 50 and 60 are introduced, the down trouble detection mask section is a train detection section of the first down detection point 48a of the down extension point BBDC and the second down detection of the down end point BDC. In addition to being extended to a section that extends to the train detection section at point 48b, the upward obstacle detection mask section is a train detection section at the upstream first detection point 47a at the upstream expansion point DDDC and a second upstream detection point 47b at the upstream end point DDC. Since the railroad crossing 8 is completely within the fault detection mask zone, the end of the train has reached the railroad crossing 8. Of course, when the time t until exiting the cut 8 is short corresponding to the high-speed running of the train (see FIG. 5D), even when the time t is long corresponding to the low-speed running of the train (see FIG. 5E). There is no possibility that the level crossing obstacle detection device 35 detects a train passing through the level crossing and gives a false alarm.

本発明の単線区間における踏切保安装置および踏切制御切替装置に係る実施例2について、その具体的な構成を、図面を引用して説明する。図7(a)は、踏切制御切替装置84を導入した単線区間における踏切保安装置80の概要構成図であり、図中で踏切8と斜交する二点鎖線は踏切障害物検知装置35が障害物を検知する検知ビーム等をイメージしたものである。また、図7(b)は、その変形例の要部構成図である。さらに、図8は、踏切制御切替装置84に係る回路図と接続図であり、図9は、踏切制御装置34を中心とした制御部分に係るブロック図であり、図10(a)は、踏切障害物検知装置35に係るリレー信号等の入出力状態を示すブロック図である。   About the Example 2 which concerns on the level crossing safety device and level crossing control switching device in the single track section of the present invention, the concrete composition is explained referring to drawings. FIG. 7A is a schematic configuration diagram of a level crossing safety device 80 in a single line section in which the level crossing control switching device 84 is introduced. In FIG. It is an image of a detection beam that detects objects. Moreover, FIG.7 (b) is a principal part block diagram of the modification. Further, FIG. 8 is a circuit diagram and connection diagram relating to the level crossing control switching device 84, FIG. 9 is a block diagram relating to a control part centering on the level crossing control device 34, and FIG. It is a block diagram which shows the input / output states, such as a relay signal, concerning the obstacle detection device.

この踏切保安装置80は(図7(a),図8参照)、鉄道の単線区間の線路10を横切る踏切8に係る踏切警報を行うために設けられたものであり、踏切保安装置80を導入する前提として、線路10に対して起点側から終点側へ順に下り始動点ADCと下り拡張点BBDCと共用終止点DDCと上り拡張点DDDCと上り始動点CDCとが設定されている。下り始動点ADCは、従来通り、踏切8から起点側へ数百mほど離れた所に設定されて、列車検知区間が踏切8から大きく外れている。上り始動点CDCは、これも従来通り、踏切8から終点側へ数百mほど離れた所に設定されて、列車検知区間が踏切8から大きく外れている。上り拡張点DDDCは上り始動点CDCと踏切8との間に設定され、下り拡張点BBDCは下り始動点ADCと踏切8との間に設定され、上り終止点と下り終止点を兼ねる共用終止点DDCは、踏切8の踏切道に掛かる所に設定されている。   The railroad crossing safety device 80 (see FIGS. 7A and 8) is provided to issue a level crossing warning for the crossing 8 that crosses the track 10 in the single track section of the railway. As a premise for this, a downlink start point ADC, a downlink extension point BBDC, a common end point DDC, an uplink extension point DDDC, and an uplink start point CDC are set in order from the start side to the end point with respect to the line 10. The downward start point ADC is set at a place several hundred meters away from the railroad crossing 8 toward the starting point as usual, and the train detection section is greatly deviated from the railroad crossing 8. As before, the ascending start point CDC is set at a location several hundred meters away from the railroad crossing 8 to the end point side, and the train detection section is greatly deviated from the railroad crossing 8. The upstream extension point DDDC is set between the upstream starting point CDC and the railroad crossing 8, and the downstream expansion point BBDC is set between the downstream starting point ADC and the railroad crossing 8, and is a common termination point that serves both as an upstream termination point and a downstream termination point. The DDC is set at a place where it crosses the railroad crossing of the railroad crossing 8.

上り拡張点DDDCと下り拡張点BBDCは新しく導入され、共用終止点DDCは位置が新しくなっているうえ、それらは本発明の特徴事項なので、それらについては、線路10への接続線取付箇所(接続点)が直感的かつ明確に分かるよう、上り拡張点DDDCにおける接続線取付箇所を上り第1検知点81と呼び、共用終止点DDCにおける接続線取付箇所を上下第2検知点82と呼び、下り拡張点BBDCにおける接続線取付箇所を下り第1検知点83と呼ぶこととする。そうすると、上り拡張点DDDCの上り第1検知点81も、下り拡張点BBDCの下り第1検知点83も、列車の進行方向に対して手前側の地点であって踏切道の縁端から約20m〜25mの地点に設定することで、踏切8に掛からない範囲で、踏切8に近づけたものとなっている。すなわち、それらの検知点81,83へ選択的に接続される終止点用踏切制御子24の列車検知区間の半幅が約15mにすぎないので、上り第1検知点81に係る列車検知区間も、下り第1検知点83に係る列車検知区間も、踏切8に近いが、踏切8の踏切道から確実に外れた状態になっている。   The upstream extension point DDDC and the downstream extension point BBDC are newly introduced, and the common end point DDC has a new position and is a feature of the present invention. Point), the connecting line attachment point at the upstream extension point DDDC is referred to as an upstream first detection point 81, the connection line attachment point at the common end point DDC is referred to as an upper and lower second detection point 82, and downward A connection line attachment location at the extension point BBDC will be referred to as a downward first detection point 83. Then, both the first detection point 81 at the upstream extension point DDDC and the first detection point 83 at the downstream extension point BBDC are points on the near side with respect to the traveling direction of the train and about 20 m from the edge of the railroad crossing. By setting it at a point of ˜25 m, it is close to the level crossing 8 within a range that does not reach the level crossing 8. That is, since the half width of the train detection section of the end point crossing controller 24 selectively connected to the detection points 81 and 83 is only about 15 m, the train detection section related to the first detection point 81 is also The train detection section related to the first descending detection point 83 is also close to the railroad crossing 8 but is surely detached from the railroad crossing of the railroad crossing 8.

共用終止点DDCの上下第2検知点82は、踏切8の踏切道そのものに又は踏切道の近くで線路10に設定されて、列車検知区間の一部が踏切8に掛かるところまで、踏切8に近づいている。しかも、その設定に際して列車検知区間の進出端に係る加重要件も課されるが、列車検知区間が踏切8の踏切道の幅員より広い場合は、上記の加重要件を単一の上下第2検知点82で満たすことが可能なので、そうするために(図7(a)参照)、踏切8の踏切道の全幅が終止点用踏切制御子24の列車検知区間の中に収まるような位置に上下第2検知点82が設定される。このような共用終止点DDCの上下第2検知点82に係る列車検知区間は、その両端のうち上り第1検知点81から遠い方の起点側区間端と上り第1検知点81とが踏切8の両側に分かれるものになっていると同時に、両端のうち下り第1検知点83から遠い方の終点側区間端と下り第1検知点83とが踏切8の両側に分かれるものにもなっている。   The second detection point 82 above and below the common end point DDC is set at the railroad crossing 8 of the railroad crossing 8 itself or near the railroad crossing 8, until the part of the train detection section reaches the railroad crossing 8. It is approaching. In addition, although the weighting requirement related to the advancing end of the train detection section is also imposed at the time of setting, if the train detection section is wider than the width of the railroad crossing of the level crossing 8, the above weighting requirement is set to a single upper and lower second detection point. 82 (see FIG. 7 (a)), so that the full width of the level crossing of the railroad crossing 8 can be adjusted so that it is within the train detection section of the end crossing controller 24. Two detection points 82 are set. The train detection section related to the second detection point 82 above and below the common end point DDC is such that the start side section end far from the first detection point 81 and the first detection point 81 are the railroad crossing 8. At the same time, at the same time, the end point side section farther from the descending first detection point 83 and the descending first detection point 83 of both ends are separated on both sides of the level crossing 8. .

なお、そのような設定が踏切8の踏切道の幅員が広いために出来ない場合は(図7(b)参照)、共用終止点DDCを起点側の上り終止点DDCaと終点側の下り終止点DDCbとの二つに分けて設定するとともに、上下第2検知点82を上り終止点DDCaの上り第2検知点82aと下り終止点DDCbの下り第2検知点82bとに複数化したうえで、踏切8の踏切道の起点側の縁端を終止点用踏切制御子24の列車検知区間に収める位置に上り第2検知点82aを設定し、踏切8の踏切道の終点側の縁端を終止点用踏切制御子24の列車検知区間に収める位置に下り第2検知点82bを設定する。これにより、上り終止点DDCaの上り第2検知点82aに係る列車検知区間の両端のうち上り第1検知点81から遠い方の起点側区間端と上り第1検知点81とが踏切8の両側に分かれる状態になるとともに、下り終止点DDCbの下り第2検知点82bに係る列車検知区間の両端のうち下り第1検知点83から遠い方の終点側区間端部と下り第1検知点83とが踏切8の両側に分かれる状態になり、上記の加重要件が満たされる。   If such a setting cannot be made because the width of the railroad crossing of the railroad crossing 8 is wide (see FIG. 7B), the common end point DDC is set as the upstream end point DDCa on the start side and the down end point on the end point side. DDCb is divided into two sets, and the upper and lower second detection points 82 are divided into an upstream second detection point 82a at the upstream end point DDCa and a downstream second detection point 82b at the downstream end point DDCb. A rising second detection point 82a is set at a position where the edge of the railroad crossing 8 at the starting point of the railroad crossing 8 is placed in the train detection section of the railroad crossing controller 24 for the stop point, and the edge of the railroad crossing 8 at the end of the railroad is terminated. The descending second detection point 82b is set at a position within the train detection section of the point crossing controller 24. As a result, the start side section end far from the first upstream detection point 81 and the first upstream detection point 81 are both sides of the railroad crossing 8 among both ends of the train detection section related to the second upstream detection point 82a of the upstream end point DDCa. And the end of the end side section farther from the first down detection point 83 and the first down detection point 83 of both ends of the train detection section related to the second down detection point 82b of the down end point DDCb. Is divided into both sides of the railroad crossing 8, and the above weighting requirements are satisfied.

踏切保安装置80は、上述した検知点等の設定を前提として構成されたものであるが、以下の説明では、列車検知区間が踏切8の踏切道の幅員より広い場合について詳述し(図7(a),図8参照)、そうでない場合については(図7(b)参照)、適宜、括弧書きで付言するにとどめる。そうすると、踏切保安装置80は(図7(a),図8参照)、下り始動点ADCに係る列車検知を行う閉電路形の始動点用踏切制御子21と、上り始動点CDCに係る列車検知を行う閉電路形の始動点用踏切制御子23と、開電路形の終止点用踏切制御子24と、単線用の踏切制御装置34と、踏切障害物検知装置35と、図示しない電源装置とを具えている。これらは、既述した従来の踏切保安装置38から引き継いだもので足りるので、繰り返しとなる詳細な内部構造等の説明は割愛するが、接続先の変更された入出力等については後ほど詳述する。   The railroad crossing safety device 80 is configured on the assumption that the above-described detection points and the like are set. In the following description, a case where the train detection section is wider than the width of the railroad crossing of the railroad crossing 8 will be described in detail (FIG. 7). (A) (see FIG. 8), if not (see FIG. 7 (b)), only parentheses are added as appropriate. Then, the railroad crossing safety device 80 (see FIGS. 7A and 8) includes a closed-circuit-type start-point crossing controller 21 that performs train detection related to the downward start point ADC, and a train detection related to the upward start point CDC. A closed-circuit-type start-point crossing controller 23, an open-circuit-type end-point crossing controller 24, a single-line crossing control device 34, a crossing obstacle detection device 35, and a power supply device (not shown) It has. Since it is sufficient that these are inherited from the conventional level crossing safety device 38 described above, a detailed description of the internal structure and the like which will be repeated will be omitted, but the input / output etc. whose connection destination has been changed will be described in detail later. .

また、踏切保安装置80は、上記の終止点用踏切制御子24に、時分割で、上り拡張点DDDCの上り第1検知点81に係る列車検知を行う上り側の第1列車検知手段としても、共用終止点DDC(又は上り終止点DDCa)の上下第2検知点82(又は上り第2検知点82a)に係る列車検知を行う上り側の第2列車検知手段としても、同じく共用終止点DDC(又は下り終止点DDCb)の上下第2検知点82(又は下り第2検知点82b)に係る列車検知を行う下り側の第2列車検知手段としても、下り拡張点BBDCの下り第1検知点83に係る列車検知を行う下り側の第1列車検知手段としても、機能させるために、新たに導入された踏切制御切替装置84を具えている。この踏切制御切替装置84は、例えば金属製箱体からなる筐体にて一ユニットに纏められている。   Further, the railroad crossing safety device 80 may be used as the first train detection means on the upstream side for performing the train detection related to the first detection point 81 at the upstream extension point DDDC in a time-sharing manner to the railroad crossing controller 24 for the end point. Similarly, the common end point DDC is also used as the second train detecting means on the upstream side for performing the train detection related to the upper and lower second detection points 82 (or the second upward detection point 82a) of the common end point DDC (or ascending end point DDCa). (Or descending end point DDCb) Upper and lower second detection points 82 (or descending second sensing points 82b) also serve as descending second train detecting means for detecting trains on the descending side, and the descending first detection point of descending extension point BBDC. In order to make it function also as the 1st train detection means of the down side which performs the train detection which concerns on 83, the railroad crossing control switching device 84 introduced newly is provided. The railroad crossing control switching device 84 is grouped into one unit by a housing made of, for example, a metal box.

さらに、踏切保安装置80は、踏切制御切替装置84と線路10との接続のために(図8参照)、上り拡張点DDDCの上り第1検知点81の所で線路10に一端を溶接等にて接続された一対の第1接続線A1,B1と、共用終止点DDCの上下第2検知点82の所で線路10に一端を溶接等にて接続された一対の第2接続線A2,B2(又は第2検知点82a,82bに係る二対の第2接続線)と、下り拡張点BBDCの下り第1検知点83の所で線路10に一端を溶接等にて接続された一対の第1接続線A3,B3とを具えている。上述した踏切保安装置40と同様、各接続線の長さの相違に起因するインダクタンスの不揃いによる不所望な影響を相殺するために、この構成例でも(図8参照)、第1接続線A1,B1と第2接続線A2,B2に調整用の可変容量部が挿入されている。   Further, the railroad crossing safety device 80 is connected to the railroad line 10 at one of the first detection points 81 at the upstream extension point DDDC for the purpose of connecting the railroad crossing control switching device 84 to the railroad track 10 (see FIG. 8). And a pair of second connection lines A2 and B2 connected at one end to the line 10 by welding or the like at the upper and lower second detection points 82 of the common end point DDC. (Or two pairs of second connection lines related to the second detection points 82a and 82b) and a pair of second connection lines whose ends are connected to the line 10 by welding or the like at the downward first detection point 83 of the downward extension point BBDC. 1 connection line A3, B3. Similar to the railroad crossing safety device 40 described above, the first connection line A1, also in this configuration example (see FIG. 8), in order to cancel out an undesirable effect due to the unevenness of inductance caused by the difference in length of each connection line. A variable capacitor for adjustment is inserted into B1 and the second connection lines A2 and B2.

また、踏切保安装置80は、始動点用踏切制御子21のリレー出力APR(下始動R)と終止点用踏切制御子24のリレー出力DPRと踏切制御切替装置84の第2終止Rリレーの接点出力と始動点用踏切制御子23のリレー出力CPR(上始動R)とを入力してそれらに基づき踏切警報制御を行って列車運転方向を判別するとともに列車運転方向に応じて上りSRリレーで上りSRを出力したり下りSRリレーで下りSRを出力する単線区間における踏切制御装置34と(図9参照)、それらを組み合わせた結果である警報Rリレーの出力に応動する既述のスピーカや,警報灯32,踏切遮断機33と、線路10に係る障害物検知を行うとともに上記列車運転方向指示およびマスク条件による警報認容時には障害物検知結果に応じて警報を発する踏切障害物検知装置35も(図10(a)参照)、備えている。   Further, the railroad crossing safety device 80 is connected to the relay output APR (downstart R) of the start point crossing controller 21, the relay output DPR of the end point crossing controller 24, and the second end R relay of the crossing control switching device 84. The output and the relay output CPR (upper start R) of the starting point level crossing controller 23 are input, and the level crossing alarm control is performed based on them, and the train operation direction is determined, and the up SR relay is used in accordance with the train operation direction. The crossing control device 34 in the single track section that outputs SR or outputs the downlink SR by the downlink SR relay (see FIG. 9), the above-described speaker that responds to the output of the alarm R relay that is a combination of these, and the alarm Obstacle detection related to the light 32, railroad crossing breaker 33, and track 10 is performed, and an alarm is issued according to the obstacle detection result when the train operation direction instruction and the mask condition are accepted. Also crossing obstacle detection device 35 (refer to FIG. 10 (a)), and includes.

これらのうち、接続線A1,B1,A2,B2,A3,B3は、長さは別として従来の接続線と同じで良く、終止点用踏切制御子24は、外部接続は別として、単体では既述した終止点用踏切制御子22,24と同一構成のもので良く、踏切障害物検知装置35も、外部接続は別として、単体では既述したものと同じで良く、これらの詳細な説明は繰り返しとなるので割愛する。踏切制御装置34も(図9参照)、上りSRリレー回路34aにおける条件と下りSRリレー回路34bにおける条件とについてリレー出力DPRが第2終止Rリレーの動作接点で置き換えられた点を除けば、警報Rリレー回路34cやその他の回路に変更がなく、リレー信号の入力以外は既述したものと同じと言えるので、やはり繰り返しとなる詳細な説明は割愛する。なお、上述した踏切制御装置31と同様、警報Rリレー回路34cに条件として入力されているリレー出力DPRまで第2終止Rリレーの接点出力で置き換えることも可能であり、そうすればリレー出力DPRの入力は要らない。   Of these, the connection lines A1, B1, A2, B2, A3, and B3 may be the same as the conventional connection lines apart from the length, and the end point crossing controller 24 is independent of the external connection. The end crossing controllers 22 and 24 described above may have the same configuration, and the crossing obstacle detection device 35 may be the same as that described above, except for external connection, and detailed description thereof will be given. Will be omitted because it will be repeated. The level crossing control device 34 (see FIG. 9) also provides an alarm except that the relay output DPR is replaced with the operating contact of the second terminating R relay for the conditions in the up SR relay circuit 34a and the conditions in the down SR relay circuit 34b. Since the R relay circuit 34c and other circuits are not changed and can be said to be the same as those described above except for the input of the relay signal, the detailed description which will be repeated is omitted. As with the crossing control device 31 described above, the relay output DPR input as a condition to the alarm R relay circuit 34c can be replaced with the contact output of the second end R relay. No input is required.

踏切制御切替装置84は(図8参照)、新たに導入されたものなので以下詳述するが、これは、上述した一の筐体に加えて、その筐体に何れも内蔵されている切替制御部85と切替回路部86と通過完了判定手段87と障検マスク形成手段88とを具えている。
踏切制御切替装置84の筐体には内外接続用の接続端子が幾つか設けられており、それらは、上述した踏切制御切替装置50,60と同様に、踏切制御切替装置84と外部との接続のために、第1接続線A1,B1に対する接続手段と、第2接続線A2,B2に対する接続手段と、第1接続線A3,B3に対する接続手段と、終止点用踏切制御子24に対する接続手段と、踏切制御装置34に対する接続手段と、踏切障害物検知装置35に対する接続手段などに割り振られており、それらの接続端子へ直に外部配線を接続しても良いが、踏切器具箱内配線や配線端子盤28の端子などを介して接続されることが多い。
Since the level crossing control switching device 84 (see FIG. 8) is newly introduced, it will be described in detail below. This is a switching control that is incorporated in the case in addition to the one case described above. A section 85, a switching circuit section 86, a passage completion judging means 87, and a fault detection mask forming means 88.
The chassis of the level crossing control switching device 84 is provided with several connection terminals for internal and external connection, which are connected to the level crossing control switching device 84 and the outside in the same manner as the level crossing control switching devices 50 and 60 described above. Therefore, the connection means for the first connection lines A1, B1, the connection means for the second connection lines A2, B2, the connection means for the first connection lines A3, B3, and the connection means for the end point crossing controller 24 And a connection means for the level crossing control device 34 and a connection means for the level crossing obstacle detection device 35, and external wiring may be directly connected to these connection terminals. In many cases, the terminals are connected via terminals of the wiring terminal board 28 or the like.

切替制御部85は(図8参照)、常時落下している即ち常態では励磁されない起点方接続Rリレーを主体とした起点方接続Rリレー回路と、常時落下している終点方接続Rリレーを主体とした終点方接続Rリレー回路と、常時落下している第1終止Rリレーを主体とした第1終止Rリレー回路と、常時落下している中継リレーDPPRを主体とした中継DPPRリレー回路と、常時落下しているDPPSLRリレーを主体としたDPPSLRリレー回路と、常時落下している第1終止リセットRリレーを主体とした第1終止リセットRリレー回路とからなる。   The switching control unit 85 (see FIG. 8) is mainly composed of an origin connection R relay circuit mainly composed of an origin connection R relay that is constantly falling, that is, is not normally excited, and an end connection R relay that is constantly falling. An end-point connection R relay circuit, a first termination R relay circuit mainly composed of a first termination R relay constantly falling, a relay DPPR relay circuit mainly composed of a relay relay DPPR constantly falling, It consists of a DPPSLR relay circuit mainly composed of a DPPSLR relay that is constantly falling, and a first termination reset R relay circuit mainly composed of a first termination reset R relay that is always falling.

起点方接続Rリレーは、下り列車が下り始動点ADCに係る始動点用踏切制御子21の列車検知区間に進入して踏切制御装置34からの下りSRが落下(無励磁,有意状態)すると動作(励磁,有意状態)し、第1終止Rが動作(励磁,有意状態)するまでの間、動作を継続するようになっている。
終点方接続Rリレーは、上り列車が上り始動点CDCに係る始動点用踏切制御子23の列車検知区間に進入して踏切制御装置34からの上りSRが落下(無励磁,有意状態)すると動作(励磁,有意状態)し、第1終止Rが動作(励磁,有意状態)するまでの間、動作を継続するようになっている。
踏切制御切替装置84の設置先が単線区間の線路10であるため、下りSRリレーと上りSRリレーが同時期に落下(無励磁,有意状態)することがないので、起点方接続Rリレーと終点方接続Rリレーも同時に動作(励磁,有意状態)することがない。
The starting-point connection R relay operates when the descending train enters the train detection section of the starting point crossing controller 21 related to the descending starting point ADC and the descending SR from the crossing control device 34 falls (no excitation, significant state). The operation is continued until the first end R operates (excitation, significant state) (excitation, significant state).
The end-point connection R relay operates when the ascending train enters the train detection section of the starting point crossing controller 23 related to the ascending starting point CDC and the ascending SR from the level crossing control device 34 falls (no excitation, significant state). The operation is continued until the first end R operates (excitation, significant state) (excitation, significant state).
Since the railroad crossing control switching device 84 is installed at the line 10 in the single line section, the down SR relay and the up SR relay do not fall (no excitation, significant state) at the same time, so the starting direction connection R relay and the end point The side-connected R relay does not operate simultaneously (excitation, significant state).

第1終止Rリレー回路は、上り列車が上り拡張点DDDCの上り第1検知点81の列車検知区間に進入したときと、下り列車が下り拡張点BBDCの下り第1検知点83の列車検知区間に進入したときに、終止点用踏切制御子24のリレー出力DPRが動作(励磁,有意状態)することに応じて、第1終止Rリレーが動作(励磁,有意状態)するようになっている。そして、列車が共用終止点DDCの上下第2検知点82(又は上り列車が上り第2検知点82a若しくは下り列車が下り第2検知点82b)の列車検知区間を進出して終止点用踏切制御子24のリレー出力DPRが落下(無励磁,無意状態)するまでの間、具体的には後で詳述する第1終止リセットRリレーが動作(励磁,有意状態)するまで、第1終止Rリレーが動作(励磁,有意)状態を継続するようになっている。   The first stop R relay circuit is configured such that when the upstream train enters the train detection section of the first upstream detection point 81 at the upstream extension point DDDC and when the downstream train enters the first train detection point 83 at the downstream extension point BBDC. The first end R relay is activated (excited, significant state) in response to the relay output DPR of the end point crossing controller 24 operating (excited, significant state) when entering the vehicle. . Then, the train advances through the train detection section of the upper and lower second detection points 82 of the common end point DDC (or the up train is the up second detection point 82a or the down train is the down second detection point 82b), and the end point crossing control is performed. The first termination R until the relay output DPR of the child 24 falls (no excitation, involuntary state), specifically, until the first termination reset R relay described in detail later operates (excitation, significant state). The relay continues to operate (excited, significant).

常態時、終止点用踏切制御子24は共用終止点DDCの上下第2検知点82(又は上り第2検知点82a若しくは下り第2検知点82b)に接続されているので、踏切8の踏切道の所で軌道が不正に短絡されると、終止点用踏切制御子24のリレー出力DPRが動作(励磁,有意状態)してしまうが、これによって第1終止Rリレーが不正に動作(励磁,有意状態)するのを防止するために、上述した下第1終止Rリレー回路55bと同様、第1終止Rリレー回路でも、起点方接続Rリレーの動作条件及び終点方接続Rリレーの動作条件を挿入するとともに、第1終止Rリレーに緩動性を持たせている。   In the normal state, the level crossing controller 24 for the end point is connected to the upper and lower second detection points 82 (or the second ascending second detection point 82a or the second descending detection point 82b) of the common end point DDC. If the track is improperly short-circuited at this point, the relay output DPR of the end point crossing controller 24 operates (excitation, significant state), but this causes the first end R relay to operate improperly (excitation, In order to prevent (significant state) from occurring, the operating conditions of the starting-point connection R relay and the operating conditions of the end-point connection R relay are also determined in the first stopping R relay circuit as in the case of the lower first stopping R relay circuit 55b described above. In addition to being inserted, the first end R relay is provided with a slow movement.

中継リレーDPPRは、起点方接続Rリレーか終点方接続Rリレーが落下(無励磁,無意状態)している状態で、終止点用踏切制御子24が共用終止点DDCの上下第2検知点82(又は上り第2検知点82a若しくは下り第2検知点82b)に接続されているときに、列車が上下第2検知点82の列車検知区間に進入し終止点用踏切制御子24のリレー出力DPRが動作(励磁,有意状態)すると、中継リレーDPPRが動作(励磁,有意状態)するようになっている。この中継リレーBPPRの動作(励磁,有意状態)が第2終止Rリレーの動作条件のひとつになっており、この中継リレーDPPRにも、上述した中継BPPRリレー回路55cの中継リレーBPPRや中継リレーDPPRと同じ理由から、終止点用踏切制御子24と第1検知点81,83との接続が断たれるまでの時間以上の緩動時素であって終止用踏切制御子24の緩放時素以上の緩動時素の緩動性を持たせている。   The relay relay DPPR is a second detection point 82 above and below the common end point DDC when the end point crossing controller 24 is in a state where the starting point connection R relay or the end point connection R relay is dropped (no excitation, involuntary state). When connected to the second detection point 82a (or the second detection point 82b or the second detection point 82b), the train enters the train detection section of the second detection point 82 up and down, and the relay output DPR of the crossing controller 24 for the end point. Operates (excitation, significant state), the relay relay DPPR operates (excitation, significant state). The operation (excitation, significant state) of the relay relay BPPR is one of the operating conditions of the second termination R relay. The relay relay DPPR includes the relay relay BPPR and the relay relay DPPR of the relay BPPR relay circuit 55c described above. For the same reason, it is a slow-moving element that is longer than the time until the connection between the end point crossing controller 24 and the first detection points 81 and 83 is broken, and the slow-release element of the end crossing controller 24 is slowly released. The above-mentioned slow movability is provided.

DPPSLRリレー回路は、中継リレーDPPRの出力を中継するものであるが、DPPSLRリレーに緩放性を持たせているので、中継リレーDPPRが落下(無励磁,無意状態)した後も暫く、具体的には緩放時素の時間だけ、DPPSLRリレーは、動作(励磁,有意)状態を維持し、遅れて落下(無励磁,無意状態)するようになっている。
第1終止リセットRリレー回路は、中継リレーDPPRが落下(無励磁,無意状態)した時点では緩放性のあるDPPSLRリレーが動作(励磁,有意状態)していることに基づき、中継リレーDPPRが落下してからDPPSLRリレーが落下するまでの時間すなわちDPPSLRリレーの緩放時素の時間だけ、第1終止リセットRリレーが動作(励磁,有意状態)するようになっている。上述したように、この第1終止リセットRリレーの動作(励磁,有意状態)により第1終止Rリレーが落下(無励磁,無意状態)するようになっている。
The DPPSLR relay circuit relays the output of the relay relay DPPR. However, since the DPPSLR relay has a slow release characteristic, it will be concrete for a while after the relay relay DPPR falls (no excitation, involuntary state). In this case, the DPPSLR relay maintains an operation (excitation, significant) state only for a period of time when it is slowly released, and falls late (no excitation, involuntary state).
The first termination reset R relay circuit is configured such that when the relay relay DPPR falls (no excitation, involuntary state), the DPPSLR relay with slow release is operating (excitation, significant state). The first termination reset R relay operates (excited, significant state) only during the time from when the DPPSLR relay is dropped, that is, when the DPPSLR relay is slowly released. As described above, the first end R relay is dropped (no excitation, involuntary state) by the operation (excitation, significant state) of the first end reset R relay.

このようなリレー回路からなる切替制御部85は、筐体に内蔵されていて、列車方向判別手段の判別結果として下りSRリレーの接点出力と上りSRリレーの接点出力とを踏切制御装置34から入力しており、それに基づいて、上り列車の上り始動点CDCへの到来時には先ず切替回路部86に上りの第1切替状態をとらせることにより終止点用踏切制御子24に上り拡張点DDDCの上り第1検知点81に係る列車検知を行わせ、その後の上り第1検知点81への列車進行時には切替回路部86に第2切替状態をとらせることにより終止点用踏切制御子24に共用終止点DDCの上下第2検知点82に係る列車検知を行わせる一方、下り列車の下り始動点ADCへの到来時には先ず切替回路部86に下りの第1切替状態をとらせることにより終止点用踏切制御子24に下り拡張点BBDCの下り第1検知点83に係る列車検知を行わせ、その後の下り第1検知点83への列車進行時には切替回路部86に第2切替状態をとらせることにより終止点用踏切制御子24に共用終止点DDCの上下第2検知点82に係る列車検知を行わせるものとなっている。   The switching control unit 85 including such a relay circuit is built in the housing, and inputs the contact output of the descending SR relay and the contact output of the ascending SR relay from the level crossing control device 34 as the determination result of the train direction determining means. Based on this, when the upstream train arrives at the upstream starting point CDC, first, the switching circuit 86 is made to take the first upstream switching state, thereby causing the end point crossing controller 24 to ascend the upstream extension point DDDC. By making the train detection related to the first detection point 81 and subsequently traveling to the first detection point 81 going up, the switching circuit unit 86 takes the second switching state, thereby allowing the end point crossing controller 24 to stop sharing. By making the train detection related to the second detection point 82 above and below the point DDC, when the down train arrives at the down start point ADC, the switching circuit unit 86 first takes the first down switching state. The end point crossing controller 24 performs train detection related to the first detection point 83 at the descending extension point BBDC, and the second switching state is set to the switching circuit unit 86 when the train proceeds to the first descending detection point 83 thereafter. Thus, the end point crossing controller 24 is caused to perform train detection related to the upper and lower second detection points 82 of the common end point DDC.

切替回路部86は、終止点用踏切制御子24から出力された照査用発振信号を伝達する制御子内配線AA,BBと、上述した第1接続線A1,B1と上下第2検知点82(又は上り第2検知点82a若しくは下り第2検知点82b)と下り第1検知点83とのうち何れか一対の接続線とを、切替制御部85の終点方接続Rリレーと起点方接続Rリレーの動作状態に応じて選択的に接続させるものであり、そのために、制御子内配線AA,BBと第1接続線A1,B1とを筐体内で接続する分岐配線と、この分岐配線に介挿して直列接続された終点方接続Rリレーの動作(励磁,有意状態)接点と、制御子内配線AA,BBと第1接続線A3,B3とを筐体内で接続する分岐配線と、この分岐配線に介挿して直列接続された起点方接続Rリレーの動作(励磁,有意状態)接点と、制御子内配線AA,BBと第2接続線A2,B2とを筐体内で接続する分岐配線と、この分岐配線に介挿して直列接続された起点方接続Rリレー及び終点方接続Rリレー双方の落下(無励磁,有意状態)接点とを具えている。後者の分岐配線に介挿してリレー接点と直列接続された可変容量部(第2調整部)も具えている。   The switching circuit unit 86 includes control-internal wirings AA and BB for transmitting a check oscillation signal output from the end point crossing controller 24, the first connection lines A1 and B1, and the upper and lower second detection points 82 ( Alternatively, the pair of connection lines of the second upward detection point 82a or the second downward detection point 82b) and the first downward detection point 83 are connected to the end point connection R relay and the start point connection R relay of the switching control unit 85. For this purpose, the controller internal wires AA and BB and the first connection wires A1 and B1 are connected in the housing, and the branch wires are inserted in the branch wires. The operation (excitation, significant state) contact of the end-point connection R relay connected in series with each other, the branch wiring for connecting the controller internal wirings AA, BB and the first connection lines A3, B3 within the housing, and this branch wiring Starting relay R relay connected in series Operation (excitation, significant state) contact point, branch wiring connecting the controller internal wirings AA and BB and the second connection lines A2 and B2 within the housing, and the origin connection connected in series with the branch wiring It has drop (non-excited, significant state) contacts on both the R relay and the end-point connection R relay. A variable capacity section (second adjusting section) is also provided which is inserted in the latter branch wiring and connected in series with the relay contact.

そして、切替回路部86は、終点方接続Rリレーが動作(励磁,有意状態)している上りの第1切替状態では、制御子内配線AA,BBひいては終止点用踏切制御子24と第1接続線A1,B1ひいては上り拡張点DDDCの上り第1検知点81とを接続させ、起点方接続Rリレーが動作(励磁,有意状態)している下りの第1切替状態では、制御子内配線AA,BBひいては終止点用踏切制御子24と第1接続線A3,B3ひいては下り拡張点BBDCの下り第1検知点83とを接続させ、それ以外のときは、制御子内配線AA,BBひいては終止点用踏切制御子24と第2接続線A2,B2ひいては共用終止点DDCの上下第2検知点82(又は上り第2検知点82a若しくは下り第2検知点82b)とを接続させるものとなっている。これらの三状態は択一的・排他的に切り替えられるようになっている。   In the first switching state in which the end-point connection R relay is operating (excited, significant state), the switching circuit unit 86 is connected to the controller internal wirings AA and BB, and thus to the end point crossing controller 24 and the first switching state. In the first switching state in which the connection lines A1 and B1 and then the upstream first detection point 81 of the upstream extension point DDDC are connected and the origin connection R relay is operating (excited, significant state), the wiring in the controller AA, BB and thus the end point crossing controller 24 are connected to the first connection lines A3 and B3 and then the first detection point 83 at the downward extension point BBDC. Otherwise, the controller internal wirings AA and BB are connected. The end point crossing controller 24 is connected to the second connection lines A2 and B2, and thus the upper and lower second detection points 82 (or the up second detection point 82a or the down second detection point 82b) of the common end point DDC. ing. These three states can be switched alternatively or exclusively.

そのため、踏切制御切替装置84を介して間接的に第1接続線A1,B1と第2接続線A2,B2と第1接続線A3,B3とに接続される終止点用踏切制御子24は、踏切制御切替装置85の切替状態に依存して線路10に対する照査用発振信号の送り込み位置が切り替えられるものとなっている。そして、終止点用踏切制御子24は、上りの第1切替状態では上り拡張点DDDCの上り第1検知点81だけに係る列車検知を行い、下りの第1切替状態では下り拡張点BBDCの下り第1検知点83だけに係る列車検知を行い、第2切替状態では共用終止点DDCの上下第2検知点82(又は上り第2検知点82a若しくは下り第2検知点82b)だけに係る列車検知を行うようになっている。   Therefore, the end point crossing controller 24 that is indirectly connected to the first connection lines A1, B1, the second connection lines A2, B2, and the first connection lines A3, B3 via the crossing control switching device 84 is: Depending on the switching state of the level crossing control switching device 85, the feeding position of the oscillation signal for verification with respect to the line 10 is switched. The end point crossing controller 24 detects a train related only to the first detection point 81 of the upstream extension point DDDC in the first upward switching state, and descends the downstream extension point BBDC in the first downward switching state. Train detection related to only the first detection point 83 is performed, and in the second switching state, train detection related only to the upper and lower second detection points 82 (or the up second detection point 82a or the down second detection point 82b) of the common end point DDC. Is supposed to do.

通過完了判定手段87は(図8参照)、常時落下している第2終止Rリレーを主体としたリレー回路からなり、起点方接続Rリレーの落下接点と終点方接続Rリレーの落下接点と第1終止Rリレーの動作接点と中継リレーBPPRの動作接点とを条件として第2終止Rリレーが動作(励磁,有意状態)するものであり、この第2終止Rリレーの接点出力を、従来の終止点用踏切制御子24のリレー出力DPR(終止R)に代わる新たな終止条件として、踏切制御装置34に送出するようになっている(図9も参照)。   The passage completion judging means 87 (see FIG. 8) is composed of a relay circuit mainly composed of the second terminating R relay that is constantly falling, and the drop contact of the start-point connection R relay, the drop contact of the end-point connection R relay, The second end R relay operates (excited, significant state) on the condition of the operating contact of the 1 end R relay and the operating contact of the relay relay BPPR. As a new stop condition to replace the relay output DPR (stop R) of the point crossing controller 24, it is sent to the crossing control device 34 (see also FIG. 9).

そして(図8参照)、上り始動点CDCの列車検知区間への上り列車の進入を検知した始動点用踏切制御子23のリレー出力CPR(上始動R)の落下(無励磁,有意状態)に応じて落下する上りSRリレー(上りの列車運転方向指示)の落下(無励磁,有意状態)を条件とする終点方接続Rリレーが動作(励磁,有意状態)し、その後に上り拡張点DDDCまで進んで上り第1検知点81に係る列車検知区間に進入した上り列車を検知した終止点用踏切制御子24のリレー出力DPRが動作(励磁,有意状態)し、更に共用終止点DDC(又は上り終止点DDCa)まで進んで上下第2検知点82(又は上り第2検知点82a)に係る列車検知区間に進入した上り列車を検知した終止点用踏切制御子24のリレー出力DPRとその中継リレーDPPRが動作(励磁,有意状態)すると、第2終止Rリレーが動作(励磁,有意状態)するようになっている。しかも、この第2終止Rリレーの動作に応じて、踏切制御装置34では、上り始動点CDCへの上り列車の到来に起因して落下(無励磁,有意状態)していた上りSRリレーが動作(励磁,有意)状態に戻るので(図9の上りSRリレー回路34aを参照)、警報停止の準備が整うようになっている。   Then (see FIG. 8), the relay output CPR (upper start R) of the start point crossing controller 23 that has detected the entry of the up train into the train detection section of the up start point CDC falls (no excitation, significant state). In response to the falling SR relay (upward train operation direction instruction) falling (non-excited, significant state), the end-point connection R relay operates (excited, significant state), and then reaches the upstream extension point DDDC. The relay output DPR of the end point crossing controller 24 that detects the up train that has entered the train detection section associated with the first ascending first detection point 81 operates (excitation, significant state), and further, the common end point DDC (or ascending) The relay output DPR of the crossing controller 24 for the end point and the relay relay that detects the up train that has entered the train detection section related to the upper and lower second detection point 82 (or the up second detection point 82a). DPPR operation (excitation, significant condition), the second end R relay operation (excitation, significant condition) has to like. In addition, according to the operation of the second end R relay, the level crossing control device 34 operates the up SR relay that has fallen (no excitation, significant state) due to the arrival of the up train at the up start point CDC. Since the state returns to the (excited, significant) state (see the upstream SR relay circuit 34a in FIG. 9), preparations for alarm stop are completed.

また、通過完了判定手段87は(図8参照)、下り始動点ADCの列車検知区間への下り列車の進入を検知した始動点用踏切制御子21のリレー出力APR(下始動R)の落下落下(無励磁,有意状態)に応じて落下する下りSRリレー(下りの列車運転方向指示)の落下(無励磁,有意状態)を条件とする起点方接続Rリレーが動作(励磁,有意状態)し、その後に下り拡張点BBDCまで進んで下り第1検知点83に係る列車検知区間に進入した下り列車を検知した終止点用踏切制御子24のリレー出力DPRが動作(励磁,有意状態)し、更に共用終止点DDC(又は下り終止点DDCb)まで進んで上下第2検知点82(又は下り第2検知点82b)に係る列車検知区間に進入した下り列車を検知した終止点用踏切制御子24のリレー出力DPRとその中継リレーDPPRが動作(励磁,有意状態)すると、この場合も、第2終止Rリレーが動作(励磁,有意状態)するようになっている。しかも、この第2終止Rリレーの動作に応じて、踏切制御装置34では、下り始動点ADCへの下り列車の到来に起因して落下(無励磁,有意状態)していた下SRリレーが動作(励磁,有意)状態に戻るので(図9の下りSRリレー回路34bを参照)、警報停止の準備が整うようになっている。   Further, the passage completion determination means 87 (see FIG. 8) is a drop and fall of the relay output APR (lower start R) of the start point crossing controller 21 that detects the entry of the lower train into the train detection section of the lower start point ADC. The start-point connection R relay operates (excited, significant state) on condition that the falling SR relay (downward train operation direction instruction) falls (non-excited, significant state) depending on (non-excited, significant state) Then, the relay output DPR of the crossing controller 24 for the end point that detects the down train that has entered the train detection section related to the down first detection point 83 by proceeding to the down extension point BBDC operates (excitation, significant state), Further, the end point crossing controller 24 that detects the down train that has advanced to the common end point DDC (or the down end point DDCb) and has entered the train detection section related to the upper and lower second detection points 82 (or down second detection points 82b). Lille Output DPR and its relay relay DPPR operation (excitation, significant condition) Then, in this case, the second end R relay operation (excitation, significant condition) has to like. In addition, according to the operation of the second end R relay, the level crossing control device 34 operates the lower SR relay that has fallen (no excitation, significant state) due to the arrival of the down train to the down start point ADC. Since it returns to the (excited, significant) state (see the down SR relay circuit 34b in FIG. 9), it is ready to stop the alarm.

さらに、通過完了判定手段87は(図8参照)、上り列車であれ下り列車であれ列車が共用終止点DDCの上下第2検知点82(又は上り第2検知点82a若しくは下り第2検知点82b)に係る列車検知区間を進出すると、終止点用踏切制御子24のリレー出力DPRが落下(無励磁,無意状態)し、その中継リレーDPPRも落下(無励磁,無意状態)するので、第2終止Rリレーが落下(無励磁,無意状態)するようになっている。また、終止点用踏切制御子24のリレー出力DPRの落下(無励磁,無意状態)に応じて、踏切制御装置34では(図9の警報Rリレー回路34cを参照)、リレー出力DPRの落下から例えば1〜4秒ほどの緩動時素の経過後に、警報Rリレーが動作(励磁,無意状態)して、踏切警報が停止するようになっている。   Further, the passage completion determining means 87 (see FIG. 8) is a second detection point 82 above and below the shared end point DDC (or the second detection point 82a or the second detection point 82b). ), The relay output DPR of the end point crossing controller 24 drops (non-excited, involuntary state), and the relay relay DPPR also drops (non-excited, involuntary state). The end R relay drops (no excitation, involuntary state). Further, according to the drop of the relay output DPR of the end point crossing controller 24 (non-excited, involuntary state), the crossing control device 34 (see the alarm R relay circuit 34c in FIG. 9) starts from the drop of the relay output DPR. For example, the alarm R relay is activated (excited, involuntary) after the elapse of the slow time of about 1 to 4 seconds, and the level crossing alarm is stopped.

そして、このような通過完了判定手段87は、上り列車については、上り始動点CDCへの列車進入と上り第1検知点81への列車進入と上下第2検知点82(又は上り第2検知点82a)への列車進入及び列車進出とがその順に行われたか否かを判別してその順に行われたときには踏切8を上り列車が通過し終えたと判定するとともに、下り列車については、下り始動点ADCへの列車進入と下り第1検知点83への列車進入と上下第2検知点82(又は下り第2検知点82b)からの列車進出とがその順に行われたか否かを判別してその順に行われたときには踏切8を上り列車が通過し終えたと判定するものであって、その判定結果を踏切制御装置34に送出して踏切警報の停止に供するものとなっている。   Then, for such an up train, such a passage completion judging means 87 is configured to enter the train to the ascending starting point CDC, enter the train to the ascending first detection point 81, and the up and down second sensing point 82 (or the ascending second sensing point). It is determined whether or not the train approach and train advance to 82a) are performed in that order, and when they are performed in that order, it is determined that the up train has passed through the crossing 8, and the down start point for the down train It is determined whether the train approach to the ADC, the train approach to the descending first detection point 83, and the train advancement from the upper and lower second sensing point 82 (or the descending second sensing point 82b) are performed in that order. When it is carried out in order, it is determined that the train has passed through the railroad crossing 8, and the determination result is sent to the railroad crossing control device 34 to stop the railroad crossing alarm.

障検マスク形成手段88は、第1終止Rリレーの動作接点と終止点用踏切制御子24のリレー出力DPRの動作接点とを並列にしたリレー回路からなり、その並列回路で形成したマスクRリレー信号を、踏切障害物検知の上り側マスク条件および下り側マスク条件として、踏切障害物検知装置35に送出するようになっている。第1終止Rリレーは、上述した下第1終止Rリレーと上第1終止Rリレーとを併用したのと同様に、上り列車が上り拡張点DDDCの上り第1検知点81に係る列車検知区間に進入したときから、及び下り列車が下り拡張点BBDCの下り第1検知点83に係る列車検知区間に進入したときから、共用終止点DDCの上下第2検知点82(又は上り第2検知点82a若しくは下り第2検知点82b)に係る列車検知区間を進出するまでの期間だけ、動作(励磁,有意状態)するので、第1終止Rリレーの信号から生成されたマスクRリレー信号は、第1検知点81,83への列車進入と第2検知点82からの列車進出とに亘る障検マスク区間に対応した信号となる(図7参照)。   The fault detection mask forming means 88 includes a relay circuit in which the operation contact of the first end R relay and the operation contact of the relay output DPR of the end point crossing controller 24 are arranged in parallel, and the mask R relay formed by the parallel circuit. The signals are sent to the crossing obstacle detection device 35 as an upside mask condition and a downside mask condition for crossing obstacle detection. The first stop R relay is a train detection section related to the first detection point 81 at the upstream extension point DDDC as in the case where the lower first termination R relay and the upper first termination R relay are used in combination. From the time when the vehicle enters the train, and when the descending train enters the train detection section related to the descending first detection point 83 of the descending extension point BBDC, the upper and lower second sensing points 82 (or the ascending second sensing points) of the common end point DDC. 82a or the descending second detection point 82b) is operated (excited, significant state) only during the period until the train detection section is advanced, the mask R relay signal generated from the first end R relay signal is It becomes a signal corresponding to the failure detection mask section that extends from the first detection point 81, 83 to the train and the second detection point 82 to the train (see FIG. 7).

それだけでもマスクRリレー信号は障害物検知装置のマスク条件として理想的なものと言えるが(図19参照)、この障検マスク形成手段88にあっては(図8参照)、終止点用踏切制御子24のリレー出力DPRの動作(励磁,有意状態)接点を付加したことにより、例え第1終止Rリレーが動作不能になった場合でも、従来と同等の機能がリレー出力DPRによって維持されるようになっているので、安全性が高まっている。また、踏切障害物検知装置35は(図10(a)参照)、その内部構成は従来のままでも、外部入力の変更によって、下り列車に係る障検マスク区間も、上り列車に係る障検マスク区間も、踏切8の踏切道から外れた所しか占めていなかった狭い旧区間から(図17(a)参照)、踏切8を区間内に収めた広い新区間に拡張されたものとなっているので(図7(a)参照)、列車速度の如何にかかわらず踏切道を通過中の列車を障害物と誤認することがないものとなっている。   Even so, the mask R relay signal can be said to be an ideal mask condition for the obstacle detection device (see FIG. 19). However, in this obstacle detection mask forming means 88 (see FIG. 8), the end point crossing control is performed. Since the operation (excitation, significant state) contact of the relay output DPR of the child 24 is added, even if the first termination R relay becomes inoperable, the function equivalent to the conventional one is maintained by the relay output DPR. Therefore, safety is increasing. Further, the railroad crossing obstacle detection device 35 (see FIG. 10 (a)) has the same internal configuration as before, but the fault mask section related to the down train is changed to the fault mask related to the up train by changing the external input. The section is also expanded from a narrow old section that only occupies a place off the railroad crossing of the level crossing 8 (see FIG. 17A) to a wide new section in which the level crossing 8 is accommodated in the section. Therefore, the train passing through the railroad crossing is not mistaken as an obstacle regardless of the train speed (see FIG. 7A).

この実施例2の踏切制御切替装置84及びそれを導入した単線区間における踏切保安装置80について、その使用態様及び動作を、図面を引用して説明する。
図11は、踏切保安装置80の概略図であり、(a)が上り列車到来時の切替状態を示し、(b)が上り列車到来後進行時の切替状態を示している。また、図12は、踏切保安装置80の概略図であり、(a)が下り列車到来時の切替状態を示し、(b)が下り列車到来後進行時の切替状態を示している。さらに、図10(b)〜(e)は、上り列車に対する列車検知と踏切障害物検知とに係るリレー信号等のタイムチャートである。
The use mode and operation of the level crossing control switching device 84 of the second embodiment and the level crossing security device 80 in the single line section in which it is introduced will be described with reference to the drawings.
FIG. 11 is a schematic diagram of the railroad crossing safety device 80, where (a) shows the switching state when the incoming train arrives, and (b) shows the switching state when traveling after the incoming train arrives. FIG. 12 is a schematic diagram of the railroad crossing safety device 80, in which (a) shows the switching state when the down train arrives, and (b) shows the switching state when traveling after the down train arrives. Further, FIGS. 10B to 10E are time charts of relay signals and the like related to train detection and railroad crossing obstacle detection for an up train.

単線区間の線路10に対して新たに踏切保安装置80を設置する場合は上述した構成(図7〜図10(a)参照)通りに踏切制御子21,23,24や,踏切制御装置34,警報灯32,踏切遮断機33,踏切障害物検知装置35,踏切制御切替装置84の配設とそれらに係る配線を行えば良く、既設の単線区間における踏切保安装置38に踏切制御切替装置84を追加して踏切保安装置38を踏切保安装置80にする場合は踏切制御切替装置84を追加してからそれに係る配線を変更すれば良いが、何れの場合も、設置が済んだら運用を開始する前に、上述したように模擬信号等で切替回路部86の接続状態を切り替えながら調整器25aや可変容量部を操作して照査用発振信号のレベル調整を行うことにより、第1接続線A1,B1と第2接続線A2,B2と第1接続線A3,B3との長さの相違に基づく接続線切替時のインピーダンス変化に起因する照査用発振信号の不所望な変動を解消しておく。それから踏切保安装置80の運用を開始する。   When a new level crossing safety device 80 is installed on the track 10 in the single track section, the level crossing controllers 21, 23, 24, the level crossing control device 34, as described above (see FIGS. 7 to 10A), It is sufficient that the warning light 32, the level crossing breaker 33, the level crossing obstacle detection device 35, and the level crossing control switching device 84 are arranged and wired accordingly. The level crossing control switching device 84 is provided on the level crossing safety device 38 in the existing single line section. When the level crossing safety device 38 is added to make the level crossing safety device 80, the wiring related to the level crossing control switching device 84 may be changed after the crossing control switching device 84 is added. In addition, as described above, by adjusting the level of the oscillation signal for verification by operating the adjuster 25a and the variable capacitance unit while switching the connection state of the switching circuit unit 86 with a simulation signal or the like, the first connection lines A1, B1 And second Keep eliminating unwanted variations in Shosa oscillation signal due to the impedance change at the connecting line switching and connecting lines A2, B2 due to the difference in length between the first connecting line A3, B3. Then, the operation of the railroad crossing safety device 80 is started.

踏切保安装置80の運用を開始しても、列車が踏切8の近くに在線していなければ(図7(a)参照)、踏切制御子21,23,24が何れも列車を検知しないので、そのリレー出力APR,CPR,DPRがそれぞれ動作(励磁,無意状態),動作(励磁,無意状態),落下(無励磁,無意状態)で何れも無意状態になっており、それに対応して上りSRリレーも下りSRリレーも動作(励磁,無意)状態を維持するので、踏切保安装置80の内部の各リレーの詳細な動作説明は簡潔な説明のため割愛するが、終止点用踏切制御子24は、第2切替状態の踏切制御切替装置84によって共用終止点DDCの上下第2検知点82に接続されて、上下第2検知点82に係る列車検知を行う。   Even if operation of the railroad crossing safety device 80 is started, if the train is not near the railroad crossing 8 (see FIG. 7A), the railroad crossing controllers 21, 23, and 24 do not detect the train. The relay outputs APR, CPR, and DPR are all involuntary in operation (excitation, involuntary state), operation (excitation, involuntary state), and fall (inexcitement, involuntary state), respectively, and the corresponding uplink SR Since both the relay and the down SR relay maintain the operation (excitation, involuntary) state, the detailed operation description of each relay in the level crossing safety device 80 is omitted for the sake of brevity, but the end point crossing controller 24 is The railroad crossing control switching device 84 in the second switching state is connected to the upper and lower second detection points 82 of the common end point DDC, and train detection related to the upper and lower second detection points 82 is performed.

そして、踏切保安装置80の設置された単線の線路10を上り列車が終点側から踏切8に向かって走行して来て上り始動点CDCの列車検知区間の区間に進入すると(図11(a)参照)、始動点用踏切制御子23が上り列車を検知して、始動点用踏切制御子23のリレー出力CPR(上始動R)が落下(無励磁,有意状態)するので、それまで動作(励磁,無意状態)していた上りSRリレーが、落下(無励磁,有意状態)する(図10(b)の左側部分を参照)。すると、それに応じて、上りの踏切制御区間の始点が踏切制御装置34によって確認されて踏切警報が開始されるとともに、終止点用踏切制御子24は、上りの第1切替状態になった踏切制御切替装置84によって上り拡張点DDDCの上り第1検知点81に接続されて、上り第1検知点81に係る列車検知を行う。   Then, when the ascending train travels from the end point side toward the level crossing 8 through the single track 10 where the railroad crossing safety device 80 is installed, and enters the train detection section of the ascending starting point CDC (FIG. 11 (a)). Since the starting point crossing controller 23 detects an upward train and the relay output CPR (upper starting R) of the starting point crossing controller 23 falls (no excitation, significant state), it operates until then ( The uplink SR relay that has been excited (unintentional state) falls (non-excited, significant state) (see the left part of FIG. 10B). Accordingly, the crossing control device 34 confirms the start point of the ascending level crossing control section and the level crossing alarm 24 is started, and the end point level crossing controller 24 controls the level crossing control in the up first switching state. The switching device 84 is connected to the first ascending detection point 81 of the ascending extension point DDDC and performs train detection related to the ascending first detection point 81.

線路10が単線で同時には下り列車が来ないうえ、この時点では未だ上り列車が上り拡張点DDDCにすら到達していないことから、始動点用踏切制御子21も終止点用踏切制御子24も列車を検知せず、始動点用踏切制御子21のリレー出力APR(下始動R)は動作(励磁,無意状態)し続け、終止点用踏切制御子24の出力リレーDPRも落下(無励磁,無意状態)しているので、マスクRリレー信号も落下(無励磁,無意状態)したままであり(図10(c)左側部分を参照)、踏切障害物検知装置35は踏切8に対して障害物の検知と検知時の警報出力を行う。また、この状態では(図11(a)参照)、踏切8に列車検知区間の掛かる共用終止点DDCの上下第2検知点82から終止点用踏切制御子24が切り離されていて、踏切8の所では列車検知が行われないので、踏切8の踏切道で踏切通行体によって線路10が不所望に短絡されたとしても、踏切警報は停止しない。   Since the track 10 is a single line and the down train does not come at the same time, and the up train has not yet reached the up extension point DDDC at this point, both the starting point crossing controller 21 and the end point crossing controller 24 are provided. Without detecting the train, the relay output APR (lower start R) of the start point crossing controller 21 continues to operate (excited, involuntary state), and the output relay DPR of the end point crossing controller 24 also drops (no excitation, Since the mask R relay signal is also dropped (unexcited, involuntary state) (refer to the left side of FIG. 10C), the crossing obstacle detection device 35 has an obstacle to the crossing 8. Detects objects and outputs alarms when detected. In this state (see FIG. 11A), the end point crossing controller 24 is separated from the upper and lower second detection points 82 of the common end point DDC where the train detection section is applied to the level crossing 8. Since the train is not detected at the place, even if the track 10 is undesirably short-circuited by the crossing road on the crossing road of the crossing 8, the crossing warning is not stopped.

そして、上り列車が進行して上り拡張点DDDCの上り第1検知点81の列車検知区間に進入すると(図11(b)参照)、終止点用踏切制御子24によって上り列車が検知され、終止点用踏切制御子24のリレー出力DPRが動作(励磁,有意状態)し、それに応じてマスクRリレーも動作(励磁,有意状態)するので(図10(c)中央部分を参照)、踏切障害物検知装置35では踏切障害物検知のマスクが働く。また、終止点用踏切制御子24のリレー出力DPRの動作(励磁,有意状態)に応じて踏切制御切替装置84が第2切替状態をとるので、終止点用踏切制御子24は、共用終止点DDCの上下第2検知点82に接続されて、上下第2検知点82に係る列車検知ができる状態で待機することになる(図11(b)参照)。また、その切替によってリレー出力DPRが落下(無励磁,無意状態)するが、第1終止Rリレーが動作(励磁,有意)状態を維持するので、踏切障害物検知装置35では踏切障害物検知のマスクが働き続ける。   Then, when the ascending train progresses and enters the train detection section of the ascending first detection point 81 at the ascending extension point DDDC (see FIG. 11B), the ascending train is detected by the end point crossing controller 24 and terminated. Since the relay output DPR of the point crossing controller 24 operates (excitation, significant state), and the mask R relay also operates (excitation, significant state) accordingly (see the central part of FIG. 10 (c)), a crossing failure In the object detection device 35, a crossing obstacle detection mask works. Further, since the crossing control switching device 84 takes the second switching state according to the operation (excitation, significant state) of the relay output DPR of the end point crossing controller 24, the end point crossing controller 24 is used as the common end point. It is connected to the upper and lower second detection points 82 of the DDC and waits in a state where the train can be detected according to the upper and lower second detection points 82 (see FIG. 11B). In addition, the relay output DPR drops (no excitation, involuntary state) by the switching, but the first end R relay maintains the operation (excitation, significant) state, so that the level crossing obstacle detection device 35 detects the level crossing obstacle. The mask continues to work.

それから、上り列車が更に進行して踏切8に差し掛かると(図10(d)中央部分を参照)、その上り列車に感応して踏切障害物検知装置35では障害物感応信号SSが不感状態から有感状態になるが、踏切障害物検知装置35では既にマスクが効いているため、発報制御信号BZが無意(無警報状態)のまま変わらないので、誤報は出ない。
その後、上り列車が共用終止点DDCの上下第2検知点82の列車検知区間へ進行して(図10(b)右側部分を参照)、終止点用踏切制御子24のリレー出力DPRが再び動作(励磁,有意状態)すると、それに応じて踏切制御装置34では上りSRリレーが動作(励磁,無意)状態に戻るが、マスクRリレー信号は動作(励磁,有意状態)し続けるので(図10(c)中央部分を参照)、やはり誤報は出ない。
Then, when the ascending train further proceeds and reaches the railroad crossing 8 (see the center portion of FIG. 10 (d)), the obstacle sensing signal SS is detected from the insensitive state in the railroad crossing obstacle detection device 35 in response to the ascending train. Although it is in the sensitive state, since the mask is already effective in the crossing obstacle detection device 35, the alarm control signal BZ remains unintentional (no alarm state), so that no false alarm is generated.
Thereafter, the upward train proceeds to the train detection section of the second detection point 82 above and below the common stop point DDC (see the right part of FIG. 10B), and the relay output DPR of the end point crossing controller 24 operates again. (Excitation, significant state) When the level crossing control device 34 responds accordingly, the uplink SR relay returns to the operation (excitation, involuntary) state, but the mask R relay signal continues to operate (excitation, significant state) (FIG. 10 ( c) See the middle part), and no false alarms are generated.

そして、更に上り列車が走行して踏切8を完全に通り抜けると(図10(d)中央右寄り部分を参照)、踏切障害物検知装置35では障害物感応信号SSが有感状態から不感状態に戻るが、依然として、マスクRリレー信号が動作(励磁,有意状態)し続けるので(図10(c)中央右寄り部分を参照)、踏切障害物検知装置35から誤報が出ることはない。それから、上り列車が走行して共用終止点DDCの上下第2検知点82の列車検知区間をも完全に抜けると(図10(c)右側部分を参照)、終止点用踏切制御子24のリレー出力DPRが落下(無励磁,無意状態)し、これに応じて第1終止Rリレー落下し、更にマスクRリレー信号が落下(無励磁,無意状態)して踏切障害物検知装置35が通常状態に戻る一方、踏切制御切替装置84が第2切替状態のままで、終止点用踏切制御子24が共用終止点DDCの上下第2検知点82に係る列車検知を行う状態を維持するので、上り列車が起点側へ去ると、踏切保安装置80の全体が列車非在線状態に戻る(図7(a)参照)。   Then, when the upward train further travels and completely passes through the railroad crossing 8 (see the center right side portion in FIG. 10 (d)), the obstacle response signal SS returns from the sensitive state to the insensitive state in the crossing obstacle detection device 35. However, since the mask R relay signal continues to operate (excitation, significant state) (see the center right side portion of FIG. 10C), no false alarm is issued from the crossing obstacle detection device 35. Then, when the up train travels and completely passes through the train detection section of the second detection point 82 above and below the common stop point DDC (see the right side of FIG. 10 (c)), the relay of the end point crossing controller 24 is relayed. The output DPR falls (no excitation, involuntary state), the first end R relay falls in response to this, and the mask R relay signal falls (no excitation, involuntary state), so that the level crossing obstacle detection device 35 is in the normal state On the other hand, the railroad crossing control switching device 84 remains in the second switching state, and the railroad crossing controller 24 for the end point maintains the state of performing the train detection related to the upper and lower second detection points 82 of the common end point DDC. When the train leaves to the starting side, the entire railroad crossing safety device 80 returns to the non-train presence state (see FIG. 7A).

このような、終止点用の列車検知位置の切替と踏切障害物検知の発報マスク動作とによって、踏切制御切替装置84を導入した踏切保安装置80では、上りの踏切制御区間が上り始動点CDCの列車検知区間と共用終止点DDCの上下第2検知点82の列車検知区間とに亘る区間に維持されるとともに、上りの障検マスク区間が上り拡張点DDDCの上り第1検知点81の列車検知区間と共用終止点DDCの上下第2検知点82の列車検知区間とに亘る区間に拡張されて、踏切8が上りの踏切制御区間内にも上りの障検マスク区間内にも完全に収まるため、上り列車の最先頭が踏切8に差し掛かってから下り列車の最後尾が踏切8を抜け出すまでの時間tが、列車の高速走行に対応して短い場合はもちろん(図10(d)参照)、列車の低速走行に対応して長い場合でも(図10(e)参照)、踏切障害物検知装置35が踏切通過中の列車を検知して誤報が出るという虞が全くないうえ、上り列車の踏切通過後は速やかに踏切警報が停止する。   In such a level crossing safety device 80 in which the level crossing control switching device 84 is introduced by switching the train detection position for the end point and the alarm mask operation for detecting the level crossing obstacle, the up crossing control section is the up start point CDC. Train detection section and the upper and lower second detection points 82 of the common end point DDC are maintained in the section, and the upstream obstacle detection mask section is the train of the upstream first detection point 81 of the upstream extension point DDDC. The railroad crossing 8 is completely extended in both the upper railroad crossing control zone and the upper fault detection mask zone by extending the zone between the detection zone and the train detection zone at the second detection point 82 above and below the common end point DDC. Therefore, of course, the time t from when the top of the ascending train reaches the railroad crossing 8 until the tail of the descending train exits the railroad crossing 8 is short corresponding to the high-speed traveling of the train (see FIG. 10 (d)). The train slow Even if it is long corresponding to the line (see FIG. 10 (e)), there is no possibility that the level crossing obstacle detection device 35 will detect a train passing through the level crossing and generate a false alarm. The railroad crossing warning stops immediately.

上りと下りの列車が同じ線路10を逆向きに走行する単線区間に踏切保安装置80が適用されているので、多少重複するが、下り列車についても簡潔に説明する。列車が踏切8の近くに在線していなければ、上述したように、踏切制御子21,23,24が何れも列車を検知せず、終止点用踏切制御子24は、第2切替状態の踏切制御切替装置84によって共用終止点DDCの上下第2検知点82に接続されていて、上下第2検知点82に係る列車検知を行う。そして、下り列車が起点側から踏切8に向かって走行して来て下り始動点ADCの列車検知区間に進入すると(図12(a)参照)、始動点用踏切制御子21が下り列車を検知して、下りの踏切制御区間の始点が踏切制御装置34によって確認されて踏切警報が開始されるとともに、終止点用踏切制御子24は、下りの第1切替状態になった踏切制御切替装置84によって下り拡張点BBDCの下り第1検知点83に接続されて、下り第1検知点83に係る列車検知を行う。   Since the railroad crossing security device 80 is applied to the single line section where the up and down trains travel on the same line 10 in the opposite direction, the trains will be briefly described. If the train is not near the railroad crossing 8, as described above, none of the railroad crossing controllers 21, 23, 24 detect the train, and the railroad crossing controller 24 for the end point is in the second switching state. The control switching device 84 is connected to the upper and lower second detection points 82 of the common end point DDC, and train detection related to the upper and lower second detection points 82 is performed. When the descending train travels from the starting point toward the railroad crossing 8 and enters the train detection section of the descending starting point ADC (see FIG. 12A), the starting point crossing controller 21 detects the descending train. Then, the crossing control device 34 confirms the start point of the down crossing control section and the crossing warning is started, and the end point crossing controller 24 is switched to the down crossing control device 84 in the first switching state. Is connected to the first descending detection point 83 of the descending extension point BBDC, and train detection related to the first descending detection point 83 is performed.

しかも、この状態では(図12(a)参照)、踏切8に列車検知区間の掛かる共用終止点DDCの上下第2検知点82から終止点用踏切制御子24が切り離されていて、踏切8の所では列車検知が行われないので、踏切8の踏切道で踏切通行体によって線路10が不所望に短絡されたとしても、踏切警報は停止しない。
また、この状態では、マスクRリレー信号が落下(無励磁,無意状態)したままなので、踏切障害物検知装置35は、踏切8の踏切道に対する障害物の検知や検知時の警報出力を行う。
Moreover, in this state (see FIG. 12 (a)), the end point crossing controller 24 is separated from the upper and lower second detection points 82 of the common end point DDC where the train detection section is applied to the crossing 8. Since the train is not detected at the place, even if the track 10 is undesirably short-circuited by the crossing road on the crossing road of the crossing 8, the crossing warning is not stopped.
In this state, since the mask R relay signal remains dropped (no excitation, involuntary state), the crossing obstacle detection device 35 detects an obstacle on the crossing road of the crossing 8 and outputs an alarm at the time of detection.

そして、下り列車が進行して下り拡張点BBDCの下り第1検知点83の列車検知区間に進入すると(図12(b)参照)、踏切制御切替装置84が第2切替状態に戻り、それによって、終止点用踏切制御子24は、共用終止点DDCの上下第2検知点82に接続されて、上下第2検知点82に係る列車検知を行う。また、マスクRリレー信号が動作(励磁,有意状態)するので、踏切障害物検知装置35では踏切障害物検知のマスクが働く。それから、下り列車が更に進行して踏切8に差し掛かると、その下り列車に感応して踏切障害物検知装置35では障害物感応信号SSが不感状態から有感状態になるが、踏切障害物検知装置35では既にマスクが効いているため、発報制御信号BZが無意(無警報状態)のまま変わらないので、誤報は出ない。   When the descending train advances and enters the train detection section of the descending first detection point 83 at the descending extension point BBDC (see FIG. 12B), the level crossing control switching device 84 returns to the second switching state, thereby The end point crossing controller 24 is connected to the upper and lower second detection points 82 of the common end point DDC and performs train detection related to the upper and lower second detection points 82. Further, since the mask R relay signal operates (excited, significant state), the crossing obstacle detection device 35 operates a mask for detecting the crossing obstacle. Then, when the descending train further proceeds and reaches the railroad crossing 8, the obstacle sensing signal SS changes from the insensitive state to the sensitive state in response to the descending train. Since the mask is already effective in the device 35, the alarm control signal BZ remains unintentional (no alarm state), so that no false alarm is generated.

その後、下り列車が更に走行して共用終止点DDCの上下第2検知点82に係る列車検知区間をも完全に抜けると、終止点用踏切制御子24のリレー出力DPRが落下(無励磁,無意状態)し、これに応じてマスクRリレー信号が落下(無励磁,無意状態)して踏切障害物検知装置35が通常状態に戻る一方、踏切制御切替装置84が第2切替状態のままで、終止点用踏切制御子24が共用終止点DDCの上下第2検知点82に係る列車検知を行う状態を維持するので、下り列車が終点側へ去ると、踏切保安装置80の全体が列車非在線状態に戻る(図7(a)参照)。   After that, when the descending train further travels and completely passes through the train detection section related to the upper and lower second detection points 82 of the common end point DDC, the relay output DPR of the end point crossing controller 24 drops (no excitation, involuntary State), and in response to this, the mask R relay signal falls (no excitation, involuntary state) and the level crossing obstacle detection device 35 returns to the normal state, while the level crossing control switching device 84 remains in the second switching state, Since the level crossing controller 24 for the end point maintains the state of performing the train detection related to the upper and lower second detection points 82 of the common end point DDC, when the descending train leaves the end point side, the entire level crossing safety device 80 is not connected to the train. Return to the state (see FIG. 7A).

このような、終止点用の列車検知位置の切替と踏切障害物検知の発報マスク動作とによって、踏切制御切替装置84を導入した踏切保安装置80では、下りの踏切制御区間が下り始動点ADCの列車検知区間と共用終止点DDCの上下第2検知点82の列車検知区間とに亘る区間に維持されるとともに、下りの障検マスク区間が下り拡張点BBDCの下り第1検知点83の列車検知区間と共用終止点DDCの上下第2検知点82の列車検知区間とに亘る区間に拡張されて、踏切8が下りの踏切制御区間内にも下りの障検マスク区間内にも完全に収まる。そのため、踏切制御切替装置84を導入した踏切保安装置80にあっては、終止点用踏切制御子24が一台だけのままであっても、上りの踏切制御区間も下りの踏切制御区間も上りの障検マスク区間も下りの障検マスク区間も理想状態になる。   In such a level crossing safety device 80 in which the level crossing control switching device 84 is introduced by switching the train detection position for the end point and the alarm masking operation for detecting the level crossing obstacle, the down level crossing control section is set as the down start point ADC. Is maintained in a section extending between the train detection section and the train detection section of the second detection point 82 above and below the common end point DDC, and the down obstacle detection mask section is the train at the first detection point 83 at the down extension point BBDC. The railroad crossing 8 is completely extended in both the downward railroad crossing control zone and the downward obstacle detection mask zone by extending the zone between the detection zone and the train detection zone of the second detection point 82 above and below the common end point DDC. . Therefore, in the level crossing safety device 80 in which the level crossing control switching device 84 is introduced, even if only one end point level crossing controller 24 remains, the ascending level crossing control section and the descending level crossing control section are both ascending. Both the fault mask mask section and the down fault mask section are in the ideal state.

[その他]
上記実施例では、切替制御部55,65,85や、切替回路部56,66,86、通過完了判定手段57,67,87、障検マスク形成手段58,68,88を、非同期式のリレー回路にて具体化したことから、回路動作の安定化のために、第1終止RリレーやBPPSLRリレー等に緩動性や緩放性を持たせたが、例えばデジタル回路やプログラマブルなマイクロプロセッサといった電子回路を採用して同期式の順序回路にて具体化しても良く、そうすれば、不所望なレーシング等の不安定現象の発現を容易に抑えることができるので、緩動性や緩放性は考慮する必要がない。
[Others]
In the above embodiment, the switching control units 55, 65, 85, the switching circuit units 56, 66, 86, the passage completion determining units 57, 67, 87, and the fault mask forming units 58, 68, 88 are connected to the asynchronous relays. Since it was embodied in a circuit, in order to stabilize circuit operation, the first termination R relay, the BPPSLR relay, etc. were given slidability and release characteristics. For example, a digital circuit or a programmable microprocessor An electronic circuit may be adopted and embodied in a synchronous sequential circuit, so that the occurrence of undesired phenomena such as undesired racing can be easily suppressed. Does not need to be considered.

上記実施例1では、可変容量部56aが、一つだけ設けられて、分岐配線a2,b2の何れかに介挿されていたが、可変容量部は、分岐配線a2,b2の双方に設けられていても良く、さらには分岐配線a1,b1の何れか一方または双方にだけ設けられていても良く、分岐配線a1,b1の何れか一方または双方と分岐配線a2,b2の何れか一方または双方とに設けられていても良い。コモンモードの雷サージに対する耐力を高めるためには、分岐配線a1,b1の両方に及び/又は分岐配線a2,b2の両方に同じ容量のコンデンサーを介挿し回線を平衡させるのがベターである。実施例2でも同様である。   In the first embodiment, only one variable capacitor 56a is provided and is inserted in either of the branch wires a2 and b2. However, the variable capacitor is provided in both of the branch wires a2 and b2. Further, it may be provided only on one or both of the branch lines a1 and b1, and either one or both of the branch lines a1 and b1 and one or both of the branch lines a2 and b2. And may be provided. In order to increase the resistance to a common mode lightning surge, it is better to equilibrate the lines by inserting capacitors of the same capacity in both the branch lines a1 and b1 and / or in both branch lines a2 and b2. The same applies to the second embodiment.

上記実施例1では、第1接続線A1,B1や第2接続線A2,B2を踏切制御切替装置50の筐体の接続端子51や接続端子52に接続するに際して、第1接続線A1,B1や第2接続線A2,B2を配線端子盤28の端子に一旦接続しておき、その配線端子盤28から踏切制御切替装置50までは踏切器具箱内配線41,42で延長するようになっていたが、踏切器具箱内への収納は必須でないので、また踏切器具箱内に収納する場合でも配線端子盤28の使用は必須でないので、第1接続線A1,B1や第2接続線A2,B2は接続端子51や接続端子52に直接接続しても良い。   In the first embodiment, when connecting the first connection lines A1 and B1 and the second connection lines A2 and B2 to the connection terminals 51 and the connection terminals 52 of the housing of the crossing control switching device 50, the first connection lines A1 and B1. The second connection lines A2 and B2 are once connected to the terminals of the wiring terminal board 28, and from the wiring terminal board 28 to the level crossing control switching device 50 are extended by the rail crossing equipment box wirings 41 and 42. However, since the storage in the railroad crossing equipment box is not essential, and the use of the wiring terminal board 28 is not essential even in the case of storage in the railroad crossing equipment box, the first connection lines A1, B1 and the second connection lines A2, B2 may be directly connected to the connection terminal 51 or the connection terminal 52.

上記実施例1では複線区間における上り側の線路10と下り側の線路10との双方に踏切制御切替装置50,60が設置されていたが、予算や工期などの都合によっては、それらのうち何れか片方だけを設置しても良く、他方は、遅れて設置しても良く、設置しないままにしても良い。そのように複数の線路のうち一部の線路にだけ踏切制御切替装置を設置した場合、設置した線路については本発明の効果を享受することができる。
上記実施例では、踏切8が第1種でそこに踏切遮断機33が設置されていたが、本発明の実施に踏切遮断機33は必須でないので、踏切8が第3種の場合は踏切遮断機33を省いても良い。
In the first embodiment, the railroad crossing control switching devices 50 and 60 are installed on both the upstream line 10 and the downstream line 10 in the double track section. Only one of them may be installed, and the other may be installed later or may be left uninstalled. When the railroad crossing control switching device is installed only on some of the plurality of tracks, the effect of the present invention can be enjoyed with respect to the installed tracks.
In the above embodiment, the level crossing 8 is the first type and the level crossing breaker 33 is installed there. However, since the level crossing breaker 33 is not essential for the implementation of the present invention, the level crossing is cut off when the level crossing 8 is the third type. The machine 33 may be omitted.

また、本願発明の踏切制御切替装置を組み込んだ踏切保安装置にあっては、複線区間、単線区間とも、列車の進行方向に対して、踏切道手前側の第1検知点で列車を検知したことと、次に、列車検知区間が踏切道と重なっている第2検知点(踏切上検知点,踏切上の打込み点)で列車を検知したこととの2重の検知及びシーケンシャルな順序性のチェックが満足したことをもって、警報終止条件としている。単に第1検知点あるいは第2検知点で、不正な軌道短絡が発生したとしても、これを列車の進出(通過)とは判断せずに、これをリジェクトすることにより、警報が停止しないようにしている。従って、警報終止用の踏切制御子の列車検知区間が踏切道と重なるように設置したことに起因して、踏切通行体によって軌道が不正に短絡されたとしても、不所望に警報が停止するのは回避することができる。更には、警報開始時点に第2検知点において、不正に軌道が短絡状態であることを検知したときや、検知点(接続点,打込み点)を第1検知点に切り替えた時点に第1検知点において不正に軌道が短絡状態であることを検知したときには、危険な不正状態と見做し警報を継続するとともに、外部に警報出力する機能を持たせることも可能である。   Further, in the crossing safety device incorporating the crossing control switching device of the present invention, the train is detected at the first detection point on the near side of the crossing road with respect to the traveling direction of the train in both the double track section and the single track section. Next, double detection and sequential order check that the train is detected at the second detection point where the train detection section overlaps the level crossing (detection point on level crossing, driving point on level crossing) Is satisfied as a warning stop condition. Even if an incorrect track short-circuit occurs at the first detection point or the second detection point, it will not be judged that the train has advanced (passed) but will be rejected so that the alarm will not stop. ing. Therefore, even if the track is improperly short-circuited by a railroad crossing vehicle due to the fact that the train detection section of the railroad crossing controller for terminating the alarm overlaps with the railroad crossing, the alarm stops undesirably. Can be avoided. Furthermore, the first detection is performed when the detection point (connection point, driving point) is switched to the first detection point when the alarm is illegally detected at the second detection point at the alarm start time. When it is illegally detected that the track is short-circuited at this point, it is possible to provide a function of outputting an alarm to the outside while continuing to be regarded as a dangerous illegal state.

また、本願発明が以下の効果(1)〜(4)を奏することが確認される。
(1) 踏切警報の終止(停止)の時期が、警報終止用の踏切制御子の列車検知区間が踏切道と重なった第2検知点を列車が通過したことを検知した時点となり、列車が踏切道を通過し終わって速やかに踏切警報が停止する。これにより、従来の踏切の設備のように、列車が踏切道を通過し終わってから相当時分経過後に警報停止することが解消し、道路通行者の焦燥感・イライラ感を軽減する社会的要請に応えられる。
(2) 複線区間、単線区間とも、列車の進行方向に対して、踏切道手前側の第1検知点で列車を検知したことと、次に、列車検知区間が踏切道と重なっている第2検知点で列車を検知したことの2重の検知とシーケンシャルな順序性のチェックが満足したことをもって警報終止条件とすることにより、ひとつの検知点(接続点,打込み点)、つまりひとつの検知点のみによる列車の進出(通過)検知により警報を終止(停止)させる条件とする従来の踏切の設備や論理に比べ、警報終止条件の確実性、厳密性が数段高まり、踏切の安全性が向上する。
Moreover, it is confirmed that this invention has the following effects (1)-(4).
(1) The level of the railroad crossing alarm stop (stop) is the time when the train has detected that the train has passed the second detection point where the train detection section of the railroad crossing controller for alarm stop overlaps the railroad crossing. The railroad crossing warning stops as soon as you have passed the road. This eliminates the alarm stop after a considerable amount of time has passed since the train has passed the railroad crossing, as in conventional railroad crossing equipment, and is a social request to reduce the feeling of frustration and irritation of road passers. It can respond to.
(2) Both the double track section and the single track section have detected a train at the first detection point on the front side of the railroad crossing with respect to the traveling direction of the train, and then the train detection section overlaps the railroad crossing 2 One detection point (connection point, driving point), that is, one detection point, by setting the alarm stop condition when the double detection of the detection of the train at the detection point and the sequential order check are satisfied Compared to conventional railroad crossing equipment and logic, where the alarm is stopped (stopped) by detecting the advance (passing) of the train only, the safety and safety of the railroad crossing are improved by several steps. To do.

(3) 上記の、列車が踏切道を通過し終わって速やかに踏切警報が停止する効果、及び警報終止条件の確実性、厳密性の向上の効果がある機能を、警報終止用の踏切制御子へのレールの打込み点を複数設け、列車の運転方向(単線区間に限る)と列車の走行に従って、時分割に、検知点(接続点,打込み点)を選択して切り替え、一つの警報終止用の踏切制御子で実現することにより、複数の踏切制御子を設けて実現する方式に比べ、イニシャルコスト及びランニングコストが軽減できるとともに、保全性も向上する。
(4) 踏切の警報停止条件を適正するための論理(条件)の一部を流用(活用)することにより、別途、新たな論理(条件)を設けることなく、踏切障害物検知装置のマスク条件の適正化が図れる。
(3) The above-mentioned level crossing controller for stopping the alarm has the effect that the level crossing alarm stops immediately after the train has passed the level crossing, and the effect of improving the certainty and strictness of the alarm end condition. Set up multiple rail driving points to select and switch detection points (connection points, driving points) in a time-sharing manner according to the train driving direction (limited to single-track sections) and train travel, for one alarm termination As a result of realizing with this level crossing controller, the initial cost and running cost can be reduced and maintainability can be improved as compared with a system realized by providing a plurality of level crossing controllers.
(4) By diverting (utilizing) part of the logic (conditions) for making the level crossing warning stop condition appropriate, the mask conditions for the level crossing obstacle detection device are not provided separately. Can be optimized.

本発明の踏切保安装置および踏切制御切替装置が単線区間と狭義の複線区間に適用できることは上記実施例にて具体的に説明したが、複々線など、上り側の線路と下り側の線路とのうち何れか一方または双方が更に複数敷設されている広義の複線区間にも本発明は適用することができる。   The level crossing safety device and the level crossing control switching device according to the present invention can be applied to the single line section and the narrowly defined double line section in the above-described embodiment, but, among the double line, the up line and the down line The present invention can also be applied to a broad-lined double track section in which either one or both are further laid.

8…踏切、10…線路、11,12…レール、
14,14a,15,15a…接続線取付箇所(接続点,検知点)、
21…始動点用踏切制御子(閉電路形踏切制御子)、
22…終止点用踏切制御子(開電路形踏切制御子)、
23…始動点用踏切制御子(閉電路形踏切制御子)、
24…終止点用踏切制御子(開電路形踏切制御子)、
25…発振有無検出部(電路開閉検出部)、25a…調整器(第1調整部)、
26…リレー駆動部、27…踏切器具箱内配線、28…配線端子盤、
31…踏切制御装置(複線用,列車方向判別手段)、32…警報灯、
33…踏切遮断機、34…踏切制御装置(単線用,列車方向判別手段)、
35…踏切障害物検知装置、35a…踏切障害物検知装置(マスク拡張)、
37…踏切保安装置(複線用)、38…踏切保安装置(単線用)、
40…踏切保安装置(複線用)、41〜46…踏切器具箱内配線、
47a…上り第1検知点(上り拡張点DDDCにおける接続線取付箇所)、
47b…上り第2検知点(上り終止点DDCにおける接続線取付箇所)、
48a…下り第1検知点(下り拡張点BBDCにおける接続線取付箇所)、
48b…下り第2検知点(下り終止点BDCにおける接続線取付箇所)、
50…踏切制御切替装置(接続線切替ユニット)、
51〜54,54a,54b,54c…接続端子、
55…切替制御部、55a…下切替Rリレー回路、
55b…下第1終止Rリレー回路、55c…中継BPPRリレー回路、
55d…BPPSLRリレー回路、55e…下第1終止リセットR回路、
56…切替回路部、56a…可変容量部(第2調整部)、
57…通過完了判定手段、58…障検マスク形成手段、
60…踏切制御切替装置(接続線切替ユニット)、
65…切替制御部、66…切替回路部、
67…通過完了判定手段、68…障検マスク形成手段、
80…踏切保安装置(単線用)、
81…上り第1検知点(上り拡張点DDDCにおける接続線取付箇所)、
82…上下第2検知点(共用終止点DDCにおける接続線取付箇所)、
82a…上り第2検知点(上り終止点DDCaにおける接続線取付箇所)、
82b…下り第2検知点(下り終止点DDCbにおける接続線取付箇所)、
83…下り第1検知点(下り拡張点BBDCにおける接続線取付箇所)、
84…踏切制御切替装置(接続線切替ユニット)、
85…切替制御部、86…切替回路部、
87…通過完了判定手段、88…障検マスク形成手段、
AA,BB…制御子内配線、a1,b1…分岐配線、a2,b2…分岐配線、
A1,B1…接続線(第1接続線)、A2,B2…接続線(第2接続線)、
A3,B3…接続線A3,B3(下りの第1接続線)、
ADC…下り始動点、BDC…下り終止点、BBDC…下り拡張点、
CDC…上り始動点、DDC…上り終止点、DDDC…上り拡張点
8 ... Railroad crossing, 10 ... Track, 11, 12 ... Rail,
14, 14 a, 15, 15 a... Connection line attachment location (connection point, detection point),
21 ... Starting point level crossing controller (closed circuit type level crossing controller),
22 ... Ending point crossing controller (open circuit type crossing controller),
23 ... Starting point crossing controller (closed-circuit type crossing controller),
24 ... Ending point crossing controller (open circuit type crossing controller),
25 ... Oscillation presence / absence detection unit (electric circuit open / close detection unit), 25a ... Adjuster (first adjustment unit),
26 ... relay drive unit, 27 ... wiring in the railroad crossing equipment box, 28 ... wiring terminal board,
31 ... Crossing control device (for double track, train direction discriminating means), 32 ... warning light,
33 ... Railroad crossing breaker, 34 ... Railroad crossing control device (for single track, train direction discrimination means),
35 ... Crossing obstacle detection device, 35a ... Crossing obstacle detection device (mask expansion),
37 ... Crossing safety device (for double wires), 38 ... Crossing safety device (for single wires),
40 ... Railroad crossing safety device (for double wires), 41-46 ... Wiring in railroad crossing equipment box,
47a... First detection point (connecting line attachment point at the upstream extension point DDDC),
47b ... second rising detection point (connection line attachment point at the rising end point DDC),
48a ... Downward first detection point (connection line attachment point at the downward extension point BBDC),
48b ... Downward second detection point (connection line attachment point at the downward end point BDC),
50 ... railroad crossing control switching device (connection line switching unit),
51-54, 54a, 54b, 54c ... connection terminals,
55 ... switching control unit, 55a ... lower switching R relay circuit,
55b ... Lower first termination R relay circuit, 55c ... Relay BPPR relay circuit,
55d: BPPSLR relay circuit, 55e: lower first termination reset R circuit,
56 ... switching circuit unit, 56a ... variable capacitance unit (second adjusting unit),
57 ... Passing completion determining means, 58 ... Obstacle detection mask forming means,
60 ... railroad crossing control switching device (connection line switching unit),
65 ... switching control unit, 66 ... switching circuit unit,
67 ... Passing completion judging means, 68 ... Fault detection mask forming means,
80 ... Railroad crossing safety device (for single wire),
81 ... Upward first detection point (connection line attachment point at the upward extension point DDDC),
82 ... the second detection point (upper and lower second detection point (connection line attachment point at the common end point DDC)),
82a ... second rising detection point (connection line attachment point at the rising end point DDCa),
82b ... Downward second detection point (connection line attachment point at the downward end point DDCb),
83 ... 1st detection point (connection line attachment location in the downward extension point BBDC),
84 ... railroad crossing control switching device (connection line switching unit),
85 ... switching control unit, 86 ... switching circuit unit,
87: Passing completion judging means, 88 ... Obstacle detection mask forming means,
AA, BB ... Wiring inside controller, a1, b1 ... Branch wiring, a2, b2 ... Branch wiring,
A1, B1 ... connection line (first connection line), A2, B2 ... connection line (second connection line),
A3, B3 ... connection lines A3, B3 (downward first connection line),
ADC ... down start point, BDC ... down end point, BBDC ... down extension point,
CDC: Up start point, DDC: Up end point, DDDC: Up extension point

Claims (8)

鉄道の線路を横切る踏切から列車検知区間が外れる状態で前記線路に設定された始動点に係る列車検知を行う閉電路形の始動点用踏切制御子と、前記踏切から列車検知区間が外れる状態で前記始動点と前記踏切との間で前記線路に設定された第1検知点に係る列車検知を行う第1列車検知手段と、前記踏切に列車検知区間が掛かり且つ該列車検知区間の両端のうち前記第1検知点から遠い方の区間端と前記第1検知点とが前記踏切の両側に分かれる状態で前記線路に設定された第2検知点に係る列車検知を行う開電路形の第2列車検知手段と、前記始動点用踏切制御子と前記第1列車検知手段と前記第2列車検知手段との列車検知結果に基づいて前記始動点への列車進入と前記第1検知点への列車進入と前記第2検知点への列車進入及び列車進出とがその順に行われたか否かを判別してその順に行われたときには前記踏切を列車が通過し終えたと判定する通過完了判定手段と、前記始動点用踏切制御子の列車検知結果と前記通過完了判定手段の判定結果とに基づいて踏切警報の開始と停止を行う踏切制御装置と、前記第1検知点の所で前記線路に接続された第1接続線と、前記第2検知点の所で前記線路に接続された第2接続線と、開電路形の終止点用踏切制御子と、前記第1接続線と前記第2接続線と前記終止点用踏切制御子とに接続されていて第1切替状態では前記終止点用踏切制御子の接続先を前記第1接続線に切り替えるが第2切替状態では前記終止点用踏切制御子の接続先を前記第2接続線に切り替える切替回路部と、前記始動点への列車到来時には先ず前記切替回路部に前記第1切替状態をとらせることにより前記終止点用踏切制御子に前記第1検知点に係る列車検知を行わせるとともにその後の前記第1検知点への列車進行時には前記切替回路部に前記第2切替状態をとらせることにより前記終止点用踏切制御子に前記第2検知点に係る列車検知を行わせる切替制御部とを備え、前記終止点用踏切制御子が時分割で前記第1列車検知手段および前記第2列車検知手段として機能するようになっている踏切保安装置。 In a state where the train detection section is deviated from the crossing, and a closed-circuit-type start-point crossing controller that performs train detection related to the start point set on the track in a state where the train detection section is off the railroad crossing across the railroad track A first train detection means for detecting a train related to a first detection point set on the track between the starting point and the railroad crossing, and a train detection zone is applied to the railroad crossing and both ends of the train detection zone An open-circuit-type second train that performs train detection related to the second detection point set on the track in a state where the end of the section far from the first detection point and the first detection point are divided on both sides of the railroad crossing. A train approach to the start point and a train approach to the first detection point based on a train detection result of the detection means, the crossing controller for the start point, the first train detection means, and the second train detection means And train approach to the second detection point and train It is determined whether or not departure is performed in that order, and when it is performed in that order, passage completion determination means for determining that the train has passed through the railroad crossing, the train detection result of the starting point railroad crossing controller, and the a railroad crossing control device to start and stop the crossing warning based on the determination result of the passing completion determining means, before Symbol first connection lines connected to the line at the first detection point, the second sensing point Connected to the second connection line connected to the track, the open-circuit-type end point crossing controller, the first connection line, the second connection line, and the end point crossing controller. In the first switching state, the connection point of the end point crossing controller is switched to the first connection line. In the second switching state, the connection point of the end point crossing controller is switched to the second connection line. Circuit section and the switching circuit section first when the train arrives at the starting point By causing the first switching state to be taken, the end point crossing controller performs train detection related to the first detection point, and when the train proceeds to the first detection point thereafter, the switching circuit unit includes the first switching point. A switching control unit for causing the end point crossing controller to detect a train related to the second detection point by taking the two switching states, and the end point crossing controller is time-divisionally divided into the first train. crossings safety device that has functions as a detecting means and the second train detection means. 前記線路が複線区間に設けられていて前記踏切が複数の線路を横切っていることに対応して、前記始動点用踏切制御子と前記第1列車検知手段と前記第2列車検知手段との組が前記踏切を通る各線路毎に設けられていることを特徴とする請求項1記載の踏切保安装置。   Corresponding to the fact that the railroad track is provided in a double track section and the railroad crossing crosses a plurality of railroad tracks, a set of the starting point railroad crossing controller, the first train detection means, and the second train detection means The crossing security device according to claim 1, wherein the crossing is provided for each track passing through the crossing. 前記線路が単線区間に設けられていて下り列車と上り列車とに時期を異にして共用されることに対応して、前記始動点用踏切制御子と前記第1列車検知手段とが前記踏切の起点側に一組設けられるとともに前記踏切の終点側にももう一組設けられ、前記第2列車検知手段も前記踏切の起点側と終点側それぞれに設けられている又は前記第2列車検知手段はその列車検知区間に前記踏切の踏切道の幅員が収まる状態で設けられていることを特徴とする請求項1記載の踏切保安装置。   Corresponding to the fact that the track is provided in a single track section and is shared at different times for the down train and the up train, the starting point crossing controller and the first train detecting means One set is provided on the starting point side and another set is also provided on the end point side of the railroad crossing, and the second train detection means is also provided on each of the starting point side and the end point side of the crossing, or the second train detection means is The railroad crossing safety device according to claim 1, wherein the railroad crossing safety device is provided in a state in which a width of the railroad crossing of the railroad crossing fits in the train detection section. 前記踏切制御装置に内蔵されていて又は前記踏切制御装置の外部に設けられていて前記線路に係る前記始動点への列車到来に応じて列車在線と上り下りを判別して列車運転方向指示を出す列車方向判別手段と、前記踏切に係る障害物検知を行うとともに前記列車運転方向指示を警報認容条件とし且つマスク条件を警報抑制条件として警報が認容されているときには障害物検知結果に応じて警報を発する踏切障害物検知装置と、前記列車方向判別手段の判別結果と前記第1列車検知手段の列車検知結果と前記第2列車検知手段の列車検知結果とに基づいて前記第1検知点への列車進入と前記第2検知点からの列車進出とに亘る障検マスク区間に対応した信号を生成しこの信号を前記マスク条件として前記踏切障害物検知装置へ送出する障検マスク形成手段とを備えたことを特徴とする請求項1乃至請求項3の何れか一項に記載された踏切保安装置。   It is built in the level crossing control device or provided outside the level crossing control device, and determines the train on-line and the up-and-down direction according to the arrival of the train at the starting point related to the track and issues a train operation direction instruction Train direction discrimination means and obstacle detection related to the railroad crossing, and when the alarm is accepted with the train operation direction instruction as an alarm acceptance condition and the mask condition as an alarm suppression condition, an alarm is issued according to the obstacle detection result. A railroad crossing obstacle detection device that emits, a train result to the first detection point based on a discrimination result of the train direction discrimination means, a train detection result of the first train detection means, and a train detection result of the second train detection means An obstacle detection mass that generates a signal corresponding to an obstacle detection mask section extending from the approach and the train advancement from the second detection point, and sends this signal to the crossing obstacle detection device as the mask condition. Crossing safety device according to any one of claims 1 to 3, characterized in that a forming means. 前記切替制御部が、前記始動点への列車到来時から前記第1検知点への列車進行時までの期間以外は前記切替回路部に前記第2切替状態をとらせるようになっていることを特徴とする請求項1乃至請求項4の何れか一項に記載された踏切保安装置。 The switching control unit is configured to cause the switching circuit unit to take the second switching state except for a period from when the train arrives at the starting point to when the train travels to the first detection point. The railroad crossing safety device according to any one of claims 1 to 4, wherein the railroad crossing safety device is characterized. 鉄道の線路を横切る踏切から離れた所で前記線路に設定された始動点と前記踏切との間で前記線路に設定された検知点であって前記踏切から列車検知区間が外れている第1検知点の所で前記線路に接続された第1接続線と,前記踏切に列車検知区間が掛かり且つ該列車検知区間の両端のうち前記第1検知点から遠い方の区間端と前記第1検知点とが前記踏切の両側に分かれる状態で前記線路に設定された第2検知点の所で前記線路に接続された第2接続線とのうち,何れか一方の接続線を選択して開電路形の終止点用踏切制御子と接続させることにより前記終止点用踏切制御子に時分割で複数台分の列車検知機能を発揮させる踏切制御切替装置であって、
前記第1接続線に対する接続手段と,前記第2接続線に対する接続手段と,前記終止点用踏切制御子に対する接続手段と,前記線路に係る列車在線と前記踏切への列車接近を判別して踏切警報を発する踏切制御装置に対する接続手段とを有する筐体と、
前記筐体に内蔵されていて,第1切替状態では前記終止点用踏切制御子と前記第1接続線とを接続させるが,第2切替状態では前記終止点用踏切制御子と前記第2接続線とを接続させる切替回路部と、
前記筐体に内蔵されていて,前記始動点への列車到来時には先ず前記切替回路部に前記第1切替状態をとらせることにより前記終止点用踏切制御子に前記第1検知点に係る列車検知を行わせ,その後の前記第1検知点への列車進行時には前記切替回路部に前記第2切替状態をとらせることにより前記終止点用踏切制御子に前記第2検知点に係る列車検知を行わせる切替制御部と、
前記筐体に内蔵されていて,前記始動点への列車進入と前記第1検知点への列車進入と前記第2検知点への列車進入と前記第2検知点からの列車進出とがその順に行われたか否かを判別してその順に行われたときには前記踏切を列車が通過し終えたと判定する通過完了判定手段と
を備えていて、前記通過完了判定手段の判定結果を前記踏切制御装置に送出して踏切警報の停止に供することができるようになっていることを特徴とする踏切制御切替装置。
First detection that is a detection point set on the track between the starting point set on the track and the crossing at a location away from the railroad crossing across the railroad track, and the train detection section is outside the railroad crossing A first connection line connected to the track at a point, a train detection section on the railroad crossing, and a section end far from the first detection point of both ends of the train detection section and the first detection point Open circuit type by selecting any one of the second connection lines connected to the line at the second detection point set on the line in a state where and are separated on both sides of the railroad crossing A railroad crossing control switching device that causes the railroad crossing controller for the end point to exhibit a train detection function for a plurality of vehicles in a time-sharing manner by being connected to the railroad crossing controller for the end point,
A connection means for the first connection line, a connection means for the second connection line, a connection means for the railroad crossing controller for the end point, a train existing line related to the track, and a train approach to the railroad crossing A housing having a connection means for a railroad crossing control device that issues an alarm;
The end point crossing controller is connected to the first connection line in the first switching state, and the end point crossing controller and the second connection are connected in the second switching state. A switching circuit unit for connecting the wires,
When the train arrives at the starting point, the train detection controller according to the first detection point is detected by the end point crossing controller by first causing the switching circuit unit to enter the first switching state. When the train proceeds to the first detection point after that, the switching circuit unit takes the second switching state to perform the train detection related to the second detection point to the end point crossing controller. A switching control unit,
Built in the casing, train entry to the starting point, train entry to the first detection point, train entry to the second detection point, and train advancement from the second detection point in that order And a passage completion determination means for determining that the train has passed the railroad crossing when it is performed in that order, and the determination result of the passage completion determination means is sent to the railroad crossing control device. A crossing control switching device characterized in that it can be sent out and used to stop a crossing warning.
前記切替制御部が、前記始動点への列車到来時から前記第1検知点への列車進行時までの期間以外は前記切替回路部に前記第2切替状態をとらせるようになっていることを特徴とする請求項6記載の踏切制御切替装置。 The switching control unit is configured to cause the switching circuit unit to take the second switching state except for a period from when the train arrives at the starting point to when the train travels to the first detection point. The crossing control switching device according to claim 6, 前記踏切に係る障害物検知を行うとともに列車運転方向指示およびマスク条件による警報認容時には障害物検知結果に応じて警報を発する踏切障害物検知装置に対する接続手段が,前記筐体に設けられており、前記第1検知点への列車進入と前記第2検知点からの列車進出とに亘る障検マスク区間に対応した信号を生成し,この信号を前記マスク条件として前記踏切障害物検知装置へ送出する障検マスク形成手段が,前記筐体に内蔵されていることを特徴とする請求項6又は請求項7に記載された踏切制御切替装置。 Doing obstacle detection according to the crossing at the time of train operation direction instruction and alarm acceptance by the mask condition together connection means for the crossing obstacle detection device for issuing an alarm in response to the obstacle detection result, provided in the housing And generating a signal corresponding to the obstacle detection mask section extending from the train entry to the first detection point and the train advancement from the second detection point, and using this signal as the mask condition to the crossing obstacle detection device. The railroad crossing control switching device according to claim 6 or 7 , wherein a failure detection mask forming means to be sent out is built in the casing.
JP2012199348A 2012-09-11 2012-09-11 Railroad crossing safety device and railroad crossing control switching device Active JP6032800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012199348A JP6032800B2 (en) 2012-09-11 2012-09-11 Railroad crossing safety device and railroad crossing control switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012199348A JP6032800B2 (en) 2012-09-11 2012-09-11 Railroad crossing safety device and railroad crossing control switching device

Publications (2)

Publication Number Publication Date
JP2014054866A JP2014054866A (en) 2014-03-27
JP6032800B2 true JP6032800B2 (en) 2016-11-30

Family

ID=50612597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012199348A Active JP6032800B2 (en) 2012-09-11 2012-09-11 Railroad crossing safety device and railroad crossing control switching device

Country Status (1)

Country Link
JP (1) JP6032800B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6076085B2 (en) * 2012-12-27 2017-02-08 大同信号株式会社 Railroad crossing control circuit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116560A (en) * 1983-11-28 1985-06-24 財団法人鉄道総合技術研究所 Railroad crossing control system
JP2619568B2 (en) * 1990-12-07 1997-06-11 財団法人鉄道総合技術研究所 Railroad crossing control device
JP3278033B2 (en) * 1995-06-28 2002-04-30 日本信号株式会社 Railroad crossing control device
JP3278036B2 (en) * 1995-11-08 2002-04-30 日本信号株式会社 Railroad crossing control device
JP2012023446A (en) * 2010-07-12 2012-02-02 Hitachi Kokusai Electric Inc Monitoring system

Also Published As

Publication number Publication date
JP2014054866A (en) 2014-03-27

Similar Documents

Publication Publication Date Title
JPH10167070A (en) Train information transmitting method, train speed control method, and train control system
JP5863387B2 (en) Railroad crossing safety device and railroad crossing control switching device
JP6032800B2 (en) Railroad crossing safety device and railroad crossing control switching device
KR100873322B1 (en) Train occupation detection system and method
JP2011246015A (en) Radio railroad crossing control system
JP5822563B2 (en) Railroad crossing safety device, updating method thereof, and railroad crossing control switching device
CN113859331A (en) Railway monitoring system and monitoring method thereof
US10022639B2 (en) Model vehicle control device and computer program for model vehicle control
JP2003200765A (en) Section over preventing device of train
JP6076085B2 (en) Railroad crossing control circuit
CN205133499U (en) Be used for electric locomotive buffer stop of dry coke quenching system
JP5766088B2 (en) End point crossing controller and adjusting method thereof
KR101387435B1 (en) Traffic signal interlocking tram control system and method
JP2868250B2 (en) Level crossing alarm control device
JP3992783B2 (en) Railroad crossing control device
JP3441942B2 (en) Train detection method, train operation system and train detection device using the same
JP2016214298A (en) Control apparatus of model vehicle, and computer program for model vehicle control
JP2011195117A (en) Radio type crossing warning system
JP6645648B2 (en) Level crossing security device and level crossing object detection device
JP2006240585A (en) Crossing control device
KR20020011707A (en) Ats and ats control method to drive train automatically
JP6192344B2 (en) Railroad crossing object detection device
KR100798136B1 (en) An controller for ATS balise and the method thereof
JP6344734B2 (en) Railroad crossing object detection device
JPS6227407B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161021

R150 Certificate of patent or registration of utility model

Ref document number: 6032800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250