JP3955431B2 - Anaerobic treatment method and apparatus - Google Patents

Anaerobic treatment method and apparatus Download PDF

Info

Publication number
JP3955431B2
JP3955431B2 JP2000273464A JP2000273464A JP3955431B2 JP 3955431 B2 JP3955431 B2 JP 3955431B2 JP 2000273464 A JP2000273464 A JP 2000273464A JP 2000273464 A JP2000273464 A JP 2000273464A JP 3955431 B2 JP3955431 B2 JP 3955431B2
Authority
JP
Japan
Prior art keywords
gas
liquid
anaerobic
solid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000273464A
Other languages
Japanese (ja)
Other versions
JP2002079291A (en
Inventor
康弘 本間
俊博 田中
和彰 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000273464A priority Critical patent/JP3955431B2/en
Publication of JP2002079291A publication Critical patent/JP2002079291A/en
Application granted granted Critical
Publication of JP3955431B2 publication Critical patent/JP3955431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種の工場、下水、し尿、畜産業施設等から排出される有機性の廃水又は有機性の廃棄物等を対象として、これ等の廃棄物等を無害化する嫌気性汚泥床処理方法及び装置に関し、更に詳しくは、特に、ガス・液・固液分離部(以下、「GSS」とも記す)を多段に有する上向流嫌気性汚泥床処理方法及び処理装置に関する。
【0002】
【従来の技術】
有機性の廃水あるいは有機性の廃棄物等は、嫌気性処理によって分解処理されることがある。
このような分解処理方法として、例えば、上向流嫌気性汚泥床法(以下、「UASB」とも記す)が挙げられ、この処理法は、近年普及してきた方法で、メタン菌等の嫌気性菌をグラニュール状に造粒化することにより、リアクター内のメタン菌の濃度を高濃度に維持できるという特徴があり、このため、廃水中の有機物の濃度が相当程度に高い場合であっても、効率よく処理することができることが知られている。
上記の処理法を具現化した装置にあっては、重クロム酸カリウムを酸化剤として用いて測定したCODCr(以下、単に「COD」とも記す)の容積負荷が10〜15kg/m3 /dの廃水、廃棄物であっても、高率よく運転できるという特徴のあることが認められている。
【0003】
有機性廃水および有機性廃棄物を対象とした嫌気性処理に用いる嫌気性菌としては、環境温度により大きく分けて2種類の菌が挙げられる。例えば、環境温度が30〜35℃の中温度域を至適温度とする中温嫌気性菌、50〜55℃の高温域を至適温度とする高温嫌気性菌等が挙げられる。
一方、これらの嫌気性菌の機能を利用した、上向流嫌気性汚泥床法(UASB)の場合、分解しようとする有機物の負荷量が高くなると(例えば、COD容積負荷が15kg/m3 /d以上)、発生するガス量が多くなる。
この際、リアクター内からのガス抜きを随時確実に行うことが不可欠となり、ガス排出時の吹き出し等により、グラニュール状の汚泥の流出が目立つ様になり、リアクター内にグラニュール状の汚泥を留めておくことが難しくなる。
【0004】
このような状態になった場合の処理対策として、処理装置それ自体を多段にし、発生ガスを分散して系外に排出する方法が提案されている。
図2は、このような提案の一例で、多段にした場合の嫌気性処理装置の例を模式図で示すものである(文献:G.Lettinga(1995)Anaerrobic digestion and wastewater treatment-system.Antonie van Leeuwenhoek 67:3-28 )。
【0005】
図2において、装置の下端に原水流入管1を接続した筒状のリアクター2の内部に複数の邪魔板3を配設し、スラッジゾーンを区分した各スラッジゾーン4a〜4eを、それぞれの所定の箇所に配して多段に形成している。
各スラッジゾーン4a〜4eの各上端コーナには、GSS部5(5a、5b)を形成し、そのGSS部5の内部で反応が始まると、反応ガスがGSS部5に集積する。各気相部5aには、発生ガス回収配管6が接続している。さらに、発生ガス回収配管6は、外部の水封槽7に通じている。
この文献においては、リアクター2の側壁と邪魔板3の角度、通水速度及び原水の希釈操作についての記載は無く、リアクター2の側壁と邪魔板3の角度は、文献の図面では56度となっている。なお、前記の角度は、邪魔板3が下向きであるから、側壁に対して上向きの大きい角度と下向きの小さい角度の2つがあるが、この場合小さい方の角度で表わす。
【0006】
また、特開平11−207384「嫌気性処理方式および装置」に記載されている、ガス、液、固液分離部を多段に有する上向流嫌気性汚泥床処理装置(本明細書の図2参照)においては、区分スラッジゾーン4a〜4eに原水を分注し、各区分スラッジゾーン毎に、そこで発生するガスを回収できるため、リアクターの単位断面積当たりの発生ガス量が少なくなり、同時に、流入原水を分注するため、各GSS部の液の線流速(通水速度)も小さくなり、特に、最上段のGSS部におけるリアクターの単位面積当たりのガス量、通水速度が小さくなるため、グラニュール汚泥の系外への流出量が非常に少なくなると言うことができる。
特開平11−207384では、リアクター2の側壁と邪魔板3の角度は図面では約50度であり、通水速度を低くすることの効果について記載されている。
【0007】
【発明が解決しようとする課題】
しかしながら、多段化した上向流嫌気性汚泥床法(UASB)の装置にあっては、なお、以下に記載するような、問題点がある。
(a)GSSの設置角度が緩やかな場合には、GSS直上部に堆積汚泥によるデッドスペースが生じ、リアクター内の汚泥層全体を必ずしも有効に使えない。
(b)GSSを装置下部まで取り付けた場合、汚泥層の良好な流動を妨げ、汚泥と基質の接触が不十分もしくは不良となる。
(c)通水速度が低い場合には、短絡流が生じるために、また、通水速度が高い場合には、汚泥の流出につながるために、処理結果を悪化させる原因となる。
【0008】
(d)区分スラッジゾーンに原水を分注する方法の場合、流入原水を分注することにより、各GSSの液の線流速も小さくなり、各区分のスラッジゾーンにおける良好な流動状態が得られないため、汚泥と基質の良好な接触がなされない。
このような実情に鑑み、本発明は、汚泥層の良好な流動状態、即ち、汚泥と基質の良好な接触を妨げず、汚泥層全体を処理に際して有効に活用することにより、COD負荷が高い場合にあっても、安定した処理を行うことのできる嫌気性処理方法と、この処理方法を効果的に実施することができる処理装置の提供を目的とする。
【0009】
【課題を解決するための手段】
本発明は、以下に記載する手段によって前記課題を解決した。
(1)有機性廃水または廃棄物をガス、液及び固液分離部を多段に有する上向流嫌気性汚泥床処理装置により、嫌気処理する方法において、前記装置本体側壁に前記側壁との角度が35度以下である発生ガス集積部を備えた該ガス、液及び固液分離部を装置の上部50%の範囲内に取り付け、かつ、最下段の発生ガス集積部を備えた該ガス、液及び固液分離部がグラニュール汚泥層中にあるように取り付けた前記上向流嫌気性汚泥床処理装置に、被処理原水を直接、若しくは希釈処理を行ったものを該上向流嫌気性汚泥床処理装置の下部より流入させ、装置内の通水速度を1〜5m/hとし、該装置内のグラニュール汚泥層が流動状態であることを特徴とする有機性廃水または廃棄物の嫌気性処理方法。
【0010】
(2)ガス、液及び固液分離部を多段に有する上向流嫌気性汚泥床処理装置において、前記装置本体側壁に前記側壁との角度が35度以下である発生ガス集積部を備えた該ガス、液及び固液分離部を装置の上部50%の範囲内に取り付け、かつ、最下段の発生ガス集積部を備えた該ガス、液及び固液分離部がグラニュール汚泥層中にあるように取り付け、直接、若しくは希釈処理を行った被処理原水を流入する供給管を該装置の下部に設け、装置内の通水速度を1〜5m/hであり、該装置内のグラニュール汚泥層が流動状態であることを特徴とする嫌気性処理装置。
(3)各占有面積が装置断面積の2分の1以上となる邪魔板により形成されるガス、液及び固液分離部を有することを特徴とする請求項2記載の嫌気性処理装置。
【0011】
本発明においては、上記の文献及び特開平11−207384の開示とは異なり、「リアクター2の側壁と邪魔板3のなす角度を35度以下とし、原水を処理水の循環液や系外から供給する希釈水等により、必要に応じて適宜希釈を行ない、一貫して、流入水のリアクター2内部における装置断面積基準の通水速度が1〜5m/hとなるように調節する」ことにより、汚泥層の良好な流動状態を創り出すこと、及び、グラニュール汚泥の増殖に絶大な効果がある。
【0012】
【発明の実施の形態】
本発明の実施の形態を、図面を参照して説明するが、本発明はこれに限定されない。
図1は、嫌気性処理方法を実施するのに好ましい本発明の上向流嫌気性処理装置の一形態の概要を例示した図である。
図1において、リアクター2の上方部は実質閉塞状態にあり、下端部には原水送液管1が接続する。
リアクター2の内部、左右両側壁には、相対向する据え付け位置を互いにずらした邪魔板3の一方の端部(リアクター2の側壁側)を固設し、他方の端部を反対側の側壁方向に向かって斜めに下降しながら伸長する邪魔板3を設置している。
【0013】
この邪魔板3は、上下方向位置に2箇所、左右交互に設置され、リアクター2の側壁との間に、それぞれ鋭角状となる区分スラッジゾーン4a、4bを形成する。
リアクター2の側壁と邪魔板3との為す角度θは、35度以下の鋭角とされ、占有面積が装置断面積の1/2以上とされている。
35度を越える角度の場合には、スラッジゾーン4a、4bの邪魔板3にグラニュール汚泥が沈積して流動性が不十分となり、30Kg/m3 /d以上の高負荷処理は困難となる。
なお、邪魔板の占有断面積がリアクター断面積の1/2以下だと、発生ガスの捕捉が不十分となり、気液固の分離に不具合が生じる。つまりリアクターの中心よりガスが上方へ抜けてしまい、後記のGSS部5にガスを十分に集積させることができなくなる。
区分スラッジゾーン4a、4bの上部は、GSS部5を形成している。このGSS部5(5a、5b)は、リアクター2の上部側半分の位置に設置する。
反応が始まると、発生ガスが集積する気相部5aには、外部と通じる発生ガス回収配管6の排出口を設けている。
【0014】
なお、気相部5aから接続されている発生ガス回収配管6の吐出口は、水を充填した水封槽7の水中内で開口している。
開口位置は、水圧が異なる適宜な水深位にあり、水封槽7には発生ガス回収配管6から吐出されたガス流量を測定するガスメータ8を設けてある。ガスメータ8の先には、斯様に吐出されたガスを再利用する、図示しない所定の利用施設が設けられている。
また、リアクター2の上端には、上澄液を排出する処理水配管9が開口している。
【0015】
リアクター2は、嫌気性菌からなるグラニュール汚泥を投入して使用する。本発明の対象となる嫌気性処理は、30℃〜35℃を至適温度とした中温メタン発酵処理、50℃〜55℃を至適温度とした高温メタン発酵処理など、全ての温度範囲の嫌気性処理を対象としている。
嫌気性菌からなるグラニュール汚泥を投入し、有機性廃棄物などを含んだ原水を原水送液管1からリアクター2ヘ導入する。
原水を処理水の循環液や系外から供給する希釈水等により、必要に応じて適宜希釈を行い、流入水のリアクター2内部における通水速度が、1〜5m/hとなるように調節する。
【0016】
リアクター2内では、嫌気性菌からなるグラニュール汚泥の介在によって、有機性廃棄物が分解し、分解ガスが発生する。この発生ガスは、各区分スラッジゾーン4a〜4b上端のGSS部に、それぞれ別れて集まり、それぞれ別個に気相部5aを形成し、発生ガス回収配管6を通って水封槽7に至る。
こうした発生ガスは、気泡を形成して水面気泡部5bに一時的に滞留する。水面気泡部5bに集合した前記気泡は、やがて破裂し、発生ガスとグラニュール汚泥とが分離し、グラニュール汚泥は当初の比重に復帰して水中に潜入し、発生したガスは、発生ガス回収配管6から水封槽7を経由して、系外に排出される。
有機物が分解して清澄になった水は、リアクター2の上端から処理水配管9を経由して系外に排出される。
【0017】
各GSS部5の気相部5aのガス圧は、互いに異なることから、その差圧は水封槽7で調整するとよい。原水送液側に近い順に水封圧を高く保持する必要がある。ガス回収の圧力の調整は、水封槽7を使用する以外にも、多くの方法があり、例えば、圧力弁等を使用すること等も挙げられる。
本発明の嫌気性処理方法においては、各区分スラッジゾーン毎に、そこで発生する発生ガスを回収することができるため、リアクターの単位断面積当たりの発生ガス量が少なくなる。
特に、処理水を流出させる処理水配管9に最も近い所では、リアクターの単位断面積当たりのガス量が小さくなる。
そのため、グラニュール汚泥の系外流出量を極く少なくすることが可能となる。
【0018】
【実施例】
以下において、本発明を実施例により更に具体的に説明するが、本発明は、この実施例により限定されるものではない。
【0019】
実施例1
図4、図5は、多段型嫌気性処理方法の実験に用いた装置の概要を示す。
A系列は、傾斜する邪魔板3を5箇取り付け、装置側壁と邪魔板3との角度(θ)を45度とした系列(従来法)を示す。これを図5に示す。
B系列は、傾斜する邪魔板3を2箇取り付け、装置側壁と邪魔板3との角度(θ)を30度とし、装置の下部1/2の部所には邪魔板3を取り付けない系列(本発明に基づく)を示す。これを図4に示す。
A系列、B系列とも、リアクターの断面積は、0.16m2 、高さ6.25m(容量1m3 )、GSS断面積は0.112m2 (リアクター断面積の70%)で実験した。
原水は、リアクター2の下端に接続した原水送液管1より流入し、リアクター2上部の処理水管9より処理水を得る。
【0020】
リアクター2内には、有機物を分解、浄化する際に発生したガスが集まるGSS部5を有し、その上端には外部と通じる発生ガス回収配管6の排出口を設けてある。
液層部の容量は、1m3 である。各GSS部5より発生したガスの量は、水封槽7に設けたガスメータ8で計測した。
リアクター2内の水温は、35℃になるように温度制御されている。
原水には、糖質系廃水の酸発酵処理水(COD 7000mg/リットル)に、無機栄養塩類(窒素、リン等)を添加したものを用いた。
処理水を循環液として、原水と共にリアクター2へ流入させることで、通水速度を2m/hに設定した。
原水流量と処理水循環水量の割合をCOD負荷に応じて設定した。
【0021】
図6に実験経過とCODの処理成績の変化を示す。両系列とも処理水COD濃度を見ながら、有機物負荷量を徐々に上げた。
実験経過後、約120日目までは略々同じ負荷量で処理できた。
約120日以降、COD負荷が30Kg/m3 /d以上になると、A系列では処理水CODが高くなった。
傾斜する邪魔板を5個取り付け、装置側壁と邪魔板との角度を45度としたA系列では、GSS部5直上部に堆積汚泥によるデッドスペースが生じ、汚泥層全体を有効に使えないこと、また、GSS部5を装置下部まで取り付けることで、汚泥層の良好な流動を妨げ、汚泥と基質の接触が不良となるため、処理が不安定になった。このため、COD負荷を25Kg/m3 /dに下げた。
一方、B系列では、COD負荷が35Kg/m3 /dにおいて、安定した処理ができた。第1表に安定状態における処理成績の比較を示す。
【0022】
【表1】

Figure 0003955431
【0023】
本発明に基づくB系列では、COD負荷35Kg/m3 /d、COD除去率90%、処理水VSS300〜400mg/リットルであった。
一方、A系列の従来法では、COD負荷25Kg/m3 /d、COD除去率90%、処理水VSS300〜400mg/リットルであった。
このように、本発明に基づく方法では、従来法に比べて高いCOD除去率を得ることができた。
【0024】
B系列の本発明に基づく方法では、高いCOD負荷で運転しているにも拘らず、処理水COD処理成績は安定していた。また、処理水VSS濃度は、従来法と略々同じであり、従来法に比べGSS部の数が少ない場合でも上向流嫌気性汚泥床法(UASB)槽内におけるグラニュール汚泥量も安定していた。
これは、処理水を流出させる処理水配管9に最も近い所では、リアクターの単位断面積当たりのガス量が小さくなり、グラニュール汚泥の系外流出量が少なかったためである。
B系列を用いて、原水COD濃度7000g/リットル、COD負荷30kg/m3 /d、通水速度0.5〜7m/hで処理を行ったときの定常状態における処理成績の比較を第2表に示す。
【0025】
【表2】
Figure 0003955431
【0026】
本発明に基づくB系列では、COD除去率85%以上の安定した処理を行うためには、通水速度を1〜5m/h、好ましくはCOD除去率90%以上とする場合には通水速度を2〜3m/hに設定する必要がある。
これは、通水速度が1m/hより少ない場合には、汚泥層で短絡流が生じるため、汚泥層全体を有効に使用し得ないためである。
また、通水速度が5m/hより高い場合には、処理水のVSSが1500mg/リットル以上となり、リアクター2内の汚泥量を安定して維持できないために、処理性が悪化したことによる。
【0027】
【発明の効果】
本発明においては、装置本体側壁との取り付け角度が35度以下、且つ、各占有面積が装置断面積の1/2以上となる邪魔板により形成される、ガス・液・固液分離部を有し、これ等のガス、液および固液分離部を装置の上部5割の区分に取り付け、原水を直接、あるいは希釈操作を施すことにより、流入水の通水速度を1〜5m/hとすることにより、汚泥層の良好な流動状態、即ち、汚泥と基質の良好な接触を妨げず、汚泥層全体を処理に対して有効に活用することにより、高いCOD負荷においても、安定した処理を行うことができる嫌気性処理方法と、これを実施する処理装置を提供することができ、高い有機物負荷の上向流嫌気性汚泥床法(UASB)の運転において、常時安定した有機物の処理成果が得られるので、極めて有益である。
【図面の簡単な説明】
【図1】本発明の上向流嫌気性処理装置の一形態を例示した模式図。
【図2】従来の上向流嫌気性処理装置の一形態を例示した模式図。
【図3】図2の従来の上向流嫌気性処理装置の一形態に、原水を分注する方式を加味した上向流嫌気性処理装置の一形態を例示した模式図。
【図4】実験に用いた本発明の上向流嫌気性処理装置の概要を例示した模式図。
【図5】実験に用いた従来の上向流嫌気性処理装置の概要を例示した模式図。
【図6】実験経過とCOD処理成績の変化を示す図。
【符号の説明】
1 原水送液管
1a〜1d 分注管
2 リアクター
3 邪魔板
4a〜4h 区分スラッジゾーン
5 GSS部
5a 気相部
5b 気泡部
6 発生ガス回収配管
7 水封槽
8 ガスメータ
9 処理水配管[0001]
BACKGROUND OF THE INVENTION
The present invention is intended for organic wastewater or organic waste discharged from various factories, sewage, human waste, livestock industry facilities, etc., and anaerobic sludge bed treatment that renders these wastes harmless. More particularly, the present invention relates to an upward flow anaerobic sludge bed treatment method and treatment apparatus having gas / liquid / solid-liquid separation sections (hereinafter also referred to as “GSS”) in multiple stages.
[0002]
[Prior art]
Organic wastewater or organic waste may be decomposed by anaerobic treatment.
An example of such a decomposition treatment method is an upward flow anaerobic sludge bed method (hereinafter also referred to as “UASB”). This treatment method has been widely used in recent years, and anaerobic bacteria such as methane bacteria. By granulating the granule into a granule, there is a feature that the concentration of methane bacteria in the reactor can be maintained at a high concentration. Therefore, even if the concentration of organic matter in the wastewater is considerably high, It is known that it can be processed efficiently.
In the apparatus embodying the above processing method, the volume load of COD Cr (hereinafter, also simply referred to as “COD”) measured using potassium dichromate as an oxidizing agent is 10 to 15 kg / m 3 / d. It is recognized that even wastewater and wastewater can be operated with high efficiency.
[0003]
As anaerobic bacteria used for anaerobic treatment for organic wastewater and organic waste, two types of bacteria can be roughly classified according to environmental temperature. For example, a medium temperature anaerobic bacterium having an environmental temperature of 30 to 35 ° C. as an optimum temperature and a high temperature anaerobic bacterium having an optimum temperature in a high temperature range of 50 to 55 ° C. can be used.
On the other hand, in the case of the upflow anaerobic sludge bed method (UASB) using the function of these anaerobic bacteria, when the load of organic matter to be decomposed becomes high (for example, the COD volumetric load is 15 kg / m 3 / d or more), the amount of gas generated increases.
At this time, it is indispensable to degas the reactor from time to time, and the outflow of granulated sludge becomes noticeable due to blow-out at the time of gas discharge, and the granular sludge is retained in the reactor. It becomes difficult to keep.
[0004]
As a countermeasure against processing in such a state, a method has been proposed in which the processing apparatus itself is multistaged, and the generated gas is dispersed and discharged out of the system.
FIG. 2 is an example of such a proposal, and shows a schematic diagram of an example of an anaerobic treatment apparatus in the case of multiple stages (reference: G. Lettinga (1995) Anaerrobic digestion and wastewater treatment-system.Antonie van Leeuwenhoek 67: 3-28).
[0005]
In FIG. 2, a plurality of baffle plates 3 are arranged inside a cylindrical reactor 2 having a raw water inflow pipe 1 connected to the lower end of the apparatus, and sludge zones 4a to 4e, which are divided into sludge zones, are assigned to respective predetermined sludge zones. It is arranged in multiple locations and formed in multiple stages.
A GSS portion 5 (5a, 5b) is formed at each upper end corner of each sludge zone 4a to 4e. When the reaction starts inside the GSS portion 5, the reaction gas accumulates in the GSS portion 5. A generated gas recovery pipe 6 is connected to each gas phase section 5a. Further, the generated gas recovery pipe 6 communicates with an external water seal tank 7.
In this document, there is no description about the angle between the side wall of the reactor 2 and the baffle plate 3, the water flow rate, and the dilution operation of the raw water, and the angle between the side wall of the reactor 2 and the baffle plate 3 is 56 degrees in the drawings of the literature. ing. In addition, since the baffle plate 3 faces downward, there are two angles: a large upward angle and a small downward angle. In this case, the angle is represented by the smaller angle.
[0006]
Further, an upflow anaerobic sludge bed treatment apparatus (see FIG. 2 of this specification) described in JP-A-11-207384 “Anaerobic treatment method and apparatus” having gas, liquid and solid-liquid separation sections in multiple stages. ), The raw water is dispensed into the divided sludge zones 4a to 4e, and the gas generated in each divided sludge zone can be recovered. Therefore, the amount of generated gas per unit cross-sectional area of the reactor is reduced, and at the same time, the inflow Since the raw water is dispensed, the linear flow rate (water flow rate) of the liquid in each GSS section is also reduced, and in particular, the amount of gas per unit area of the reactor in the uppermost GSS section and the water flow speed are reduced. It can be said that the amount of sludge flowing out of the system becomes very small.
In JP-A-11-207384, the angle between the side wall of the reactor 2 and the baffle plate 3 is about 50 degrees in the drawing, and the effect of lowering the water flow rate is described.
[0007]
[Problems to be solved by the invention]
However, the upward flow anaerobic sludge bed (UASB) apparatus having multiple stages still has problems as described below.
(A) When the installation angle of the GSS is gentle, a dead space due to accumulated sludge is generated immediately above the GSS, and the entire sludge layer in the reactor cannot always be effectively used.
(B) When the GSS is attached to the lower part of the apparatus, the sludge layer is prevented from flowing favorably, and the contact between the sludge and the substrate is insufficient or defective.
(C) When the water flow rate is low, a short-circuit flow occurs, and when the water flow rate is high, it leads to the outflow of sludge.
[0008]
(D) In the case of the method of dispensing raw water to the division sludge zone, by dispensing the inflow raw water, the linear flow velocity of each GSS liquid is also reduced, and a good flow state in the sludge zone of each division cannot be obtained. Therefore, good contact between the sludge and the substrate is not made.
In view of such circumstances, the present invention has a good flow state of the sludge layer, that is, the case where the COD load is high by effectively utilizing the entire sludge layer in processing without disturbing the good contact between the sludge and the substrate. Even if it exists, it aims at provision of the anaerobic processing method which can perform the stable process, and the processing apparatus which can implement this processing method effectively.
[0009]
[Means for Solving the Problems]
The present invention has solved the above problems by the means described below.
(1) In the method of anaerobic treatment of organic wastewater or waste by an upflow anaerobic sludge bed treatment apparatus having gas, liquid and solid-liquid separation parts in multiple stages, the angle between the apparatus main body side wall and the side wall is the gas having the generated gas collecting section is less than 35 degrees, mounting the liquid and solid-liquid separation unit in the range top 50% of the device, and the gas having the generated gas accumulating portion of the bottom, a liquid and The upward flow anaerobic sludge bed treatment apparatus attached so that the solid-liquid separation part is in the granular sludge bed is the raw material to be treated directly or diluted and treated with the upward flow anaerobic sludge bed. Anaerobic treatment of organic wastewater or waste, which is made to flow from the lower part of the treatment device, the water flow rate in the device is 1 to 5 m / h, and the granular sludge layer in the device is in a fluid state Method.
[0010]
(2) In the upward flow anaerobic sludge bed processing apparatus having gas, liquid, and solid-liquid separation sections in multiple stages, the generated gas accumulation section having an angle with the side wall of 35 degrees or less is provided on the apparatus main body side wall. The gas, liquid and solid-liquid separation part is installed within the upper 50% of the apparatus, and the gas, liquid and solid-liquid separation part with the lowest generation gas accumulation part is in the granular sludge layer. the mounting, directly, or supply tube for flowing the treated raw water was diluted treatment provided in the lower portion of the said device, the water flow rate in the apparatus Ri 1 to 5 m / h der, granular sludge within the device An anaerobic treatment apparatus , wherein the bed is in a fluid state .
(3) The anaerobic treatment apparatus according to claim 2, further comprising a gas, liquid, and solid-liquid separation unit formed by baffle plates each occupying area is one-half or more of the apparatus cross-sectional area.
[0011]
In the present invention, unlike the above-mentioned document and the disclosure of Japanese Patent Laid-Open No. 11-207384, “the angle formed by the side wall of the reactor 2 and the baffle plate 3 is 35 degrees or less, and raw water is supplied from the circulating water of the treated water or from outside the system. By appropriately diluting with dilution water, etc. as necessary, and consistently adjusting the flow rate based on the cross-sectional area of the apparatus in the reactor 2 of the influent water to be 1 to 5 m / h. It has a tremendous effect on creating a good flow state of the sludge layer and on the growth of the granular sludge.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
FIG. 1 is a diagram illustrating an outline of an embodiment of the upward flow anaerobic treatment apparatus of the present invention that is preferable for carrying out the anaerobic treatment method.
In FIG. 1, the upper part of the reactor 2 is in a substantially closed state, and the raw water feed pipe 1 is connected to the lower end part.
One end portion (side wall side of the reactor 2) of the baffle plate 3 in which the opposite installation positions are shifted from each other is fixed inside the reactor 2 and the left and right side walls, and the other end portion is directed to the opposite side wall. A baffle plate 3 is installed to extend while descending obliquely toward the front.
[0013]
The baffle plates 3 are alternately installed at two left and right positions in the vertical direction, and form segmented sludge zones 4 a and 4 b each having an acute angle with the side wall of the reactor 2.
The angle θ between the side wall of the reactor 2 and the baffle plate 3 is an acute angle of 35 degrees or less, and the occupation area is ½ or more of the apparatus cross-sectional area.
If the angle exceeds 35 degrees, the sludge zone 4a, and deposited the granular sludge fluidity becomes insufficient baffle 3 of 4b, a 30 Kg / m 3 / d or more high-load processing difficult.
In addition, when the occupation cross-sectional area of the baffle plate is ½ or less of the cross-sectional area of the reactor, trapping of the generated gas becomes insufficient, causing a problem in gas-liquid-solid separation. That is, the gas escapes upward from the center of the reactor, and the gas cannot be sufficiently accumulated in the GSS section 5 described later.
The upper part of the division sludge zones 4a and 4b forms a GSS portion 5. The GSS unit 5 (5a, 5b) is installed at the upper half position of the reactor 2.
When the reaction starts, the gas phase part 5a where the generated gas accumulates is provided with a discharge port of the generated gas recovery pipe 6 that communicates with the outside.
[0014]
In addition, the discharge port of the generated gas recovery pipe 6 connected from the gas phase part 5a is opened in the water of the water-sealed tank 7 filled with water.
The opening position is at an appropriate water depth with different water pressure, and a gas meter 8 for measuring the flow rate of the gas discharged from the generated gas recovery pipe 6 is provided in the water sealing tank 7. A predetermined utilization facility (not shown) for reusing the discharged gas is provided at the tip of the gas meter 8.
A treated water pipe 9 for discharging the supernatant is opened at the upper end of the reactor 2.
[0015]
The reactor 2 is used by introducing granular sludge made of anaerobic bacteria. The anaerobic treatment that is the subject of the present invention is an anaerobic treatment in all temperature ranges, such as a medium temperature methane fermentation treatment with an optimum temperature of 30 ° C. to 35 ° C., and a high temperature methane fermentation treatment with an optimum temperature of 50 ° C. to 55 ° C. It is intended for sex processing.
Granule sludge composed of anaerobic bacteria is introduced, and raw water containing organic waste is introduced into the reactor 2 from the raw water feed pipe 1.
The raw water is appropriately diluted as necessary with the circulating water of the treated water or diluted water supplied from outside the system, and the water flow rate inside the reactor 2 of the influent water is adjusted to 1 to 5 m / h. .
[0016]
In the reactor 2, organic waste is decomposed and decomposed gas is generated by the intervention of granule sludge composed of anaerobic bacteria. This generated gas gathers separately in the GSS portion at the upper end of each of the divided sludge zones 4a to 4b, forms a gas phase portion 5a separately, and reaches the water sealing tank 7 through the generated gas recovery pipe 6.
Such generated gas forms bubbles and temporarily stays in the water surface bubble portion 5b. The bubbles gathered in the water surface bubble portion 5b eventually burst, and the generated gas and granulated sludge are separated. The granular sludge returns to the original specific gravity and enters the water, and the generated gas is recovered by the generated gas. It is discharged out of the system from the pipe 6 via the water seal tank 7.
The water that has been clarified by the decomposition of the organic matter is discharged out of the system from the upper end of the reactor 2 via the treated water pipe 9.
[0017]
Since the gas pressures in the gas phase portions 5a of the respective GSS portions 5 are different from each other, the differential pressure may be adjusted in the water-sealed tank 7. It is necessary to keep the water sealing pressure higher in the order closer to the raw water feed side. There are many methods for adjusting the pressure for gas recovery in addition to using the water-sealed tank 7, for example, using a pressure valve or the like.
In the anaerobic treatment method of the present invention, the generated gas generated in each segmented sludge zone can be recovered, so the amount of generated gas per unit sectional area of the reactor is reduced.
In particular, the gas amount per unit cross-sectional area of the reactor becomes small at a place closest to the treated water pipe 9 through which treated water flows out.
Therefore, it becomes possible to extremely reduce the outflow amount of granule sludge.
[0018]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.
[0019]
Example 1
4 and 5 show an outline of the apparatus used in the experiment of the multi-stage anaerobic treatment method.
The A series shows a series (conventional method) in which five inclined baffle plates 3 are attached and the angle (θ) between the apparatus side wall and the baffle plate 3 is 45 degrees. This is shown in FIG.
In the B series, two inclined baffle plates 3 are attached, the angle (θ) between the device side wall and the baffle plate 3 is 30 degrees, and the baffle plate 3 is not attached to the lower half of the device ( According to the invention). This is shown in FIG.
In both A series and B series, the reactor cross section was 0.16 m 2 , the height was 6.25 m (capacity 1 m 3 ), and the GSS cross section was 0.112 m 2 (70% of the reactor cross section).
The raw water flows in from the raw water feed pipe 1 connected to the lower end of the reactor 2 and obtains treated water from the treated water pipe 9 at the top of the reactor 2.
[0020]
The reactor 2 has a GSS section 5 where gas generated when decomposing and purifying organic substances is collected, and a discharge port of a generated gas recovery pipe 6 communicating with the outside is provided at the upper end thereof.
The capacity of the liquid layer part is 1 m 3 . The amount of gas generated from each GSS unit 5 was measured with a gas meter 8 provided in the water-sealed tank 7.
The water temperature in the reactor 2 is controlled to be 35 ° C.
The raw water used was an acid fermentation treated water (COD 7000 mg / liter) of saccharide wastewater with inorganic nutrient salts (nitrogen, phosphorus, etc.) added.
The flow rate of water was set to 2 m / h by allowing the treated water to flow into the reactor 2 together with the raw water as a circulating liquid.
The ratio of the raw water flow rate and the treated water circulating water amount was set according to the COD load.
[0021]
FIG. 6 shows changes in the experimental process and COD processing results. In both systems, the organic load was gradually increased while observing the treated water COD concentration.
After the experiment, it was possible to process with substantially the same load until about 120 days.
After about 120 days, when the COD load became 30 kg / m 3 / d or more, the treated water COD increased in the A series.
In the A series where five sloping baffle plates are attached and the angle between the apparatus side wall and the baffle plate is 45 degrees, dead space due to accumulated sludge is generated immediately above the GSS section 5, and the entire sludge layer cannot be used effectively. Further, by attaching the GSS part 5 to the lower part of the apparatus, the sludge layer was prevented from flowing favorably and the contact between the sludge and the substrate became poor, so that the treatment became unstable. For this reason, the COD load was lowered to 25 kg / m 3 / d.
On the other hand, in the B series, stable processing was possible at a COD load of 35 kg / m 3 / d. Table 1 shows a comparison of processing results in a stable state.
[0022]
[Table 1]
Figure 0003955431
[0023]
In the B series based on the present invention, the COD load was 35 kg / m 3 / d, the COD removal rate was 90%, and the treated water VSS was 300 to 400 mg / liter.
On the other hand, in the conventional method of the A series, the COD load was 25 kg / m 3 / d, the COD removal rate was 90%, and the treated water VSS was 300 to 400 mg / liter.
Thus, the method based on the present invention was able to obtain a higher COD removal rate than the conventional method.
[0024]
In the method according to the present invention of the B series, the COD treatment result of the treated water was stable despite being operated at a high COD load. The treated water VSS concentration is almost the same as that of the conventional method, and the amount of granulated sludge in the upward flow anaerobic sludge bed method (UASB) tank is stable even when the number of GSS sections is smaller than that of the conventional method. It was.
This is because the gas amount per unit cross-sectional area of the reactor is small at the place closest to the treated water pipe 9 for flowing the treated water, and the outflow amount of granulated sludge is small.
Table 2 shows a comparison of treatment results in steady state when treatment was performed at a raw water COD concentration of 7000 g / liter, a COD load of 30 kg / m 3 / d, and a water flow rate of 0.5 to 7 m / h using the B series. Shown in
[0025]
[Table 2]
Figure 0003955431
[0026]
In the B series based on the present invention, in order to perform stable treatment with a COD removal rate of 85% or more, the water flow rate is 1 to 5 m / h, preferably when the COD removal rate is 90% or more. Must be set to 2-3 m / h.
This is because when the water flow rate is less than 1 m / h, a short-circuit flow occurs in the sludge layer, and the entire sludge layer cannot be used effectively.
In addition, when the water flow rate is higher than 5 m / h, the VSS of the treated water is 1500 mg / liter or more, and the amount of sludge in the reactor 2 cannot be stably maintained.
[0027]
【The invention's effect】
In the present invention, there is a gas / liquid / solid-liquid separation part formed by a baffle plate whose attachment angle with the side wall of the apparatus body is 35 degrees or less and each occupation area is 1/2 or more of the apparatus cross-sectional area. These gas, liquid, and solid-liquid separators are attached to the upper 50% section of the device, and the flow rate of the influent water is set to 1 to 5 m / h by directly or diluting the raw water. Thus, the sludge layer is in a good flow state, that is, the sludge and the substrate are not in good contact with each other, and the entire sludge layer is effectively used for the treatment, so that a stable treatment can be performed even at a high COD load. An anaerobic treatment method that can be performed and a treatment apparatus for carrying out the treatment can be provided, and a stable treatment result of organic matter can be obtained at all times in the operation of the upward flow anaerobic sludge bed method (UASB) with high organic matter load. Extremely useful A.
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating one embodiment of an upward flow anaerobic treatment apparatus of the present invention.
FIG. 2 is a schematic view illustrating an example of a conventional upward flow anaerobic treatment apparatus.
FIG. 3 is a schematic view illustrating an example of an upstream anaerobic treatment device in which raw water is dispensed in addition to the conventional upward flow anaerobic treatment device of FIG. 2;
FIG. 4 is a schematic view illustrating the outline of the upward flow anaerobic treatment apparatus of the present invention used in the experiment.
FIG. 5 is a schematic view illustrating the outline of a conventional upward flow anaerobic treatment apparatus used in the experiment.
FIG. 6 is a diagram showing changes in the experimental process and COD processing results.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw water feed pipe 1a-1d Dispensing pipe 2 Reactor 3 Baffle plates 4a-4h Division sludge zone 5 GSS part 5a Gas phase part 5b Bubble part 6 Generated gas recovery piping 7 Water seal tank 8 Gas meter 9 Treated water piping

Claims (3)

有機性廃水または廃棄物をガス、液及び固液分離部を多段に有する上向流嫌気性汚泥床処理装置により、嫌気処理する方法において、前記装置本体側壁に前記側壁との角度が35度以下である発生ガス集積部を備えた該ガス、液及び固液分離部を装置の上部50%の範囲内に取り付け、かつ、最下段の発生ガス集積部を備えた該ガス、液及び固液分離部がグラニュール汚泥層中にあるように取り付けた前記上向流嫌気性汚泥床処理装置に、被処理原水を直接、若しくは希釈処理を行ったものを該上向流嫌気性汚泥床処理装置の下部より流入させ、装置内の通水速度を1〜5m/hとし、該装置内のグラニュール汚泥層が流動状態であることを特徴とする有機性廃水または廃棄物の嫌気性処理方法。In a method of anaerobic treatment of organic wastewater or waste by an upflow anaerobic sludge bed treatment apparatus having gas, liquid and solid-liquid separation parts in multiple stages, the angle between the apparatus main body side wall and the side wall is 35 degrees or less. The gas, liquid, and solid-liquid separation unit provided with the generated gas accumulation unit is attached within the upper 50% of the apparatus, and the gas, liquid, and solid-liquid separation provided with the lowermost generation gas accumulation unit In the upward flow anaerobic sludge bed treatment device attached so that the part is in the granular sludge layer, the raw water to be treated is directly or diluted and treated with the upward flow anaerobic sludge bed treatment device. An anaerobic treatment method for organic wastewater or waste, which is caused to flow from the lower part , the water flow rate in the apparatus is 1 to 5 m / h, and the granular sludge layer in the apparatus is in a fluid state . ガス、液及び固液分離部を多段に有する上向流嫌気性汚泥床処理装置において、前記装置本体側壁に前記側壁との角度が35度以下である発生ガス集積部を備えた該ガス、液及び固液分離部を装置の上部50%の範囲内に取り付け、かつ、最下段の発生ガス集積部を備えた該ガス、液及び固液分離部がグラニュール汚泥層中にあるように取り付け、直接、若しくは希釈処理を行った被処理原水を流入する供給管を該装置の下部に設け、装置内の通水速度を1〜5m/hであり、該装置内のグラニュール汚泥層が流動状態であることを特徴とする嫌気性処理装置。In an upflow anaerobic sludge bed treatment apparatus having gas, liquid and solid-liquid separation sections in multiple stages, the gas and liquid provided with a generated gas accumulation section on the apparatus main body side wall with an angle of 35 degrees or less with the side wall. And the solid-liquid separation part is attached within the upper 50% of the apparatus, and the gas, liquid and solid-liquid separation part provided with the lowermost generation gas accumulation part are attached so that they are in the granular sludge layer, directly, or a supply tube for flowing the treated raw water was diluted treatment provided in the lower portion of the said device, the water flow rate in the apparatus Ri 1 to 5 m / h der, granular sludge layer in the apparatus flow An anaerobic treatment apparatus characterized by being in a state . 各占有面積が装置断面積の2分の1以上となる邪魔板により形成されるガス、液及び固液分離部を有することを特徴とする請求項2記載の嫌気性処理装置。  The anaerobic treatment apparatus according to claim 2, further comprising a gas, liquid, and solid-liquid separation unit formed by baffle plates each having an occupation area of half or more of the apparatus cross-sectional area.
JP2000273464A 2000-09-08 2000-09-08 Anaerobic treatment method and apparatus Expired - Lifetime JP3955431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000273464A JP3955431B2 (en) 2000-09-08 2000-09-08 Anaerobic treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000273464A JP3955431B2 (en) 2000-09-08 2000-09-08 Anaerobic treatment method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006056467A Division JP2006142302A (en) 2006-03-02 2006-03-02 Anaerobic treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2002079291A JP2002079291A (en) 2002-03-19
JP3955431B2 true JP3955431B2 (en) 2007-08-08

Family

ID=18759402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000273464A Expired - Lifetime JP3955431B2 (en) 2000-09-08 2000-09-08 Anaerobic treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3955431B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042116A1 (en) * 2001-11-15 2003-05-22 Ebara Corporation Anaerobic treatment apparatus
JP4428188B2 (en) * 2004-10-13 2010-03-10 荏原エンジニアリングサービス株式会社 Organic wastewater treatment method and treatment apparatus
WO2006049322A1 (en) * 2004-11-05 2006-05-11 Ebara Corporation Biological denitrification method and apparatus
JP4861026B2 (en) * 2006-03-07 2012-01-25 株式会社東芝 Method and apparatus for treating organic wastewater
JP2008221181A (en) * 2007-03-15 2008-09-25 Ebara Corp Anaerobic treatment device and treatment method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3723851A1 (en) * 1987-07-18 1989-01-26 Maerkl Herbert BIOGAS REACTOR
JPH03114594A (en) * 1989-09-27 1991-05-15 Meidensha Corp Apparatus for treating effluent water
JPH04999U (en) * 1990-04-19 1992-01-07
JPH05115709A (en) * 1991-10-28 1993-05-14 Ishikawajima Harima Heavy Ind Co Ltd Device for removing suspended matter
JP3382636B2 (en) * 1992-06-03 2003-03-04 富士化水工業株式会社 Separation device for fine solids that adhere and float in a liquid medium
JP3369714B2 (en) * 1994-04-20 2003-01-20 株式会社東芝 Anaerobic water treatment equipment
JP4080046B2 (en) * 1998-01-26 2008-04-23 株式会社荏原製作所 Anaerobic treatment method and apparatus
JP3958427B2 (en) * 1998-01-26 2007-08-15 株式会社荏原製作所 Anaerobic treatment equipment
JP3922782B2 (en) * 1998-01-26 2007-05-30 株式会社荏原製作所 Anaerobic treatment equipment
JP4312858B2 (en) * 1998-10-12 2009-08-12 三菱化工機株式会社 Upstream anaerobic treatment apparatus and treatment method
JP4193310B2 (en) * 1999-11-18 2008-12-10 栗田工業株式会社 Anaerobic treatment method
DE10005114B4 (en) * 2000-02-07 2004-03-18 Märkl, Herbert, Prof. Dr.-Ing. Process for biomass retention in biogas reactors and device for carrying out the process
JP2001276896A (en) * 2000-03-28 2001-10-09 Oyo Kagaku Kenkyukai:Kk Gas/solid/liquid separation device

Also Published As

Publication number Publication date
JP2002079291A (en) 2002-03-19

Similar Documents

Publication Publication Date Title
EP0213691B1 (en) A bioconversion reactor
CN201458905U (en) Aerobic fluidized bed-biofilter coupled reactor
JP5114780B2 (en) Anaerobic treatment method and apparatus
JP4687600B2 (en) Methane fermentation equipment
JP5043671B2 (en) Biological denitrification method and apparatus
MX2007014364A (en) Anaerobic purification device.
JP4428188B2 (en) Organic wastewater treatment method and treatment apparatus
JP2001246396A (en) Method for holding fungus in bioreactor and device therefor
JP2012239929A (en) Method and apparatus for anaerobic treatment of organic wastewater
JP3999036B2 (en) Method and apparatus for treating organic wastewater
JP3955431B2 (en) Anaerobic treatment method and apparatus
JP4080046B2 (en) Anaerobic treatment method and apparatus
JP2006142302A (en) Anaerobic treatment method and apparatus
JP4162234B2 (en) Anaerobic treatment equipment
CN201292300Y (en) Water producing and desalting integrated treatment apparatus for oil field
CN108033558A (en) Strengthen the method for dyeing waste water hydrolysis acidification performance
CN105152324B (en) Anaerobic ammonia oxidation reactor capable of classifying sludge through cyclone
JP2006281215A (en) Apparatus for treating organic waste water and method therefor
CN208429929U (en) A kind of porous plate coupled filtering net up-flow granular sludge reactor
CN218058594U (en) Intensive biological method sewage treatment device
JP4001507B2 (en) Method and apparatus for treating organic wastewater
JP2003190986A (en) Anaerobic treatment method and apparatus therefor
CN104860469B (en) Oil refining sewage integrated combination treatment system and oil refining sewage integrated combination treatment method
JP3700935B2 (en) Anaerobic treatment method and apparatus
CN220723692U (en) Sewage treatment equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3955431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term