JP3382636B2 - Separation device for fine solids that adhere and float in a liquid medium - Google Patents

Separation device for fine solids that adhere and float in a liquid medium

Info

Publication number
JP3382636B2
JP3382636B2 JP14279292A JP14279292A JP3382636B2 JP 3382636 B2 JP3382636 B2 JP 3382636B2 JP 14279292 A JP14279292 A JP 14279292A JP 14279292 A JP14279292 A JP 14279292A JP 3382636 B2 JP3382636 B2 JP 3382636B2
Authority
JP
Japan
Prior art keywords
gas
solid
liquid medium
liquid separation
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14279292A
Other languages
Japanese (ja)
Other versions
JPH05337490A (en
Inventor
博康 金刺
皓二 白石
敏弘 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Kasui Corp
Original Assignee
Kubota Kasui Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Kasui Corp filed Critical Kubota Kasui Corp
Priority to JP14279292A priority Critical patent/JP3382636B2/en
Publication of JPH05337490A publication Critical patent/JPH05337490A/en
Application granted granted Critical
Publication of JP3382636B2 publication Critical patent/JP3382636B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2846Anaerobic digestion processes using upflow anaerobic sludge blanket [UASB] reactors

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は液媒体中でガスを付着し
て浮遊する微細な固体を分離する装置に係り、更に詳し
くは、例えば廃水処理リアクターにおいて、廃水をイオ
ン交換樹脂、活性炭、その他の担体又は微生物のフロッ
クと接触させることによって廃水中の不純物や有害物な
どを吸着、分解させる場合に、これらが反応等により発
生するガスに吸着又は付着されて浮遊、浮上して、リア
クターから流出してしまうのを防ぐために用いる液媒体
中でガスを付着して浮遊する微細な固体の分離装置に関
する。 【0002】 【従来の技術】例えば、有機性廃水の処理法として、粒
状に自己造粒化された嫌気性微生物を用いた、上向流嫌
気性スラッジブランケット法があり、この方法によれ
ば、有機物と造粒された嫌気性微生物群とを接触させて
廃水を生分解し、その際発生したガスが造粒された嫌気
性微生物に付着してそれらが浮上し、その過程で廃水中
の有機物を更に分解し、廃水を浄化する連続処理方式の
固気液分離装置が知られている。 【0003】従来、この種の固気液分離装置には、高価
なフィルター等による固体の強制分離が用いられてき
た。その中で、廃水の嫌気性微生物処理装置の固気液分
離機構としては、図1〜図4に見られるように、比較的
簡単な分離構造のものから複雑なものまで様々な形状を
呈している。これらは、矢部で示したように、何れも廃
水の流れは上向流により、装置内部の嫌気性微生物と廃
水が接触して、有機物の分解を施すとともに発生するガ
スにより菌体が浮上し、装置上部の固気液分離機構によ
り菌体、処理水及びガスをそれぞれ分離、回収しようと
するものである。 【0004】即ち、図1の例では、下部より流入した廃
水は、装置下部の嫌気性微生物群と接触して、有機物を
分解し、その過程で発生したガスにより、菌体とガスは
浮上するが、上部の固気液分離機構によりガスは装置の
中央部Aに集まり、Bにより回収され、一方菌体は下降
する。また、処理水はC部で上澄み水となって外周囲D
より系外に流出される。図2の例では、下部より流入し
た廃水は、装置下部の嫌気性微生物群と接触して、有機
物を分解し、その過程で発生したガスにより、菌体とガ
スは浮上するが、上部の固気液分離機構によりガスは装
置の周囲Eに集まり、Fにより回収され、一方菌体は下
降する。また、処理水はG部で上澄み水となって外周囲
Hより系外に流出される。図3の例は、図1の例の規模
が大きくなったものである。即ち、図1と同様の処理を
施し、浮上した菌体とガスは上部の固気液分離機構によ
りガスは装置のI部に集まり、Jにより回収され、一方
菌体は下降する。また、処理水はK部で上澄み水となっ
て外周囲Lより系外に流出される。図4の例は、図2の
例の規模が大きくなったものである。即ち、図2と同様
の処理を施し、浮上した菌体とガスは上部の固気液分離
機構によりガスは装置のM部に集まり、Nにより回収さ
れ、一方菌体は下降する。また、処理水はO部で上澄み
水となって外周囲Pより系外に流出される。 【0005】 【発明が解決しようとする課題】しかし、従来の固気液
分離機構を有した固体分離装置には、比較的簡単な分離
構造のものでは、菌体、処理水及びガスの十分な分離が
行えず、しばしば処理水に混じって菌体が流出するた
め、ある一定の廃水通水量に限られ、従って処理量に限
界があったり、装置容量が大きくなってしまったりする
という問題があった。また、複雑な分離構造のもので
は、製作に手間がかかり、またイニシャルコストが高い
という問題があった。 【0006】従って、本発明の目的は、前述の従来技術
の問題点を解消し、十分な固気液分離能力を有し、且
つ、構造が簡単でイニシャルコストを低く抑えることの
できる装置を提供することにある。 【0007】 【課題を解決するための手段】本発明に従えば、液媒体
中において、液媒体の比重より高い比重を有し、かつガ
スを付着しながら液媒体中を浮遊、浮上する微細な固体
をガスより分離除去する分離装置において、そのガスの
浮上する力を利用して装置液媒体の中央部より上方に傾
斜して設けられた固気液分離板及びその下側面に設けら
れた突起部の液媒体中に乱流を起こさせ、微細な固体、
液媒体及びガスをそれぞれ分離回収する、内部に固気液
分離機構を有する、液媒体中の微細な固体の分離装置が
提供される。 【0008】本発明による固気液分離装置を特徴付ける
構成は固気液分離板1の取付角度及びその位置、さらに
固気液分離板1の取付下側の乱流補助突起部2、他の固
気液分離板3、三角形状のガス捕集補助板4、さらにガ
ス量が少なく乱流を起こしにくい場合に用いられるガス
循環配管5である。 【0009】ここで、固気液分離板1(例えば材質ステ
ンレス鋼の板状体)は固液分離装置内の液媒体中の中央
部より上方に傾斜(好ましくは角度:45〜55°)させて
適宜固定し、装置の高さ方向中間部近傍の壁面に設けた
ガス捕集補助板4及び液媒体自由表面との間にそれぞれ
に適当な間隙を介して設置される。また固気液分離板1
の下側面には複数個の乱流補助突起部2(例えば長さ50
〜 150mmの突起) を設け、下方から上昇するガスを付着
した固体がこれに衝突して図5の矢部方向のような下降
流を生ぜしめて、固体を下方へ回収するようにする。第
二の固気液分離板3は例えばガスホルダー10の一部を液
媒体中に延長して第一の固気液分離板3の上部間隙6よ
り十分深い深さまで延ばし、間隙6より流出してきた固
体をここで衝突させて気体と分離させ、固体は間隙7か
ら下方へ戻されるようにする。 【0010】 【作用】本発明に従った固気液分離装置は装置下部より
ポンプ等で導入された廃水が装置内で嫌気性微生物と効
率良く接触され、同時に有機物の生分解により発生する
ガスで微生物菌体が処理水及びガスと共に上昇し、上部
固気液分離板1及び3で菌体、処理水及びガスが分離さ
れ、処理水のみ系外に流出し、ガスは上部のガスホルダ
ー10に回収され、菌体は装置内を下降する乱流にのって
装置下部へ循環されるので、所望の廃水の嫌気性処理を
効率よく行うことができる。 【0011】 【実施例】図2は本発明による内部に固気液分離機構を
有する、液媒体中でガスを付着して浮遊する微細な固体
の分離装置の一例を示す図面である。図2の装置を用い
て本発明の好ましい態様について以下に説明するが、本
発明の範囲をこの実施例に限定するものでないことはい
うまでもない。 【0012】即ち、固気液分離板1は、設置角度を水平
面に対し50°(通常45〜55°)とし、その上部が水面下
約100mm (通常50〜150 mm)として液の移動間隙6を設
け、一方下部は三角形状のガス捕集補助板4との間隔7
を約 200mmとし(通常 150〜250 mm)、さらに固気液分
離板1の下側に乱流補助突起部2を数箇所設けることに
より、図の実線矢印方向への水の流れを作りながら乱流
を起こし、極めて効率の良い固気液分離を行うことがで
きる。また、間隙6から一部水の流れを作ることによ
り、間隙7から菌体、処理水及びガスが破線矢印方向を
通って直接系外に流出するのを防ぐ働きをする。一部間
隙6から流れた菌体と処理水は別の固気液分離板3に当
たり、菌体のみ間隙7を通って再び装置の下部に沈降す
る。この分離板3は間隙6より下側まで液中に突出して
いることが必要である。このようにして処理水は図の右
側上部の上澄み部8で固液分離が完全に行われ、処理水
は樋9を経て系外に流出される。一方、菌体は槽内を実
線矢印のように下降して円滑に槽内を循環し、廃水流入
ポンプ15によって廃水流入管14より導入される廃水との
効率良い接触が常に保たれる。 【0013】尚、初期段階ではガスの発生量が少なく、
上昇乱流が起こりにくく、菌体が流出してしまう場合
は、ガスホルダー10で捕集した発生ガス又は、系外より
導入した酸素を含まないガス(窒素等)11をポンプ12を
用いて配管5を通して装置の下部より通気することによ
って流れを作り出すことができる。また、ガスを循環さ
せないで運転する場合は、発生したガスを13より系外へ
放散するか、あるいは後処理部へ導く。 【0014】 【発明の効果】以上説明した通り、本発明によれば、極
めて簡易な構造の固気液分離機構により、固気液分離に
おいて十分な能力を持ち、且つ、イニシャルコストを大
幅に軽減することができる。また、本機構16は、例えば
図5、6及び7に示した斜線部のように、廃水処理リア
クターの一部分に設置使用できるために、ランニングコ
ストを大幅に軽減することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for separating fine solids suspended by adhering a gas in a liquid medium, and more particularly, for example, in a wastewater treatment reactor. When adsorbing and decomposing impurities and harmful substances in wastewater by contacting the wastewater with ion exchange resin, activated carbon, other carriers or microbial flocs, these are adsorbed or adhered to the gas generated by the reaction etc. The present invention relates to an apparatus for separating fine solids that adhere and float in a liquid medium used to prevent the solids from floating, floating, and flowing out of the reactor. [0002] For example, as a method for treating organic wastewater, there is an upflow anaerobic sludge blanket method using anaerobic microorganisms that have been granulated and self-granulated. The wastewater is biodegraded by contacting the organic matter with the granulated anaerobic microorganisms, and the gas generated at that time adheres to the granulated anaerobic microorganisms and floats up. There is known a solid-gas-liquid separation apparatus of a continuous treatment system for further decomposing and purifying wastewater. Heretofore, for this type of solid-gas-liquid separator, forcible separation of solids using an expensive filter or the like has been used. Among them, as a solid-gas-liquid separation mechanism of an anaerobic microorganism treatment apparatus for wastewater, as shown in FIGS. 1 to 4, it has various shapes from a relatively simple separation structure to a complicated one. I have. As indicated by arrows, the flow of wastewater flows upward, and anaerobic microorganisms and wastewater in the device come into contact with each other, decompose organic matter, and the cells generated by the generated gas, Bacteria, treated water and gas are to be separated and recovered by a solid-gas-liquid separation mechanism at the top of the apparatus. That is, in the example of FIG. 1, the wastewater flowing from the lower part comes into contact with the anaerobic microorganisms at the lower part of the apparatus, decomposes organic matter, and the cells and the gas float by the gas generated in the process. However, the gas is collected at the central part A of the apparatus by the solid-gas-liquid separation mechanism at the upper part, and is collected by B, while the bacterial cells descend. In addition, the treated water becomes supernatant water in part C and becomes
Spilled out of the system. In the example of FIG. 2, the wastewater flowing from the lower part comes into contact with the anaerobic microorganisms at the lower part of the apparatus, decomposes organic matter, and the gas generated in the process causes the cells and the gas to float, while the upper part solidifies. The gas is collected by the gas-liquid separation mechanism around the device E and collected by F, while the cells descend. Further, the treated water becomes supernatant water in the G portion and flows out of the system from the outer periphery H. In the example of FIG. 3, the scale of the example of FIG. 1 is increased. That is, the same treatment as that of FIG. 1 is performed, and the floated bacterial cells and gas are collected by the solid-gas-liquid separation mechanism at the upper portion, and the gas is collected in the I section of the apparatus, collected by J, while the bacterial cells descend. Further, the treated water becomes supernatant water in the K portion and flows out of the system from the outer periphery L. In the example of FIG. 4, the scale of the example of FIG. 2 is increased. That is, the same processing as in FIG. 2 is performed, and the floated bacterial cells and gas are collected by the solid-gas-liquid separation mechanism at the upper portion of the apparatus at the M portion of the apparatus and are collected by N, while the bacterial cells descend. In addition, the treated water becomes supernatant water in the O portion and flows out of the system from the outer periphery P. [0005] However, in a conventional solid separation apparatus having a solid-gas-liquid separation mechanism, a relatively simple separation structure does not provide sufficient amounts of bacteria, treated water and gas. Separation cannot be performed, and bacteria are often mixed with the treated water and the bacteria flow out.Therefore, there is a problem that the amount of wastewater is limited to a certain amount, and thus the treatment amount is limited and the capacity of the apparatus is increased. Was. In addition, in the case of a structure having a complicated separation structure, there is a problem that it takes time to manufacture and the initial cost is high. Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, to provide an apparatus which has a sufficient solid-gas-liquid separation capability, has a simple structure and can keep initial costs low. Is to do. According to the present invention, fine liquids having a specific gravity higher than the specific gravity of the liquid medium in the liquid medium, and floating and floating in the liquid medium while adhering gas. In a separation device that separates and removes solids from a gas, the separating device is tilted upward from the center of the device liquid medium by using the floating force of the gas
The solid-gas-liquid separation plate provided at an angle and the lower surface
The to cause a turbulence in the liquid medium of the protrusions, the fine solids,
Provided is an apparatus for separating fine solids in a liquid medium, which has a solid-gas-liquid separation mechanism therein for separating and recovering a liquid medium and a gas, respectively. The solid-gas-liquid separating apparatus according to the present invention is characterized by a mounting angle and a position of the solid-gas-liquid separating plate 1, a turbulence assisting projection 2 below the mounting of the solid-gas-liquid separating plate 1, and other solid-liquid separating plates. A gas-liquid separation plate 3, a triangular gas trapping auxiliary plate 4, and a gas circulation pipe 5 used when the amount of gas is small and turbulence hardly occurs. Here, the solid-liquid separating plate 1 (for example, a plate made of stainless steel) is inclined upward (preferably at an angle of 45 to 55 °) from the center of the liquid medium in the solid-liquid separating device. And a gas-collecting auxiliary plate 4 provided on a wall near an intermediate portion in the height direction of the apparatus and a liquid medium free surface. Solid-gas-liquid separation plate 1
A plurality of turbulence assisting projections 2 (for example, having a length of 50
A protrusion having a height of about 150 mm) is provided, and the solid having gas rising from below collides with the solid to generate a downward flow as shown by the arrow in FIG. 5 so that the solid is collected downward. The second solid-gas-liquid separation plate 3 extends, for example, a part of the gas holder 10 into the liquid medium, extends to a depth sufficiently deeper than the upper gap 6 of the first solid-gas-liquid separation plate 3, and flows out of the gap 6. The solids now collide and separate from the gas so that the solids are returned down through the gap 7. In the solid-gas-liquid separation device according to the present invention, wastewater introduced by a pump or the like from the lower portion of the device is efficiently contacted with anaerobic microorganisms in the device, and at the same time, gas generated by biodegradation of organic matter. Microbial cells rise together with the treated water and gas, and the cells, treated water and gas are separated by the upper solid-gas-liquid separation plates 1 and 3, and only treated water flows out of the system, and the gas is transferred to the upper gas holder 10. Since the cells are collected and circulated to the lower part of the device along a turbulent flow descending in the device, anaerobic treatment of the desired wastewater can be efficiently performed. FIG. 2 is a view showing an example of an apparatus for separating fine solids having a solid-gas-liquid separation mechanism according to the present invention and having a solid-gas-liquid separation mechanism in which a gas adheres and floats in a liquid medium. A preferred embodiment of the present invention will be described below using the apparatus shown in FIG. 2, but it is needless to say that the scope of the present invention is not limited to this embodiment. That is, the solid-gas-liquid separating plate 1 is set at an angle of 50 ° (normally 45 to 55 °) with respect to the horizontal plane, and the upper portion thereof is about 100 mm below the surface of the water (normally 50 to 150 mm). The lower part is provided with a space 7 with the triangular gas collecting auxiliary plate 4.
Is set to about 200 mm (usually 150 to 250 mm), and several turbulence assisting projections 2 are provided below the solid-gas-liquid separation plate 1 to create a flow of water in the direction of the solid line arrow in the figure. By causing a flow, solid-gas-liquid separation can be performed very efficiently. In addition, by creating a flow of a part of water from the gap 6, it functions to prevent bacteria, treated water and gas from flowing out of the system directly through the gap 7 in the direction of the dashed arrow. The cells and the treated water flowing from the gap 6 partially strike another solid-gas-liquid separation plate 3, and only the cells pass through the gap 7 and settle again at the lower part of the apparatus. The separation plate 3 needs to protrude below the gap 6 into the liquid. In this way, the treated water undergoes solid-liquid separation completely in the supernatant portion 8 on the upper right side of the figure, and the treated water flows out of the system via the gutter 9. On the other hand, the bacterial cells descend in the tank as shown by the solid line arrows and smoothly circulate in the tank, so that efficient contact with wastewater introduced from the wastewater inflow pipe 14 by the wastewater inflow pump 15 is always maintained. In the initial stage, the amount of generated gas is small,
When ascending turbulence is unlikely to occur and bacteria cells flow out, the generated gas collected by the gas holder 10 or a gas (nitrogen or the like) 11 containing no oxygen introduced from outside the system is piped using the pump 12. A flow can be created by venting through the bottom of the device through 5. When the operation is performed without circulating the gas, the generated gas is diffused out of the system from 13 or guided to a post-processing unit. As described above, according to the present invention, the solid-gas-liquid separation mechanism having an extremely simple structure has a sufficient capability in solid-gas-liquid separation and greatly reduces the initial cost. can do. Further, the present mechanism 16 can be installed and used in a part of the wastewater treatment reactor as shown by, for example, the hatched portions shown in FIGS. 5, 6, and 7, so that the running cost can be greatly reduced.

【図面の簡単な説明】 【図1】従来の廃水の嫌気性微生物処理装置の固気液分
離機構の一例を示す図面である。 【図2】従来の廃水の嫌気性微生物処理装置の固気液分
離機構の他の例を示す図面である。 【図3】従来の廃水の嫌気性微生物処理装置の固気液分
離機構の更に他の例を示す図面である。 【図4】従来の廃水の嫌気性微生物処理装置の固気液分
離機構の更に他の例を示す図面である。 【図5】本発明による固気液分離機構を備えた液媒体中
でガスを付着して浮遊する微細な固体の分離装置の一例
を示す概略図である。 【図6】本発明の固気液分離機構の廃水処理リアクター
への配置の一例を示す平面図である。 【図7】本発明の固気液分離機構の廃水処理リアクター
への配置の他の例を示す平面図である。 【図8】本発明の固気液分離機構の廃水処理リアクター
への配置の更に他の例を示す平面図である。 【符号の説明】 1…固気液分離板 2…乱流補助突起板 3…固気液分離板 4…ガス捕集補助板 5…ガス循環配管 6…液移動間隙 7…固気液分離板とガス捕集補助板との間隙 8…上澄み部 9…処理水流出樋 10…ガスホルダー 11…導入ガス 12…ポンプ 13…排出ガス 14…廃水流入管 15…廃水流入ポンプ 16…本発明の固気液分離機構
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a drawing showing an example of a solid-gas-liquid separation mechanism of a conventional anaerobic microorganism treatment apparatus for wastewater. FIG. 2 is a drawing showing another example of the solid-gas-liquid separation mechanism of the conventional anaerobic microorganism treatment apparatus for wastewater. FIG. 3 is a view showing still another example of the solid-gas-liquid separation mechanism of the conventional anaerobic microorganism treatment apparatus for wastewater. FIG. 4 is a view showing still another example of the solid-gas-liquid separation mechanism of the conventional anaerobic microorganism treatment apparatus for wastewater. FIG. 5 is a schematic view showing an example of a fine solid separating apparatus provided with a solid-gas-liquid separating mechanism according to the present invention, which separates and floats a gas in a liquid medium. FIG. 6 is a plan view showing an example of an arrangement of the solid-gas-liquid separation mechanism of the present invention in a wastewater treatment reactor. FIG. 7 is a plan view showing another example of the arrangement of the solid-gas-liquid separation mechanism of the present invention in a wastewater treatment reactor. FIG. 8 is a plan view showing still another example of the arrangement of the solid-gas-liquid separation mechanism of the present invention in a wastewater treatment reactor. [Description of Signs] 1 ... solid-gas-liquid separation plate 2 ... turbulence auxiliary projection plate 3 ... solid-gas-liquid separation plate 4 ... gas collection auxiliary plate 5 ... gas circulation pipe 6 ... liquid moving gap 7 ... solid-gas-liquid separation plate A gap 8 between the gas collecting auxiliary plate 8 and the supernatant 9 a treated water outflow gutter 10 a gas holder 11 an introduced gas 12 a pump 13 an exhaust gas 14 a wastewater inflow pipe 15 a wastewater inflow pump 16 a solid of the present invention Gas-liquid separation mechanism

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // B01D 21/02 B01D 21/02 F (58)調査した分野(Int.Cl.7,DB名) C02F 3/28 C02F 1/28 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 identification symbol FI // B01D 21/02 B01D 21/02 F (58) Field surveyed (Int.Cl. 7 , DB name) C02F 3/28 C02F 1/28

Claims (1)

(57)【特許請求の範囲】 【請求項1】 液媒体中において、液媒体の比重より高
い比重を有し、かつガスを付着しながら液媒体中を浮
遊、浮上する微細な固体をガスより分離除去する分離装
置において、そのガスの浮上する力を利用して装置液媒
体の中央部より上方に傾斜して設けられた固気液分離板
及びその下側面に設けられた突起部の液媒体中に乱流を
起こさせ、微細な固体、液媒体及びガスをそれぞれ分離
回収する、内部に固気液分離機構を有する、液媒体中の
微細な固体の分離装置。
(57) [Claim 1] A fine solid that has a specific gravity higher than the specific gravity of a liquid medium in a liquid medium and floats and floats in the liquid medium while adhering gas to the liquid medium. In a separation device that separates and removes, the liquid medium of the device is
Solid-gas-liquid separation plate inclined upward from the center of the body
And a turbulent flow in the liquid medium of the projections provided on the lower surface thereof to separate and collect fine solids, liquid medium and gas, respectively, and have a solid-gas-liquid separation mechanism inside. Solid separation equipment.
JP14279292A 1992-06-03 1992-06-03 Separation device for fine solids that adhere and float in a liquid medium Expired - Fee Related JP3382636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14279292A JP3382636B2 (en) 1992-06-03 1992-06-03 Separation device for fine solids that adhere and float in a liquid medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14279292A JP3382636B2 (en) 1992-06-03 1992-06-03 Separation device for fine solids that adhere and float in a liquid medium

Publications (2)

Publication Number Publication Date
JPH05337490A JPH05337490A (en) 1993-12-21
JP3382636B2 true JP3382636B2 (en) 2003-03-04

Family

ID=15323722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14279292A Expired - Fee Related JP3382636B2 (en) 1992-06-03 1992-06-03 Separation device for fine solids that adhere and float in a liquid medium

Country Status (1)

Country Link
JP (1) JP3382636B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3955431B2 (en) * 2000-09-08 2007-08-08 株式会社荏原製作所 Anaerobic treatment method and apparatus
EP1806324A1 (en) * 2006-01-05 2007-07-11 Biothane Systems International B.V. Process and reactor for anaerobic waste water purification
JP4932262B2 (en) * 2006-01-17 2012-05-16 住友重機械エンバイロメント株式会社 Anaerobic treatment equipment
EP2065344A1 (en) * 2008-09-23 2009-06-03 Paques Bio Systems B.V. Settling device, purifier containing the settling device and method for anaerobic or aerobic water purification
CN102745805B (en) * 2012-07-26 2014-04-30 常州大学 Air flotation oil separation sand setting device and sewage treatment method
JP6048557B1 (en) * 2015-09-25 2016-12-21 栗田工業株式会社 Anaerobic treatment apparatus and anaerobic treatment method
CN109967001A (en) * 2019-04-26 2019-07-05 河南百优福生物能源有限公司 A kind of three phase separator of biomass pyrolysis liquid fluidized bed reactor and its application

Also Published As

Publication number Publication date
JPH05337490A (en) 1993-12-21

Similar Documents

Publication Publication Date Title
JP3621967B2 (en) Waste water purification method and apparatus
JP5043671B2 (en) Biological denitrification method and apparatus
GB1592609A (en) Sludge thickening apparatus and process
JP3382636B2 (en) Separation device for fine solids that adhere and float in a liquid medium
CN104003503A (en) Integral slurry-water separation device and method for fenton chemical oxidation reaction
EP0352129B1 (en) Organic sewage treatment process using polyvinyl pyridine
JPS58174289A (en) Biologically treating device of unit type using fluidized carrier
JP2001269694A (en) Upflow anaerobic treating device
JP3469797B2 (en) Sewage treatment method and apparatus
US3776841A (en) Method and apparatus for the biological treatment of waste water
KR200336701Y1 (en) Polluted river-water purification system using direct aeration
CN114212853B (en) Air floatation tank for demulsification of emulsified oil-containing wastewater, wastewater treatment system comprising air floatation tank and method
JPH11165189A (en) Apparatus and method for treating water
JP3280293B2 (en) Water treatment device and water treatment method
KR100206748B1 (en) Wastewater treatment device with high efficiency using granula carrier
JP2000354858A (en) Sewage treatment method and device therefor
KR100685411B1 (en) Apparatus for treating wastewater using membrane
JP3374642B2 (en) Anaerobic treatment equipment for organic wastewater
JP3285466B2 (en) River purification facility
KR101885134B1 (en) waste water continual system and method
JP3419688B2 (en) Water treatment device and water treatment method
US3905899A (en) Method of wastewater treatment
CN1312226A (en) Counter-current air floating water-treating method and apparatus
CN214244124U (en) Oily wastewater treatment system
KR100481821B1 (en) Process and plant for wastewater treatment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees